1
|
Jørgensen JA. Tuning expression of GPCRs for the secretory pathway in the baculovirus-insect cell expression system. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184397. [PMID: 39471908 DOI: 10.1016/j.bbamem.2024.184397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The overexpression of G-protein-coupled receptors (GPCRs) remains one of the biggest hurdles for structural studies of these proteins. To date, the most usually applied system for this task is the insect cell/baculovirus expression system. A drawback of this system, however, is the accumulation of protein that is resistant to solubilization with the commonly used mild detergent DoDecylMaltoside (DDM). In addition, poor surface expression is often observed. In this study, it is shown how an earlier AcMNPV 39K promoter, can express receptors that are found primarily on the cell membrane, as revealed by confocal microscopy, and the protein can be solubilized to a higher degree by DDM in a less aggregation-prone form, as monitored by fluorescence size-exclusion chromatography. In addition, a strong effect on the yield was observed when the AcMNPV gp67 signal sequence was used. The documentation of the 39K promoter as an improvement over the frequently used polyhedrin promoter, along with the effect of the gp67 signal sequence are important steps toward ultimately improving the expression in terms of total functional yield, while also shedding light on the nature of the process of overproduction of membrane proteins, in particular, GPCRs.
Collapse
Affiliation(s)
- Jakob Aastrup Jørgensen
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Aargau, Switzerland; Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Stephens AD, Wilkinson T. Discovery of Therapeutic Antibodies Targeting Complex Multi-Spanning Membrane Proteins. BioDrugs 2024; 38:769-794. [PMID: 39453540 PMCID: PMC11530565 DOI: 10.1007/s40259-024-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning polypeptides, encompass families of proteins that are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels, transporters, enzymes, and adhesion molecules. The high specificity of monoclonal antibodies and the ability to engineer their properties offers a significant opportunity to selectively bind these target proteins, allowing direct modulation of pharmacology or enabling other mechanisms of action such as cell killing. Isolation of antibodies that bind these types of membrane proteins and exhibit the desired pharmacological function has, however, remained challenging due to technical issues in preparing membrane protein antigens suitable for enabling and driving antibody drug discovery strategies. In this article, we review progress and emerging themes in defining discovery strategies for a generation of antibodies that target these complex membrane protein antigens. We also comment on how this field may develop with the emerging implementation of computational techniques, artificial intelligence, and machine learning.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Trevor Wilkinson
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| |
Collapse
|
3
|
Kaipa JM, Krasnoselska G, Owens RJ, van den Heuvel J. Screening of Membrane Protein Production by Comparison of Transient Expression in Insect and Mammalian Cells. Biomolecules 2023; 13:biom13050817. [PMID: 37238687 DOI: 10.3390/biom13050817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Membrane proteins are difficult biomolecules to express and purify. In this paper, we compare the small-scale production of six selected eukaryotic integral membrane proteins in insect and mammalian cell expression systems using different techniques for gene delivery. The target proteins were C terminally fused to the green fluorescent marker protein GFP to enable sensitive monitoring. We show that the choice of expression systems makes a considerable difference to the yield and quality of the six selected membrane proteins. Virus-free transient gene expression (TGE) in insect High Five cells combined with solubilization in dodecylmaltoside plus cholesteryl hemisuccinate generated the most homogeneous samples for all six targets. Further, the affinity purification of the solubilized proteins using the Twin-Strep® tag improved protein quality in terms of yield and homogeneity compared to His-tag purification. TGE in High Five insect cells offers a fast and economically attractive alternative to the established methods that require either baculovirus construction and the infection of the insect cells or relatively expensive transient gene expression in mammalian cells for the production of integral membrane proteins.
Collapse
Affiliation(s)
| | - Ganna Krasnoselska
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 18.5, 42, 2200 Copenhagen, Denmark
| | - Raymond J Owens
- Structural Biology Division, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QX, UK
| | - Joop van den Heuvel
- Helmholtz Center for Infection Research, Department of Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
4
|
Dmitrieva DA, Kotova TV, Safronova NA, Sadova AA, Dashevskii DE, Mishin AV. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. BIOCHEMISTRY (MOSCOW) 2023; 88:S192-S226. [PMID: 37069121 DOI: 10.1134/s0006297923140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.
Collapse
Affiliation(s)
- Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Kotova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nadezda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexandra A Sadova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
5
|
Diagne AM, Pelletier A, Durmort C, Faure A, Kanonenberg K, Freton C, Page A, Delolme F, Vorac J, Vallet S, Bellard L, Vivès C, Fieschi F, Vernet T, Rousselle P, Guiral S, Grangeasse C, Jault JM, Orelle C. Identification of a two-component regulatory system involved in antimicrobial peptide resistance in Streptococcus pneumoniae. PLoS Pathog 2022; 18:e1010458. [PMID: 35395062 PMCID: PMC9020739 DOI: 10.1371/journal.ppat.1010458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/20/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.
Collapse
Affiliation(s)
- Aissatou Maty Diagne
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Anaïs Pelletier
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Claire Durmort
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Agathe Faure
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Kerstin Kanonenberg
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences, CNRS, UMS3444, INSERM US8, University of Lyon, Lyon, France
| | - Frédéric Delolme
- Protein Science Facility, SFR BioSciences, CNRS, UMS3444, INSERM US8, University of Lyon, Lyon, France
| | - Jaroslav Vorac
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Sylvain Vallet
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Laure Bellard
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Corinne Vivès
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Franck Fieschi
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Thierry Vernet
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR 5305 CNRS/University of Lyon, Lyon, France
| | - Sébastien Guiral
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| |
Collapse
|
6
|
Cho NH, Cheveralls KC, Brunner AD, Kim K, Michaelis AC, Raghavan P, Kobayashi H, Savy L, Li JY, Canaj H, Kim JY, Stewart EM, Gnann C, McCarthy F, Cabrera JP, Brunetti RM, Chhun BB, Dingle G, Hein MY, Huang B, Mehta SB, Weissman JS, Gómez-Sjöberg R, Itzhak DN, Royer LA, Mann M, Leonetti MD. OpenCell: Endogenous tagging for the cartography of human cellular organization. Science 2022; 375:eabi6983. [PMID: 35271311 PMCID: PMC9119736 DOI: 10.1126/science.abi6983] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elucidating the wiring diagram of the human cell is a central goal of the postgenomic era. We combined genome engineering, confocal live-cell imaging, mass spectrometry, and data science to systematically map the localization and interactions of human proteins. Our approach provides a data-driven description of the molecular and spatial networks that organize the proteome. Unsupervised clustering of these networks delineates functional communities that facilitate biological discovery. We found that remarkably precise functional information can be derived from protein localization patterns, which often contain enough information to identify molecular interactions, and that RNA binding proteins form a specific subgroup defined by unique interaction and localization properties. Paired with a fully interactive website (opencell.czbiohub.org), our work constitutes a resource for the quantitative cartography of human cellular organization.
