1
|
Huang CW, Zhang WZ, Liao Y, Hu T, Li JM, Wang CL. A targeted approach: Gene and RNA editing for neurodegenerative disease treatment. Life Sci 2025; 376:123756. [PMID: 40412606 DOI: 10.1016/j.lfs.2025.123756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
With the global aging trend, neurodegenerative diseases (NDs) have emerged as a significant public health concern in the 21st century, imposing substantial economic burdens on families and society. NDs are characterized by cognitive and motor decline, resulting from a combination of genetic and environmental factors. Currently, there is no cure for NDs. Gene and RNA editing therapies offer new possibilities for addressing NDs. Gene editing involves modifying mutant genes associated with NDs, while RNA editing can directly modify RNA molecules to regulate the protein translation process, potentially influencing the expression of genes related to NDs. In this review, we examined the historical evolution, mechanisms of action, applications in NDs, advantages and disadvantages, as well as ethical and safety considerations of gene and RNA editing. While gene and RNA editing technologies hold promise for treating NDs, further research and development are needed to address safety, efficacy, and treatment timing issues, ultimately offering improved treatment options for ND patients. Our review provides valuable insights for future gene and RNA editing applications in ND treatment.
Collapse
Affiliation(s)
- Chen-Wei Huang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Wang-Zheqi Zhang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Jia-Mei Li
- Department of Neurology, The 971st Hospital of Navy, Qingdao 266071, China.
| | - Chang-Li Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Thornburg CD, Pipe SW, Cantore A, Unzu C, Jones M, Miesbach WA. Clinical perspective: Advancing hemophilia treatment through gene therapy approaches. Mol Ther 2025:S1525-0016(25)00297-7. [PMID: 40263938 DOI: 10.1016/j.ymthe.2025.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Hemophilia, a congenital bleeding disorder, can cause arthropathy, impaired mobility, pain, and life-threatening hemorrhage events, significantly impacting quality of life for patients and caregivers. Current therapies, although effective, necessitate costly lifelong treatment, often in specialized settings. However, as a monogenic disorder caused by loss-of-function genetic variants, hemophilia is amenable to gene therapy. In this article, three primary gene therapy approaches at the forefront of clinical development are reviewed. Adeno-associated virus-based gene therapy, having secured approval in the EU, UK, and US after promising phase 3 trial results, demonstrates clear superiority over standard-of-care treatment. Lentivirus-based approaches capable of transducing dividing and nondividing cells may improve the durability of treatment and have low susceptibility to pre-existing neutralizing antibodies to viral vectors. Finally, gene editing techniques such as zinc finger nucleases and CRISPR aim to correct genetic defects directly, holding promise as novel, effective, and highly durable therapeutic strategies in adults and children with hemophilia. This review provides a comprehensive summary of the current status of these gene therapy approaches, highlighting advantages, limitations, and potential future developments.
Collapse
Affiliation(s)
- Courtney D Thornburg
- National Institutes of Health, National Heart, Lung, and Blood Institute, Division of Blood Diseases and Resources, Bethesda, MD, USA
| | - Steve W Pipe
- Pediatric Hematology-Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Carmen Unzu
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, Pamplona, Spain
| | | | - Wolfgang A Miesbach
- Department of Haemostaseology University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
3
|
He S, Liu Y, Zhang Z, Cai M, Hao Y, Hu H. Gene Editing in Ganoderma lucidum: Development, Challenges, and Future Prospects. J Fungi (Basel) 2025; 11:310. [PMID: 40278130 PMCID: PMC12029067 DOI: 10.3390/jof11040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
As an emerging and innovative technology, gene-editing technology has been widely applied in crop breeding, human disease treatment, animal model research, drug and vaccine development, and microbial engineering. We mainly introduce the development of gene-editing technology, the application of clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) in Ganoderma lucidum breeding, the current challenges and optimization strategies in the use of gene-editing technology in Ganoderma breeding, as well as the current status of gene-editing technology in Ganoderma breeding. Finally, the future research directions and innovative strategies that gene editing may explore in Ganoderma breeding are prospects given the existing background, future research directions, and innovative strategies that gene editing may explore in Ganoderma breeding prospects.
Collapse
Affiliation(s)
- Shiqi He
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Yuanchao Liu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Zhi Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
- Guangdong Yuewei Biotechnology Co., Ltd., Shaoguan 512029, China
| | - Manjun Cai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Yufan Hao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Huiping Hu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
- Guangdong Yuewei Biotechnology Co., Ltd., Shaoguan 512029, China
| |
Collapse
|
4
|
Huang HW, Zeng YF, Shivatare VS, Tseng TH, Wong CH. Cell-based glycoengineering for production of homogeneous and specific glycoform-enriched antibodies with improved effector functions. Proc Natl Acad Sci U S A 2025; 122:e2423853122. [PMID: 39969996 PMCID: PMC11874607 DOI: 10.1073/pnas.2423853122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/18/2025] [Indexed: 02/21/2025] Open
Abstract
Glycosylation of humanized antibody at Fc-Asn297 significantly affects the Fc-mediated killing of target cells through effector functions, especially antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and antibody-dependent vaccinal effect (ADVE). Previous studies showed that therapeutic immunoglobulin G (IgG) antibodies with α2,6-sialyl complex type (SCT) glycan attached to Fc-Asn297 exhibited optimal binding to the Fc receptors on effector cells associated with ADCC, ADCP, and ADVE. However, the production of antibodies with homogeneous Fc-SCT glycan requires multiple in vitro enzymatic and purification steps. In this study, we report two cell-based methods to produce Fc-GlcNAc antibody and Fc-SCT-enriched antibodies with improved effector functions. First, we expressed endoglycosidase S2 in Expi293F GnT1- cells to trim all N-glycans to Fc-GlcNAc antibody for in vitro transglycosylation to generate homogeneous antibodies with well-defined Fc glycan. Second, we engineered the glycosylation pathway of HEK293T cells through knock-out of undesired glycosyltransferases and knock-in of desired glycosyltransferases to produce Fc-SCT-enriched antibodies and evaluated their binding to Fc receptors, and we found that the Fc-SCT-enriched antibody is like or better than the homogeneous Fc-SCT antibody in binding to the Fc receptors associated with ADCC, ADCP, and ADVE.
Collapse
Affiliation(s)
- Han-Wen Huang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Yi-Fang Zeng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Vidya S. Shivatare
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Tzu-Hao Tseng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
5
|
Mogi K, Tomita H, Yoshihara M, Kajiyama H, Hara A. Advances in bacterial artificial chromosome (BAC) transgenic mice for gene analysis and disease research. Gene 2025; 934:149014. [PMID: 39461574 DOI: 10.1016/j.gene.2024.149014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Transgenic mice, including those created using Bacterial Artificial Chromosomes (BACs), are artificial manipulations that have become critical tools for studying gene function. While conventional transgenic techniques face challenges in achieving precise expression of foreign genes in specific cells and tissues, BAC transgenic mice offer a solution by incorporating large DNA segments that can include entire expression units with tissue-specific enhancers. This review provides a thorough examination of BAC transgenic mouse technology, encompassing both traditional and humanized models. We explore the benefits and drawbacks of BAC transgenesis compared to other techniques such as knock-in and CRISPR/Cas9 technologies. The review emphasizes the applications of BAC transgenic mice in various disciplines, including neuroscience, immunology, drug metabolism, and disease modeling. Additionally, we address crucial aspects of generating and analyzing BAC transgenic mice, such as position effects, copy number variations, and strategies to mitigate these challenges. Despite certain limitations, humanized BAC transgenic mice have proven to be invaluable tools for studying the pathogenesis of human diseases, drug development, and understanding intricate gene regulatory mechanisms. This review discusses current topics on BAC transgenic mice and their evolving significance in biomedical research.
Collapse
Affiliation(s)
- Kazumasa Mogi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan.
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan.
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan.
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
6
|
Sang Y, Xu L, Bao Z. Development of artificial transcription factors and their applications in cell reprograming, genetic screen, and disease treatment. Mol Ther 2024; 32:4208-4234. [PMID: 39473180 PMCID: PMC11638881 DOI: 10.1016/j.ymthe.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Gene dysregulations are associated with many human diseases, such as cancers and hereditary diseases. Artificial transcription factors (ATFs) are synthetic molecular tools to regulate the expression of disease-associated genes, which is of great significance in basic biological research and biomedical applications. Recent advances in the engineering of ATFs for regulating endogenous gene expression provide an expanded set of tools for understanding and treating diseases. However, the potential immunogenicity, large size, inefficient delivery, and off-target effects persist as obstacles for ATFs to be developed into therapeutics. Moreover, the activation of an endogenous gene following ATF activity lacks durability. In this review, we first describe the functional components of ATFs, including DNA-binding domains, transcriptional effector domains, and control switches. We then highlight examples of applications of ATFs, including cell reprogramming and differentiation, pathogenic gene screening, and disease treatment. Finally, we analyze and summarize major challenges for the clinical translation of ATFs and propose potential strategies to improve these useful molecular tools.
