1
|
Richard Albert J, Urli T, Monteagudo-Sánchez A, Le Breton A, Sultanova A, David A, Scarpa M, Schulz M, Greenberg MVC. DNA methylation shapes the Polycomb landscape during the exit from naive pluripotency. Nat Struct Mol Biol 2025; 32:346-357. [PMID: 39448850 DOI: 10.1038/s41594-024-01405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
In mammals, 5-methylcytosine (5mC) and Polycomb repressive complex 2 (PRC2)-deposited histone 3 lysine 27 trimethylation (H3K27me3) are generally mutually exclusive at CpG-rich regions. As mouse embryonic stem cells exit the naive pluripotent state, there is massive gain of 5mC concomitantly with restriction of broad H3K27me3 to 5mC-free, CpG-rich regions. To formally assess how 5mC shapes the H3K27me3 landscape, we profiled the epigenome of naive and differentiated cells in the presence and absence of the DNA methylation machinery. Surprisingly, we found that 5mC accumulation is not required to restrict most H3K27me3 domains. Instead, this 5mC-independent H3K27me3 restriction is mediated by aberrant expression of the PRC2 antagonist Ezhip (encoding EZH inhibitory protein). At the subset of regions where 5mC appears to genuinely supplant H3K27me3, we identified 163 candidate genes that appeared to require 5mC deposition and/or H3K27me3 depletion for their activation in differentiated cells. Using site-directed epigenome editing to directly modulate 5mC levels, we demonstrated that 5mC deposition is sufficient to antagonize H3K27me3 deposition and confer gene activation at individual candidates. Altogether, we systematically measured the antagonistic interplay between 5mC and H3K27me3 in a system that recapitulates early embryonic dynamics. Our results suggest that H3K27me3 restraint depends on 5mC, both directly and indirectly. Our study also implies a noncanonical role of 5mC in gene activation, which may be important not only for normal development but also for cancer progression, as oncogenic cells frequently exhibit dynamic replacement of 5mC for H3K27me3 and vice versa.
Collapse
Affiliation(s)
| | - Teresa Urli
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Ana Monteagudo-Sánchez
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Carlos Simon Foundation, INCLIVA Health Research Institute, Valencia, Spain
| | - Anna Le Breton
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Amina Sultanova
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Angélique David
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Mathieu Schulz
- Institut Curie, PSL Research University, INSERM U934, CNRS, UMR3215, Paris, France
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montréal, Québec, Canada
| | | |
Collapse
|
2
|
Zhang Y, Leung AK, Kang JJ, Sun Y, Wu G, Li L, Sun J, Cheng L, Qiu T, Zhang J, Wierbowski SD, Gupta S, Booth JG, Yu H. A multiscale functional map of somatic mutations in cancer integrating protein structure and network topology. Nat Commun 2025; 16:975. [PMID: 39856048 PMCID: PMC11760531 DOI: 10.1038/s41467-024-54176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/04/2024] [Indexed: 01/27/2025] Open
Abstract
A major goal of cancer biology is to understand the mechanisms driven by somatically acquired mutations. Two distinct methodologies-one analyzing mutation clustering within protein sequences and 3D structures, the other leveraging protein-protein interaction network topology-offer complementary strengths. We present NetFlow3D, a unified, end-to-end 3D structurally-informed protein interaction network propagation framework that maps the multiscale mechanistic effects of mutations. Built upon the Human Protein Structurome, which incorporates the 3D structures of every protein and the binding interfaces of all known protein interactions, NetFlow3D integrates atomic, residue, protein and network-level information: It clusters mutations on 3D protein structures to identify driver mutations and propagates their impacts anisotropically across the protein interaction network, guided by the involved interaction interfaces, to reveal systems-level impacts. Applied to 33 cancer types, NetFlow3D identifies 2 times more 3D clusters and incorporates 8 times more proteins in significantly interconnected network modules compared to traditional methods.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, 14853, NY, USA
| | - Alden K Leung
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Yu Sun
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Guanxi Wu
- College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, NY, USA
| | - Le Li
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Jiayang Sun
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Lily Cheng
- Department of Science and Technology Studies, Cornell University, Ithaca, 14853, NY, USA
| | - Tian Qiu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, 14853, NY, USA
| | - Junke Zhang
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Shayne D Wierbowski
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Shagun Gupta
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - James G Booth
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Department of Statistics and Data Science, Cornell University, Ithaca, 14853, NY, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA.
| |
Collapse
|
3
|
Predescu DN, Mokhlesi B, Predescu SA. X-inactive-specific transcript: a long noncoding RNA with a complex role in sex differences in human disease. Biol Sex Differ 2024; 15:101. [PMID: 39639337 PMCID: PMC11619133 DOI: 10.1186/s13293-024-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, the X and Y chromosomes determine the biological sex, XX specifying for females and XY for males. The long noncoding RNA X-inactive specific transcript (lncRNA XIST) plays a crucial role in the process of X chromosome inactivation (XCI) in cells of the female, a process that ensures the balanced expression of X-linked genes between sexes. Initially, it was believed that XIST can be expressed only from the inactive X chromosome (Xi) and is considered a typically female-specific transcript. However, accumulating evidence suggests that XIST can be detected in male cells as well, and it participates in the development of cancers and other human diseases by regulating gene expression at epigenetic, chromatin remodeling, transcriptional, and translational levels. XIST is abnormally expressed in many sexually dimorphic diseases, including autoimmune and neurological diseases, pulmonary arterial hypertension (PAH), and some types of cancers. However, the underlying mechanisms are not fully understood. Escape from XCI and skewed XCI also contributes to sex-biased diseases and their severity. Interestingly, in humans, similar to experimental animal models of human disease, the males with the XIST gene activated display the sex-biased disease condition at a rate close to females, and significantly greater than males who had not been genetically modified. For instance, the men with supernumerary X chromosomes, such as men with Klinefelter syndrome (47, XXY), are predisposed toward autoimmunity similar to females (46, XX), and have increased risk for strongly female biased diseases, compared to 46, XY males. Interestingly, chromosome X content has been linked to a longer life span, and the presence of two chromosome X contributes to increased longevity regardless of the hormonal status. In this review, we summarize recent knowledge about XIST structure/function correlation and involvement in human disease with focus on XIST abnormal expression in males. Many human diseases show differences between males and females in penetrance, presentation, progression, and survival. In humans, the X and Y sex chromosomes determine the biological sex, XX specifying for females and XY for males. This numeric imbalance, two X chromosomes in females and only one in males, known as sex chromosome dosage inequality, is corrected in the first days of embryonic development by inactivating one of the X chromosomes in females. While this "dosage compensation" should in theory solve the difference in the number of genes between sexes, the expressed doses of X genes are incompletely compensated by X chromosome inactivation in females. In this review we try to highlight how abnormal expression and function of XIST, a gene on the X chromosome responsible for this inactivation process, may explain the sex differences in human health and disease. A better understanding of the molecular mechanisms of XIST participation in the male-female differences in disease is highly relevant since it would allow for improving the personalization of diagnosis and sex-specific treatment of patients.
Collapse
Affiliation(s)
- Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Babak Mokhlesi
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
4
|
Zhang Y, Leung AK, Kang JJ, Sun Y, Wu G, Li L, Sun J, Cheng L, Qiu T, Zhang J, Wierbowski S, Gupta S, Booth J, Yu H. A multiscale functional map of somatic mutations in cancer integrating protein structure and network topology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.06.531441. [PMID: 36945530 PMCID: PMC10028849 DOI: 10.1101/2023.03.06.531441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A major goal of cancer biology is to understand the mechanisms underlying tumorigenesis driven by somatically acquired mutations. Two distinct types of computational methodologies have emerged: one focuses on analyzing clustering of mutations within protein sequences and 3D structures, while the other characterizes mutations by leveraging the topology of protein-protein interaction network. Their insights are largely non-overlapping, offering complementary strengths. Here, we established a unified, end-to-end 3D structurally-informed protein interaction network propagation framework, NetFlow3D, that systematically maps the multiscale mechanistic effects of somatic mutations in cancer. The establishment of NetFlow3D hinges upon the Human Protein Structurome, a comprehensive repository we compiled that incorporates the 3D structures of every single protein as well as the binding interfaces of all known protein interactions in humans. NetFlow3D leverages the Structurome to integrate information across atomic, residue, protein and network levels: It conducts 3D clustering of mutations across atomic and residue levels on protein structures to identify potential driver mutations. It then anisotropically propagates their impacts across the protein interaction network, with propagation guided by the specific 3D structural interfaces involved, to identify significantly interconnected network "modules", thereby uncovering key biological processes underlying disease etiology. Applied to 1,038,899 somatic protein-altering mutations in 9,946 TCGA tumors across 33 cancer types, NetFlow3D identified 1,4444 significant 3D clusters throughout the Human Protein Structurome, of which ~55% would not have been found if using only experimentally-determined structures. It then identified 26 significantly interconnected modules that encompass ~8-fold more proteins than applying standard network analyses. NetFlow3D and our pan-cancer results can be accessed from http://netflow3d.yulab.org.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, 14853, USA
| | - Alden K. Leung
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Yu Sun
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Guanxi Wu
- College of Agriculture and Life Sciences, Cornell University; Ithaca, 14853, USA
| | - Le Li
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Jiayang Sun
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
| | - Lily Cheng
- Department of Science and Technology Studies, Cornell University; Ithaca, 14853, USA
| | - Tian Qiu
- School of Electrical and Computer Engineering, Cornell University; Ithaca, 14853, USA
| | - Junke Zhang
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Shayne Wierbowski
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Shagun Gupta
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - James Booth
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Department of Statistics and Data Science, Cornell University; Ithaca, 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| |
Collapse
|
5
|
Carman BL, Qin S, Predescu DN, Jana M, Cortese R, Aldred MA, Gozal D, Mokhlesi B, Predescu SA. Dysregulation of the Long Noncoding RNA X-Inactive-Specific Transcript Expression in Male Patients with Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1592-1606. [PMID: 38705381 PMCID: PMC11284765 DOI: 10.1016/j.ajpath.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease with female sex as a significant risk factor. Increased expression of the long noncoding RNA X-inactive-specific transcript (Xist), as induced by an intersectin-1s protein fragment with proliferative potential (EHITSN), may explain the sexual dimorphism of female pulmonary artery endothelial cells (ECs) and at least in part, the imbalance sex/ratio of PAH. Xist is essential for X-chromosome inactivation and dosage compensation of X-linked genes. Herein, increased Xist expression was detected in a subset of ECs and lung tissue samples of male patients with PAH. The role of different Xist expression levels in ECs of male patients with PAH (ECPAH) was studied in several lines of male ECPAH in conjunction with molecular, biochemical, morphologic, and functional approaches. Male ECPAH showed on average 10.3-fold increase in high Xist versus low Xist, a significant association between Xist levels and their proliferative potential, and a heterogeneous methylation of the Xist/XIST antisense RNA (Tsix) locus. Interestingly, Xist up-regulation in male ECPAH decreased the expression of Krueppel-like factor 2 (Klf2), via EHITSN interaction with enhancer of zeste polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of the polycomb repressive complex 2. Moreover, the studies demonstrate that EHITSN-triggered p38/ETS domain-containing protein Elk1/AP-1 transcription factor subunit (c-Fos) signaling is a pathologic mechanism central to ECPAH proliferation and the dynamic crosstalk with cell cycle regulatory proteins cyclin A1/cyclin D2 and Xist-EZH2-Klf2 interaction participate directly and differentially in establishing the proliferative profile of male ECPAH.
