1
|
Zimmermann I, Eilts F, Galler AS, Bayer J, Hober S, Berensmeier S. Immobilizing calcium-dependent affinity ligand onto iron oxide nanoparticles for mild magnetic mAb separation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00864. [PMID: 39691100 PMCID: PMC11647653 DOI: 10.1016/j.btre.2024.e00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Current downstream processing of monoclonal antibodies (mAbs) is limited in throughput and requires harsh pH conditions for mAb elution from Protein A affinity ligands. The use of an engineered calcium-dependent ligand (ZCa) in magnetic separation applications promises improvements due to mild elution conditions, fast processability, and process integration prospects. In this work, we synthesized and evaluated three magnetic nanoparticle types immobilized with the cysteine-tagged ligand ZCa-cys. Ligand homodimers were physically immobilized onto bare iron oxide nanoparticles (MNP) and MNP coated with tetraethyl orthosilicate (MNP@TEOS). In contrast, ZCa-cys was covalently and more site-directedly immobilized onto MNP coated with (3-glycidyloxypropyl)trimethoxysilane (MNP@GPTMS) via a preferential cysteine-mediated epoxy ring opening reaction. Both coated MNP showed suitable characteristics, with MNP@TEOS@ZCa-cys demonstrating larger immunoglobulin G (IgG) capacity (196 mg g -1) and the GPTMS-coated particles showing faster magnetic attraction and higher IgG recovery (88 %). The particles pave the way for the development of calcium-dependent magnetic separation processes.
Collapse
Affiliation(s)
- Ines Zimmermann
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Friederike Eilts
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Anna-Sophia Galler
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Jonas Bayer
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| |
Collapse
|
2
|
Jönsson M, Mushtaq AU, Nagy TM, von Witting E, Löfblom J, Nam K, Wolf-Watz M, Hober S. Cooperative folding as a molecular switch in an evolved antibody binder. J Biol Chem 2024; 300:107795. [PMID: 39305954 PMCID: PMC11532951 DOI: 10.1016/j.jbc.2024.107795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024] Open
Abstract
Designing proteins with tunable activities from easily accessible external cues remains a biotechnological challenge. Here, we set out to create a small antibody-binding domain equipped with a molecular switch inspired by the allosteric response to calcium seen in naturally derived proteins like calmodulin. We have focused on one of the three domains of Protein G that show inherent affinity to antibodies. By combining a semi-rational protein design with directed evolution, we engineered novel variants containing a calcium-binding loop rendering the inherent antibody affinity calcium-dependent. The evolved variants resulted from a designed selection strategy subjecting them to negative and positive selection pressures focused on conditional antibody binding. Hence, these variants contains molecular "on/off" switches, controlling the target affinity towards antibody fragments simply by the presence or absence of calcium. From NMR spectroscopy we found that the molecular mechanism underlying the evolved switching behavior was a coupled calcium-binding and folding event where the target binding surface was intact and functional only in the presence of bound calcium. Notably, it was observed that the response to the employed selection pressures gave rise to the evolution of a cooperative folding mechanism. This observation illustrates why the cooperative folding reaction is an effective solution seen repeatedly in the natural evolution of fine-tuned macromolecular recognition. Engineering binding moieties to confer conditional target interaction has great potential due to the exquisite interaction control that is tunable to application requirements. Improved understanding of the molecular mechanisms behind regulated interactions is crucial to unlock how to engineer switchable proteins useful in a variety of biotechnological applications.
Collapse
Affiliation(s)
- Malin Jönsson
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Emma von Witting
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Sophia Hober
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
3
|
Tereshin MN, Melikhova TD, Eletskaya BZ, Ivanova EA, Onoprienko LV, Makarov DA, Razumikhin MV, Myagkikh IV, Fabrichniy IP, Stepanenko VN. Biocatalytic Method for Producing an Affinity Resin for the Isolation of Immunoglobulins. Biomolecules 2024; 14:849. [PMID: 39062563 PMCID: PMC11274487 DOI: 10.3390/biom14070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Affinity chromatography is a widely used technique for antibody isolation. This article presents the successful synthesis of a novel affinity resin with a mutant form of protein A (BsrtA) immobilized on it as a ligand. The key aspect of the described process is the biocatalytic immobilization of the ligand onto the matrix using the sortase A enzyme. Moreover, we used a matrix with primary amino groups without modification, which greatly simplifies the synthesis process. The resulting resin shows a high dynamic binding capacity (up to 50 mg IgG per 1 mL of sorbent). It also demonstrates high tolerance to 0.1 M NaOH treatment and maintains its effectiveness even after 100 binding, elution, and sanitization cycles.