Collapse
Affiliation(s)
- Yetong Sang
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Lingjie Xu
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Zehua Bao
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
7
|
Duan Y, Chen L, Ma L, Amin FR, Zhai Y, Chen G, Li D. From lignocellulosic biomass to single cell oil for sustainable biomanufacturing: Current advances and prospects. Biotechnol Adv 2024; 77:108460. [PMID: 39383979 DOI: 10.1016/j.biotechadv.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
As global temperatures rise and arid climates intensify, the reserves of Earth's resources and the future development of humankind are under unprecedented pressure. Traditional methods of food production are increasingly inadequate in meeting the demands of human life while remaining environmentally sustainable and resource-efficient. Consequently, the sustainable supply of lipids is expected to become a pivotal area for future food development. Lignocellulose biomass (LB), as the most abundant and cost-effective renewable resource, has garnered significant attention from researchers worldwide. Thus, bioprocessing based on LB is appearing as a sustainable model for mitigating the depletion of energy reserves and reducing carbon footprints. Currently, the transformation of LB primarily focuses on producing biofuels, such as bioethanol, biobutanol, and biodiesel, to address the energy crisis. However, there are limited reports on the production of single cell oil (SCO) from LB. This review, therefore, provides a comprehensive summary of the research progress in lignocellulosic pretreatment. Subsequently, it describes how the capability for lignocellulosic use can be conferred to cells through genetic engineering. Additionally, the current status of saccharification and fermentation of LB is outlined. The article also highlights the advances in synthetic biology aimed at driving the development of oil-producing microorganism (OPM), including genetic transformation, chassis modification, and metabolic pathway optimization. Finally, the limitations currently faced in SCO production from straw are discussed, and future directions for achieving high SCO yields from various perspectives are proposed. This review aims to provide a valuable reference for the industrial application of green SCO production.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
8
|
Rahimi A, Sameei P, Mousavi S, Ghaderi K, Hassani A, Hassani S, Alipour S. Application of CRISPR/Cas9 System in the Treatment of Alzheimer's Disease and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9416-9431. [PMID: 38639864 DOI: 10.1007/s12035-024-04143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Alzheimer's, Parkinson's, and Huntington's are some of the most common neurological disorders, which affect millions of people worldwide. Although there have been many treatments for these diseases, there are still no effective treatments to treat or completely stop these disorders. Perhaps the lack of proper treatment for these diseases can be related to various reasons, but the poor results related to recent clinical research also prompted doctors to look for new treatment approaches. In this regard, various researchers from all over the world have provided many new treatments, one of which is CRISPR/Cas9. Today, the CRISPR/Cas9 system is mostly used for genetic modifications in various species. In addition, by using the abilities available in the CRISPR/Cas9 system, researchers can either remove or modify DNA sequences, which in this way can establish a suitable and useful treatment method for the treatment of genetic diseases that have undergone mutations. We conducted a non-systematic review of articles and study results from various databases, including PubMed, Medline, Web of Science, and Scopus, in recent years. and have investigated new treatment methods in neurodegenerative diseases with a focus on Alzheimer's disease. Then, in the following sections, the treatment methods were classified into three groups: anti-tau, anti-amyloid, and anti-APOE regimens. Finally, we discussed various applications of the CRISPR/Cas-9 system in Alzheimer's disease. Today, using CRISPR/Cas-9 technology, scientists create Alzheimer's disease models that have a more realistic phenotype and reveal the processes of pathogenesis; following the screening of defective genes, they establish treatments for this disease.
Collapse
Affiliation(s)
- Araz Rahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sana Mousavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Kimia Ghaderi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sepideh Hassani
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Singh K, Jain D, Sethi P, Gupta JK, Tripathi AK, Kumar S, Sarker SD, Nahar L, Guru A. Emerging pharmacological approaches for Huntington's disease. Eur J Pharmacol 2024; 980:176873. [PMID: 39117264 DOI: 10.1016/j.ejphar.2024.176873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by cognitive, motor, and psychiatric symptoms. Despite significant advances in understanding the underlying molecular mechanisms of HD, there is currently no cure or disease-modifying treatment available. Emerging pharmacological approaches offer promising strategies to alleviate symptoms and slow down disease progression. This comprehensive review aims to provide a critical appraisal of the latest developments in pharmacological interventions for HD. The review begins by discussing the pathogenesis of HD, focusing on the role of mutant huntingtin protein, mitochondrial dysfunction, excitotoxicity, and neuro-inflammation. It then explores emerging therapeutic targets, including the modulation of protein homeostasis, mitochondrial function, neuro-inflammation, and neurotransmitter systems. Pharmacological agents targeting these pathways are discussed, including small molecules, gene-based therapies, and neuroprotective agents. In recent years, several clinical trials have been conducted to evaluate the safety and efficiency of novel compounds for HD. This review presents an update on the outcomes of these trials, highlighting promising results and challenges encountered. Additionally, it discusses the potential of repurposing existing drugs approved for other indications as a cost-effective approach for HD treatment. The review concludes by summarizing the current state of pharmacological approaches for HD and outlining future directions in drug development. The integration of multiple therapeutic strategies, personalized medicine approaches, and combination therapies are highlighted as potential avenues to maximize treatment effectiveness.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Divya Jain
- Department of Microbiology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India.
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Arpan Kumar Tripathi
- Kamla Institute of Pharmaceutical Sciences, Shri Shankaracharya Professional University Bhilai Chhattisgarh, India
| | - Shivendra Kumar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
10
|
Hu X, Zhang X, Sun W, Liu C, Deng P, Cao Y, Zhang C, Xu N, Zhang T, Zhang Y, Liu JJ, Wang H. Systematic discovery of DNA-binding tandem repeat proteins. Nucleic Acids Res 2024; 52:10464-10489. [PMID: 39189466 PMCID: PMC11417379 DOI: 10.1093/nar/gkae710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Tandem repeat proteins (TRPs) are widely distributed and bind to a wide variety of ligands. DNA-binding TRPs such as zinc finger (ZNF) and transcription activator-like effector (TALE) play important roles in biology and biotechnology. In this study, we first conducted an extensive analysis of TRPs in public databases, and found that the enormous diversity of TRPs is largely unexplored. We then focused our efforts on identifying novel TRPs possessing DNA-binding capabilities. We established a protein language model for DNA-binding protein prediction (PLM-DBPPred), and predicted a large number of DNA-binding TRPs. A subset was then selected for experimental screening, leading to the identification of 11 novel DNA-binding TRPs, with six showing sequence specificity. Notably, members of the STAR (Short TALE-like Repeat proteins) family can be programmed to target specific 9 bp DNA sequences with high affinity. Leveraging this property, we generated artificial transcription factors using reprogrammed STAR proteins and achieved targeted activation of endogenous gene sets. Furthermore, the members of novel families such as MOON (Marine Organism-Originated DNA binding protein) and pTERF (prokaryotic mTERF-like protein) exhibit unique features and distinct DNA-binding characteristics, revealing interesting biological clues. Our study expands the diversity of DNA-binding TRPs, and demonstrates that a systematic approach greatly enhances the discovery of new biological insights and tools.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chunhong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Pujuan Deng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanwei Cao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ning Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun-Jie Gogo Liu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
11
|
Naiel MA, Taher ES, Rashed F, Ghazanfar S, Shehata AM, Mohammed NA, Pascalau R, Smuleac L, Ibrahim AM, Abdeen A, Shukry M. The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon 2024; 10:e36314. [PMID: 39286167 PMCID: PMC11402758 DOI: 10.1016/j.heliyon.2024.e36314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.
Collapse
Affiliation(s)
- Mohammed A.E. Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nourelhuda A. Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah, 61710, Al-Karak, Jordan
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Romania
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Timisoara, Roman, Romania
| | - Ateya Megahed Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
12
|
Inam S, Muhammad A, Irum S, Rehman N, Riaz A, Uzair M, Khan MR. Genome editing for improvement of biotic and abiotic stress tolerance in cereals. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24092. [PMID: 39222468 DOI: 10.1071/fp24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Global agricultural production must quadruple by 2050 to fulfil the needs of a growing global population, but climate change exacerbates the difficulty. Cereals are a very important source of food for the world population. Improved cultivars are needed, with better resistance to abiotic stresses like drought, salt, and increasing temperatures, and resilience to biotic stressors like bacterial and fungal infections, and pest infestation. A popular, versatile, and helpful method for functional genomics and crop improvement is genome editing. Rapidly developing genome editing techniques including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) are very important. This review focuses on how CRISPR/Cas9 genome editing might enhance cereals' agronomic qualities in the face of climate change, providing important insights for future applications. Genome editing efforts should focus on improving characteristics that confer tolerance to conditions exacerbated by climate change (e.g. drought, salt, rising temperatures). Improved water usage efficiency, salt tolerance, and heat stress resilience are all desirable characteristics. Cultivars that are more resilient to insect infestations and a wide range of biotic stressors, such as bacterial and fungal diseases, should be created. Genome editing can precisely target genes linked to disease resistance pathways to strengthen cereals' natural defensive systems.