Collapse
Affiliation(s)
| | | | - Andreas-David Brunner
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kibeom Kim
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - André C. Michaelis
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Laura Savy
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jason Y. Li
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Hera Canaj
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | - Christian Gnann
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Rachel M. Brunetti
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | | | - Greg Dingle
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | | | - Bo Huang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | | | - Jonathan S. Weissman
- Whitehead Institute, Koch Institute, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | | | | | | | - Matthias Mann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
7
|
Liu S, Li S, Krezel AM, Li W. Stabilization and structure determination of integral membrane proteins by termini restraining. Nat Protoc 2022; 17:540-565. [PMID: 35039670 PMCID: PMC11649303 DOI: 10.1038/s41596-021-00656-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022]
Abstract
Integral membrane proteins isolated from cellular environment often lose activity and native conformation required for functional analyses and structural studies. Even in their native state, they lack sufficient surfaces to form crystal contacts. Furthermore, most of them are too small for cryogenic electron microscopy detection and too big for solution NMR. To overcome these difficulties, we recently developed a strategy to stabilize the folded state of membrane proteins by restraining their two termini with a self-assembling protein coupler. The termini-restrained membrane proteins from distinct functional families retain their activities and show increased stability and yield. This strategy enables their structure determination at near-atomic resolution by facilitating the entire pipeline from crystallization, crystal identification, diffraction enhancement and phase determination, to electron density improvement. Furthermore, stabilization of membrane proteins enables their biochemical and biophysical characterization. Here we present the protocol of membrane protein engineering (2 weeks), quality assessment (1-2 weeks), protein production (1-6 weeks), crystallization (1-2 weeks), diffraction improvement (1-3 months) and crystallographic data analysis (1 week). This protocol is intended not only for structural biologists, but also for biochemists, biophysicists and pharmaceutical scientists whose research focuses on membrane proteins.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Di Cesare M, Diagne AM, Bourgey B, Jault JM, Orelle C. Functional Overexpression of Membrane Proteins in E. coli: The Good, the Bad, and the Ugly. Methods Mol Biol 2022; 2507:41-58. [PMID: 35773576 DOI: 10.1007/978-1-0716-2368-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Overexpression of properly folded membrane proteins is a mandatory step for their functional and structural characterization. One of the most used expression systems for the production of proteins is Escherichia coli. Many advantageous strains combined with T7 expression systems have been developed over the years. Recently, we showed that the choice of the strain is critical for the functionality of membrane proteins, even when the proteins are successfully incorporated in the membrane (Mathieu et al. Sci Rep. 2019; 9(1):2654). Notably, the amount and/or activity of the T7-RNA polymerase, which drives the transcription of the genes of interest, may indirectly affect the folding and functionality of overexpressed membrane proteins. Moreover, we reported a general trend in which mild detergents mainly extract the population of active membrane proteins, whereas a harsher detergent like Fos-choline 12 could solubilize them irrespectively of their functionality. Based on these observations, we provide some guidelines to optimize the quality of membrane proteins overexpressed in E. coli.
Collapse
Affiliation(s)
- Margot Di Cesare
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Aissatou Maty Diagne
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Benjamin Bourgey
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/University of Lyon, Lyon, France.
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/University of Lyon, Lyon, France.
| |
Collapse
|
9
|
Birch J, Quigley A. The high-throughput production of membrane proteins. Emerg Top Life Sci 2021; 5:655-663. [PMID: 34623416 PMCID: PMC8726054 DOI: 10.1042/etls20210196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Membrane proteins, found at the junctions between the outside world and the inner workings of the cell, play important roles in human disease and are used as biosensors. More than half of all therapeutics directly affect membrane protein function while nanopores enable DNA sequencing. The structural and functional characterisation of membrane proteins is therefore crucial. However, low levels of naturally abundant protein and the hydrophobic nature of membrane proteins makes production difficult. To maximise success, high-throughput strategies were developed that rely upon simple screens to identify successful constructs and rapidly exclude those unlikely to work. Parameters that affect production such as expression host, membrane protein origin, expression vector, fusion-tags, encapsulation reagent and solvent composition are screened in parallel. In this way, constructs with divergent requirements can be produced for a variety of structural applications. As structural techniques advance, sample requirements will change. Single-particle cryo-electron microscopy requires less protein than crystallography and as cryo-electron tomography and time-resolved serial crystallography are developed new sample production requirements will evolve. Here we discuss different methods used for the high-throughput production of membrane proteins for structural biology.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K
| |
Collapse
|
10
|
Carman PJ, Barrie KR, Dominguez R. Novel human cell expression method reveals the role and prevalence of posttranslational modification in nonmuscle tropomyosins. J Biol Chem 2021; 297:101154. [PMID: 34478714 PMCID: PMC8463859 DOI: 10.1016/j.jbc.2021.101154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
Biochemical studies require large quantities of proteins, which are typically obtained using bacterial overexpression. However, the folding machinery in bacteria is inadequate for expressing many mammalian proteins, which additionally undergo posttranslational modifications (PTMs) that bacteria, yeast, or insect cells cannot perform. Many proteins also require native N- and C-termini and cannot tolerate extra tag amino acids for proper function. Tropomyosin (Tpm), a coiled coil protein that decorates most actin filaments in cells, requires both native N- and C-termini and PTMs, specifically N-terminal acetylation (Nt-acetylation), to polymerize along actin filaments. Here, we describe a new method that combines native protein expression in human cells with an intein-based purification tag that can be precisely removed after purification. Using this method, we expressed several nonmuscle Tpm isoforms (Tpm1.6, Tpm1.7, Tpm2.1, Tpm3.1, Tpm3.2, and Tpm4.2) and the muscle isoform Tpm1.1. Proteomics analysis revealed that human-cell-expressed Tpms present various PTMs, including Nt-acetylation, Ser/Thr phosphorylation, Tyr phosphorylation, and Lys acetylation. Depending on the Tpm isoform (humans express up to 40 Tpm isoforms), Nt-acetylation occurs on either the initiator methionine or on the second residue after removal of the initiator methionine. Human-cell-expressed Tpms bind F-actin differently than their Escherichia coli-expressed counterparts, with or without N-terminal extensions intended to mimic Nt-acetylation, and they can form heterodimers in cells and in vitro. The expression method described here reveals previously unknown features of nonmuscle Tpms and can be used in future structural and biochemical studies with Tpms and other proteins, as shown here for α-synuclein.
Collapse
Affiliation(s)
- Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle R Barrie
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Membrane Protein Production and Purification from Escherichia coli and Sf9 Insect Cells. Methods Mol Biol 2021. [PMID: 33582985 DOI: 10.1007/978-1-0716-0724-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A major obstacle to studying membrane proteins by biophysical techniques is the difficulty in producing sufficient amounts of materials for functional and structural studies. To overexpress the target membrane protein heterologously, especially an eukaryotic protein, a key step is to find the optimal host expression system and perform subsequent expression optimization. In this chapter, we describe protocols for screening membrane protein production using bacterial and insect cells, solubilization screening, large-scale production, and commonly used affinity chromatography purification methods. We discuss general optimization conditions, such as promoters and tags, and describe current techniques that can be used in any laboratory without specialized expensive equipment. Especially for insect cells, GFP fusions are particularly useful for localization and in-gel fluorescence detection of the proteins on SDS-PAGE. We give detailed protocols that can be used to screen the best expression and purification conditions for membrane protein study.