Collapse
Affiliation(s)
- Mikhail N. Tereshin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia; (M.N.T.); (V.N.S.)
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 8-2 Trubetskaya Str., 119991 Moscow, Russia;
| | - Tatiana D. Melikhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Barbara Z. Eletskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Elena A. Ivanova
- International Biotechnology Center “Generium” LLC, Vladimirskaya st. 14, 601125 Volginsky, Russia; (E.A.I.); (I.P.F.)
| | - Lyudmila V. Onoprienko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Dmitry A. Makarov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 8-2 Trubetskaya Str., 119991 Moscow, Russia;
| | | | - Igor V. Myagkikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Igor P. Fabrichniy
- International Biotechnology Center “Generium” LLC, Vladimirskaya st. 14, 601125 Volginsky, Russia; (E.A.I.); (I.P.F.)
| | - Vasiliy N. Stepanenko
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia; (M.N.T.); (V.N.S.)
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 8-2 Trubetskaya Str., 119991 Moscow, Russia;
| |
Collapse
|
4
|
Calcium-dependent affinity ligands for the purification of antibody fragments at neutral pH. J Chromatogr A 2023; 1694:463902. [PMID: 36871527 DOI: 10.1016/j.chroma.2023.463902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The emerging formats of antibody fragments for biotherapeutics suffer from inadequate purification methods, delaying the advances of innovative therapies. One of the top therapeutic candidates, the single-chain variable fragment (scFv), requires the development of individual purification protocols dependent on the type of scFv. The available approaches that are based on selective affinity chromatography but do not involve the use of a purification tag, such as Protein L and Protein A chromatography, require acidic elution buffers. These elution conditions can cause the formation of aggregates and thereby greatly compromise the yield, which can be a major problem for scFvs that are generally unstable molecules. Due to the costly and time-consuming production of biological drugs, like antibody fragments, we have engineered novel purification ligands that elute the scFvs in a calcium-dependent manner. The developed ligands are equipped with new, selective binding surfaces and were shown to efficiently elute all captured scFv at neutral pH with the use of a calcium chelator. Further, two of three ligands were proven not to bind to the CDRs of the scFv, indicating potential for use as generic affinity ligands to a range of different scFvs. Multimerization and optimization of the most promising ligand led to a 3-fold increase in binding capacity for the hexamer compared to the monomer, in addition to highly selective and efficient purification of a scFv with >95% purity in a single purification step. This calcium-dependent ligand could revolutionize the scFv industry, greatly facilitating the purification procedure and improving the quality of the final product.
Collapse
|
5
|
Möller M, Jönsson M, Lundqvist M, Hedin B, Larsson L, Larsson E, Rockberg J, Uhlén M, Lindbo S, Tegel H, Hober S. An easy-to-use high-throughput selection system for the discovery of recombinant protein binders from alternative scaffold libraries. Protein Eng Des Sel 2023; 36:gzad011. [PMID: 37702366 PMCID: PMC10545973 DOI: 10.1093/protein/gzad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Selection by phage display is a popular and widely used technique for the discovery of recombinant protein binders from large protein libraries for therapeutic use. The protein library is displayed on the surface of bacteriophages which are amplified using bacteria, preferably Escherichia coli, to enrich binders in several selection rounds. Traditionally, the so-called panning procedure during which the phages are incubated with the target protein, washed and eluted is done manually, limiting the throughput. High-throughput systems with automated panning already in use often require high-priced equipment. Moreover, the bottleneck of the selection process is usually the screening and characterization. Therefore, having a high-throughput panning procedure without a scaled screening platform does not necessarily increase the discovery rate. Here, we present an easy-to-use high-throughput selection system with automated panning using cost-efficient equipment integrated into a workflow with high-throughput sequencing and a tailored screening step using biolayer-interferometry. The workflow has been developed for selections using two recombinant libraries, ADAPT (Albumin-binding domain-derived affinity proteins) and CaRA (Calcium-regulated affinity) and has been evaluated for three new targets. The newly established semi-automated system drastically reduced the hands-on time and increased robustness while the selection outcome, when compared to manual handling, was very similar in deep sequencing analysis and generated binders in the nanomolar affinity range. The developed selection system has shown to be highly versatile and has the potential to be applied to other binding domains for the discovery of new protein binders.