Collapse
Affiliation(s)
- Brandon L Carman
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Shanshan Qin
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Dan N Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Malabendu Jana
- Department of Neurological Science, Rush University Medical Center, Chicago, Illinois
| | - Rene Cortese
- Child Health Research Institute, University of Missouri, Columbia, Missouri
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David Gozal
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
6
|
Bao Q, Kumar A, Wu D, Zhou J. Targeting EED as a key PRC2 complex mediator toward novel epigenetic therapeutics. Drug Discov Today 2024; 29:103986. [PMID: 38642703 PMCID: PMC11416859 DOI: 10.1016/j.drudis.2024.103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
EED within the PRC2 complex is crucial for chromatin regulation particularly in tumor development, making its inhibition a promising epigenetic therapeutic strategy. Significant advancement in PRC2 inhibitor development has been achieved with an approved EZH2 inhibitor in the market and with others in the clinical trials. However, current EZH2 inhibitors are limited to specific blood cancers and encounter therapeutic resistance. EED stabilizes PRC2 complex and enhances its activity through unique allosteric mechanisms, thereby acting as both a scaffold protein and a recognizer of H3K27me3 making it an attractive drug target. This review provides an overview of epigenetic therapeutic strategies targeting EED, including allosteric inhibitors, PPI inhibitors, and PROTACs, together with brief discussions on the relevant challenges, opportunities, and future directions.
Collapse
Affiliation(s)
- Qichao Bao
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anil Kumar
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Daqing Wu
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
7
|
Romero P, Richart L, Aflaki S, Petitalot A, Burton M, Michaud A, Masliah-Planchon J, Kuhnowski F, Le Cam S, Baliñas-Gavira C, Méaudre C, Luscan A, Hamza A, Legoix P, Vincent-Salomon A, Wassef M, Holoch D, Margueron R. EZH2 mutations in follicular lymphoma distort H3K27me3 profiles and alter transcriptional responses to PRC2 inhibition. Nat Commun 2024; 15:3452. [PMID: 38658543 PMCID: PMC11043461 DOI: 10.1038/s41467-024-47701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in chromatin regulators are widespread in cancer. Among them, the histone H3 lysine 27 methyltransferase Polycomb Repressive Complex 2 (PRC2) shows distinct alterations according to tumor type. This specificity is poorly understood. Here, we model several PRC2 alterations in one isogenic system to reveal their comparative effects. Focusing then on lymphoma-associated EZH2 mutations, we show that Ezh2Y641F induces aberrant H3K27 methylation patterns even without wild-type Ezh2, which are alleviated by partial PRC2 inhibition. Remarkably, Ezh2Y641F rewires the response to PRC2 inhibition, leading to induction of antigen presentation genes. Using a unique longitudinal follicular lymphoma cohort, we further link EZH2 status to abnormal H3K27 methylation. We also uncover unexpected variability in the mutational landscape of successive biopsies, pointing to frequent co-existence of different clones and cautioning against stratifying patients based on single sampling. Our results clarify how oncogenic PRC2 mutations disrupt chromatin and transcription, and the therapeutic vulnerabilities this creates.
Collapse
Affiliation(s)
- Pierre Romero
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
- Institut Curie, Department of Pathology, Paris Sciences et Lettres Research University, Paris, France
| | - Laia Richart
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Setareh Aflaki
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Ambre Petitalot
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Megan Burton
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Audrey Michaud
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Julien Masliah-Planchon
- Institut Curie, Pharmacogenetics Unit, Department of Genetics, Paris Sciences et Lettres Research University, Paris, France
| | - Frédérique Kuhnowski
- Institut Curie, Department of Clinical Hematology, Paris Sciences et Lettres Research University, Paris, France
| | - Samuel Le Cam
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Carlos Baliñas-Gavira
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Céline Méaudre
- Institut Curie, Department of Pathology, Paris Sciences et Lettres Research University, Paris, France
| | - Armelle Luscan
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Abderaouf Hamza
- Institut Curie, Pharmacogenetics Unit, Department of Genetics, Paris Sciences et Lettres Research University, Paris, France
| | - Patricia Legoix
- Institut Curie, Genomics of Excellence (ICGex) Platform, Paris Sciences et Lettres Research University, Paris, France
| | - Anne Vincent-Salomon
- Institut Curie, Department of Pathology, Paris Sciences et Lettres Research University, Paris, France
| | - Michel Wassef
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Daniel Holoch
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.
| | - Raphaël Margueron
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.
| |
Collapse
|
8
|
Pacot L, Girish M, Knight S, Spurlock G, Varghese V, Ye M, Thomas N, Pasmant E, Upadhyaya M. Correlation between large rearrangements and patient phenotypes in NF1 deletion syndrome: an update and review. BMC Med Genomics 2024; 17:73. [PMID: 38448973 PMCID: PMC10919053 DOI: 10.1186/s12920-024-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
About 5-10% of neurofibromatosis type 1 (NF1) patients exhibit large genomic germline deletions that remove the NF1 gene and its flanking regions. The most frequent NF1 large deletion is 1.4 Mb, resulting from homologous recombination between two low copy repeats. This "type-1" deletion is associated with a severe clinical phenotype in NF1 patients, with several phenotypic manifestations including learning disability, a much earlier development of cutaneous neurofibromas, an increased tumour risk, and cardiovascular malformations. NF1 adjacent co-deleted genes could act as modifier loci for the specific clinical manifestations observed in deleted NF1 patients. Furthermore, other genetic modifiers (such as CNVs) not located at the NF1 locus could also modulate the phenotype observed in patients with large deletions. In this study, we analysed 22 NF1 deletion patients by genome-wide array-CGH with the aim (1) to correlate deletion length to observed phenotypic features and their severity in NF1 deletion syndrome, and (2) to identify whether the deletion phenotype could also be modulated by copy number variations elsewhere in the genome. We then review the role of co-deleted genes in the 1.4 Mb interval of type-1 deletions, and their possible implication in the main clinical features observed in this high-risk group of NF1 patients.
Collapse
Affiliation(s)
- Laurence Pacot
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Milind Girish
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Samantha Knight
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Vinod Varghese
- All Wales Medical Genomics Service, Cardiff, Great Britain
| | - Manuela Ye
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Nick Thomas
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Eric Pasmant
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France.
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France.
| | - Meena Upadhyaya
- Division of Cancer and Genetics, Institute of Medical Genetics, Cardiff University, Heath Park, CF14 4XN, Cardiff, UK
| |
Collapse
|
9
|
Pacot L, Ye M, Nectoux J, Laurendeau I, Briand-Suleau A, Coustier A, Maillard T, Barbance C, Orhant L, Vaucouleur N, Blanché H, Parfait B, Wolkenstein P, Vidaud M, Vidaud D, Pasmant E. Droplet Digital PCR for Fast and Accurate Characterization of NF1 Locus Deletions: Confirmation of the Predominant Maternal Origin of Type-1 Deletions. J Mol Diagn 2024; 26:150-157. [PMID: 38008284 DOI: 10.1016/j.jmoldx.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
Neurofibromatosis type-1 is a genetic disorder caused by loss-of-function variants in the tumor-suppressor NF1. Approximately 4% to 11% of neurofibromatosis type-1 patients have a NF1 locus complete deletion resulting from nonallelic homologous recombination between low copy repeats. Codeleted genes probably account for the more severe phenotype observed in NF1-deleted patients. This genotype-phenotype correlation highlights the need for a detailed molecular description. A droplet digital PCR (ddPCR) set along the NF1 locus was designed to delimitate the three recurrent NF1 deletion breakpoints. The ddPCR was tested in 121 samples from nonrelated NF1-deleted patients. Classification based on ddPCR versus multiplex ligation-dependent probe amplification (MLPA) was compared. In addition, microsatellites were analyzed to identify parental origin of deletions. ddPCR identified 77 type-1 (64%), 20 type-2 (16%), 7 type-3 (6%), and 17 atypical deletions (14%). The results were comparable with MLPA, except for three atypical deletions misclassified as type-2 using MLPA, for which the SUZ12 gene was not deleted. A significant maternal bias (25 of 30) in the origin of deletions was identified. This study proposes a fast and efficient ddPCR quantification to allow fine NF1 deletion classification. It indicates that ddPCR can be implemented easily into routine diagnosis to complement the techniques dedicated to NF1 point variant identification. This new tool may help unravel the genetic basis conditioning phenotypic variability in NF1-deleted patients and offer tailored genetic counseling.