Collapse
|
12
|
Production of Multi-subunit Membrane Protein Complexes. Methods Mol Biol 2020. [PMID: 33301109 DOI: 10.1007/978-1-0716-1126-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Membrane proteins constitute an important class of proteins for medical, pharmaceutical, and biotechnological reasons. Understanding the structure and function of membrane proteins and their complexes is of key importance, but the progress in this area is slow because of the difficulties to produce them in sufficient quality and quantity. Overexpression of membrane proteins is often restricted by the limited capability of translocation systems to integrate proteins into the membrane and to fold them properly. Purification of membrane proteins requires their isolation from the membrane, which is a further challenge. The choice of expression system, detergents, and purification tags is therefore an important decision. Here, we present a protocol for expression in bacteria and isolation of a seven-subunit membrane protein complex, the bacterial holo-translocon, which can serve as a starting point for the production of other membrane protein complexes for structural and functional studies.
Collapse
|
13
|
Liu S, Li S, Yang Y, Li W. Termini restraining of small membrane proteins enables structure determination at near-atomic resolution. SCIENCE ADVANCES 2020; 6:eabe3717. [PMID: 33355146 PMCID: PMC11205269 DOI: 10.1126/sciadv.abe3717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Small membrane proteins are difficult targets for structural characterization. Here, we stabilize their folding by restraining their amino and carboxyl termini with associable protein entities, exemplified by the two halves of a superfolder GFP. The termini-restrained proteins are functional and show improved stability during overexpression and purification. The reassembled GFP provides a versatile scaffold for membrane protein crystallization, enables diffraction to atomic resolution, and facilitates crystal identification, phase determination, and density modification. This strategy gives rise to 14 new structures of five vertebrate proteins from distinct functional families, bringing a substantial expansion to the structural database of small membrane proteins. Moreover, a high-resolution structure of bacterial DsbB reveals that this thiol oxidoreductase is activated through a catalytic triad, similar to cysteine proteases. Overall, termini restraining proves exceptionally effective for stabilization and structure determination of small membrane proteins.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yihu Yang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Abarghooi Kahaki F, Monzavi S, Bamehr H, Bandani E, Payandeh Z, Jahangiri A, Khalili S. Expression and Purification of Membrane Proteins in Different Hosts. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Birch J, Cheruvara H, Gamage N, Harrison PJ, Lithgo R, Quigley A. Changes in Membrane Protein Structural Biology. BIOLOGY 2020; 9:E401. [PMID: 33207666 PMCID: PMC7696871 DOI: 10.3390/biology9110401] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Membrane proteins are essential components of many biochemical processes and are important pharmaceutical targets. Membrane protein structural biology provides the molecular rationale for these biochemical process as well as being a highly useful tool for drug discovery. Unfortunately, membrane protein structural biology is a difficult area of study due to low protein yields and high levels of instability especially when membrane proteins are removed from their native environments. Despite this instability, membrane protein structural biology has made great leaps over the last fifteen years. Today, the landscape is almost unrecognisable. The numbers of available atomic resolution structures have increased 10-fold though advances in crystallography and more recently by cryo-electron microscopy. These advances in structural biology were achieved through the efforts of many researchers around the world as well as initiatives such as the Membrane Protein Laboratory (MPL) at Diamond Light Source. The MPL has helped, provided access to and contributed to advances in protein production, sample preparation and data collection. Together, these advances have enabled higher resolution structures, from less material, at a greater rate, from a more diverse range of membrane protein targets. Despite this success, significant challenges remain. Here, we review the progress made and highlight current and future challenges that will be overcome.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Harish Cheruvara
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Nadisha Gamage
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Peter J. Harrison
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Ryan Lithgo
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| |
Collapse
|
16
|
Lasitza‐Male T, Bartels K, Jungwirth J, Wiggers F, Rosenblum G, Hofmann H, Löw C. Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angew Chem Int Ed Engl 2020; 59:19121-19128. [PMID: 32744783 PMCID: PMC7590137 DOI: 10.1002/anie.202008226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/02/2023]
Abstract
Membrane proteins require lipid bilayers for function. While lipid compositions reach enormous complexities, high-resolution structures are usually obtained in artificial detergents. To understand whether and how lipids guide membrane protein function, we use single-molecule FRET to probe the dynamics of DtpA, a member of the proton-coupled oligopeptide transporter (POT) family, in various lipid environments. We show that detergents trap DtpA in a dynamic ensemble with cytoplasmic opening. Only reconstitutions in more native environments restore cooperativity, allowing an opening to the extracellular side and a sampling of all relevant states. Bilayer compositions tune the abundance of these states. A novel state with an extreme cytoplasmic opening is accessible in bilayers with anionic head groups. Hence, chemical diversity of membranes translates into structural diversity, with the current POT structures only sampling a portion of the full structural space.
Collapse
Affiliation(s)
- Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Jakub Jungwirth
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Felix Wiggers
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Gabriel Rosenblum
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
- Department of Medical Biochemistry and BiophysicsKarolinska Institutet17177StockholmSweden
| |
Collapse
|
17
|
Lasitza‐Male T, Bartels K, Jungwirth J, Wiggers F, Rosenblum G, Hofmann H, Löw C. Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tanya Lasitza‐Male
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Kim Bartels
- Centre for Structural Systems Biology (CSSB) DESY and European Molecular Biology Laboratory Hamburg Notkestrasse 85 22607 Hamburg Germany
| | - Jakub Jungwirth
- Department of Chemical and Biological Physics Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Felix Wiggers
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Gabriel Rosenblum
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Hagen Hofmann
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB) DESY and European Molecular Biology Laboratory Hamburg Notkestrasse 85 22607 Hamburg Germany
- Department of Medical Biochemistry and Biophysics Karolinska Institutet 17177 Stockholm Sweden
| |
Collapse
|
18
|
Kesidis A, Depping P, Lodé A, Vaitsopoulou A, Bill RM, Goddard AD, Rothnie AJ. Expression of eukaryotic membrane proteins in eukaryotic and prokaryotic hosts. Methods 2020; 180:3-18. [DOI: 10.1016/j.ymeth.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
|
19
|
Wiseman DN, Otchere A, Patel JH, Uddin R, Pollock NL, Routledge SJ, Rothnie AJ, Slack C, Poyner DR, Bill RM, Goddard AD. Expression and purification of recombinant G protein-coupled receptors: A review. Protein Expr Purif 2020; 167:105524. [PMID: 31678667 PMCID: PMC6983937 DOI: 10.1016/j.pep.2019.105524] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
Given their extensive role in cell signalling, GPCRs are significant drug targets; despite this, many of these receptors have limited or no available prophylaxis. Novel drug design and discovery significantly rely on structure determination, of which GPCRs are typically elusive. Progress has been made thus far to produce sufficient quantity and quality of protein for downstream analysis. As such, this review highlights the systems available for recombinant GPCR expression, with consideration of their advantages and disadvantages, as well as examples of receptors successfully expressed in these systems. Additionally, an overview is given on the use of detergents and the styrene maleic acid (SMA) co-polymer for membrane solubilisation, as well as purification techniques.