Collapse
Affiliation(s)
- Marit Möller
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Malin Jönsson
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Magnus Lundqvist
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Blenda Hedin
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Louise Larsson
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Emma Larsson
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Johan Rockberg
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Mathias Uhlén
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Sarah Lindbo
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Hanna Tegel
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| |
Collapse
|
6
|
Jönsson M, Scheffel J, Larsson E, Möller M, Rossi G, Lundqvist M, Rockberg J, Uhlén M, Tegel H, Kanje S, Hober S. CaRA - A multi-purpose phage display library for selection of calcium-regulated affinity proteins. N Biotechnol 2022; 72:159-167. [PMID: 36450334 DOI: 10.1016/j.nbt.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Protein activity regulated by interactions with metal ions can be utilized for many different purposes, including biological therapies and bioprocessing, among others. Calcium ions are known to interact with the frequently occurring EF-hand motif, which can alter protein activity upon binding through an induced conformational change. The calcium-binding loop of the EF-hand motif has previously been introduced into a small protein domain derived from staphylococcal Protein A in a successful effort to render antibody binding dependent on calcium. Presented here, is a combinatorial library for calcium-regulated affinity, CaRA, based on this domain. CaRA is the first alternative scaffold library designed to achieve novel target specificities with metal-dependent binding. From this library, several calcium-dependent binders could be isolated through phage display campaigns towards a set of unrelated target proteins (IgE Cε3-Cε4, TNFα, IL23, scFv, tPA, PCSK9 and HER3) useful for distinct applications. Overall, these monomeric CaRA variants showed high stability and target affinities within the nanomolar range. They displayed considerably higher melting temperatures in the presence of 1 mM calcium compared to without calcium. Further, all discovered binders proved to be calcium-dependent, with the great majority showing complete lack of target binding in the absence of calcium. As demonstrated, the CaRA library is highly capable of providing protein-binding domains with calcium-dependent behavior, independent of the type of target protein. These binding domains could subsequently be of great use in gentle protein purification or as novel therapeutic modalities.
Collapse
Affiliation(s)
- Malin Jönsson
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Julia Scheffel
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Emma Larsson
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Marit Möller
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Gabriella Rossi
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Magnus Lundqvist
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Johan Rockberg
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Mathias Uhlén
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Hanna Tegel
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden.