Collapse
Affiliation(s)
- Laurence Pacot
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Manuela Ye
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Juliette Nectoux
- Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Ingrid Laurendeau
- Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Audrey Briand-Suleau
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Audrey Coustier
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Théodora Maillard
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Cécile Barbance
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Lucie Orhant
- Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Nicolas Vaucouleur
- Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | | | - Béatrice Parfait
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Pierre Wolkenstein
- Department of Dermatology, Hôpital Henri Mondor, Assistance Publique-Hôpital Paris, Créteil, France; INSERM, Clinical Investigation Center 1430, Referral Center of Neurofibromatosis, Hôpital Henri Mondor, Assistance Publique-Hôpital Paris, Faculté de Santé Paris Est Créteil, Créteil, France
| | - Michel Vidaud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Dominique Vidaud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Eric Pasmant
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France; Fédération de Génétique et Médecine Génomique, DMU BioPhyGen, Assistance Publique-Hôpital Paris, Centre-Université Paris Cité, Hôpital Cochin, Paris, France.
| |
Collapse
|
10
|
Ju J, Zhang H, Guan S, Liu C, Du J, Shen X, Wang S. Insight into the Inhibitory Mechanism of Embryonic Ectoderm Development Subunit by Triazolopyrimidine Derivatives as Inhibitors through Molecular Dynamics Simulation. Molecules 2023; 28:7997. [PMID: 38138487 PMCID: PMC10745707 DOI: 10.3390/molecules28247997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Inhibition of the Embryonic Ectoderm Development (EED) subunit in Polycomb Repressive Complex 2 (PRC2) can inhibit tumor growth. In this paper, we selected six experimentally designed EED competitive Inhibitors of the triazolopyrimidine derivatives class. We investigated the difference in the binding mode of the natural substrate to the Inhibitors and the effects of differences in the parent nuclei, heads, and tails of the Inhibitors on the inhibitory capacity. The results showed that the binding free energy of this class of Inhibitors was close to or lower compared to the natural substrate, providing an energetic basis for competitive inhibition. For the Inhibitors, the presence of a strong negatively charged group at the 6-position of the parent nucleus or the 8'-position of the head would make the hydrogen atom on the head imino group prone to flip, resulting in the vertical movement of the parent nucleus, which significantly decreased the inhibitory ability. When the 6-position of the parent nucleus was a nonpolar group, the parent nucleus would move horizontally, slightly decreasing the inhibitory ability. When the 8'-position of the head was methylene, it formed an intramolecular hydrophobic interaction with the benzene ring on the tail, resulting in a significant increase in inhibition ability.
Collapse
Affiliation(s)
- Jianan Ju
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China; (J.J.); (H.Z.); (C.L.); (J.D.); (X.S.)
| | - Hao Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China; (J.J.); (H.Z.); (C.L.); (J.D.); (X.S.)
| | - Shanshan Guan
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun 130052, China;
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, China
| | - Chang Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China; (J.J.); (H.Z.); (C.L.); (J.D.); (X.S.)
| | - Juan Du
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China; (J.J.); (H.Z.); (C.L.); (J.D.); (X.S.)
| | - Xiaoli Shen
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China; (J.J.); (H.Z.); (C.L.); (J.D.); (X.S.)
| | - Song Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China; (J.J.); (H.Z.); (C.L.); (J.D.); (X.S.)
| |
Collapse
|
11
|
Xu Y, Liu W, Jiang X, Li J, Liu Q, Su F, Ruan S, Zhang Z, Tao F. Regulation of hPCL3 isoforms' ubiquitination by TRIM21 in non-small cell lung cancer progression. Life Sci Alliance 2023; 6:e202302060. [PMID: 37507137 PMCID: PMC10387491 DOI: 10.26508/lsa.202302060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the main subtype of lung cancer. The role of hPCL3 isoforms, hPCL3S and hPCL3L, remains ambiguous. This study examines the functional implications of these isoforms in NSCLC, using lung cancer cell lines A549 and NCI-H226c for in vivo and in vitro analyses. The results indicate that elevated expression of both hPCL3S and hPCL3L correlates with diminished overall survival, although only hPCL3S levels are augmented in clinical NSCLC specimens. Inhibition of either isoform leads to reduced cell proliferation, invasion, and migration, with hPCL3S knockdown displaying superior effectiveness. Moreover, the findings reveal that TRIM21 interacts with both isoforms and mediates hPCL3S degradation through K48-linked ubiquitination in NSCLC cells. Conversely, TRIM21 does not facilitate hPCL3L degradation, despite forming K63-linked polyubiquitin chains. These observations highlight the divergent roles of hPCL3 isoforms in NSCLC and underscore the potential therapeutic value of targeting hPCL3S.
Collapse
Affiliation(s)
- Ye Xu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhong Liu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiawei Jiang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfeng Li
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingling Liu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanming Ruan
- Department of Medical Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiqian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Fangfang Tao
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Fischer S, Liefke R. Polycomb-like Proteins in Gene Regulation and Cancer. Genes (Basel) 2023; 14:genes14040938. [PMID: 37107696 PMCID: PMC10137883 DOI: 10.3390/genes14040938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Polycomb-like proteins (PCLs) are a crucial group of proteins associated with the Polycomb repressive complex 2 (PRC2) and are responsible for setting up the PRC2.1 subcomplex. In the vertebrate system, three homologous PCLs exist: PHF1 (PCL1), MTF2 (PCL2), and PHF19 (PCL3). Although the PCLs share a similar domain composition, they differ significantly in their primary sequence. PCLs play a critical role in targeting PRC2.1 to its genomic targets and regulating the functionality of PRC2. However, they also have PRC2-independent functions. In addition to their physiological roles, their dysregulation has been associated with various human cancers. In this review, we summarize the current understanding of the molecular mechanisms of the PCLs and how alterations in their functionality contribute to cancer development. We particularly highlight the nonoverlapping and partially opposing roles of the three PCLs in human cancer. Our review provides important insights into the biological significance of the PCLs and their potential as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany
| |
Collapse
|
13
|
Liu X, Liu X. PRC2, Chromatin Regulation, and Human Disease: Insights From Molecular Structure and Function. Front Oncol 2022; 12:894585. [PMID: 35800061 PMCID: PMC9255955 DOI: 10.3389/fonc.2022.894585] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a multisubunit histone-modifying enzyme complex that mediates methylation of histone H3 lysine 27 (H3K27). Trimethylated H3K27 (H3K27me3) is an epigenetic hallmark of gene silencing. PRC2 plays a crucial role in a plethora of fundamental biological processes, and PRC2 dysregulation has been repeatedly implicated in cancers and developmental disorders. Here, we review the current knowledge on mechanisms of cellular regulation of PRC2 function, particularly regarding H3K27 methylation and chromatin targeting. PRC2-related disease mechanisms are also discussed. The mode of action of PRC2 in gene regulation is summarized, which includes competition between H3K27 methylation and acetylation, crosstalk with transcription machinery, and formation of high-order chromatin structure. Recent progress in the structural biology of PRC2 is highlighted from the aspects of complex assembly, enzyme catalysis, and chromatin recruitment, which together provide valuable insights into PRC2 function in close-to-atomic detail. Future studies on the molecular function and structure of PRC2 in the context of native chromatin and in the presence of other regulators like RNAs will continue to deepen our understanding of the stability and plasticity of developmental transcriptional programs broadly impacted by PRC2.
Collapse
|
14
|
Gray JS, Wani SA, Campbell MJ. Epigenomic alterations in cancer: mechanisms and therapeutic potential. Clin Sci (Lond) 2022; 136:473-492. [PMID: 35383835 DOI: 10.1042/cs20210449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
The human cell requires ways to specify its transcriptome without altering the essential sequence of DNA; this is achieved through mechanisms which govern the epigenetic state of DNA and epitranscriptomic state of RNA. These alterations can be found as modified histone proteins, cytosine DNA methylation, non-coding RNAs, and mRNA modifications, such as N6-methyladenosine (m6A). The different aspects of epigenomic and epitranscriptomic modifications require protein complexes to write, read, and erase these chemical alterations. Reflecting these important roles, many of these reader/writer/eraser proteins are either frequently mutated or differentially expressed in cancer. The disruption of epigenetic regulation in the cell can both contribute to cancer initiation and progression, and increase the likelihood of developing resistance to chemotherapies. Development of therapeutics to target proteins involved in epigenomic/epitranscriptomic modifications has been intensive, but further refinement is necessary to achieve ideal treatment outcomes without too many off-target effects for cancer patients. Therefore, further integration of clinical outcomes combined with large-scale genomic analyses is imperative for furthering understanding of epigenomic mechanisms in cancer.