Collapse
Affiliation(s)
- Daniel N Wiseman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abigail Otchere
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Jaimin H Patel
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Romez Uddin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | | | - Sarah J Routledge
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alice J Rothnie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Cathy Slack
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alan D Goddard
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
20
|
Importance of the Choice of a Recombinant System to Produce Large Amounts of Functional Membrane Protein hERG. Int J Mol Sci 2019; 20:ijms20133181. [PMID: 31261773 PMCID: PMC6651182 DOI: 10.3390/ijms20133181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Human ether-a-gogo related gene (hERG) product is the membrane potassium channel Kv11.1, which is involved in the electrical activity of the heart. As such, it is a key player in the toxicity of many drug candidates. Therefore, having this protein at hand during earlier stages of drug discovery is important for preventing later toxicity. Furthermore, having a fair quantity of functional channels may help in the development of the necessary techniques for gaining insight in this channel structure. Thus, we performed a comparative study of methods for over-expressing a mutated but functional, hERG in different orthologous hosts, such as yeast, bacteria, insect and human cell lines. We also engineered the protein to test various constructs of a functional channel. We obtained a significant amount of a functional mutant channel from HEK cells that we thoroughly characterized. The present work paves the way for the expression of large amounts of this protein, with which protein crystallization or cryo-electronic microscopy will be attempted. This will be a way to gain information on the structure of the hERG active site and its modelization to obtain data on the pauses of various reference compounds from the pharmacopeia, as well as to gain information about the thermodynamics of the hERG/ligand relationship.
Collapse
|
21
|
Mathieu K, Javed W, Vallet S, Lesterlin C, Candusso MP, Ding F, Xu XN, Ebel C, Jault JM, Orelle C. Functionality of membrane proteins overexpressed and purified from E. coli is highly dependent upon the strain. Sci Rep 2019; 9:2654. [PMID: 30804404 PMCID: PMC6390180 DOI: 10.1038/s41598-019-39382-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/22/2019] [Indexed: 11/24/2022] Open
Abstract
Overexpression of correctly folded membrane proteins is a fundamental prerequisite for functional and structural studies. One of the most commonly used expression systems for the production of membrane proteins is Escherichia coli. While misfolded proteins typically aggregate and form inclusions bodies, membrane proteins that are addressed to the membrane and extractable by detergents are generally assumed to be properly folded. Accordingly, GFP fusion strategy is often used as a fluorescent proxy to monitor their expression and folding quality. Here we investigated the functionality of two different multidrug ABC transporters, the homodimer BmrA from Bacillus subtilis and the heterodimer PatA/PatB from Streptococcus pneumoniae, when produced in several E. coli strains with T7 expression system. Strikingly, while strong expression in the membrane of several strains could be achieved, we observed drastic differences in the functionality of these proteins. Moreover, we observed a general trend in which mild detergents mainly extract the population of active transporters, whereas a harsher detergent like Fos-choline 12 could solubilize transporters irrespective of their functionality. Our results suggest that the amount of T7 RNA polymerase transcripts may indirectly but notably impact the structure and activity of overexpressed membrane proteins, and advise caution when using GFP fusion strategy.
Collapse
Affiliation(s)
- Khadija Mathieu
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France
| | - Waqas Javed
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France.,Université Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Sylvain Vallet
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France
| | - Christian Lesterlin
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France
| | - Marie-Pierre Candusso
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France
| | - Feng Ding
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Xiaohong Nancy Xu
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Christine Ebel
- Université Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Jean-Michel Jault
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France.
| | - Cédric Orelle
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France.
| |
Collapse
|
22
|
Behrens M, Briand L, de March CA, Matsunami H, Yamashita A, Meyerhof W, Weyand S. Structure-Function Relationships of Olfactory and Taste Receptors. Chem Senses 2019; 43:81-87. [PMID: 29342245 DOI: 10.1093/chemse/bjx083] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The field of chemical senses has made major progress in understanding the cellular mechanisms of olfaction and taste in the past 2 decades. However, the molecular understanding of odor and taste recognition is still lagging far behind and will require solving multiple structures of the relevant full-length receptors in complex with native ligands to achieve this goal. However, the development of multiple complimentary strategies for the structure determination of G protein-coupled receptors (GPCRs) makes this goal realistic. The common conundrum of how multi-specific receptors that recognize a large number of different ligands results in a sensory perception in the brain will only be fully understood by a combination of high-resolution receptor structures and functional studies. This review discusses the first steps on this pathway, including biochemical and physiological assays, forward genetics approaches, molecular modeling, and the first steps towards the structural biology of olfactory and taste receptors.
Collapse
Affiliation(s)
- Maik Behrens
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Univ. de Bourgogne- Franche-Comté, France
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, USA
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
23
|
Pisani F, Simone L, Mola MG, De Bellis M, Mastrapasqua M, Ruggieri M, Trojano M, Nicchia GP, Svelto M, Frigeri A. Host-Cell Type Dependent Features of Recombinant Human Aquaporin-4 Orthogonal Arrays of Particles-New Insights for Structural and Functional Studies. Cells 2019; 8:cells8020119. [PMID: 30717425 PMCID: PMC6406603 DOI: 10.3390/cells8020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/26/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
The CNS plasma-membrane water channel aquaporin-4 (AQP4) is expressed as two major isoforms able to aggregate into supramolecular assemblies known as ‘orthogonal arrays of particles’ (OAPs). OAP subnanometric features are largely unknown mainly because a method for the expression, isolation, and crystallization of integral human OAPs has not been developed. Here, the human OAP-forming isoform M23-AQP4 was expressed in insect and mammalian cell lines and AQP4 and OAP features evaluated. Native size exclusion chromatography was employed to isolate and analyze authentically folded OAPs, and neuromyelitis optica (NMO)-specific sandwich ELISA was developed to test OAP-integrity. The results demonstrate that in insect cells most AQP4 remains intracellular and unfolded and that OAPs are largely disassembled after the detergent extraction step. In mammalian cells, AQP4 showed regular plasma membrane targeting and OAPs exhibited strong post-extraction stability. Starting from the mammalian cell expression system, we isolated authentically folded OAPs. Together these data suggest a new strategy for expressing and isolating integral recombinant human OAPs and providing new insights into the cell-type dependent OAP-assembly and post-extraction stability, potentially useful to design new approaches for structural and functional studies of OAP and for other plasma membrane proteins organized into supramolecular structures.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, 71013 San Giovanni Rotondo (FG), Italy.