| |
Collapse
|
7
|
Ren J, Xiong H, Huang C, Ji F, Jia L. An engineered peptide tag-specific nanobody for immunoaffinity chromatography application enabling efficient product recovery at mild conditions. J Chromatogr A 2022; 1676:463274. [DOI: 10.1016/j.chroma.2022.463274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
|
8
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Schwarz H, Fons JG, Isaksson M, Scheffel J, Andersson N, Andersson A, Castan A, Solbrand A, Hober S, Nilsson B, Chotteau V. Integrated continuous biomanufacturing on pilot scale for acid-sensitive monoclonal antibodies. Biotechnol Bioeng 2022; 119:2152-2166. [PMID: 35470430 PMCID: PMC9541590 DOI: 10.1002/bit.28120] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
In this study, we demonstrated the first, to our knowledge, integrated continuous bioprocess (ICB) designed for the production of acid-sensitive monoclonal antibodies, prone to aggregate at low pH, on pilot scale. A high cell density perfusion culture, stably maintained at 100 x 106 cells/mL, was integrated with the downstream process, consisting of a capture step with the recently developed Protein A ligand, ZCa ; a solvent/detergent-based virus inactivation; and two ion exchange chromatography steps. The use of a mild pH in the downstream process makes this ICB suitable for the purification of acid-sensitive monoclonal antibodies. Integration and automation of the downstream process were achieved using the Orbit software, and the same equipment and control system were used in initial small-scale trials and the pilot-scale downstream process. High recovery yields of around 90% and a productivity close to 1 g purified antibody/L/day were achieved, with a stable glycosylation pattern and efficient removal of impurities, such as host cell proteins and DNA. Finally, negligible levels of antibody aggregates were detected owing to the mild conditions used throughout the process. The present work paves the way for future industrial-scale integrated continuous biomanufacturing of all types of antibodies, regardless of acid stability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hubert Schwarz
- Dept. of Industrial Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Joaquín Gomis Fons
- Dept. of Chemical Engineering, Lund University, Lund, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Madelène Isaksson
- Dept. of Chemical Engineering, Lund University, Lund, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Julia Scheffel
- Dept. of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | | | - Andreas Andersson
- Cytiva, Uppsala, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Andreas Castan
- Cytiva, Uppsala, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Anita Solbrand
- Cytiva, Uppsala, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Sophia Hober
- Dept. of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Bernt Nilsson
- Dept. of Chemical Engineering, Lund University, Lund, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| | - Veronique Chotteau
- Dept. of Industrial Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Sweden
| |
Collapse
|
10
|
Scheffel J, Isaksson M, Gomis-Fons J, Schwarz H, Andersson N, Norén B, Solbrand A, Chotteau V, Hober S, Nilsson B. Design of an integrated continuous downstream process for acid-sensitive monoclonal antibodies based on a calcium-dependent Protein A ligand. J Chromatogr A 2022; 1664:462806. [PMID: 35033788 DOI: 10.1016/j.chroma.2022.462806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Abstract
Monoclonal antibodies (mAb) are used as therapeutics and for diagnostics of a variety of diseases, and novel antibodies are continuously being developed to find treatments for new diseases. Therefore, the manufacturing process must accommodate a range of mAb characteristics. Acid-sensitive mAbs can severely compromise product purity and yield in the purification process due to the potential formation of aggregates. To address this problem, we have developed an integrated downstream process for the purification of pH-sensitive mAbs at mild conditions. A calcium-dependent Protein A-based ligand, called ZCa, was used in the capture step in a 3-column periodic counter-current chromatography operation. The binding of ZCa to antibodies is regulated by calcium, meaning that acidic conditions are not needed to break the interaction and elute the antibodies. Further, the virus inactivation was achieved by a solvent/detergent method, where the pH could remain unchanged. The polishing steps included a cation and an anion exchange chromatography step, and screening of the capture and polishing steps was performed to allow for a seamless integration of the process steps. The process was implemented at laboratory scale for 9 days obtaining a high yield, and a consistently pure drug substance, including high reduction values of the host cell protein and DNA concentrations, as well as aggregate levels below the detection limit, which is attributed to the mild conditions used in the process.
Collapse
Affiliation(s)
- Julia Scheffel
- Department of Protein Science, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Madelène Isaksson
- Department of Chemical Engineering, Lund University, SE-211 00 Lund, Sweden
| | - Joaquín Gomis-Fons
- Department of Chemical Engineering, Lund University, SE-211 00 Lund, Sweden
| | - Hubert Schwarz
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Niklas Andersson
- Department of Chemical Engineering, Lund University, SE-211 00 Lund, Sweden
| | | | | | - Veronique Chotteau
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | - Bernt Nilsson
- Department of Chemical Engineering, Lund University, SE-211 00 Lund, Sweden.
| |
Collapse
|
11
|
von Witting E, Hober S, Kanje S. Affinity-Based Methods for Site-Specific Conjugation of Antibodies. Bioconjug Chem 2021; 32:1515-1524. [PMID: 34369763 PMCID: PMC8377709 DOI: 10.1021/acs.bioconjchem.1c00313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugation of various reagents to antibodies has long been an elegant way to combine the superior binding features of the antibody with other desired but non-natural functions. Applications range from labels for detection in different analytical assays to the creation of new drugs by conjugation to molecules which improves the pharmaceutical effect. In many of these applications, it has been proven advantageous to control both the site and the stoichiometry of the conjugation to achieve a homogeneous product with predictable, and often also improved, characteristics. For this purpose, many research groups have, during the latest decade, reported novel methods and techniques, based on small molecules, peptides, and proteins with inherent affinity for the antibody, for site-specific conjugation of antibodies. This review provides a comprehensive overview of these methods and their applications and also describes a historical perspective of the field.