Collapse
Affiliation(s)
- Jaimie S Gray
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Sajad A Wani
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Moray J Campbell
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, U.S.A
- Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
15
|
Zhao Y, Guan YY, Zhao F, Yu T, Zhang SJ, Zhang YZ, Duan YC, Zhou XL. Recent strategies targeting Embryonic Ectoderm Development (EED) for cancer therapy: Allosteric inhibitors, PPI inhibitors, and PROTACs. Eur J Med Chem 2022; 231:114144. [DOI: 10.1016/j.ejmech.2022.114144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
|
16
|
Tomassi S, Romanelli A, Zwergel C, Valente S, Mai A. Polycomb Repressive Complex 2 Modulation through the Development of EZH2-EED Interaction Inhibitors and EED Binders. J Med Chem 2021; 64:11774-11797. [PMID: 34351144 PMCID: PMC8404197 DOI: 10.1021/acs.jmedchem.1c00226] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Epigenetics is nowadays
a well-accepted area of research. In the
last years, tremendous progress was made regarding molecules targeting
EZH2, directly or indirectly. Recently tazemetostat hit the market
after FDA-approval for the treatment of lymphoma. However, the impairment
of EZH2 activity by orthosteric intervention has proven to be effective
only in a limited subset of cancers. Considering the multiproteic
nature of the PRC2 complex and the marked dependence of EZH2 functions
on the other core subunits such as EED, in recent years, a new targeting
approach ascended to prominence. The possibility to cripple the function
of the PRC2 complex by interfering with its multimeric integrity fueled
the interest in developing EZH2–EED protein–protein
interaction and EED inhibitors as indirect modulators of PRC2-dependent
methyltransferase activity. In this Perspective, we aim to summarize
the latest findings regarding the development and the biological activity
of these emerging classes of PRC2 modulators from a medicinal chemist’s
viewpoint.
Collapse
Affiliation(s)
- Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Annalisa Romanelli
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
17
|
Oleksiewicz U, Machnik M. Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome. Semin Cancer Biol 2020; 83:15-35. [PMID: 33359485 DOI: 10.1016/j.semcancer.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Somatic mutations accumulating over a patient's lifetime are well-defined causative factors that fuel carcinogenesis. It is now clear, however, that epigenomic signature is also largely perturbed in many malignancies. These alterations support the transcriptional program crucial for the acquisition and maintenance of cancer hallmarks. Epigenetic instability may arise due to the genetic mutations or transcriptional deregulation of the proteins implicated in epigenetic signaling. Moreover, external stimulation and physiological aging may also participate in this phenomenon. The epigenomic signature is frequently associated with a cell of origin, as well as with tumor stage and differentiation, which all reflect its high heterogeneity across and within various tumors. Here, we will overview the current understanding of the causes and effects of the altered and heterogeneous epigenomic landscape in cancer. We will focus mainly on DNA methylation and post-translational histone modifications as the key regulatory epigenetic signaling marks. In addition, we will describe how this knowledge is translated into the clinic. We will particularly concentrate on the applicability of epigenetic alterations as biomarkers for improved diagnosis, prognosis, and prediction. Finally, we will also review current developments regarding epi-drug usage in clinical and experimental settings.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland.
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
18
|
Martin MC, Zeng G, Yu J, Schiltz GE. Small Molecule Approaches for Targeting the Polycomb Repressive Complex 2 (PRC2) in Cancer. J Med Chem 2020; 63:15344-15370. [PMID: 33283516 DOI: 10.1021/acs.jmedchem.0c01344] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The polycomb repressive complex 2 (PRC2) is composed of three core subunits, enhancer of zeste 2 (EZH2), embryonic ectoderm development (EED), and suppressor of zeste 12 (SUZ12), along with a number of accessory proteins. It is the key enzymatic protein complex that catalyzes histone H3 lysine 27 (H3K27) methylation to mediate epigenetic silencing of target genes. PRC2 thus plays essential roles in maintaining embryonic stem cell identity and in controlling cellular differentiation. Studies in the past decade have reported frequent overexpression or mutation of PRC2 in various cancers including prostate cancer and lymphoma. Aberrant PRC2 function has been extensively studied and proven to contribute to a large number of abnormal cellular processes, including those that lead to uncontrolled proliferation and tumorigenesis. Significant efforts have recently been made to develop small molecules targeting PRC2 function for potential use as anticancer therapeutics. In this review, we describe recent approaches to identify and develop small molecules that target PRC2. These various strategies include the inhibition of the function of individual PRC2 core proteins, the disruption of PRC2 complex formation, and the degradation of its subunits.
Collapse
Affiliation(s)
- M Cynthia Martin
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States
| | - Guihua Zeng
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
19
|
Yang Y, Deng X, Li Q, Wang F, Miao L, Jiang Q. Emerging roles of long noncoding RNAs in cholangiocarcinoma: Advances and challenges. Cancer Commun (Lond) 2020; 40:655-680. [PMID: 33142045 PMCID: PMC7743012 DOI: 10.1002/cac2.12109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA), a cancer with a relatively low incidence rate, is usually associated with poor prognosis. Current modalities for the diagnosis and treatment of CCA patients are still far from satisfactory. In recent years, numerous long noncoding RNAs (lncRNAs) have been identified as crucial players in the development of various cancers, including CCA. Abnormally expressed lncRNAs in CCA, regulated by some upstream molecules, significantly influence the biological behavior of tumor cells and are involved in tumor development through various mechanisms, including interactions with functional proteins, participation in competing for endogenous RNA (ceRNA) regulatory networks, activation of cancer‐related signaling pathways and epigenetic modification of gene expression. Furthermore, several lncRNAs are closely associated with the clinicopathological features of CCA patients, and are promising biomarkers for diagnosing and prognostication of CCA. Some of these lncRNAs play an important role in chemotherapy drug resistance. In addition, lncRNAs have also been shown to be involved in the inflammation microenvironment of CCA and malignant outcome of CCA risk factors, such as cholestatic liver diseases. In view of the difficulty of diagnosing CCA, more attention should be paid to detectable lncRNAs in the serum or bile. This review summarizes the recent knowledge on lncRNAs in CCA and provides a new outlook on the molecular mechanisms of CCA development from the perspective of lncRNAs. Moreover, we also discussed the limitations of the current studies and differential expression of lncRNAs in different types of CCA.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Xueting Deng
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Quanpeng Li
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Fei Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Lin Miao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Qi Jiang
- Department of Gastroenterology, Dongtai People's Hospital, Yancheng, Jiangsu, 224000, P. R. China
| |
Collapse
|
20
|
Salerno D, Chiodo L, Alfano V, Floriot O, Cottone G, Paturel A, Pallocca M, Plissonnier ML, Jeddari S, Belloni L, Zeisel M, Levrero M, Guerrieri F. Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription. Gut 2020; 69:2016-2024. [PMID: 32114505 PMCID: PMC7569396 DOI: 10.1136/gutjnl-2019-319637] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The HBV HBx regulatory protein is required for transcription from the covalently closed circular DNA (cccDNA) minichromosome and affects the epigenetic control of both viral and host cellular chromatin. DESIGN We explored, in relevant cellular models of HBV replication, the functional consequences of HBx interaction with DLEU2, a long non-coding RNA (lncRNA) expressed in the liver and increased in human hepatocellular carcinoma (HCC), in the regulation of host target genes and the HBV cccDNA. RESULTS We show that HBx binds the promoter region, enhances the transcription and induces the accumulation of DLEU2 in infected hepatocytes. We found that nuclear DLEU2 directly binds HBx and the histone methyltransferase enhancer of zeste homolog 2 (EZH2), the catalytic active subunit of the polycomb repressor complex 2 (PRC2) complex. Computational modelling and biochemical evidence suggest that HBx and EZH2 share two preferential binding sites in DLEU2 intron 1. HBx and DLEU2 co-recruitment on the cccDNA displaces EZH2 from the viral chromatin to boost transcription and viral replication. DLEU2-HBx association with target host promoters relieves EZH2 repression and leads to the transcriptional activation of a subset of EZH2/PRC2 target genes in HBV-infected cells and HBV-related HCCs. CONCLUSIONS Our results highlight the ability of HBx to bind RNA to impact on the epigenetic control of both viral cccDNA and host genes and provide a new key to understand the role of DLEU2 and EZH2 overexpression in HBV-related HCCs and HBx contribution to hepatocytes transformation.
Collapse
Affiliation(s)
- Debora Salerno
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Letizia Chiodo
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
| | - Vincenzo Alfano
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
| | - Oceane Floriot
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
| | - Grazia Cottone
- Department of Physics and Chemistry - Emilio Segre', University of Palermo, Palermo, Italy
| | - Alexia Paturel
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
| | - Matteo Pallocca
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Safaa Jeddari
- Department of Internal Medicine (DMISM), Sapienza University, Rome, Italy
| | - Laura Belloni
- Department of Internal Medicine (DMISM), Sapienza University, Rome, Italy
| | - Mirjam Zeisel
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- Department of Internal Medicine (DMISM), Sapienza University, Rome, Italy
| | - Francesca Guerrieri
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
| |
Collapse
|
21
|
Guan X, Deng H, Choi UL, Li Z, Yang Y, Zeng J, Liu Y, Zhang X, Li G. EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis. Oncogene 2020; 39:7127-7141. [PMID: 33009487 DOI: 10.1038/s41388-020-01484-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
The mechanism underlying EZH2 overexpression in breast cancer and its involvement in tumorigenesis remain poorly understood. In this study, we developed an approach to systematically identify the trans-acting factors regulating the EZH2 expression, and identified more than 20 such factors. We revealed reciprocal regulation of early growth response 1 (EGR1) and EZH2: EGR1 activates the expression of EZH2, and EZH2 represses EGR1 expression. Using CRISPR-mediated genome/epigenome editing, we demonstrated that EHZ2 represses EGR1 expression through a silencer downstream of the EGR1 gene. Deletion of the EGR1 silencer resulted in reduced cell growth, invasion, tumorigenicity of breast cancer cells, and extensive changes in gene expression, such as upregulation of GADD45, DDIT3, and RND1; and downregulation of genes encoding cholesterol biosynthesis pathway enzymes. We hypothesize that EZH2/PRC2 acts as a "brake" for EGR1 expression by targeting the EGR1 silencer, and EZH2 overexpression dampens tumor-suppressive signals mediated by EGR1 to drive breast tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Guan
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Houliang Deng
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Un Lam Choi
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhengfeng Li
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yiqi Yang
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jianming Zeng
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yunze Liu
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China. .,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China. .,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
22
|
Leithner K. Epigenetic Marks Repressing Gluconeogenesis in Liver and Kidney Cancer. Cancer Res 2020; 80:657-658. [PMID: 32060227 DOI: 10.1158/0008-5472.can-19-3953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022]
Abstract
Gluconeogenesis is frequently suppressed in tumors arising in gluconeogenic organs and reexpression of a gluconeogenesis enzyme, fructose-1,6-bisphosphatase (FBP1), was found to inhibit tumor growth. In this issue of Cancer Research, Liao and colleagues show that histone H3 trimethylation on lysine 27, induced by polycomb repressive complex 2 (PRC2), is responsible for downregulating FBP1 in liver and kidney cancer cells. Moreover, they identified FBP1 repression as an important downstream mechanism of PRC2-mediated carcinogenesis. FBP1 inhibits glycolysis but also directly interferes with PRC2 function, thus FBP1 and PRC2 are part of a novel negative feedback loop that is deregulated in liver and kidney cancer.See related article by Liao et al., p. 675.