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Manuela De Bellis
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Mastrapasqua
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maddalena Ruggieri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Trojano
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70126 Bari, Italy.
| | - Antonio Frigeri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
24
|
Optimising the transient expression of GABA(A) receptors in adherent HEK293 cells. Protein Expr Purif 2018; 154:7-15. [PMID: 30248449 DOI: 10.1016/j.pep.2018.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022]
Abstract
Owing to their therapeutic relevance, considerable efforts are devoted to the structural characterisation of membrane proteins. Such studies are limited by the availability of high quality protein due to the difficulty of overexpression in recombinant mammalian systems. We sought to systematically optimise multiple aspects in the process of transiently transfecting HEK293 cells, to allow the rapid expression of membrane proteins, without the lengthy process of stable clone formation. We assessed the impact of medium formulation, cell line, and harvest time on the expression of GABAA receptors, as determined by [3H]muscimol binding in cell membranes. Furthermore, transfection with the use of calcium phosphate/polyethyleneimine multishell nanoparticles was optimised, and a dual vector system utilising viral enhancing elements was designed and implemented. These efforts resulted in a 40-fold improvement in GABAA α1β3 receptor expression, providing final yields of 22 fmol/cm2. The findings from this work provide a guide to the optimisation of transient expression of proteins in mammalian cells and should assist in the structural characterisation of membrane proteins.
Collapse
|
25
|
Overexpression and purification of human myosins from transiently and stably transfected suspension adapted HEK293SF-3F6 cells. Anal Biochem 2018; 558:19-27. [PMID: 30075102 DOI: 10.1016/j.ab.2018.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
The myosin family of motor proteins is an attractive target of therapeutic small-molecule protein inhibitors and modulators. Milligrams of protein quantities are required to conduct proper biophysical and biochemical studies to understand myosin functions. Myosin protein expression and purification represent a critical starting point towards this goal. Established utilization of Dictyostelium discoideum, Drosophila melanogaster, insect and mouse cells for myosin expression and purification is limited, cost, labor and time inefficient particularly for (full-length) human myosins. Here we are presenting detailed protocols for production of several difficult-to-purify recombinant human myosins in efficient quantities up to 1 mg of protein per liter of cell culture. This is the first time that myosins have been purified in large scales from suspension adapted transiently and stably expressing human cells. The method is also useful for expressing other human proteins in quantities sufficient to perform extensive biochemical and biophysical characterization.
Collapse
|
26
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
27
|
Sommer M, Xie H, Michel H. Pseudomonas stutzeri as an alternative host for membrane proteins. Microb Cell Fact 2017; 16:157. [PMID: 28931397 PMCID: PMC5607611 DOI: 10.1186/s12934-017-0771-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background Studies on membrane proteins are often hampered by insufficient yields of the protein of interest. Several prokaryotic hosts have been tested for their applicability as production platform but still Escherichia coli by far is the one most commonly used. Nevertheless, it has been demonstrated that in some cases hosts other than E. coli are more appropriate for certain target proteins. Results Here we have developed an expression system for the heterologous production of membrane proteins using a single plasmid-based approach. The gammaproteobacterium Pseudomonas stutzeri was employed as a new production host. We investigated several basic microbiological features crucial for its handling in the laboratory. The organism belonging to bio-safety level one is a close relative of the human pathogen Pseudomonas aeruginosa. Pseudomonas stutzeri is comparable to E. coli regarding its growth and cultivation conditions. Several effective antibiotics were identified and a protocol for plasmid transformation was established. We present a workflow including cloning of the target proteins, small-scale screening for the best production conditions and finally large-scale production in the milligram range. The GFP folding assay was used for the rapid analysis of protein folding states. In summary, out of 36 heterologous target proteins, 20 were produced at high yields. Additionally, eight transporters derived from P. aeruginosa could be obtained with high yields. Upscaling of protein production and purification of a Gluconate:H+ Symporter (GntP) family transporter (STM2913) from Salmonella enterica to high purity was demonstrated. Conclusions Pseudomonas stutzeri is an alternative production host for membrane proteins with success rates comparable to E. coli. However, some proteins were produced with high yields in P. stutzeri but not in E. coli and vice versa. Therefore, P. stutzeri extends the spectrum of useful production hosts for membrane proteins and increases the success rate for highly produced proteins. Using the new pL2020 vector no additional cloning is required to test both hosts in parallel. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0771-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Sommer
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
| | - Hao Xie
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Nehmé R, Carpenter B, Singhal A, Strege A, Edwards PC, White CF, Du H, Grisshammer R, Tate CG. Mini-G proteins: Novel tools for studying GPCRs in their active conformation. PLoS One 2017; 12:e0175642. [PMID: 28426733 PMCID: PMC5398546 DOI: 10.1371/journal.pone.0175642] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023] Open
Abstract
Mini-G proteins are the engineered GTPase domains of Gα subunits. They couple to GPCRs and recapitulate the increase in agonist affinity observed upon coupling of a native heterotrimeric G protein. Given the small size and stability of mini-G proteins, and their ease of expression and purification, they are ideal for biophysical studies of GPCRs in their fully active state. The first mini-G protein developed was mini-Gs. Here we extend the family of mini-G proteins to include mini-Golf, mini-Gi1, mini-Go1 and the chimeras mini-Gs/q and mini-Gs/i. The mini-G proteins were shown to couple to relevant GPCRs and to form stable complexes with purified receptors that could be purified by size exclusion chromatography. Agonist-bound GPCRs coupled to a mini-G protein showed higher thermal stability compared to the agonist-bound receptor alone. Fusion of GFP at the N-terminus of mini-G proteins allowed receptor coupling to be monitored by fluorescence-detection size exclusion chromatography (FSEC) and, in a separate assay, the affinity of mini-G protein binding to detergent-solubilised receptors was determined. This work provides the foundation for the development of any mini-G protein and, ultimately, for the structure determination of GPCRs in a fully active state.