Collapse
Affiliation(s)
- Emma von Witting
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| |
Collapse
|
12
|
Ahmadi MKB, Mohammadi SA, Makvandi M, Mamouei M, Rahmati M, Dehghani H, Wood DW. Recent Advances in the Scaffold Engineering of Protein Binders. Curr Pharm Biotechnol 2021; 22:878-891. [PMID: 32838715 DOI: 10.2174/1389201021999200824101035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
In recent years, extensive attention has been given to the generation of new classes of ligand- specific binding proteins to supplement monoclonal antibodies. A combination of protein engineering and display technologies has been used to manipulate non-human antibodies for humanization and stabilization purposes or even the generation of new binding proteins. Engineered protein scaffolds can now be directed against therapeutic targets to treat cancer and immunological disorders. Although very few of these scaffolds have successfully passed clinical trials, their remarkable properties such as robust folding, high solubility, and small size motivate their employment as a tool for biology and applied science studies. Here, we have focused on the generation of new non-Ig binding proteins and single domain antibody manipulation, with a glimpse of their applications.
Collapse
Affiliation(s)
- Mohammad K B Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed A Mohammadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Mamouei
- Department of Animal Science, Ramin Agricultural and Natural Resources University, Ahvaz, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hesam Dehghani
- Stem Cells Regenerative Research Group, Ressearch Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, United States
| |
Collapse
|
13
|
Yu W, Gillespie KP, Chhay B, Svensson AS, Nygren PÅ, Blair IA, Yu F, Tsourkas A. Efficient Labeling of Native Human IgG by Proximity-Based Sortase-Mediated Isopeptide Ligation. Bioconjug Chem 2021; 32:1058-1066. [PMID: 34029057 DOI: 10.1021/acs.bioconjchem.1c00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antibody-drug conjugates (ADCs) have demonstrated great therapeutic potential due to their ability to target the delivery of potent cytotoxins. However, the heterogeneous nature of conventional drug conjugation strategies can affect the safety, efficacy, and stability of ADCs. Site-specific conjugations can resolve these issues, but often require genetic modification of Immunoglobulin G (IgG), which can impact yield or cost of production, or require undesirable chemical linkages. Here, we describe a near-traceless conjugation method that enables the efficient modification of native IgG, without the need for genetic engineering or glycan modification. This method utilizes engineered variants of sortase A to catalyze noncanonical isopeptide ligation. Sortase A was fused to an antibody-binding domain to improve ligation efficiency. Antibody labeling is limited to five lysine residues on the heavy chain and one on the light chain of human IgG1. The ADCs exhibit conserved antigen and Fc-receptor interactions, as well as potent cytolytic activity.
Collapse
Affiliation(s)
- Wendy Yu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kevin P Gillespie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bonirath Chhay
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne-Sophie Svensson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH-Royal Institute of Technology, Stockholm, Sweden and Sonia SE-100-44 Sweden
| | - Per-Åke Nygren
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH-Royal Institute of Technology, Stockholm, Sweden and Sonia SE-100-44 Sweden
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Feifan Yu
- AlphaThera, LLC, Philadelphia, Pennsylvania 19146, United States
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Habazin S, Štambuk J, Šimunović J, Keser T, Razdorov G, Novokmet M. Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:73-135. [PMID: 34687008 DOI: 10.1007/978-3-030-76912-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset.