Collapse
Affiliation(s)
- Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
23
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Richart L, Margueron R. Drugging histone methyltransferases in cancer. Curr Opin Chem Biol 2020; 56:51-62. [DOI: 10.1016/j.cbpa.2019.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
|
25
|
Disruption of ATRX-RNA interactions uncovers roles in ATRX localization and PRC2 function. Nat Commun 2020; 11:2219. [PMID: 32376827 PMCID: PMC7203109 DOI: 10.1038/s41467-020-15902-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
Heterochromatin in the eukaryotic genome is rigorously controlled by the concerted action of protein factors and RNAs. Here, we investigate the RNA binding function of ATRX, a chromatin remodeler with roles in silencing of repetitive regions of the genome and in recruitment of the polycomb repressive complex 2 (PRC2). We identify ATRX RNA binding regions (RBRs) and discover that the major ATRX RBR lies within the N-terminal region of the protein, distinct from its PHD and helicase domains. Deletion of this ATRX RBR (ATRXΔRBR) compromises ATRX interactions with RNAs in vitro and in vivo and alters its chromatin binding properties. Genome-wide studies reveal that loss of RNA interactions results in a redistribution of ATRX on chromatin. Finally, our studies identify a role for ATRX-RNA interactions in regulating PRC2 localization to a subset of polycomb target genes. ATRX is an RNA binding protein that mediates targeting of polycomb repressive complex 2 (PRC2) to genomic sites. Here the authors identify the RNA binding region and show that the RNA binding is required for ATRX localization and for its recruitment of PRC2 to a subset of polycomb targets.
Collapse
|
26
|
Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, Azidis-Yates E, Vassiliadis D, Bell CC, Gilan O, Jackson S, Tan L, Wong SQ, Hollizeck S, Michalak EM, Siddle HV, McCabe MT, Prinjha RK, Guerra GR, Solomon BJ, Sandhu S, Dawson SJ, Beavis PA, Tothill RW, Cullinane C, Lehner PJ, Sutherland KD, Dawson MA. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell 2019; 36:385-401.e8. [PMID: 31564637 PMCID: PMC6876280 DOI: 10.1016/j.ccell.2019.08.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/26/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022]
Abstract
Loss of MHC class I (MHC-I) antigen presentation in cancer cells can elicit immunotherapy resistance. A genome-wide CRISPR/Cas9 screen identified an evolutionarily conserved function of polycomb repressive complex 2 (PRC2) that mediates coordinated transcriptional silencing of the MHC-I antigen processing pathway (MHC-I APP), promoting evasion of T cell-mediated immunity. MHC-I APP gene promoters in MHC-I low cancers harbor bivalent activating H3K4me3 and repressive H3K27me3 histone modifications, silencing basal MHC-I expression and restricting cytokine-induced upregulation. Bivalent chromatin at MHC-I APP genes is a normal developmental process active in embryonic stem cells and maintained during neural progenitor differentiation. This physiological MHC-I silencing highlights a conserved mechanism by which cancers arising from these primitive tissues exploit PRC2 activity to enable immune evasion.
Collapse
Affiliation(s)
- Marian L Burr
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| | - Christina E Sparbier
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Kah Lok Chan
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Ariena Kersbergen
- ACRF Cancer Biology and Stem Cell Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Enid Y N Lam
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | | | - Dane Vassiliadis
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Omer Gilan
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Susan Jackson
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Lavinia Tan
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sebastian Hollizeck
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Ewa M Michalak
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Hannah V Siddle
- Department of Biological Sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Michael T McCabe
- Epigenetics Research Unit, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Rab K Prinjha
- Epigenetics Research Unit, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA; Epigenetics Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Glen R Guerra
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Benjamin J Solomon
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; Centre for Cancer Research, University of Melbourne, Parkville, Australia
| | - Paul A Beavis
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Richard W Tothill
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; Centre for Cancer Research, University of Melbourne, Parkville, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Carleen Cullinane
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul J Lehner
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cell Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; Centre for Cancer Research, University of Melbourne, Parkville, Australia.
| |
Collapse
|
27
|
Abstract
A lysine-to-methionine mutation at lysine 27 of histone 3 (H3K27M) has been shown to promote oncogenesis in a subset of pediatric gliomas. While there is evidence that this "oncohistone" mutation acts by inhibiting the histone methyltransferase PRC2, the details of this proposed mechanism nevertheless continue to be debated. Recent evidence suggests that PRC2 must simultaneously bind both H3K27M and H3K27me3 to experience competitive inhibition of its methyltransferase activity. In this work, we used PRC2 inhibitor treatments in a transgenic H3K27M cell line to validate this dependence in a cellular context. We further used designer chromatin inhibitors to probe the geometric constraints of PRC2 engagement of H3K27M and H3K27me3 in a biochemical setting. We found that PRC2 binds to a bivalent inhibitor unit consisting of an H3K27M and an H3K27me3 nucleosome and exhibits a distance dependence in its affinity for such an inhibitor, which favors closer proximity of the 2 nucleosomes within a chromatin array. Together, our data precisely delineate fundamental aspects of the H3K27M inhibitor and support a model wherein PRC2 becomes trapped at H3K27M-H3K27me3 boundaries.
Collapse
|
28
|
Wassef M, Pasmant E, Margueron R. "MPNST Epigenetics"-Letter. Mol Cancer Res 2019; 17:2139. [PMID: 31575727 DOI: 10.1158/1541-7786.mcr-19-0680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Michel Wassef
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,INSERM U934/CNRS UMR3215, Paris, France
| | - Eric Pasmant
- Institut Cochin, INSERM U1016, Université de Paris, Paris, France. .,Department of Molecular Genetics, Cochin Hospital, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Raphaël Margueron
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,INSERM U934/CNRS UMR3215, Paris, France
| |
Collapse
|
29
|
Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 2019; 20:573-589. [PMID: 31270442 DOI: 10.1038/s41580-019-0143-1] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/17/2022]
Abstract
Chromatin is a macromolecular complex predominantly comprising DNA, histone proteins and RNA. The methylation of chromatin components is highly conserved as it helps coordinate the regulation of gene expression, DNA repair and DNA replication. Dynamic changes in chromatin methylation are essential for cell-fate determination and development. Consequently, inherited or acquired mutations in the major factors that regulate the methylation of DNA, RNA and/or histones are commonly observed in developmental disorders, ageing and cancer. This has provided the impetus for the clinical development of epigenetic therapies aimed at resetting the methylation imbalance observed in these disorders. In this Review, we discuss the cellular functions of chromatin methylation and focus on how this fundamental biological process is corrupted in cancer. We discuss methylation-based cancer therapies and provide a perspective on the emerging data from early-phase clinical trial therapies that target regulators of DNA and histone methylation. We also highlight promising therapeutic strategies, including monitoring chromatin methylation for diagnostic purposes and combination epigenetic therapy strategies that may improve immune surveillance in cancer and increase the efficacy of conventional and targeted anticancer drugs.
Collapse
Affiliation(s)
- Ewa M Michalak
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Marian L Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
- Centre for Cancer Research, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
30
|
Ge EJ, Jani KS, Diehl KL, Müller MM, Muir TW. Nucleation and Propagation of Heterochromatin by the Histone Methyltransferase PRC2: Geometric Constraints and Impact of the Regulatory Subunit JARID2. J Am Chem Soc 2019; 141:15029-15039. [PMID: 31479253 DOI: 10.1021/jacs.9b02321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polycomb Repressive Complex 2 (PRC2) catalyzes mono-, di-, and trimethylation of lysine 27 on histone H3 (H3K27me1-3) to control expression of genes important for differentiation and maintenance of cell identity. PRC2 activity is regulated by a number of different inputs, including allosteric activation by its product, H3K27me3. This positive feedback loop is thought to be important for the establishment of large domains of condensed heterochromatin. In addition to other chromatin modifications, ancillary subunits of PRC2, foremost JARID2, affect the rate of H3K27 methylation. Many gaps remain in our understanding of how PRC2 integrates these various signals to determine where and when to deposit H3K27 methyl marks. In this study, we utilize designer chromatin substrates to demonstrate that propagation of H3K27 methylation by the PRC2 core complex has geometrically defined preferences that are overridden by the presence of JARID2. Our studies also show that phosphorylation of JARID2 can partially regulate its ability to stimulate PRC2 activity. Collectively, these biochemical insights further our understanding of the mechanisms that govern PRC2 activity, and highlight a role for JARID2 in de novo deposition of H3K27me3-containing repressive domains.