Collapse
Affiliation(s)
- Safeena Inam
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Amna Muhammad
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Samra Irum
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Nazia Rehman
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Aamir Riaz
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Muhammad Uzair
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Muhammad Ramzan Khan
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| |
Collapse
|
13
|
Zhang X, Blumenthal RM, Cheng X. Updated understanding of the protein-DNA recognition code used by C2H2 zinc finger proteins. Curr Opin Struct Biol 2024; 87:102836. [PMID: 38754172 DOI: 10.1016/j.sbi.2024.102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
C2H2 zinc-finger (ZF) proteins form the largest family of DNA-binding transcription factors coded by mammalian genomes. In a typical DNA-binding ZF module, there are twelve residues (numbered from -1 to -12) between the last zinc-coordinating cysteine and the first zinc-coordinating histidine. The established C2H2-ZF "recognition code" suggests that residues at positions -1, -4, and -7 recognize the 5', central, and 3' bases of a DNA base-pair triplet, respectively. Structural studies have highlighted that additional residues at positions -5 and -8 also play roles in specific DNA recognition. The presence of bulky and either charged or polar residues at these five positions determines specificity for given DNA bases: guanine is recognized by arginine, lysine, or histidine; adenine by asparagine or glutamine; thymine or 5-methylcytosine by glutamate; and unmodified cytosine by aspartate. This review discusses recent structural characterizations of C2H2-ZFs that add to our understanding of the principles underlying the C2H2-ZF recognition code.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Li J, Wei Q, Cheng Y, Kong D, Kong Z, Ke Y, Dang X, Zhu JK, Shimada H, Miki D. Cas12a-mediated gene targeting by sequential transformation strategy in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:665. [PMID: 38997669 PMCID: PMC11241819 DOI: 10.1186/s12870-024-05375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Gene targeting (GT) allows precise manipulation of genome sequences, such as knock-ins and sequence substitutions, but GT in seed plants remains a challenging task. Engineered sequence-specific nucleases (SSNs) are known to facilitate GT via homology-directed repair (HDR) in organisms. Here, we demonstrate that Cas12a and a temperature-tolerant Cas12a variant (ttCas12a) can efficiently establish precise and heritable GT at two loci in Arabidopsis thaliana (Arabidopsis) through a sequential transformation strategy. As a result, ttCas12a showed higher GT efficiency than unmodified Cas12a. In addition, the efficiency of transcriptional and translational enhancers for GT via sequential transformation strategy was also investigated. These enhancers and their combinations were expected to show an increase in GT efficiency in the sequential transformation strategy, similar to previous reports of all-in-one strategies, but only a maximum twofold increase was observed. These results indicate that the frequency of double strand breaks (DSBs) at the target site is one of the most important factors determining the efficiency of genetic GT in plants. On the other hand, a higher frequency of DSBs does not always lead to higher efficiency of GT, suggesting that some additional factors are required for GT via HDR. Therefore, the increase in DSB can no longer be expected to improve GT efficiency, and a new strategy needs to be established in the future. This research opens up a wide range of applications for precise and heritable GT technology in plants.
Collapse
Affiliation(s)
- Jing Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiqiu Cheng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Kong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongping Ke
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Dang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, 125-8585, Japan
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
15
|
Zhang X, Blumenthal RM, Cheng X. Keep Fingers on the CpG Islands. EPIGENOMES 2024; 8:23. [PMID: 38920624 PMCID: PMC11202855 DOI: 10.3390/epigenomes8020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The post-genomic era has ushered in the extensive application of epigenetic editing tools, allowing for precise alterations of gene expression. The use of reprogrammable editors that carry transcriptional corepressors has significant potential for long-term epigenetic silencing for the treatment of human diseases. The ideal scenario involves precise targeting of a specific genomic location by a DNA-binding domain, ensuring there are no off-target effects and that the process yields no genetic remnants aside from specific epigenetic modifications (i.e., DNA methylation). A notable example is a recent study on the mouse Pcsk9 gene, crucial for cholesterol regulation and expressed in hepatocytes, which identified synthetic zinc-finger (ZF) proteins as the most effective DNA-binding editors for silencing Pcsk9 efficiently, specifically, and persistently. This discussion focuses on enhancing the specificity of ZF-array DNA binding by optimizing interactions between specific amino acids and DNA bases across three promoters containing CpG islands.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Robert M. Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
16
|
Allemailem KS, Almatroudi A, Rahmani AH, Alrumaihi F, Alradhi AE, Alsubaiyel AM, Algahtani M, Almousa RM, Mahzari A, Sindi AAA, Dobie G, Khan AA. Recent Updates of the CRISPR/Cas9 Genome Editing System: Novel Approaches to Regulate Its Spatiotemporal Control by Genetic and Physicochemical Strategies. Int J Nanomedicine 2024; 19:5335-5363. [PMID: 38859956 PMCID: PMC11164216 DOI: 10.2147/ijn.s455574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | - Rand Mohammad Almousa
- Department of Education, General Directorate of Education, Qassim 52361, Saudi Arabia
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Gasim Dobie
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan 82911, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
17
|
Samareh Salavatipour M, Poursalehi Z, Hosseini Rouzbahani N, Mohammadyar S, Vasei M. CRISPR-Cas9 in basic and translational aspects of cancer therapy. BIOIMPACTS : BI 2024; 14:30087. [PMID: 39493894 PMCID: PMC11530967 DOI: 10.34172/bi.2024.30087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 11/05/2024]
Abstract
Introduction The discovery of gene editing techniques has opened a new era within the field of biology and enabled scientists to manipulate nucleic acid molecules. CRISPR-Cas9 genome engineering has revolutionized this achievement by successful targeting the DNA molecule and editing its sequence. Since genomic changes are the basis of the birth and growth of many tumors, CRISPR-Cas9 method has been successfully applied to identify and manipulate the genes which are involved in initiating and driving some neoplastic processes. Methods By review of the existing literature on application of CRISPR-Cas9 in cancer, different databases, such as PubMed and Google Scholar, we started data collection for "CRISPR-Cas9", "Genome Editing", "Cancer", "Solid tumors", "Hematologic malignancy" "Immunotherapy", "Diagnosis", "Drug resistance" phrases. Clinicaltrials.gov, a resource that provides access to information on clinical trials, was also searched in this review. Results We have defined the basics of this technology and then mentioned some clinical and preclinical studies using this technology in the treatment of a variety of solid tumors as well as hematologic neoplasms. Finally, we described the progress made by this technology in boosting immune-mediated cell therapy in oncology, such as CAR-T cells, CAR-NK cells, and CAR-M cells. Conclusion CRISPR-Cas9 system revolutionized the therapeutic strategies in some solid malignant tumors and leukemia through targeting the key genes involved in the pathogenesis of these cancers.
Collapse
Affiliation(s)
- Maryam Samareh Salavatipour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Poursalehi
- Department of Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Negin Hosseini Rouzbahani
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Sohaib Mohammadyar
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Vasei
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Ping N, Hara-Kuge S, Yagi Y, Kazama T, Nakamura T. Translational enhancement of target endogenous mRNA in mammalian cells using programmable RNA-binding pentatricopeptide repeat proteins. Sci Rep 2024; 14:251. [PMID: 38167853 PMCID: PMC10762265 DOI: 10.1038/s41598-023-50776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Programmable protein scaffolds are invaluable in the development of genome engineering tools. The pentatricopeptide repeat (PPR) protein is an attractive platform for RNA manipulation because of its programmable RNA-binding selectivity, which is determined by the combination of amino acid species at three specific sites in the PPR motif. Translation is a key RNA regulatory step that determines the final gene expression level and is involved in various human diseases. In this study, designer PPR protein was used to develop a translational enhancement technique by fusion with the translation initiation factor eIF4G. The results showed that the PPR-eIF4G fusion protein could activate the translation of endogenous c-Myc and p53 mRNAs and control cell fate, indicating that PPR-based translational enhancement is a versatile technique applicable to various endogenous mRNAs in mammalian cells. In addition, the translational enhancement was dependent on both the target position and presence of eIF4G, suggesting the presence of an unknown translation activation mechanism.
Collapse
Affiliation(s)
- Ning Ping
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Sayuri Hara-Kuge
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | | | - Tomohiko Kazama
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Takahiro Nakamura
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.
- EditForce, Inc., Fukuoka, 819-0395, Japan.