Collapse
Affiliation(s)
- Siniša Habazin
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Jerko Štambuk
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Mislav Novokmet
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
15
|
Nilvebrant J, Åstrand M, Hober S. An Orthogonal Fusion Tag for Efficient Protein Purification. Methods Mol Biol 2021; 2178:159-166. [PMID: 33128750 DOI: 10.1007/978-1-0716-0775-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this chapter, we present an efficient method for stringent protein purification facilitated by a dual affinity tag referred to as ABDz1, which is based on a 5 kDa albumin-binding domain from Streptococcal Protein G. The small fusion tag enables an orthogonal affinity purification approach based on two successive and highly specific affinity purification steps. This approach is enabled by native binding of ABDz1 to human serum albumin and engineered binding to Staphylococcal Protein A, respectively. The ABDz1-tag can be fused to either terminus of a protein of interest and the purification steps can be carried out using standard laboratory equipment.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH/AlbaNova University Center, Stockholm, Sweden
| | - Mikael Åstrand
- Division of Protein Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH/AlbaNova University Center, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry Biotechnology and Health (CBH), AlbaNova University Center, Stockholm, Sweden.
| |
Collapse
|
16
|
Abstract
The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific toward particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications in proteins and peptides widen the application of affinity ligand-tag receptors pairs toward universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely the affinity tags and receptors employed on the production of recombinant fusion proteins, and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.
Collapse
|
17
|
Scheffel J, Kanje S, Hober S. Z Ca: A Protein A-Derived Domain with Calcium-Dependent Affinity for Mild Antibody Purification. Methods Mol Biol 2021; 2178:245-249. [PMID: 33128754 DOI: 10.1007/978-1-0716-0775-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Therapeutic antibodies are at the forefront of modern medicine where high purity, which is typically obtained by Protein A-based affinity purification, is of utmost importance. In this chapter, we present a method for neutral and selective purification of antibodies by utilizing an engineered affinity ligand, ZCa, derived from Protein A. This domain displays a calcium-dependent binding of antibodies and has been multimerized and immobilized to a chromatography resin to achieve an affinity matrix with high binding capacity. IgG antibodies can be eluted from the tetrameric ZCa ligand at pH 7 with the addition of EDTA, or at pH 5.5 with EDTA for purification of monoclonal IgG1, which is significantly milder than the low pH (3-4) required in conventional Protein A affinity chromatography. Here, a protocol for selective capture of IgG with elution at neutral pH from a ZCa tetramer ligand immobilized on a chromatography resin is described.
Collapse
Affiliation(s)
- Julia Scheffel
- Department of Protein Science, KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), AlbaNova University Centre, Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), AlbaNova University Centre, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), AlbaNova University Centre, Stockholm, Sweden.
| |
Collapse
|
18
|
Highly selective Protein A resin allows for mild sodium chloride-mediated elution of antibodies. J Chromatogr A 2020; 1637:461843. [PMID: 33412291 DOI: 10.1016/j.chroma.2020.461843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 11/23/2022]
Abstract
The manufacturability of therapeutic monoclonal antibodies is limited by the harsh conditions that antibodies are subjected to during the purification procedure, which in turn restricts the development of novel acid-sensitive antibodies. The gold standard for antibody purification, Protein A affinity chromatography, offers the selective capture of antibodies with great yields, but also poses a threat to the quality of the antibodies. Antibodies and Fc-fusion proteins risk forming aggregates as a consequence of the acidic elution from the Protein A ligands, compromising the potency and safety of the drug. Here, we present a novel, mild purification strategy based on a calcium-dependent ligand derived from Protein A, called ZCa. Antibodies captured on a high-capacity tetrameric ZCa resin in the presence of calcium can be eluted by removing the calcium ions through the addition of a chelator, and we describe the strive to find a sustainable alternative to the previously applied chelator EDTA. The naturally occurring chelator citrate is shown to seamlessly replace EDTA. Further buffer optimization reveals that the elution can be considerably improved by increasing the conductivity through the addition of 300 mM sodium chloride, leading to a very concentrated eluate. Remarkably, merely sodium chloride at a concentration of 50 mM is proven to be sufficient for calcium-dependent antibody release in a cost-efficient manner. Antibodies of subclasses IgG2 and IgG4 are eluted with sodium chloride at neutral pH and IgG1 at pH 6, due to varying affinities for the tetrameric ZCa, ranging between 90-780 nM. The mild elution of an IgG4 antibody eliminated the formation of aggregates, which constituted as much as 34% of all eluted antibody from MabSelect SuRe at pH 3. This novel purification strategy thus combines the valuable qualities of a Protein A resin, by providing high selectivity and a recovery of 88-99%, with an exceptionally mild elution step similar to ion-exchange chromatography, rendering considerably more functional antibody.