Collapse
Affiliation(s)
- Eva J Ge
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Krupa S Jani
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Katharine L Diehl
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Manuel M Müller
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Tom W Muir
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
31
|
Arfaoui A, Rioualen C, Azzoni V, Pinna G, Finetti P, Wicinski J, Josselin E, Macario M, Castellano R, Léonard-Stumpf C, Bal A, Gros A, Lossy S, Kharrat M, Collette Y, Bertucci F, Birnbaum D, Douik H, Bidaut G, Charafe-Jauffret E, Ginestier C. A genome-wide RNAi screen reveals essential therapeutic targets of breast cancer stem cells. EMBO Mol Med 2019; 11:e9930. [PMID: 31476112 PMCID: PMC6783652 DOI: 10.15252/emmm.201809930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 07/13/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023] Open
Abstract
Therapeutic resistance is a major clinical challenge in oncology. Evidence identifies cancer stem cells (CSCs) as a driver of tumor evolution. Accordingly, the key stemness property unique to CSCs may represent a reservoir of therapeutic target to improve cancer treatment. Here, we carried out a genome‐wide RNA interference screen to identify genes that regulate breast CSCs‐fate (bCSC). Using an interactome/regulome analysis, we integrated screen results in a functional mapping of the CSC‐related processes. This network analysis uncovered potential therapeutic targets controlling bCSC‐fate. We tested a panel of 15 compounds targeting these regulators. We showed that mifepristone, salinomycin, and JQ1 represent the best anti‐bCSC activity. A combination assay revealed a synergistic interaction of salinomycin/JQ1 association to deplete the bCSC population. Treatment of primary breast cancer xenografts with this combination reduced the tumor‐initiating cell population and limited metastatic development. The clinical relevance of our findings was reinforced by an association between the expression of the bCSC‐related networks and patient prognosis. Targeting bCSCs with salinomycin/JQ1 combination provides the basis for a new therapeutic approach in the treatment of breast cancer.
Collapse
Affiliation(s)
- Abir Arfaoui
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France.,Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, Université de Tunis El Manar, Tunis, Tunisia.,Service de Biologie Clinique, Institut Salah Azaiz, Tunis, Tunisia
| | - Claire Rioualen
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Plateform Integrative Bioinformatics, Cibi, Aix-Marseille Univ, Marseille, France
| | - Violette Azzoni
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Guillaume Pinna
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Finetti
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Aix-Marseille Univ, Marseille, France
| | - Julien Wicinski
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Emmanuelle Josselin
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, TrGET Plateform, Aix-Marseille Univ, Marseille, France
| | - Manon Macario
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Rémy Castellano
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, TrGET Plateform, Aix-Marseille Univ, Marseille, France
| | - Candi Léonard-Stumpf
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Anthony Bal
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Abigaelle Gros
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Sylvain Lossy
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maher Kharrat
- Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, Université de Tunis El Manar, Tunis, Tunisia
| | - Yves Collette
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, TrGET Plateform, Aix-Marseille Univ, Marseille, France
| | - Francois Bertucci
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Aix-Marseille Univ, Marseille, France
| | - Daniel Birnbaum
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Aix-Marseille Univ, Marseille, France
| | - Hayet Douik
- Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, Université de Tunis El Manar, Tunis, Tunisia.,Service de Biologie Clinique, Institut Salah Azaiz, Tunis, Tunisia
| | - Ghislain Bidaut
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Plateform Integrative Bioinformatics, Cibi, Aix-Marseille Univ, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Christophe Ginestier
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
32
|
EZH2 cooperates with E2F1 to stimulate expression of genes involved in adrenocortical carcinoma aggressiveness. Br J Cancer 2019; 121:384-394. [PMID: 31363169 PMCID: PMC6738105 DOI: 10.1038/s41416-019-0538-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022] Open
Abstract
Background EZH2 is overexpressed and associated with poor prognosis in adrenocortical carcinoma (ACC) and its inhibition reduces growth and aggressiveness of ACC cells in culture. Although EZH2 was identified as the methyltransferase that deposits the repressive H3K27me3 histone mark, it can cooperate with transcription factors to stimulate gene transcription. Methods We used bioinformatics approaches on gene expression data from three cohorts of patients and a mouse model of EZH2 ablation, to identify targets and mode of action of EZH2 in ACC. This was followed by ChIP and functional assays to evaluate contribution of identified targets to ACC pathogenesis. Results We show that EZH2 mostly works as a transcriptional inducer in ACC, through cooperation with the transcription factor E2F1 and identify three positive targets involved in cell cycle regulation and mitosis i.e., RRM2, PTTG1 and ASE1/PRC1. Overexpression of these genes is associated with poor prognosis, suggesting a potential role in acquisition of aggressive ACC features. Pharmacological and siRNA-mediated inhibition of RRM2 blocks cell proliferation, induces apoptosis and inhibits cell migration, suggesting that it may be an interesting target in ACC. Conclusions Altogether, these data show an unexpected role of EZH2 and E2F1 in stimulating expression of genes associated with ACC aggressiveness.
Collapse
|
33
|
Abstract
Cancer driver genes exhibit remarkable tissue-specificity
Collapse
Affiliation(s)
- Kevin M Haigis
- Cancer Research Institute and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Karen Cichowski
- Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02215, USA
| | - Stephen J Elledge
- Harvard Medical School, Boston, MA 02115, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02215, USA
- Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
EZH1/2 function mostly within canonical PRC2 and exhibit proliferation-dependent redundancy that shapes mutational signatures in cancer. Proc Natl Acad Sci U S A 2019; 116:6075-6080. [PMID: 30867289 DOI: 10.1073/pnas.1814634116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic mutations affecting chromatin modifiers are widespread in cancers. In malignant peripheral nerve sheath tumors (MPNSTs), Polycomb repressive complex 2 (PRC2), which plays a crucial role in gene silencing, is inactivated through recurrent mutations in core subunits embryonic ectoderm development (EED) and suppressor of zeste 12 homolog (SUZ12), but mutations in PRC2's main catalytic subunit enhancer of zeste homolog 2 (EZH2) have never been found. This is in contrast to myeloid and lymphoid malignancies, which harbor frequent loss-of-function mutations in EZH2. Here, we investigated whether the absence of EZH2 mutations in MPNST is due to a PRC2-independent (i.e., noncanonical) function of the enzyme or to redundancy with EZH1. We show that, in the absence of SUZ12, EZH2 remains bound to EED but loses its interaction with all other core and accessory PRC2 subunits. Through genetic and pharmacological analyses, we unambiguously establish that EZH2 is functionally inert in this context, thereby excluding a PRC2-independent function. Instead, we show that EZH1 and EZH2 are functionally redundant in the slowly proliferating MPNST precursors. We provide evidence that the compensatory function of EZH1 is alleviated upon higher proliferation. This work reveals how context-dependent redundancies can shape tumor-type specific mutation patterns in chromatin regulators.
Collapse
|
35
|
EZH2 is overexpressed in transitional preplasmablasts and is involved in human plasma cell differentiation. Leukemia 2019; 33:2047-2060. [PMID: 30755708 PMCID: PMC6756037 DOI: 10.1038/s41375-019-0392-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/09/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
Plasma cells (PCs) play a major role in the defense of the host organism against pathogens. We have shown that PC generation can be modeled using multi-step culture systems that reproduce the sequential cell differentiation occurring in vivo. Using this unique model, we investigated the role of EZH2 during PC differentiation (PCD) using H3K27me3 and EZH2 ChIP-binding profiles. We then studied the effect of the inhibition of EZH2 enzymatic activity to understand how EZH2 regulates the key functions involved in PCD. EZH2 expression significantly increases in preplasmablasts with H3K27me3 mediated repression of genes involved in B cell and plasma cell identity. EZH2 was also found to be recruited to H3K27me3-free promoters of transcriptionally active genes known to regulate cell proliferation. Inhibition the catalytic activity of EZH2 resulted in B to PC transcriptional changes associated with PC maturation induction, as well as higher immunoglobulin secretion. Altogether, our data suggest that EZH2 is involved in the maintenance of preplasmablast transitory immature proliferative state that supports their amplification.
Collapse
|
36
|
Kutateladze TG, Gozani O, Bienz M, Ostankovitch M. Histone modifications for chromatin dynamics and cellular plasticity. J Mol Biol 2019. [PMID: 28623961 DOI: 10.1016/j.jmb.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Chen MS, Lo YH, Chen X, Williams CS, Donnelly JM, Criss ZK, Patel S, Butkus JM, Dubrulle J, Finegold MJ, Shroyer NF. Growth Factor-Independent 1 Is a Tumor Suppressor Gene in Colorectal Cancer. Mol Cancer Res 2019; 17:697-708. [PMID: 30606770 DOI: 10.1158/1541-7786.mcr-18-0666] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/20/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
Colorectal cancer is the third most common cancer and the third leading cause of cancer death in the United States. Growth factor-independent 1 (GFI1) is a zinc finger transcriptional repressor responsible for controlling secretory cell differentiation in the small intestine and colon. GFI1 plays a significant role in the development of human malignancies, including leukemia, lung cancer, and prostate cancer. However, the role of GFI1 in colorectal cancer progression is largely unknown. Our results demonstrate that RNA and protein expression of GFI1 are reduced in advanced-stage nonmucinous colorectal cancer. Subcutaneous tumor xenograft models demonstrated that the reexpression of GFI1 in 4 different human colorectal cancer cell lines inhibits tumor growth. To further investigate the role of Gfi1 in de novo colorectal tumorigenesis, we developed transgenic mice harboring a deletion of Gfi1 in the colon driven by CDX2-cre (Gfi1F/F; CDX2-cre) and crossed them with ApcMin/+ mice (ApcMin/+; Gfi1F/F; CDX2-cre). Loss of Gfi1 significantly increased the total number of colorectal adenomas compared with littermate controls with an APC mutation alone. Furthermore, we found that compound (ApcMin/+; Gfi1F/F; CDX2-cre) mice develop larger adenomas, invasive carcinoma, as well as hyperplastic lesions expressing the neuroendocrine marker chromogranin A, a feature that has not been previously described in APC-mutant tumors in mice. Collectively, these results demonstrate that GFI1 acts as a tumor suppressor gene in colorectal cancer, where deficiency of Gfi1 promotes malignancy in the colon. IMPLICATIONS: These findings reveal that GFI1 functions as a tumor suppressor gene in colorectal tumorigenesis.