Collapse
Affiliation(s)
- Rony Nehmé
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ankita Singhal
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Annette Strege
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Courtney F. White
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, United States of America
| | - Haijuan Du
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, United States of America
| | - Reinhard Grisshammer
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, United States of America
| | | |
Collapse
|
29
|
Shiroishi M, Moriya M, Ueda T. Micro-scale and rapid expression screening of highly expressed and/or stable membrane protein variants in Saccharomyces cerevisiae. Protein Sci 2016; 25:1863-72. [PMID: 27479358 DOI: 10.1002/pro.2993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/16/2016] [Accepted: 07/29/2016] [Indexed: 11/07/2022]
Abstract
Purification of milligram quantities of target proteins is required for structural and biophysical studies. However, mammalian membrane proteins, many of which are important therapeutic targets, are too unstable to be expressed in heterologous hosts and to be solubilized by detergents. One of the most promising ways to overcome these limitations is to stabilize the membrane proteins by generating variants via introduction of truncated flexible regions, fusion partners, and site-directed mutagenesis. Therefore, an effective screening strategy is a key to obtaining successful protein stabilization. Herein, we report the micro-scale and high-throughput screening of stabilized membrane protein variants using Saccharomyces cerevisiae as a host. All steps of the screening, including cultivation and disruption of cells, solubilization of the target protein, and the pretreatment for fluorescence-detected size exclusion chromatography (FSEC), could be performed in a 96-well microplate format. We demonstrated that the dispersion among wells was small, enabling detection of a small but important improvement in the protein stability. We also demonstrated that the thermally stable mutants of a human G protein-coupled receptor could be distinguished based on an increase of the peak height in the FSEC profile, which was well correlated with increased ligand binding activity of the protein. This strategy represents a significant platform for handling numerous mutants, similar to alanine scanning.
Collapse
Affiliation(s)
- Mitsunori Shiroishi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Mai Moriya
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Tadashi Ueda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
30
|
Magnani F, Serrano-Vega MJ, Shibata Y, Abdul-Hussein S, Lebon G, Miller-Gallacher J, Singhal A, Strege A, Thomas JA, Tate CG. A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat Protoc 2016; 11:1554-71. [PMID: 27466713 PMCID: PMC5268090 DOI: 10.1038/nprot.2016.088] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thermostability of an integral membrane protein (MP) in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals that are suitable for structure determination. However, many mammalian MPs are too unstable for crystallization. We developed a thermostabilization strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes ∼6-12 months to thermostabilize a G-protein-coupled receptor (GPCR) containing 300 amino acid (aa) residues. The resulting thermostabilized MPs are more easily crystallized and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs because it is possible to determine multiple structures of the thermostabilized receptors bound to low-affinity ligands. Protocols and advice are given on how to develop thermostability assays for MPs and how to combine mutations to make an optimally stable mutant suitable for structural studies. The steps in the procedure include the generation of ∼300 site-directed mutants by Ala/Leu scanning mutagenesis, the expression of each mutant in mammalian cells by transient transfection and the identification of thermostable mutants using a thermostability assay that is based on binding of an (125)I-labeled radioligand to the unpurified, detergent-solubilized MP. Individual thermostabilizing point mutations are then combined to make an optimally stable MP that is suitable for structural biology and other biophysical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ankita Singhal
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Annette Strege
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jennifer A. Thomas
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
31
|
Knight MJ, Senior L, Nancolas B, Ratcliffe S, Curnow P. Direct evidence of the molecular basis for biological silicon transport. Nat Commun 2016; 7:11926. [PMID: 27305972 PMCID: PMC4912633 DOI: 10.1038/ncomms11926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
Diatoms are an important group of eukaryotic algae with a curious evolutionary innovation: they sheath themselves in a cell wall made largely of silica. The cellular machinery responsible for silicification includes a family of membrane permeases that recognize and actively transport the soluble precursor of biosilica, silicic acid. However, the molecular basis of silicic acid transport remains obscure. Here, we identify experimentally tractable diatom silicic acid transporter (SIT) homologues and study their structure and function in vitro, enabled by the development of a new fluorescence method for studying substrate transport kinetics. We show that recombinant SITs are Na+/silicic acid symporters with a 1:1 protein: substrate stoichiometry and KM for silicic acid of 20 μM. Protein mutagenesis supports the long-standing hypothesis that four conserved GXQ amino acid motifs are important in SIT function. This marks a step towards a detailed understanding of silicon transport with implications for biogeochemistry and bioinspired materials. Diatoms sheath themselves in a self-made casing of silica, which requires the function of silicic acid transporters. Here, the authors identify versions of these transporters that are experimentally tractable, and develop a fluorescence method to study silicic acid transport in vitro.
Collapse
Affiliation(s)
- Michael J Knight
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Laura Senior
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Bethany Nancolas
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sarah Ratcliffe
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
32
|
Lyons JA, Shahsavar A, Paulsen PA, Pedersen BP, Nissen P. Expression strategies for structural studies of eukaryotic membrane proteins. Curr Opin Struct Biol 2016; 38:137-44. [DOI: 10.1016/j.sbi.2016.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
33
|
Gragg M, Kim TG, Howell S, Park PSH. Wild-type opsin does not aggregate with a misfolded opsin mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1850-9. [PMID: 27117643 DOI: 10.1016/j.bbamem.2016.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Megan Gragg
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tae Gyun Kim
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott Howell
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - P S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
34
|
Rodríguez-Banqueri A, Errasti-Murugarren E, Bartoccioni P, Kowalczyk L, Perálvarez-Marín A, Palacín M, Vázquez-Ibar JL. Stabilization of a prokaryotic LAT transporter by random mutagenesis. ACTA ACUST UNITED AC 2016; 147:353-68. [PMID: 26976827 PMCID: PMC4810068 DOI: 10.1085/jgp.201511510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis L-serine/L-threonine exchanger is the best-known prokaryotic paradigm of the mammalian L-amino acid transporter (LAT) family. Unfortunately, SteT's lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest.
Collapse
Affiliation(s)
- Arturo Rodríguez-Banqueri
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Paola Bartoccioni
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain Spanish Biomedical Research Center in Rare Diseases (CIBERER), 08028 Barcelona, Spain
| | - Lukasz Kowalczyk
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Cerdanyola del Vallés, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain Spanish Biomedical Research Center in Rare Diseases (CIBERER), 08028 Barcelona, Spain Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - José Luis Vázquez-Ibar
- Institute for Integrative Biology of the Cell (I2BC), CEA, French National Centre for Scientific Research (CNRS) UMR 9198, University Paris-Sud, University Paris-Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
35
|
Constantine M, Liew CK, Lo V, Macmillan A, Cranfield CG, Sunde M, Whan R, Graham RM, Martinac B. Heterologously-expressed and Liposome-reconstituted Human Transient Receptor Potential Melastatin 4 Channel (TRPM4) is a Functional Tetramer. Sci Rep 2016; 6:19352. [PMID: 26785754 PMCID: PMC4726259 DOI: 10.1038/srep19352] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/11/2015] [Indexed: 11/24/2022] Open
Abstract
Mutation, irregular expression and sustained activation of the Transient Receptor Potential Channel, type Melastatin 4 (TRPM4), have been linked to various cardiovascular diseases. However, much remains unknown about the structure of this important ion channel. Here, we have purified a heterologously expressed TRPM4-eGFP fusion protein and investigated the oligomeric state of TRPM4-eGFP in detergent micelles using crosslinking, native gel electrophoresis, multi-angle laser light scattering and electron microscopy. Our data indicate that TRPM4 is tetrameric, like other TRP channels studied to date. Furthermore, the functionality of liposome reconstituted TRPM4-eGFP was examined using electrophysiology. Single-channel recordings from TRPM4-eGFP proteoliposomes showed inhibition of the channel using Flufenamic acid, a well-established inhibitor of TRPM4, suggesting that the channels are functional upon reconstitution. Our characterisation of the oligomeric structure of TRPM4 and the ability to reconstitute functional channels in liposomes should facilitate future studies into the structure, function and pharmacology of this therapeutically relevant channel.