Collapse
|
19
|
Amritkar V, Adat S, Tejwani V, Rathore A, Bhambure R. Engineering Staphylococcal Protein A for high-throughput affinity purification of monoclonal antibodies. Biotechnol Adv 2020; 44:107632. [DOI: 10.1016/j.biotechadv.2020.107632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
|
20
|
Hinz SC, Elter A, Rammo O, Schwämmle A, Ali A, Zielonka S, Herget T, Kolmar H. A Generic Procedure for the Isolation of pH- and Magnesium-Responsive Chicken scFvs for Downstream Purification of Human Antibodies. Front Bioeng Biotechnol 2020; 8:688. [PMID: 32656201 PMCID: PMC7324474 DOI: 10.3389/fbioe.2020.00688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Affinity chromatography provides an excellent platform for protein purification, which is a key step in the large scale downstream processing of therapeutic monoclonal antibodies (Mabs). Protein A chromatography constitutes the gold standard for Mab purification. However, the required acidic conditions (2.8–3.5) for elution from the affinity matrix limit their applicability, particularly for next generation antibodies and antibody fusion proteins, since denaturation and irreversible aggregation can occur due to the acidic buffer conditions. Here we describe a generic procedure for the generation of antigen-specific chromatography ligands with tailor-made elution conditions. To this end, we generated a scFv-library based on mRNA from a chicken immunized with human Fc. The antibody repertoire was displayed on yeast Saccharomyces cerevisiae screened via FACS toward pH- and magnesium-responsive scFvs which specifically recognize human IgG antibodies. Isolated scFvs were reformatted, produced in Escherichia coli and immobilized on NHS-agarose columns. Several scFvs were identified that mediated antibody binding at neutral pH and antibody recovery at pH values of 4.5 and higher or even at neutral pH upon MgCl2 exposure. The iterative screening methodology established here is generally amenable to the straightforward isolation of stimulus-responsive antibodies that may become valuable tools for a variety of applications.
Collapse
Affiliation(s)
- Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.,Merck Lab @ Technische Universität Darmstadt, Darmstadt, Germany
| | - Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.,Merck Lab @ Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rammo
- Life Science Division, Merck KGaA, Darmstadt, Germany
| | | | - Ataurehman Ali
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Thomas Herget
- Strategy und Transformation, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.,Merck Lab @ Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
21
|
Pham NB, Meng WS. Protein aggregation and immunogenicity of biotherapeutics. Int J Pharm 2020; 585:119523. [PMID: 32531452 DOI: 10.1016/j.ijpharm.2020.119523] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022]
Abstract
Recombinant proteins are the mainstay of biopharmaceuticals. A key challenge in the manufacturing and formulation of protein biologic products is the tendency for the active pharmaceutical ingredients to aggregate, resulting in irreversible drug loss, and an increase in immunogenicity risk. While the molecular mechanisms of protein aggregation have been discussed extensively in the literature, knowledge gaps remain in connecting the phenomenon in the context of immunogenicity of biotherapeutics. In this review, we discussed factors that drive aggregation of pharmaceutical recombinant proteins, and highlighted methods of prediction and mitigation that can be deployed through the development stages, from formulation to bioproduction. The purpose is to stimulate new dialogs that would bridge the interface between physical characterizations of protein aggregates in biotherapeutics and the functional attributes of the immune system.