| |
Collapse
|
19
|
Wal P, Aziz N, Singh CP, Rasheed A, Tyagi LK, Agrawal A, Wal A. Current Landscape of Gene Therapy for the Treatment of Cardiovascular Disorders. Curr Gene Ther 2024; 24:356-376. [PMID: 38288826 DOI: 10.2174/0115665232268840231222035423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 07/16/2024]
Abstract
Cardiovascular disorders (CVD) are the primary cause of death worldwide. Multiple factors have been accepted to cause cardiovascular diseases; among them, smoking, physical inactivity, unhealthy eating habits, age, and family history are flag-bearers. Individuals at risk of developing CVD are suggested to make drastic habitual changes as the primary intervention to prevent CVD; however, over time, the disease is bound to worsen. This is when secondary interventions come into play, including antihypertensive, anti-lipidemic, anti-anginal, and inotropic drugs. These drugs usually undergo surgical intervention in patients with a much higher risk of heart failure. These therapeutic agents increase the survival rate, decrease the severity of symptoms and the discomfort that comes with them, and increase the overall quality of life. However, most individuals succumb to this disease. None of these treatments address the molecular mechanism of the disease and hence are unable to halt the pathological worsening of the disease. Gene therapy offers a more efficient, potent, and important novel approach to counter the disease, as it has the potential to permanently eradicate the disease from the patients and even in the upcoming generations. However, this therapy is associated with significant risks and ethical considerations that pose noteworthy resistance. In this review, we discuss various methods of gene therapy for cardiovascular disorders and address the ethical conundrum surrounding it.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | | | - Azhar Rasheed
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Lalit Kumar Tyagi
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Ankur Agrawal
- School of Pharmacy, Jai Institute of Pharmaceutical Sciences and Research, Gwalior, MP, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| |
Collapse
|
20
|
Huang HW, Shivatare VS, Tseng TH, Wong CH. Cell-based production of Fc-GlcNAc and Fc-alpha-2,6 sialyl glycan enriched antibody with improved effector functions through glycosylation pathway engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572280. [PMID: 38187613 PMCID: PMC10769250 DOI: 10.1101/2023.12.18.572280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Glycosylation of antibody plays an important role in Fc-mediated killing of tumor cells and virus-infected cells through effector functions such as antibody-dependent cellular cytotoxicity (ADCC), antibody dependent cell-mediated phagocytosis (ADCP) and vaccinal effect. Previous studies showed that therapeutical humanized antibodies with α2-6 sialyl complex type (SCT) glycan attached to Fc-Asn297 exhibited optimal binding to the Fc receptors on effector cells associated with ADCC, ADCP and vaccinal effect. However, the production of antibodies with homogeneous Fc-SCT needs multiple in vitro enzymatic and purification steps. In this study, we report two different approaches to shorten the processes to produce SCT-enriched antibodies. First, we expressed a bacterial endoglycosidase in GNT1-KO EXPI293 cells to trim all N -glycans to mono-GlcNAc glycoforms for in vitro transglycosylation to generate homogeneous SCT antibody. Second, we engineered the glycosylation pathway of HEK293 cells through knockout of the undesired glycosyltransferases and expression of the desired glycosyltransferases to produce SCT enriched antibodies with similar binding affinity to Fc receptors and ADCC activity to homogenous SCT antibody.
Collapse
|
21
|
Xu Z, Chen S, Wu W, Wen Y, Cao H. Type I CRISPR-Cas-mediated microbial gene editing and regulation. AIMS Microbiol 2023; 9:780-800. [PMID: 38173969 PMCID: PMC10758571 DOI: 10.3934/microbiol.2023040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
There are six major types of CRISPR-Cas systems that provide adaptive immunity in bacteria and archaea against invasive genetic elements. The discovery of CRISPR-Cas systems has revolutionized the field of genetics in many organisms. In the past few years, exploitations of the most abundant class 1 type I CRISPR-Cas systems have revealed their great potential and distinct advantages to achieve gene editing and regulation in diverse microorganisms in spite of their complicated structures. The widespread and diversified type I CRISPR-Cas systems are becoming increasingly attractive for the development of new biotechnological tools, especially in genetically recalcitrant microbial strains. In this review article, we comprehensively summarize recent advancements in microbial gene editing and regulation by utilizing type I CRISPR-Cas systems. Importantly, to expand the microbial host range of type I CRISPR-Cas-based applications, these structurally complicated systems have been improved as transferable gene-editing tools with efficient delivery methods for stable expression of CRISPR-Cas elements, as well as convenient gene-regulation tools with the prevention of DNA cleavage by obviating deletion or mutation of the Cas3 nuclease. We envision that type I CRISPR-Cas systems will largely expand the biotechnological toolbox for microbes with medical, environmental and industrial importance.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shuzhen Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yongqi Wen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
22
|
Wei J, Li Y. CRISPR-based gene editing technology and its application in microbial engineering. ENGINEERING MICROBIOLOGY 2023; 3:100101. [PMID: 39628916 PMCID: PMC11610974 DOI: 10.1016/j.engmic.2023.100101] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 12/06/2024]
Abstract
Gene editing technology involves the modification of a specific target gene to obtain a new function or phenotype. Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-mediated technologies have provided an efficient tool for genetic engineering of cells and organisms. Here, we review the three emerging gene editing tools (ZFNs, TALENs, and CRISPR-Cas) and briefly introduce the principle, classification, and mechanisms of the CRISPR-Cas systems. Strategies for gene editing based on endogenous and exogenous CRISPR-Cas systems, as well as the novel base editor (BE), prime editor (PE), and CRISPR-associated transposase (CAST) technologies, are described in detail. In addition, we summarize recent developments in the application of CRISPR-based gene editing tools for industrial microorganism and probiotics modifications. Finally, the potential challenges and future perspectives of CRISPR-based gene editing tools are discussed.
Collapse
Affiliation(s)
- Junwei Wei
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Khlidj Y. What did CRISPR-Cas9 accomplish in its first 10 years? Biochem Med (Zagreb) 2023; 33:030601. [PMID: 37545694 PMCID: PMC10373057 DOI: 10.11613/bm.2023.030601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/01/2023] [Indexed: 08/08/2023] Open
Abstract
It's been 10 years now from the debut of clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) era in which gene engineering has never been so accessible, precise and efficient. This technology, like a refined surgical procedure, has offered the ability of removing different types of disease causing mutations and restoring key proteins activity with ease of outperforming the previous resembling methods: zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Additionally, CRISPR-Cas9 systems can systematically introduce genetic sequences to the specific sites in the human genome allowing to stimulate desired functions such as anti-tumoral and anti-infectious faculties. The present brief review provides an updated resume of CRISPR-Cas9's top achievements from its first appearance to the current date focusing on the breakthrough research including in vitro, in vivo and human studies. This enables the evaluation of the previous phase 'the proof-of-concept phase' and marks the beginning of the next phase which will probably bring a spate of clinical trials.
Collapse
|
24
|
Li L, Vasan L, Kartono B, Clifford K, Attarpour A, Sharma R, Mandrozos M, Kim A, Zhao W, Belotserkovsky A, Verkuyl C, Schmitt-Ulms G. Advances in Recombinant Adeno-Associated Virus Vectors for Neurodegenerative Diseases. Biomedicines 2023; 11:2725. [PMID: 37893099 PMCID: PMC10603849 DOI: 10.3390/biomedicines11102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are gene therapy delivery tools that offer a promising platform for the treatment of neurodegenerative diseases. Keeping up with developments in this fast-moving area of research is a challenge. This review was thus written with the intention to introduce this field of study to those who are new to it and direct others who are struggling to stay abreast of the literature towards notable recent studies. In ten sections, we briefly highlight early milestones within this field and its first clinical success stories. We showcase current clinical trials, which focus on gene replacement, gene augmentation, or gene suppression strategies. Next, we discuss ongoing efforts to improve the tropism of rAAV vectors for brain applications and introduce pre-clinical research directed toward harnessing rAAV vectors for gene editing applications. Subsequently, we present common genetic elements coded by the single-stranded DNA of rAAV vectors, their so-called payloads. Our focus is on recent advances that are bound to increase treatment efficacies. As needed, we included studies outside the neurodegenerative disease field that showcased improved pre-clinical designs of all-in-one rAAV vectors for gene editing applications. Finally, we discuss risks associated with off-target effects and inadvertent immunogenicity that these technologies harbor as well as the mitigation strategies available to date to make their application safer.
Collapse
Affiliation(s)
- Leyao Li
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lakshmy Vasan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Bryan Kartono
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Kevan Clifford
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health (CAMH), 250 College St., Toronto, ON M5T 1R8, Canada
| | - Ahmadreza Attarpour
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Raghav Sharma
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Matthew Mandrozos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Claire Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
25
|
Peroni E, Randi ML, Rosato A, Cagnin S. Acute myeloid leukemia: from NGS, through scRNA-seq, to CAR-T. dissect cancer heterogeneity and tailor the treatment. J Exp Clin Cancer Res 2023; 42:259. [PMID: 37803464 PMCID: PMC10557350 DOI: 10.1186/s13046-023-02841-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignant blood cancer with marked cellular heterogeneity due to altered maturation and differentiation of myeloid blasts, the possible causes of which are transcriptional or epigenetic alterations, impaired apoptosis, and excessive cell proliferation. This neoplasm has a high rate of resistance to anticancer therapies and thus a high risk of relapse and mortality because of both the biological diversity of the patient and intratumoral heterogeneity due to the acquisition of new somatic changes. For more than 40 years, the old gold standard "one size fits all" treatment approach included intensive chemotherapy treatment with anthracyclines and cytarabine.The manuscript first traces the evolution of the understanding of the pathology from the 1970s to the present. The enormous strides made in its categorization prove to be crucial for risk stratification, enabling an increasingly personalized diagnosis and treatment approach.Subsequently, we highlight how, over the past 15 years, technological advances enabling single cell RNA sequencing and T-cell modification based on the genomic tools are affecting the classification and treatment of AML. At the dawn of the new millennium, the advent of high-throughput next-generation sequencing technologies has enabled the profiling of patients evidencing different facets of the same disease, stratifying risk, and identifying new possible therapeutic targets that have subsequently been validated. Currently, the possibility of investigating tumor heterogeneity at the single cell level, profiling the tumor at the time of diagnosis or after treatments exist. This would allow the identification of underrepresented cellular subclones or clones resistant to therapeutic approaches and thus responsible for post-treatment relapse that would otherwise be difficult to detect with bulk investigations on the tumor biopsy. Single-cell investigation will then allow even greater personalization of therapy to the genetic and transcriptional profile of the tumor, saving valuable time and dangerous side effects. The era of personalized medicine will take a huge step forward through the disclosure of each individual piece of the complex puzzle that is cancer pathology, to implement a "tailored" therapeutic approach based also on engineered CAR-T cells.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy.