Collapse
Affiliation(s)
- Min-Shan Chen
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Yuan-Hung Lo
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Xi Chen
- Department of Public Health Sciences, University of Miami, Miami, Florida
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University, Nashville, Tennessee
| | - Jessica M Donnelly
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Zachary K Criss
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Shreena Patel
- Department of Pediatrics, Section of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas
| | - Joann M Butkus
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.,Summer Undergraduate Research Training Program, Baylor College of Medicine, Houston Texas.,Susquehanna University, Selinsgrove, Pennsylvania
| | - Julien Dubrulle
- Integrated Microscopy Core, Baylor College of Medicine, Houston, Texas
| | - Milton J Finegold
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas. .,Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.,Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
38
|
Carvalho S, Freitas M, Antunes L, Monteiro-Reis S, Vieira-Coimbra M, Tavares A, Paulino S, Videira JF, Jerónimo C, Henrique R. Prognostic value of histone marks H3K27me3 and H3K9me3 and modifying enzymes EZH2, SETDB1 and LSD-1 in colorectal cancer. J Cancer Res Clin Oncol 2018; 144:2127-2137. [PMID: 30105513 DOI: 10.1007/s00432-018-2733-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/04/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Studies on the performance of epigenetic-based biomarkers in colorectal cancer (CRC) are scarce and have shown contradictory results. Thus, we sought to examine the prognostic value of histone-modifying enzymes (EZH2, SETDB1 and LSD-1) and histone post-translational marks (H3K27me3 and H3K9me3) in CRC. METHODS A retrospective series of 207 CRC patients primarily submitted to surgery in a cancer center was included in this study. Clinicopathological data were retrieved. One representative paraffin block per case was selected for immunohistochemistry, including normal and CRC tissues whenever possible. The percentage of positive nuclear staining (digital image analysis) was used to classify patients into "low" and "high" expression groups for each biomarker. Correlations between immunoexpression levels, clinicopathological features and clinical outcomes [disease-specific (DSS) and disease-free (DFS) survival] were examined. Statistical significance was set at p < 0.05. RESULTS CRC tissues showed significantly lower expression of SETDB1 and higher expression of the remainder four biomarkers compared to normal mucosa. High EZH2 expression correlated with disease recurrence/progression, whereas low LSD1 expression and high H3K9me3 and H3K27me3 expression were associated with more advanced stage. In multivariable analysis, cases with high LSD1 expression displayed significantly better DSS and DFS (HR 0.477, 95% confidence interval: 0.247-0.923) adjusted for pathological TNM stage. CONCLUSION EZH2, SETDB1, LSD1, H3K9me3 and H3K27me3 expression are altered in CRC and may play a role in colorectal carcinogenesis. LSD1 immunoexpression levels independently predicted patient outcome in this cohort. Further investigations, using larger series, are warranted to confirm its potential clinical value and unravel underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sónia Carvalho
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Micaela Freitas
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sara Monteiro-Reis
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Marcia Vieira-Coimbra
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Ana Tavares
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sofia Paulino
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - José Flávio Videira
- Department of Surgical Oncology and Clinics of Digestive Tract Cancer, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
39
|
Soni P, Ghufran MS, Kanade SR. Aflatoxin B 1 induced multiple epigenetic modulators in human epithelial cell lines. Toxicon 2018; 151:119-128. [PMID: 30006306 DOI: 10.1016/j.toxicon.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/15/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
The compulsive and insidious secondary metabolite aflatoxin B1, produced by the opportunistic fungi Aspergillus flavus, upholds a distinguished place in midst of the toxicants causing fatal hazards to humans. Aflatoxins alter the function of host cells by inducing multiple effects through genetic and non-genetic pathways. Epigenetic mechanisms drag major attention towards finding novel and new mechanisms involved in this process. Our present work intends to study the functional expression profile of multiple epigenetic regulators. AFB1 modulates multiple epigenetic regulators like DNA methyltransferases (DMNTs), histones modifying enzymes and polycomb proteins. AFB1 upregulates the expression of DNMTs at gene and protein level in a dose dependent manner. It reduced the histone acetyl transferase (HAT) activity significantly with a remarkable increase in histone deacetylase (HDAC) activity along with an induction in expression of HDACs gene and protein in a dose dependent manner. The gene and protein expression of polycomb repressor proteins B cell specific moloney murine leukemia virus integration site 1 (BMI-1) and enhancer of zeste homolog 2 (EZH2) was significantly over expressed with enhanced trimethylation of H3K27 and ubiquitination of H2AK119. In summary, our results show impact of aflatoxin B1 on multiple epigenetic modulations known to be pivotal in oncogenic processes.
Collapse
Affiliation(s)
- Priyanka Soni
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Md Sajid Ghufran
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India.
| |
Collapse
|
40
|
Herviou L, Cavalli G, Moreaux J. [EZH2 is therapeutic target for personalized treatment in multiple myeloma]. Bull Cancer 2018; 105:804-819. [PMID: 30041976 DOI: 10.1016/j.bulcan.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that functions as the catalytic subunit of the polycomb repressive complex 2 (PRC2). PRC2 represses gene transcription through tri-methylation of lysine 27 of histone 3 (H3K27me3) by its catalytic subunit EZH2. EZH2 is also involved in normal B cell differentiation. EZH2 deregulation has been described in many cancer types including hematological malignancies. The oncogenic addiction of tumor cells to EZH2 represents a therapeutic target in several hematological malignancies and solid cancers. Specific small molecules have been recently developed to target cancer cells with EZH2 overexpression or activating mutation. Their therapeutic potential is currently under evaluation. In particular, EZH2 is overexpressed in multiple myeloma (MM), a neoplasia characterized by the accumulation of clonal plasma cells within the bone marrow, with biological functions in the pathophysiology. This review summarizes the roles of EZH2 in B cell differentiation and pathologic hematological processes with a particular focus in multiple myeloma. We also discuss recent advances in the development of EZH2 inhibitors for the personalized treatment of patients with hematological malignancies.
Collapse
Affiliation(s)
- Laurie Herviou
- IGH, CNRS, université Montpellier, 141, rue de la Cardonille, 34090 Montpellier, France
| | - Giacomo Cavalli
- IGH, CNRS, université Montpellier, 141, rue de la Cardonille, 34090 Montpellier, France
| | - Jerome Moreaux
- IGH, CNRS, université Montpellier, 141, rue de la Cardonille, 34090 Montpellier, France; CHU de Montpellier, department of biological hematology, 80, avenue Augustin-Fliche, 34090 Montpellier, France; Université Montpellier, UFR de médecine, 2, rue École de Médecine, CS 59001, 34060 Montpellier cedex 2, France.