Collapse
Affiliation(s)
- Ngoc B Pham
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, United States.
| |
Collapse
|
22
|
Hebditch M, Kean R, Warwicker J. Modelling of pH-dependence to develop a strategy for stabilising mAbs at acidic steps in production. Comput Struct Biotechnol J 2020; 18:897-905. [PMID: 32322371 PMCID: PMC7171260 DOI: 10.1016/j.csbj.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 01/02/2023] Open
Abstract
Engineered proteins are increasingly being required to function or pass through environmental stresses for which the underlying protein has not evolved. A major example in health are antibody therapeutics, where a low pH step is used for purification and viral inactivation. In order to develop a computational model for analysis of pH-stability, predictions are compared with experimental data for the relative pH-sensitivities of antibody domains. The model is then applied to proteases that have evolved to be functional in an acid environment, showing a clear signature for low pH-dependence of stability in the neutral to acidic pH region, largely through reduction of salt-bridges. Interestingly, an extensively acidic protein surface can maintain contribution to structural stabilisation at acidic pH through replacement of basic sidechains with polar, hydrogen-bonding groups. These observations form a design principle for engineering acid-stable proteins.
Collapse
Affiliation(s)
- Max Hebditch
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Ryan Kean
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Jim Warwicker
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
23
|
Matos MJB, Pina AS, Roque ACA. Rational design of affinity ligands for bioseparation. J Chromatogr A 2020; 1619:460871. [PMID: 32044126 DOI: 10.1016/j.chroma.2020.460871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/25/2022]
Abstract
Affinity adsorbents have been the cornerstone in protein purification. The selective nature of the molecular recognition interactions established between an affinity ligands and its target provide the basis for efficient capture and isolation of proteins. The plethora of affinity adsorbents available in the market reflects the importance of affinity chromatography in the bioseparation industry. Ligand discovery relies on the implementation of rational design techniques, which provides the foundation for the engineering of novel affinity ligands. The main goal for the design of affinity ligands is to discover or improve functionality, such as increased stability or selectivity. However, the methodologies must adapt to the current needs, namely to the number and diversity of biologicals being developed, and the availability of new tools for big data analysis and artificial intelligence. In this review, we offer an overview on the development of affinity ligands for bioseparation, including the evolution of rational design techniques, dating back to the years of early discovery up to the current and future trends in the field.
Collapse
Affiliation(s)
- Manuel J B Matos
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana S Pina
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - A C A Roque
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
24
|
Scheffel J, Kanje S, Borin J, Hober S. Optimization of a calcium-dependent Protein A-derived domain for mild antibody purification. MAbs 2019; 11:1492-1501. [PMID: 31526164 PMCID: PMC6816396 DOI: 10.1080/19420862.2019.1662690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As reported here, we developed and optimized a purification matrix based on a Protein A-derived domain, ZCa, displaying calcium-dependent antibody binding. It provides an alternative to the acidic elution conditions of conventional Protein A affinity chromatography for purification of sensitive antibodies and other Fc-based molecules. We describe the multimerization of ZCa to generate a chromatography resin with higher binding capacity. The highest order multimeric variant, ZCaTetraCys, demonstrated a considerably high dynamic binding capacity (35 mg IgG/ml resin) while preserving the specificity for IgG. High recovery was obtained and host cell protein and DNA content in purified fractions proved to be comparable to commercial MabSelect SuRe and MabSelect PrismA. Various elution conditions for use of this domain in antibody purification were investigated. The purification data presented here revealed variations in the interaction of different subclasses of human IgG with ZCaTetraCys. This resulted in diverse elution properties for the different IgGs, where complete elution of all captured antibody for IgG2 and IgG4 was possible at neutral pH. This optimized protein ligand and the proposed purification method offer a unique strategy for effective and mild purification of antibodies and Fc-fusion proteins that cannot be purified under conventional acidic elution conditions due to aggregation formation or loss of function.
Collapse
Affiliation(s)
- Julia Scheffel
- Department of Protein Science, KTH-Royal Institute of Technology , Stockholm , Sweden
| | - Sara Kanje
- Department of Protein Science, KTH-Royal Institute of Technology , Stockholm , Sweden
| | - Jesper Borin
- Department of Protein Science, KTH-Royal Institute of Technology , Stockholm , Sweden
| | - Sophia Hober
- Department of Protein Science, KTH-Royal Institute of Technology , Stockholm , Sweden
| |
Collapse
|