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, 35131, Italy
- CIR-Myo Myology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
26
|
Yang J, Horton JR, Liu B, Corces VG, Blumenthal RM, Zhang X, Cheng X. Structures of CTCF-DNA complexes including all 11 zinc fingers. Nucleic Acids Res 2023; 51:8447-8462. [PMID: 37439339 PMCID: PMC10484683 DOI: 10.1093/nar/gkad594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
The CCCTC-binding factor (CTCF) binds tens of thousands of enhancers and promoters on mammalian chromosomes by means of its 11 tandem zinc finger (ZF) DNA-binding domain. In addition to the 12-15-bp CORE sequence, some of the CTCF binding sites contain 5' upstream and/or 3' downstream motifs. Here, we describe two structures for overlapping portions of human CTCF, respectively, including ZF1-ZF7 and ZF3-ZF11 in complex with DNA that incorporates the CORE sequence together with either 3' downstream or 5' upstream motifs. Like conventional tandem ZF array proteins, ZF1-ZF7 follow the right-handed twist of the DNA, with each finger occupying and recognizing one triplet of three base pairs in the DNA major groove. ZF8 plays a unique role, acting as a spacer across the DNA minor groove and positioning ZF9-ZF11 to make cross-strand contacts with DNA. We ascribe the difference between the two subgroups of ZF1-ZF7 and ZF8-ZF11 to residues at the two positions -6 and -5 within each finger, with small residues for ZF1-ZF7 and bulkier and polar/charged residues for ZF8-ZF11. ZF8 is also uniquely rich in basic amino acids, which allows salt bridges to DNA phosphates in the minor groove. Highly specific arginine-guanine and glutamine-adenine interactions, used to recognize G:C or A:T base pairs at conventional base-interacting positions of ZFs, also apply to the cross-strand interactions adopted by ZF9-ZF11. The differences between ZF1-ZF7 and ZF8-ZF11 can be rationalized structurally and may contribute to recognition of high-affinity CTCF binding sites.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Bestas B, Wimberger S, Degtev D, Madsen A, Rottner AK, Karlsson F, Naumenko S, Callahan M, Touza JL, Francescatto M, Möller CI, Badertscher L, Li S, Cerboni S, Selfjord N, Ericson E, Gordon E, Firth M, Chylinski K, Taheri-Ghahfarokhi A, Bohlooly-Y M, Snowden M, Pangalos M, Nuttall B, Akcakaya P, Sienski G, Maresca M. A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo. Nat Commun 2023; 14:5474. [PMID: 37673883 PMCID: PMC10482872 DOI: 10.1038/s41467-023-41240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
Streptococcus pyogenes Cas9 (SpCas9) and derived enzymes are widely used as genome editors, but their promiscuous nuclease activity often induces undesired mutations and chromosomal rearrangements. Several strategies for mapping off-target effects have emerged, but they suffer from limited sensitivity. To increase the detection sensitivity, we develop an off-target assessment workflow that uses Duplex Sequencing. The strategy increases sensitivity by one order of magnitude, identifying previously unknown SpCas9's off-target mutations in the humanized PCSK9 mouse model. To reduce off-target risks, we perform a bioinformatic search and identify a high-fidelity Cas9 variant of the II-B subfamily from Parasutterella secunda (PsCas9). PsCas9 shows improved specificity as compared to SpCas9 across multiple tested sites, both in vitro and in vivo, including the PCSK9 site. In the future, while PsCas9 will offer an alternative to SpCas9 for research and clinical use, the Duplex Sequencing workflow will enable a more sensitive assessment of Cas9 editing outcomes.
Collapse
Affiliation(s)
- Burcu Bestas
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Sandra Wimberger
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Dmitrii Degtev
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Alexandra Madsen
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Antje K Rottner
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Cambridge, UK
| | - Sergey Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Megan Callahan
- Translational Genomics, Translational Medicine, R&D Oncology, AstraZeneca, Waltham, MA, USA
| | - Julia Liz Touza
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Margherita Francescatto
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Cambridge, UK
| | - Carl Ivar Möller
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Lukas Badertscher
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Songyuan Li
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Silvia Cerboni
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Niklas Selfjord
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Elke Ericson
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Euan Gordon
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Cambridge, UK
| | | | - Amir Taheri-Ghahfarokhi
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Mike Snowden
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Barrett Nuttall
- Translational Genomics, Translational Medicine, R&D Oncology, AstraZeneca, Waltham, MA, USA
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Grzegorz Sienski
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
28
|
Yin G, Wang XH, Sun Y. Recent advances in CRISPR-Cas system for the treatment of genetic hearing loss. AMERICAN JOURNAL OF STEM CELLS 2023; 12:37-50. [PMID: 37736272 PMCID: PMC10509501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Genetic hearing loss has emerged as a significant public health concern that demands attention. Among the various treatment strategies, gene therapy based on gene editing technology is considered the most promising approach for addressing genetic hearing loss by repairing or eliminating mutated genes. The advent of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system has revolutionized gene therapy through its remarkable gene editing capabilities. This system has been extensively employed in mammalian gene editing and is currently being evaluated through clinical trials. Against this backdrop, this review aims to provide an overview of recent advances in utilizing the CRISPR-Cas system to treat genetic hearing loss. Additionally, we delve into the primary challenges and prospects associated with the current application of this system in addressing genetic hearing loss.
Collapse
Affiliation(s)
- Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Xiao-Hui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022, Hubei, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| |
Collapse
|
29
|
Tsibulnikov S, Fayzullina D, Karlina I, Schroeder BA, Karpova O, Timashev P, Ulasov I. Ewing sarcoma treatment: a gene therapy approach. Cancer Gene Ther 2023; 30:1066-1071. [PMID: 37037906 PMCID: PMC10088695 DOI: 10.1038/s41417-023-00615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
Ewing sarcoma (ES) is an aggressive malignant tumor, characterized by non-random chromosomal translocations that produce fusion genes. Fusion genes and fusion protein products are promising targets for gene therapy. Therapeutic approaches and strategies vary based on target molecules (nucleotides, proteins) of interest. We present an extensive literature review of active molecules for gene therapy and methods of gene therapy delivery, both of which are necessary for successful treatment.
Collapse
Affiliation(s)
- Sergey Tsibulnikov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Daria Fayzullina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Olga Karpova
- Section of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| |
Collapse
|
30
|
Rahimi A, Karimipoor M, Mahdian R, Alipour A, Hosseini S, Mohammadi M, Kaghazian H, Abbasi A, Shahsavarani H, Shokrgozar MA. Efficient CRISPR/Cas9-Mediated BAX Gene Ablation in CHO Cells To Impair Apoptosis and Enhance Recombinant Protein Production. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3388. [PMID: 37228627 PMCID: PMC10203183 DOI: 10.30498/ijb.2023.343428.3388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/25/2023] [Indexed: 05/27/2023]
Abstract
Background Despite recent advances in recombinant biotherapeutics production using CHO cells, their productivity remains lower than industrial needs, mainly due to apoptosis. Objectives Present study aimed to exploit CRISPR/Cas9 technology to specifically disrupt the BAX gene to attenuate apoptosis in recombinant Chinese hamster's ovary cells producing erythropoietin. Materials and Methods The STRING database was used to identify the key pro-apoptotic genes to be modified by CRISPR/Cas9 technique. The single guide RNAs (sgRNAs) targeting identified gene (BAX) were designed, and CHO cells were then transfected with vectors. Afterward, changes in the expression of the Bax gene and consequent production rates of erythropoietin were investigated in manipulated cells, even in the presence of an apoptosis inducer agent, oleuropein. Results BAX disruption significantly prolonged cell viability and increased proliferation rate in manipulated clones (152%, P-value = 0.0002). This strategy reduced the levels of Bax protein expression in manipulated cells by more than 4.3-fold (P-value <0.0001). The Bax-8 manipulated cells displayed higher threshold tolerance to the stress and consequence apoptosis compared to the control group. Also, they exhibited a higher IC50 compared to the control in the presence of oleuropein (5095 µM.ml-1 Vs. 2505 µM.ml-1). We found a significant increase in recombinant protein production levels in manipulated cells, even in the presence of 1,000 µM oleuropein compared to the control cell line (p-value=0.0002). Conclusions CRISPR/Cas9 assisted BAX gene ablation is promising to improve erythropoietin production in CHO cells via engineering anti-apoptotic genes. Therefore, exploiting genome editing tools such as CRISPR/Cas9 has been proposed to develop host cells that result in a safe, feasible, and robust manufacturing operation with a yield that meets the industrial requirements.