| |
Collapse
|
41
|
Dudakovic A, Camilleri ET, Paradise CR, Samsonraj RM, Gluscevic M, Paggi CA, Begun DL, Khani F, Pichurin O, Ahmed FS, Elsayed R, Elsalanty M, McGee-Lawrence ME, Karperien M, Riester SM, Thaler R, Westendorf JJ, van Wijnen AJ. Enhancer of zeste homolog 2 ( Ezh2) controls bone formation and cell cycle progression during osteogenesis in mice. J Biol Chem 2018; 293:12894-12907. [PMID: 29899112 DOI: 10.1074/jbc.ra118.002983] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/12/2018] [Indexed: 12/25/2022] Open
Abstract
Epigenetic mechanisms control skeletal development and osteoblast differentiation. Pharmacological inhibition of the histone 3 Lys-27 (H3K27) methyltransferase enhancer of zeste homolog 2 (EZH2) in WT mice enhances osteogenesis and stimulates bone formation. However, conditional genetic loss of Ezh2 early in the mesenchymal lineage (i.e. through excision via Prrx1 promoter-driven Cre) causes skeletal abnormalities due to patterning defects. Here, we addressed the key question of whether Ezh2 controls osteoblastogenesis at later developmental stages beyond patterning. We show that Ezh2 loss in committed pre-osteoblasts by Cre expression via the osterix/Sp7 promoter yields phenotypically normal mice. These Ezh2 conditional knock-out mice (Ezh2 cKO) have normal skull bones, clavicles, and long bones but exhibit increased bone marrow adiposity and reduced male body weight. Remarkably, in vivo Ezh2 loss results in a low trabecular bone phenotype in young mice as measured by micro-computed tomography and histomorphometry. Thus, Ezh2 affects bone formation stage-dependently. We further show that Ezh2 loss in bone marrow-derived mesenchymal cells suppresses osteogenic differentiation and impedes cell cycle progression as reflected by decreased metabolic activity, reduced cell numbers, and changes in cell cycle distribution and in expression of cell cycle markers. RNA-Seq analysis of Ezh2 cKO calvaria revealed that the cyclin-dependent kinase inhibitor Cdkn2a is the most prominent cell cycle target of Ezh2 Hence, genetic loss of Ezh2 in mouse pre-osteoblasts inhibits osteogenesis in part by inducing cell cycle changes. Our results suggest that Ezh2 serves a bifunctional role during bone formation by suppressing osteogenic lineage commitment while simultaneously facilitating proliferative expansion of osteoprogenitor cells.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Emily T Camilleri
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55905; Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | | | - Martina Gluscevic
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55905
| | - Carlo Alberto Paggi
- Department of Developmental BioEngineering, University of Twente, 7522 NB Enschede, Netherlands
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Farah S Ahmed
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Ranya Elsayed
- Department of Oral Biology, Augusta University, Augusta, Georgia 30912
| | | | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia 30912; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Marcel Karperien
- Department of Developmental BioEngineering, University of Twente, 7522 NB Enschede, Netherlands
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
42
|
Yao E, Lin C, Wu Q, Zhang K, Song H, Chuang PT. Notch Signaling Controls Transdifferentiation of Pulmonary Neuroendocrine Cells in Response to Lung Injury. Stem Cells 2018; 36:377-391. [PMID: 29148109 DOI: 10.1002/stem.2744] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/21/2017] [Accepted: 11/04/2017] [Indexed: 12/23/2022]
Abstract
Production of an appropriate number of distinct cell types in precise locations during embryonic development is critical for proper tissue function. Homeostatic renewal or repair of damaged tissues in adults also requires cell expansion and transdifferentiation to replenish lost cells. However, the responses of diverse cell types to tissue injury are not fully elucidated. Moreover, the molecular mechanisms underlying transdifferentiation remain poorly understood. This knowledge is essential for harnessing the regenerative potential of individual cell types. This study investigated the fate of pulmonary neuroendocrine cells (PNECs) following lung damage to understand their plasticity and potential. PNECs are proposed to carry out diverse physiological functions in the lung and can also be the cells of origin of human small cell lung cancer. We found that Notch signaling is activated in proliferating PNECs in response to epithelial injury. Forced induction of high levels of Notch signaling in PNECs in conjunction with lung injury results in extensive proliferation and transdifferentiation of PNECs toward the fate of club cells, ciliated cells and goblet cells. Conversely, inactivating Notch signaling in PNECs abolishes their ability to switch cell fate following lung insult. We also established a connection between PNEC transdifferentiation and epigenetic modification mediated by the polycomb repressive complex 2 and inflammatory responses that involve the IL6-STAT3 pathway. These studies not only reveal a major pathway that controls PNEC fate change following lung injury but also provide tools to uncover the molecular basis of cell proliferation and fate determination in response to lung injury. Stem Cells 2018;36:377-391.
Collapse
Affiliation(s)
- Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Qingzhe Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, People's Republic of China
| | - Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, People's Republic of China
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
43
|
Polycomb protein RING1A limits hematopoietic differentiation in myelodysplastic syndromes. Oncotarget 2017; 8:115002-115017. [PMID: 29383137 PMCID: PMC5777749 DOI: 10.18632/oncotarget.22839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/11/2017] [Indexed: 12/30/2022] Open
Abstract
Genetic lesions affecting epigenetic regulators are frequent in myelodysplastic syndromes (MDS). Polycomb proteins are key epigenetic regulators of differentiation and stemness that act as two multimeric complexes termed polycomb repressive complexes 1 and 2, PRC1 and PRC2, respectively. While components and regulators of PRC2 such as ASXL1 and EZH2 are frequently mutated in MDS and AML, little is known about the role of PRC1. To analyze the role of PRC1, we have taken a functional approach testing PRC1 components in loss- and gain-of-function experiments that we found overexpressed in advanced MDS patients or dynamically expressed during normal hematopoiesis. This approach allowed us to identify the enzymatically active component RING1A as the key PRC1 component in hematopoietic stem cells and MDS. Specifically, we found that RING1A is expressed in CD34+ bone marrow progenitor cells and further overexpressed in high-risk MDS patients. Knockdown of RING1A in an MDS-derived AML cell line facilitated spontaneous and retinoic acid-induced differentiation. Similarly, inactivation of RING1A in primary CD34+ cells augmented erythroid differentiation. Treatment with a small compound RING1 inhibitor reduced the colony forming capacity of CD34+ cells from MDS patients and healthy controls. In MDS patients higher RING1A expression associated with an increased number of dysplastic lineages and blasts. Our data suggests that RING1A is deregulated in MDS and plays a role in the erythroid development defect.
Collapse
|
44
|
Xu T, Jiang W, Fan L, Gao Q, Li G. Upregulation of long noncoding RNA Xist promotes proliferation of osteosarcoma by epigenetic silencing of P21. Oncotarget 2017; 8:101406-101417. [PMID: 29254174 PMCID: PMC5731884 DOI: 10.18632/oncotarget.20738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Recent studies show that lncRNAs involve in the initiation and progression of various cancers including osteosarcoma (OS). IncRNA Xist has been verified as an oncogene in several human cancers, and its abnormal expression was closely associated with tumor initiation and progression. Nevertheless, the role of Xist in OS remains unclear. Here, we revealed the Xist expression level was up-regulated in OS tissues and discovered that Xist knockdown significantly repressed OS cell proliferation. Additionally, mechanistic analysis revealed that Xist can repress P21 expression to regulate OS cell cycle and proliferation by binding to EZH2. Taking all into account, Xist may function in promoting OS cell proliferation and may potentially serve as a novel biomarker and therapeutic target for OS.
Collapse
Affiliation(s)
- Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tong Ji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Wenwei Jiang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tong Ji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Lin Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tong Ji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Qiuming Gao
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tong Ji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tong Ji University School of Medicine, Shanghai 200072, People's Republic of China
| |
Collapse
|
45
|
Gurrion C, Uriostegui M, Zurita M. Heterochromatin Reduction Correlates with the Increase of the KDM4B and KDM6A Demethylases and the Expression of Pericentromeric DNA during the Acquisition of a Transformed Phenotype. J Cancer 2017; 8:2866-2875. [PMID: 28928876 PMCID: PMC5604219 DOI: 10.7150/jca.19477] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/04/2017] [Indexed: 01/19/2023] Open
Abstract
Cancer cells have alterations in chromatin organization, mostly a reduction in heterochromatin. How this process occurs during transformation and if it participates in the maintenance of a cancerous phenotype is not well understood. Here, using a transformation-inducible cell line, we analyzed the changes that occur in heterochromatin during transformation to a cancerous phenotype. After transformation, there is a reduction in heterochromatin bodies and a nuclear reorganization of HP1α. These occurrences correlate with reductions in H3K9me3 and H3K27me3 levels and with some of the enzymes that introduce these modifications. At the same time, there are increases in the KDM4B and KDM6A/UTX demethylases and an enhancement in the transcription of pericentromeric DNA that correlate with the reduction of H3K9me3 and the recruitment of KDM4B to these elements. The depletion of KDM4B and KDM6A/UTX has a more deleterious effect in transformed cells than in their progenitors, suggesting an important role for these enzymes in the survival of cancerous cells. These results provide new insights into heterochromatin dynamics during transformation to a cancerous phenotype as well as some of the participating mechanisms.
Collapse
Affiliation(s)
- Cinthya Gurrion
- Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología, Universidad Nacional Autónoma de México. 62250 Cuernavaca Morelos, México
| | - Maritere Uriostegui
- Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología, Universidad Nacional Autónoma de México. 62250 Cuernavaca Morelos, México
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología, Universidad Nacional Autónoma de México. 62250 Cuernavaca Morelos, México
| |
Collapse
|
46
|
Wu X, Dinglin X, Wang X, Luo W, Shen Q, Li Y, Gu L, Zhou Q, Zhu H, Li Y, Tan C, Yang X, Zhang Z. Long noncoding RNA XIST promotes malignancies of esophageal squamous cell carcinoma via regulation of miR-101/EZH2. Oncotarget 2017; 8:76015-76028. [PMID: 29100288 PMCID: PMC5652682 DOI: 10.18632/oncotarget.18638] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
The long non-coding RNA XIST is a long non-coding RNA that associates with polycomb repressive complex 2 to regulate X-chromosome inactivation in female mammals. The biological roles as well as the underlying mechanisms of XIST in esophageal squamous cell carcinoma remained yet to be solved. Our data indicated that XIST was significantly upregulated in esophageal squamous cancerous tissues and cancer cell lines, as compared with that in the corresponding non-cancerous tissues and immortalized normal squamous epithelial cells. High XIST expression predicted poor prognosis of esophageal squamous cancer patients. Lentivirus mediated knockdown of XIST inhibited proliferation, migration and invasion of esophageal squamous cancer cells in vitro and suppressed tumor growth in vivo. Knockdown of XIST resulted in elevated expression of miR-101 and decreased expression of EZH2. Further analysis showed that XIST functioned as the competitive endogenous RNA of miR-101 to regulate EZH2 expression. Moreover, enforced expression of EZH2 significantly attenuated the anti-proliferation activity upon XIST knockdown. Conclusively, XIST plays an important role in malignant progression of ESCC via modulation of miR-101/EZH2 axis.
Collapse
Affiliation(s)
- Xiaoliang Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China.,State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoxiao Dinglin
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Wang
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen Luo
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qi Shen
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yong Li
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ling Gu
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Puer University, Puer, China
| | - Qianghua Zhou
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haotu Zhu
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanjie Li
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chaodi Tan
- Sun Yat-sen University, Guangzhou, China
| | - Xianzi Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|