Collapse
Affiliation(s)
- Maryrose Constantine
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Chu Kong Liew
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
| | - Victor Lo
- School of Medical Sciences, The Bosch Institute, The University of Sydney, NSW 2006
| | - Alex Macmillan
- Biomedical Imaging Facility, Lowy Cancer Research Centre, The University of New South Wales, Kensington, NSW 2052, Australia
| | | | - Margaret Sunde
- School of Medical Sciences, The Bosch Institute, The University of Sydney, NSW 2006
| | - Renee Whan
- Biomedical Imaging Facility, Lowy Cancer Research Centre, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
36
|
Bird LE, Nettleship JE, Järvinen V, Rada H, Verma A, Owens RJ. Expression Screening of Integral Membrane Proteins by Fusion to Fluorescent Reporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:1-11. [DOI: 10.1007/978-3-319-35072-1_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Abstract
The first crystal structures of recombinant mammalian membrane proteins were solved in 2005 using protein that had been produced in yeast cells. One of these, the rabbit Ca(2+)-ATPase SERCA1a, was synthesized in Saccharomyces cerevisiae. All host systems have their specific advantages and disadvantages, but yeast has remained a consistently popular choice in the eukaryotic membrane protein field because it is quick, easy and cheap to culture, whilst being able to post-translationally process eukaryotic membrane proteins. Very recent structures of recombinant membrane proteins produced in S. cerevisiae include those of the Arabidopsis thaliana NRT1.1 nitrate transporter and the fungal plant pathogen lipid scramblase, TMEM16. This chapter provides an overview of the methodological approaches underpinning these successes.
Collapse
Affiliation(s)
| | - Lina Mikaliunaite
- School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
38
|
Andréll J, Edwards PC, Zhang F, Daly M, Tate CG. Generation of Tetracycline-Inducible Mammalian Cell Lines by Flow Cytometry for Improved Overproduction of Membrane Proteins. Methods Mol Biol 2016; 1432:63-78. [PMID: 27485330 DOI: 10.1007/978-1-4939-3637-3_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overexpression of mammalian membrane proteins in mammalian cells is an effective strategy to produce sufficient protein for biophysical analyses and structural studies, because the cells generally express proteins in a correctly folded state. However, obtaining high levels of expression suitable for protein purification on a milligram scale can be challenging. As membrane protein overexpression often has a negative impact on cell viability, it is usual to make stable cell lines where the protein of interest is expressed from an inducible promoter. Here we describe a methodology for optimizing the inducible production of any membrane protein fused to GFP through the isolation of clonal cell lines. Flow cytometry is used to sort uninduced cells and the most fluorescent 5 % of the cell population are used to make clonal cell lines.
Collapse
Affiliation(s)
- Juni Andréll
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Patricia C Edwards
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Fan Zhang
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Maria Daly
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
39
|
Routledge SJ, Mikaliunaite L, Patel A, Clare M, Cartwright SP, Bawa Z, Wilks MDB, Low F, Hardy D, Rothnie AJ, Bill RM. The synthesis of recombinant membrane proteins in yeast for structural studies. Methods 2015; 95:26-37. [PMID: 26431670 DOI: 10.1016/j.ymeth.2015.09.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/22/2022] Open
Abstract
Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies.
Collapse
Affiliation(s)
- Sarah J Routledge
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK; School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Lina Mikaliunaite
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Anjana Patel
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Michelle Clare
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Stephanie P Cartwright
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Zharain Bawa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Martin D B Wilks
- Smallpeice Enterprises Ltd, 27 Newbold Terrace East, Leamington Spa, Warwickshire CV32 4ES, UK
| | - Floren Low
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - David Hardy
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alice J Rothnie
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
40
|
Skaar K, Korza HJ, Tarry M, Sekyrova P, Högbom M. Expression and Subcellular Distribution of GFP-Tagged Human Tetraspanin Proteins in Saccharomyces cerevisiae. PLoS One 2015. [PMID: 26218426 PMCID: PMC4517926 DOI: 10.1371/journal.pone.0134041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tetraspanins are integral membrane proteins that function as organizers of multimolecular complexes and modulate function of associated proteins. Mammalian genomes encode approximately 30 different members of this family and remotely related eukaryotic species also contain conserved tetraspanin homologs. Tetraspanins are involved in a number of fundamental processes such as regulation of cell migration, fusion, immunity and signaling. Moreover, they are implied in numerous pathological states including mental disorders, infectious diseases or cancer. Despite the great interest in tetraspanins, the structural and biochemical basis of their activity is still largely unknown. A major bottleneck lies in the difficulty of obtaining stable and homogeneous protein samples in large quantities. Here we report expression screening of 15 members of the human tetraspanin superfamily and successful protocols for the production in S. cerevisiae of a subset of tetraspanins involved in human cancer development. We have demonstrated the subcellular localization of overexpressed tetraspanin-green fluorescent protein fusion proteins in S. cerevisiae and found that despite being mislocalized, the fusion proteins are not degraded. The recombinantly produced tetraspanins are dispersed within the endoplasmic reticulum membranes or localized in granule-like structures in yeast cells. The recombinantly produced tetraspanins can be extracted from the membrane fraction and purified with detergents or the poly (styrene-co-maleic acid) polymer technique for use in further biochemical or biophysical studies.
Collapse
Affiliation(s)
- Karin Skaar
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Henryk J. Korza
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Michael Tarry
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Petra Sekyrova
- Department of Pharmacology and Physiology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
41
|
Wright DJ, Tate CG. Isolation and characterisation of transport-defective substrate-binding mutants of the tetracycline antiporter TetA(B). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2261-70. [PMID: 26143388 PMCID: PMC4579554 DOI: 10.1016/j.bbamem.2015.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022]
Abstract
The tetracycline antiporter TetA(B) is a member of the Major Facilitator Superfamily which confers tetracycline resistance to cells by coupling the efflux of tetracycline to the influx of protons down their chemical potential gradient. Although it is a medically important transporter, its structure has yet to be determined. One possibility for why this has proven difficult is that the transporter may be conformationally heterogeneous in the purified state. To overcome this, we developed two strategies to rapidly identify TetA(B) mutants that were transport-defective and that could still bind tetracycline. Up to 9 amino acid residues could be deleted from the loop between transmembrane α-helices 6 and 7 with only a slight decrease in affinity of tetracycline binding as measured by isothermal titration calorimetry, although the mutant was transport-defective. Scanning mutagenesis where all the residues between 2 and 389 were mutated to either valine, alanine or glycine (VAG scan) identified 15 mutants that were significantly impaired in tetracycline transport. Of these mutants, 12 showed no evidence of tetracycline binding by isothermal titration calorimetry performed on the purified transporters. In contrast, the mutants G44V and G346V bound tetracycline 4–5 fold more weakly than TetA(B), with Kds of 28 μM and 36 μM, respectively, whereas the mutant R70G bound tetracycline 3-fold more strongly (Kd 2.1 μM). Systematic mutagenesis is thus an effective strategy for isolating transporter mutants that may be conformationally constrained and which represent attractive targets for crystallisation and structure determination. A rapid method was developed for the identification of transport-defective mutants of TetA(B). ITC was used to determine the affinity of tetracycline binding to the mutants. Fifteen transport-defective point mutations were identified. Three mutants bound tetracycline whereas the remainder did not The transport-defective mutants may facilitate crystallisation of TetA(B).