Collapse
Affiliation(s)
- Amirabbas Rahimi
- Laboratory of regenerative medicine and biomedical innovations, National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Mahdian
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Alipour
- Department of Nano-Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Saadi Hosseini
- Laboratory of regenerative medicine and biomedical innovations, National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Marzieh Mohammadi
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research & Development, Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Ali Shokrgozar
- Laboratory of regenerative medicine and biomedical innovations, National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
31
|
Poletto E, Silva AO, Weinlich R, Martin PKM, Torres DC, Giugliani R, Baldo G. Ex vivo gene therapy for lysosomal storage disorders: future perspectives. Expert Opin Biol Ther 2023; 23:353-364. [PMID: 36920351 DOI: 10.1080/14712598.2023.2192348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Lysosomal storage disorders (LSD) are a group of monogenic rare diseases caused by pathogenic variants in genes that encode proteins related to lysosomal function. These disorders are good candidates for gene therapy for different reasons: they are monogenic, most of lysosomal proteins are enzymes that can be secreted and cross-correct neighboring cells, and small quantities of these proteins are able to produce clinical benefits in many cases. Ex vivo gene therapy allows for autologous transplant of modified cells from different sources, including stem cells and hematopoietic precursors. AREAS COVERED Here, we summarize the main gene therapy and genome editing strategies that are currently being used as ex vivo gene therapy approaches for lysosomal disorders, highlighting important characteristics, such as vectors used, strategies, types of cells that are modified and main results in different disorders. EXPERT OPINION Clinical trials are already ongoing, and soon approved therapies for LSD based on ex vivo gene therapy approaches should reach the market.
Collapse
Affiliation(s)
- Edina Poletto
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Andrew Oliveira Silva
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Ricardo Weinlich
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro de Ensino e Pesquisa/Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Davi Coe Torres
- Centro de Ensino e Pesquisa/Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Roberto Giugliani
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Guilherme Baldo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
32
|
Lampe GD, King RT, Halpin-Healy TS, Klompe SE, Hogan MI, Vo PLH, Tang S, Chavez A, Sternberg SH. Targeted DNA integration in human cells without double-strand breaks using CRISPR RNA-guided transposases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533036. [PMID: 36993517 PMCID: PMC10055298 DOI: 10.1101/2023.03.17.533036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Traditional genome-editing reagents such as CRISPR-Cas9 achieve targeted DNA modification by introducing double-strand breaks (DSBs), thereby stimulating localized DNA repair by endogenous cellular repair factors. While highly effective at generating heterogenous knockout mutations, this approach suffers from undesirable byproducts and an inability to control product purity. Here we develop a system in human cells for programmable, DSB-free DNA integration using Type I CRISPR-associated transposons (CASTs). To adapt our previously described CAST systems, we optimized DNA targeting by the QCascade complex through a comprehensive assessment of protein design, and we developed potent transcriptional activators by exploiting the multi-valent recruitment of the AAA+ ATPase, TnsC, to genomic sites targeted by QCascade. After initial detection of plasmid-based transposition, we screened 15 homologous CAST systems from a wide range of bacterial hosts, identified a CAST homolog from Pseudoalteromonas that exhibited improved activity, and increased integration efficiencies through parameter optimization. We further discovered that bacterial ClpX enhances genomic integration by multiple orders of magnitude, and we propose that this critical accessory factor functions to drive active disassembly of the post-transposition CAST complex, akin to its demonstrated role in Mu transposition. Our work highlights the ability to functionally reconstitute complex, multi-component machineries in human cells, and establishes a strong foundation to realize the full potential of CRISPR-associated transposons for human genome engineering.
Collapse
Affiliation(s)
- George D Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Rebeca T King
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tyler S Halpin-Healy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Marcus I Hogan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Phuc Leo H Vo
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
33
|
Ugalde L, Fañanas S, Torres R, Quintana-Bustamante O, Río P. CRISPR/Cas9-mediated gene editing. A promising strategy in hematological disorders. Cytotherapy 2023; 25:277-285. [PMID: 36610813 DOI: 10.1016/j.jcyt.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has revolutionized the gene editing field, making it possible to interrupt, insert or replace a sequence of interest with high precision in the human genome. Its easy design and wide applicability open up a variety of therapeutic alternatives for the treatment of genetic diseases. Indeed, very promising approaches for the correction of hematological disorders have been developed in the recent years, based on the self-renewal and multipotent differentiation properties of hematopoietic stem and progenitor cells, which make this cell subset the ideal target for gene therapy purposes. This technology has been applied in different congenital blood disorders, such as primary immunodeficiencies, X-linked severe combined immunodeficiency, X-linked chronic granulomatous disease or Wiskott-Aldrich syndrome, and inherited bone marrow failure syndromes, such as Fanconi anemia, congenital amegakaryocytic thrombocytopenia or severe congenital neutropenia. Furthermore, CRISPR/Cas9-based gene editing has been implemented successfully as a novel therapy for cancer immunotherapy, by the development of promising strategies such as the use of oncolytic viruses or adoptive cellular therapy to the chimeric antigen receptor-T-cell therapy. Therefore, considering the variety of genes and mutations affected, we can take advantage of the different DNA repair mechanisms by CRISPR/Cas9 in different manners, from homology-directed repair to non-homologous-end-joining to the latest emerging technologies such as base and prime editing. Although the delivery systems into hematopoietic stem and progenitor cells are still the bottleneck of this technology, some of the advances in genome editing shown in this review have already reached a clinical stage and show very promising preliminary results.
Collapse
Affiliation(s)
- Laura Ugalde
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Sara Fañanas
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Raúl Torres
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain; Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| |
Collapse
|
34
|
Sharma P, Pandey A, Malviya R, Dey S, Karmakar S, Gayen D. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals. Front Genome Ed 2023; 5:1094965. [PMID: 36911238 PMCID: PMC9998953 DOI: 10.3389/fgeed.2023.1094965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Agricultural production relies on horticultural crops, including vegetables, fruits, and ornamental plants, which sustain human life. With an alarming increase in human population and the consequential need for more food, it has become necessary for increased production to maintain food security. Conventional breeding has subsidized the development of improved verities but to enhance crop production, new breeding techniques need to be acquired. CRISPR-Cas9 system is a unique and powerful genome manipulation tool that can change the DNA in a precise way. Based on the bacterial adaptive immune system, this technique uses an endonuclease that creates double-stranded breaks (DSBs) at the target loci under the guidance of a single guide RNA. These DSBs can be repaired by a cellular repair mechanism that installs small insertion and deletion (indels) at the cut sites. When equated to alternate editing tools like ZFN, TALENs, and meganucleases, CRISPR- The cas-based editing tool has quickly gained fast-forward for its simplicity, ease to use, and low off-target effect. In numerous horticultural and industrial crops, the CRISPR technology has been successfully used to enhance stress tolerance, self-life, nutritional improvements, flavor, and metabolites. The CRISPR-based tool is the most appropriate one with the prospective goal of generating non-transgenic yields and avoiding the regulatory hurdles to release the modified crops into the market. Although several challenges for editing horticultural, industrial, and ornamental crops remain, this new novel nuclease, with its crop-specific application, makes it a dynamic tool for crop improvement.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
35
|
Alamillo JM, López CM, Martínez Rivas FJ, Torralbo F, Bulut M, Alseekh S. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein and hairy roots: a perfect match for gene functional analysis and crop improvement. Curr Opin Biotechnol 2023; 79:102876. [PMID: 36621223 PMCID: PMC9923253 DOI: 10.1016/j.copbio.2022.102876] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) gene editing has become a powerful tool in genome manipulation for crop improvement. Advances in omics technologies, including genomics, transcriptomics, and metabolomics, allow the identification of causal genes that can be used to improve crops. However, the functional validation of these genetic components remains a challenge due to the lack of efficient protocols for crop engineering. Hairy roots gene editing using CRISPR/Cas, coupled with omics analyses, provide a platform for rapid, precise, and cost-effective functional analysis of genes. Here, we describe common requirements for efficient crop genome editing, focused on the transformation of recalcitrant legumes, and highlight the great opportunities that gene editing in hairy roots offers for future crop improvement.
Collapse
Affiliation(s)
- Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Cristina M López
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Fernando Torralbo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Mustafa Bulut
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Institute of Plants Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
36
|
Zhang W, Wang R, Kong D, Peng F, Chen M, Zeng W, Giaume F, He S, Zhang H, Wang Z, Kyozuka J, Zhu JK, Fornara F, Miki D. Precise and heritable gene targeting in rice using a sequential transformation strategy. CELL REPORTS METHODS 2023; 3:100389. [PMID: 36814841 PMCID: PMC9939429 DOI: 10.1016/j.crmeth.2022.100389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Gene targeting (GT) is a powerful tool for modifying endogenous genomic sequences of interest, such as sequence replacement and gene knockin. Although the efficiency of GT is extremely low in higher plants, engineered sequence-specific nucleases (SSNs)-mediated double-strand breaks (DSBs) can improve GT frequency. We recently reported a CRISPR-Cas9-mediated approach for heritable GT in Arabidopsis, called the "sequential transformation" strategy. For efficient establishment of GT via the sequential transformation method, strong Cas9 activity and robust DSBs are required in the plant cells being infected with Agrobacterium carrying sgRNA and donor DNA. Accordingly, we generated two independent parental lines with maize Ubiquitin 1 promoter-driven Cas9 and established sequential transformation-mediated GT in the Japonica rice cultivar Oryza sativa Nipponbare. We achieved precise GFP knockin into the endogenous OsFTL1 and OsROS1a loci. We believe that our GT technology could be widely utilized in rice research and breeding applications.
Collapse
Affiliation(s)
- Wenxin Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fangnan Peng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Francesca Giaume
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Sheng He
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui Zhang
- College of Life Science, Shanghai Normal University, Shanghai 200234, China
| | - Zhen Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fabio Fornara
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
37
|
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li PF, Yu T. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 2023; 8:36. [PMID: 36646687 PMCID: PMC9841506 DOI: 10.1038/s41392-023-01309-7] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology is the ideal tool of the future for treating diseases by permanently correcting deleterious base mutations or disrupting disease-causing genes with great precision and efficiency. A variety of efficient Cas9 variants and derivatives have been developed to cope with the complex genomic changes that occur during diseases. However, strategies to effectively deliver the CRISPR system to diseased cells in vivo are currently lacking, and nonviral vectors with target recognition functions may be the focus of future research. Pathological and physiological changes resulting from disease onset are expected to serve as identifying factors for targeted delivery or targets for gene editing. Diseases are both varied and complex, and the choice of appropriate gene-editing methods and delivery vectors for different diseases is important. Meanwhile, there are still many potential challenges identified when targeting delivery of CRISPR/Cas9 technology for disease treatment. This paper reviews the current developments in three aspects, namely, gene-editing type, delivery vector, and disease characteristics. Additionally, this paper summarizes successful examples of clinical trials and finally describes possible problems associated with current CRISPR applications.
Collapse
Affiliation(s)
- Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, 266021, Qingdao, People's Republic of China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, 276827, Rizhao, People's Republic of China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, 276000, Linyi, People's Republic of China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China
| | - Meixin Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China.
| |
Collapse
|
38
|
Davies M, Jurynec MJ, Gomez-Alvarado F, Hu D, Feeley SE, Allen-Brady K, Tashjian RZ, Feeley BT. Current cellular and molecular biology techniques for the orthopedic surgeon-scientist. J Shoulder Elbow Surg 2023; 32:e11-e22. [PMID: 35988889 DOI: 10.1016/j.jse.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Michael Davies
- Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Francisco Gomez-Alvarado
- Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Hu
- Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sonali E Feeley
- Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kristina Allen-Brady
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert Z Tashjian
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.
| | - Brian T Feeley
- Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Lee SK, Kim YG. Construction of a Z-DNA-Specific Recombinant Nuclease Zαα-FOK for Conformation Studies. Methods Mol Biol 2023; 2651:143-155. [PMID: 36892765 DOI: 10.1007/978-1-0716-3084-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Development of FokI-based engineered nucleases has been a platform technology that enables creation of novel sequence-specific nucleases as well as structure-specific nucleases. Z-DNA-specific nucleases have been constructed by fusing a Z-DNA-binding domain to the nuclease domain of FokI (FN). In particular, Zαα, an engineered Z-DNA-binding domain with a high affinity, is an ideal fusion partner to generate a highly efficient Z-DNA-specific cutter. Here, we describe construction, expression, and purification of Zαα-FOK (Zαα-FN) nuclease in detail. In addition, Z-DNA-specific cleavage is demonstrated by the use of Zαα-FOK.
Collapse
Affiliation(s)
- Seul Ki Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, South Korea
| | - Yang-Gyun Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
40
|
Aliaga Goltsman DS, Alexander LM, Lin JL, Fregoso Ocampo R, Freeman B, Lamothe RC, Perez Rivas A, Temoche-Diaz MM, Chadha S, Nordenfelt N, Janson OP, Barr I, Devoto AE, Cost GJ, Butterfield CN, Thomas BC, Brown CT. Compact Cas9d and HEARO enzymes for genome editing discovered from uncultivated microbes. Nat Commun 2022; 13:7602. [PMID: 36522342 PMCID: PMC9755519 DOI: 10.1038/s41467-022-35257-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Programmable, RNA-guided nucleases are diverse enzymes that have been repurposed for biotechnological applications. However, to further expand the therapeutic application of these tools there is a need for targetable systems that are small enough to be delivered efficiently. Here, we mined an extensive genome-resolved metagenomics database and identified families of uncharacterized RNA-guided, compact nucleases (between 450 and 1,050 aa). We report that Cas9d, a new CRISPR type II subtype, contains Zinc-finger motifs and high arginine content, features that we also found in nucleases related to HEARO effectors. These enzymes exhibit diverse biochemical characteristics and are broadly targetable. We show that natural Cas9d enzymes are capable of genome editing in mammalian cells with >90% efficiency, and further engineered nickase variants into the smallest base editors active in E. coli and human cells. Their small size, broad targeting potential, and translatability suggest that Cas9d and HEARO systems will enable a variety of genome editing applications.
Collapse
Affiliation(s)
| | | | - Jyun-Liang Lin
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | | | | | | | | | | | | | | | - Owen P Janson
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | - Ian Barr
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | - Audra E Devoto
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | - Gregory J Cost
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | | | - Brian C Thomas
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | | |
Collapse
|
41
|
Rahimi A, Karimipoor M, Mahdian R, Alipour A, Hosseini S, Kaghazian H, Abbasi A, Shahsavarani H, Shokrgozar MA. Targeting Caspase-3 Gene in rCHO Cell Line by CRISPR/Cas9 Editing Tool and Its Effect on Protein Production in Manipulated Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e130236. [PMID: 36915405 PMCID: PMC10007989 DOI: 10.5812/ijpr-130236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 03/06/2023]
Abstract
Background Chinese hamster ovary (CHO) cells are the widely used mammalian cell host for biopharmaceutical manufacturing. During cell cultures, CHO cells lose viability mainly from apoptosis. Inhibiting cell death is useful because prolonging cell lifespans can direct to more productive cell culture systems for biotechnology requests. Objectives This study exploited a CRISPR/Cas9 technology to generate site-specific gene disruptions in the caspase-3 gene in the apoptosis pathway, which acts as an apoptotic regulator to extend cell viability in the CHO cell line. Methods The STRING database was used to identify the key pro-apoptotic genes to be modified by CRISPR/Cas9 system. The guide RNAs targeting the caspase-3 gene were designed, and vectors containing sgRNA and Cas9 were transfected into CHO cells that expressed erythropoietin as a heterologous protein. Indel formation was investigated by DNA sequencing. Caspase-3 expression was quantified by real-time PCR and western blot. The effect of editing the caspase-3 gene on the inhibition of apoptosis was also investigated by induction of apoptosis in manipulated cell lines by oleuropein. Finally, the erythropoietin production in the edited cells was compared to the control cells. Results The caspase-3 manipulation significantly prolongation of the cell viability and decreased the caspase-3 expression level of protein in manipulated CHO cells (more than 6-fold, P-value < 0.0001). Manipulated cells displayed higher threshold tolerance to apoptosis compared to the control cells when they were induced by oleuropein. They show a higher IC50 than the control ones (7271 µM/mL Vs. 5741 µM/mL). They also show a higher proliferation rate than the control cells in the presence of an apoptosis inducer (P-value < 0.0001). Furthermore, manipulated cell lines significantly produce more recombinant protein in the presence of 2,000 µM oleuropein compared to the control ones (P-value = 0.0021). Conclusions We understood that CRISPR/Cas9 could be effectively applied to suppress the expression of the caspase-3 gene and rescue CHO cells from apoptosis induced by cell stress and metabolites. The CRISPR/Cas9 system-assisted caspase-3 gene ablation can potentially increase erythropoietin yield in CHO cells.
Collapse
Affiliation(s)
- Amirabbas Rahimi
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Mahdian
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Alipour
- Department of Nano-Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Sadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research & Development, Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Corresponding Author: Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Ali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
- Corresponding Author: Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, 13169-43551, Tehran, Iran.
| |
Collapse
|
42
|
Pal S, Dam S. CRISPR-Cas9: Taming protozoan parasites with bacterial scissor. J Parasit Dis 2022; 46:1204-1212. [PMID: 36457766 PMCID: PMC9606157 DOI: 10.1007/s12639-022-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022] Open
Abstract
The invention of CRISPR-Cas9 technology has opened a new era in which genome manipulation has become precise, faster, cheap and more accurate than previous genome editing strategies. Despite the intricacies of the genomes associated with several protozoan parasites, CRISPR-Cas9 has made a substantial contribution to parasitology. The study of functional genomics through CRISPR-Cas9 mediated gene knockout, insertion, deletion and mutation has helped in understanding intrinsic parasite biology. The invention of CRISPR-dCas9 has helped in the programmable control of protozoan gene expression and epigenetic engineering. CRISPR and CRISPR-based alternatives will continue to thrive and may aid in the development of novel anti-protozoan strategies to tame the protozoan parasites in the imminent future.