Collapse
Affiliation(s)
- David J Wright
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
42
|
Xiao S, Chen YC, Betenbaugh MJ, Martin SE, Shiloach J. MiRNA mimic screen for improved expression of functional neurotensin receptor from HEK293 cells. Biotechnol Bioeng 2015; 112:1632-43. [PMID: 25676429 DOI: 10.1002/bit.25567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/23/2015] [Accepted: 02/05/2015] [Indexed: 01/17/2023]
Abstract
Obtaining adequate quantities of functional mammalian membrane proteins has been a bottleneck in their structural and functional studies because the expression of these proteins from mammalian cells is relatively low. To explore the possibility of enhancing expression of these proteins using miRNA, a stable T-REx-293 cell line expressing the neurotensin receptor type 1 (NTSR1), a hard-to-express G protein-coupled receptor (GPCR), was constructed. The cell line was then subjected to human miRNA mimic library screening. In parallel, an HEK293 cell line expressing luciferase was also screened with the same human miRNA mimic library. Five microRNA mimics: hsa-miR-22-5p, hsa-miR-18a-5p, hsa-miR-22-3p, hsa-miR-429, and hsa-miR-2110were identified from both screens. They led to 48% increase in the expression of functional NTSR1 and to 239% increase of luciferase expression. These miRNAs were also effective in enhancing the expression of secretedglypican-3 hFc-fusion protein from HEK293 cells.The results indicate that these molecules may have a wide role in enhancing the production of proteins with biomedical interest.
Collapse
Affiliation(s)
- Su Xiao
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892.,Departments of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Yu-Chi Chen
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of health, Rockville, Maryland, 20850
| | - Michael J Betenbaugh
- Departments of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Scott E Martin
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of health, Rockville, Maryland, 20850.
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892.
| |
Collapse
|
43
|
Bill RM, von der Haar T. Hijacked then lost in translation: the plight of the recombinant host cell in membrane protein structural biology projects. Curr Opin Struct Biol 2015; 32:147-55. [PMID: 26037971 PMCID: PMC4521084 DOI: 10.1016/j.sbi.2015.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/10/2015] [Accepted: 04/10/2015] [Indexed: 11/13/2022]
Abstract
Membrane protein structural biologists need high-quality protein for crystallisation. Recombinant proteins are central to the structural biology supply chain. Understanding quality control in protein production is an emerging trend. The roles of translation and protein folding in the host cell are examined.
Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a ‘cell factory’ each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells.
Collapse
Affiliation(s)
- Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
44
|
Milić D, Veprintsev DB. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 2015; 6:66. [PMID: 25873898 PMCID: PMC4379943 DOI: 10.3389/fphar.2015.00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/13/2015] [Indexed: 01/26/2023] Open
Abstract
Structural studies of G protein-coupled receptors (GPCRs) gave insights into molecular mechanisms of their action and contributed significantly to molecular pharmacology. This is primarily due to technical advances in protein engineering, production and crystallization of these important receptor targets. On the other hand, NMR spectroscopy of GPCRs, which can provide information about their dynamics, still remains challenging due to difficulties in preparation of isotopically labeled receptors and their low long-term stabilities. In this review, we discuss methods used for expression and purification of GPCRs for crystallographic and NMR studies. We also summarize protein engineering methods that played a crucial role in obtaining GPCR crystal structures.
Collapse
Affiliation(s)
- Dalibor Milić
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland ; Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich Switzerland
| |
Collapse
|
45
|
Molbaek K, Scharff-Poulsen P, Helix-Nielsen C, Klaerke DA, Pedersen PA. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae. Microb Cell Fact 2015; 14:15. [PMID: 25656388 PMCID: PMC4341239 DOI: 10.1186/s12934-015-0193-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/11/2014] [Indexed: 11/23/2022] Open
Abstract
The hERG potassium channel is essential for repolarization of the cardiac action potential. Due to this vital function, absence of unintended and potentially life-threatening interactions with hERG is required for approval of new drugs. The structure of hERG is therefore one of the most sought-after. To provide purified hERG for structural studies and new hERG biomimetic platforms for detection of undesirable interactions, we have developed a hERG expression platform generating unprecedented amounts of purified and functional hERG channels. Full-length hERG, with or without a C-terminally fused green fluorescent protein (GFP) His 8-tag was produced from a codon-optimized hERG cDNA in Saccharomyces cerevisiae. Both constructs complemented the high potassium requirement of a knock-out Saccharomyces cerevisiae strain, indicating correct tetramer assembly in vivo. Functionality was further demonstrated by Astemizole binding to membrane embedded hERG-GFP-His 8 with a stoichiometry corresponding to tetramer assembly. The 156 kDa hERG-GFP protein accumulated to a membrane density of 1.6%. Fluorescence size exclusion chromatography of hERG-GFP-His 8 solubilized in Fos-Choline-12 supplemented with cholesteryl-hemisuccinate and Astemizole resulted in a monodisperse elution profile demonstrating a high quality of the hERG channels. hERG-GFP-His 8 purified by Ni-affinity chromatography maintained the ability to bind Astemizole with the correct stoichiometry indicating that the native, tetrameric structure was preserved. To our knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays.
Collapse
Affiliation(s)
- Karen Molbaek
- Department of Veterinary and Clinical Animal Science, University of Copenhagen, Dyrlaegevej 100, Frederiksberg, DK-1870, Denmark.
| | - Peter Scharff-Poulsen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen OE, DK- 2100, Denmark.
| | - Claus Helix-Nielsen
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej building 113, Kgs Lyngby, 24105, Denmark. .,Aquaporin A/S, Ole Maaloesvej 3, Copenhagen N, DK-2200, Denmark. .,Laboratory for Water Biophysics and Membrane Technology, University of Maribor, Smetanova ulica 17, Maribor, SL-2000, Slovenia.
| | - Dan A Klaerke
- Department of Veterinary and Clinical Animal Science, University of Copenhagen, Dyrlaegevej 100, Frederiksberg, DK-1870, Denmark.
| | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen OE, DK- 2100, Denmark.
| |
Collapse
|