Collapse
Affiliation(s)
- Suchetana Pal
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
43
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH, Khan AA. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Cancer Commun (Lond) 2022; 42:1257-1287. [PMID: 36209487 PMCID: PMC9759771 DOI: 10.1002/cac2.12366] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9), an adaptive microbial immune system, has been exploited as a robust, accurate, efficient and programmable method for genome targeting and editing. This innovative and revolutionary technique can play a significant role in animal modeling, in vivo genome therapy, engineered cell therapy, cancer diagnosis and treatment. The CRISPR/Cas9 endonuclease system targets a specific genomic locus by single guide RNA (sgRNA), forming a heteroduplex with target DNA. The Streptococcus pyogenes Cas9/sgRNA:DNA complex reveals a bilobed architecture with target recognition and nuclease lobes. CRISPR/Cas9 assembly can be hijacked, and its nanoformulation can be engineered as a delivery system for different clinical utilizations. However, the efficient and safe delivery of the CRISPR/Cas9 system to target tissues and cancer cells is very challenging, limiting its clinical utilization. Viral delivery strategies of this system may have many advantages, but disadvantages such as immune system stimulation, tumor promotion risk and small insertion size outweigh these advantages. Thus, there is a desperate need to develop an efficient non-viral physical delivery system based on simple nanoformulations. The delivery strategies of CRISPR/Cas9 by a nanoparticle-based system have shown tremendous potential, such as easy and large-scale production, combination therapy, large insertion size and efficient in vivo applications. This review aims to provide in-depth updates on Streptococcus pyogenic CRISPR/Cas9 structure and its mechanistic understanding. In addition, the advances in its nanoformulation-based delivery systems, including lipid-based, polymeric structures and rigid NPs coupled to special ligands such as aptamers, TAT peptides and cell-penetrating peptides, are discussed. Furthermore, the clinical applications in different cancers, clinical trials and future prospects of CRISPR/Cas9 delivery and genome targeting are also discussed.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health SciencesCollege of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| |
Collapse
|
44
|
Zhang Z, Zeng W, Zhang W, Li J, Kong D, Zhang L, Wang R, Peng F, Kong Z, Ke Y, Zhang H, Kim C, Zhang H, Botella JR, Zhu JK, Miki D. Insights into the molecular mechanisms of CRISPR/Cas9-mediated gene targeting at multiple loci in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2203-2216. [PMID: 36106983 PMCID: PMC9706422 DOI: 10.1093/plphys/kiac431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination-mediated gene targeting (GT) enables precise sequence knockin or sequence replacement, and thus is a powerful tool for heritable precision genome engineering. We recently established a clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9)-mediated approach for heritable GT in Arabidopsis (Arabidopsis thaliana), but its broad utility was not tested, and the underlying molecular mechanism was unclear. Here, we achieved precise GT at 14 out of 27 tested endogenous target loci using the sequential transformation approach and obtained vector-free GT plants by backcrossing. Thus, the sequential transformation GT method provides a broadly applicable technology for precise genome manipulation. We show that our approach generates heritable GT in the egg cell or early embryo of T1 Arabidopsis plants. Analysis of imprecise GT events suggested that single-stranded transfer DNA (T-DNA)/VirD2 complexes produced during the Agrobacterium (Agrobacterium tumefaciens) transformation process may serve as the donor templates for homologous recombination-mediated repair in the GT process. This study provides new insights into the molecular mechanisms of CRISPR/Cas9-mediated GT in Arabidopsis.
Collapse
Affiliation(s)
- Zhengjing Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxin Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangnan Peng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Kong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongping Ke
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jose Ramón Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
45
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
46
|
Khurana A, Sayed N, Singh V, Khurana I, Allawadhi P, Rawat PS, Navik U, Pasumarthi SK, Bharani KK, Weiskirchen R. A comprehensive overview of CRISPR/Cas 9 technology and application thereof in drug discovery. J Cell Biochem 2022; 123:1674-1698. [PMID: 36128934 DOI: 10.1002/jcb.30329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas technology possesses revolutionary potential to positively affect various domains of drug discovery. It has initiated a rise in the area of genetic engineering and its advantages range from classical science to translational medicine. These genome editing systems have given a new dimension to our capabilities to alter, detect and annotate specified gene sequences. Moreover, the ease, robustness and adaptability of the CRISPR/Cas9 technology have led to its extensive utilization in research areas in such a short period of time. The applications include the development of model cell lines, understanding disease mechanisms, discovering disease targets, developing transgenic animals and plants, and transcriptional modulation. Further, the technology is rapidly growing; hence, an overlook of progressive success is crucial. This review presents the current status of the CRISPR-Cas technology in a tailor-made format from its discovery to several advancements for drug discovery alongwith future trends associated with possibilities and hurdles including ethical concerns.
Collapse
Affiliation(s)
- Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Hyderabad, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik, Maharashtra, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | | | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
47
|
Novel AAV-mediated genome editing therapy improves health and survival in a mouse model of methylmalonic acidemia. PLoS One 2022; 17:e0274774. [PMID: 36126056 PMCID: PMC9488783 DOI: 10.1371/journal.pone.0274774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Methylmalonic acidemia (MMA) is an inborn error of metabolism mostly caused by mutations in the mitochondrial methylmalonyl-CoA mutase gene (MMUT). MMA patients suffer from frequent episodes of metabolic decompensation, which can be life threatening. To mimic both the dietary restrictions and metabolic decompensation seen in MMA patients, we developed a novel protein-controlled diet regimen in a Mmut deficient mouse model of MMA and demonstrated the therapeutic benefit of mLB-001, a nuclease-free, promoterless recombinant AAV GeneRideTM vector designed to insert the mouse Mmut into the endogenous albumin locus via homologous recombination. A single intravenous administration of mLB-001 to neonatal or adult MMA mice prevented body weight loss and mortality when challenged with a high protein diet. The edited hepatocytes expressed functional MMUT protein and expanded over time in the Mmut deficient mice, suggesting a selective growth advantage over the diseased cells. In mice with a humanized liver, treatment with a human homolog of mLB-001 resulted in site-specific genome editing and transgene expression in the transplanted human hepatocytes. Taken together, these findings support the development of hLB-001 that is currently in clinical trials in pediatric patients with severe forms of MMA.
Collapse
|
48
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
49
|
Park ME, Kim HU. Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:969844. [PMID: 36119569 PMCID: PMC9471015 DOI: 10.3389/fpls.2022.969844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
Triacylglycerol (TAG), which is a neutral lipid, has a structure in which three molecules of fatty acid (FA) are ester-bonded to one molecule of glycerol. TAG is important energy source for seed germination and seedling development in plants. Depending on the FA composition of the TAG, it is used as an edible oil or industrial material for cosmetics, soap, and lubricant. As the demand for plant oil is rising worldwide, either the type of FA must be changed or the total oil content of various plants must be increased. In this review, we discuss the regulation of FA metabolism by Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a recent genome-editing technology applicable to various plants. The development of plants with higher levels of oleic acid or lower levels of very long-chain fatty acids (VLCFAs) in seeds are discussed. In addition, the current status of research on acyltransferases, phospholipases, TAG lipases, and TAG synthesis in vegetative tissues is described. Finally, strategies for the application of CRISPR/Cas9 in lipid metabolism studies are mentioned.
Collapse
Affiliation(s)
- Mid-Eum Park
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| |
Collapse
|
50
|
Meena MR, Appunu C, Arun Kumar R, Manimekalai R, Vasantha S, Krishnappa G, Kumar R, Pandey SK, Hemaprabha G. Recent Advances in Sugarcane Genomics, Physiology, and Phenomics for Superior Agronomic Traits. Front Genet 2022; 13:854936. [PMID: 35991570 PMCID: PMC9382102 DOI: 10.3389/fgene.2022.854936] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in sugarcane breeding have contributed significantly to improvements in agronomic traits and crop yield. However, the growing global demand for sugar and biofuel in the context of climate change requires further improvements in cane and sugar yields. Attempts to achieve the desired rates of genetic gain in sugarcane by conventional breeding means are difficult as many agronomic traits are genetically complex and polygenic, with each gene exerting small effects. Unlike those of many other crops, the sugarcane genome is highly heterozygous due to its autopolyploid nature, which further hinders the development of a comprehensive genetic map. Despite these limitations, many superior agronomic traits/genes for higher cane yield, sugar production, and disease/pest resistance have been identified through the mapping of quantitative trait loci, genome-wide association studies, and transcriptome approaches. Improvements in traits controlled by one or two loci are relatively easy to achieve; however, this is not the case for traits governed by many genes. Many desirable phenotypic traits are controlled by quantitative trait nucleotides (QTNs) with small and variable effects. Assembling these desired QTNs by conventional breeding methods is time consuming and inefficient due to genetic drift. However, recent developments in genomics selection (GS) have allowed sugarcane researchers to select and accumulate desirable alleles imparting superior traits as GS is based on genomic estimated breeding values, which substantially increases the selection efficiency and genetic gain in sugarcane breeding programs. Next-generation sequencing techniques coupled with genome-editing technologies have provided new vistas in harnessing the sugarcane genome to look for desirable agronomic traits such as erect canopy, leaf angle, prolonged greening, high biomass, deep root system, and the non-flowering nature of the crop. Many desirable cane-yielding traits, such as single cane weight, numbers of tillers, numbers of millable canes, as well as cane quality traits, such as sucrose and sugar yield, have been explored using these recent biotechnological tools. This review will focus on the recent advances in sugarcane genomics related to genetic gain and the identification of favorable alleles for superior agronomic traits for further utilization in sugarcane breeding programs.
Collapse
Affiliation(s)
- Mintu Ram Meena
- Regional Centre, ICAR-Sugarcane Breeding Institute, Karnal, India
- *Correspondence: Mintu Ram Meena, ; Chinnaswamy Appunu,
| | - Chinnaswamy Appunu
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
- *Correspondence: Mintu Ram Meena, ; Chinnaswamy Appunu,
| | - R. Arun Kumar
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | | | - S. Vasantha
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | | | - Ravinder Kumar
- Regional Centre, ICAR-Sugarcane Breeding Institute, Karnal, India
| | - S. K. Pandey
- Regional Centre, ICAR-Sugarcane Breeding Institute, Karnal, India
| | - G. Hemaprabha
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| |
Collapse
|