1
|
Heidarrezaei M, Mauriello G, Shokravi H, Lau WJ, Ismail AF. Delivery of Probiotic-Loaded Microcapsules in the Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2025; 17:193-211. [PMID: 38907825 DOI: 10.1007/s12602-024-10311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Probiotics are live microorganisms that inhabit the gastrointestinal tract and confer health benefits to consumers. However, a sufficient number of viable probiotic cells must be delivered to the specific site of interest in the gastrointestinal tract to exert these benefits. Enhanced viability and tolerance to sublethal gastrointestinal stress can be achieved using appropriate coating materials and food matrices for orally consumed probiotics. The release mechanism and interaction of probiotic microcapsules with the gastrointestinal tract have been minimally explored in the literature to date. To the authors' knowledge, no review has been published to discuss the nature of release and the challenges in the targeted delivery of probiotics. This review addresses gastrointestinal-related complications in the formulation of targeted delivery and controlled release of probiotic strains. It investigates the impacts of environmental stresses during the transition stage and delivery to the target region in the gastrointestinal tract. The influence of factors such as pH levels, enzymatic degradation, and redox conditions on the release mechanisms of probiotics is presented. Finally, the available methods to evaluate the efficiency of a probiotic delivery system, including in vitro and in vivo, are reviewed and assessed. The paper concludes with a discussion highlighting the emerging technologies in the field and emphasising key areas in need of future study.
Collapse
Affiliation(s)
- Mahshid Heidarrezaei
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049, Naples, Italy
| | - Hoofar Shokravi
- Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Woei Jye Lau
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Ahmad Fauzi Ismail
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
2
|
Gu L, Tang Y, Zhang J, Tao N, Wang X, Wang L, Xu C. Synergistic Anti- Helicobacter pylori Effects of Takifugu obscurus Skin Peptides and Lactobacillus plantarum: A Potential Gastric Health Dietary Supplement. Foods 2025; 14:406. [PMID: 39941995 PMCID: PMC11817145 DOI: 10.3390/foods14030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection is a widespread gastric infectious disease, posing significant challenges due to the increasing prevalence of antibiotic resistance. This study aimed to evaluate the synergistic antibacterial activity of Takifugu obscurus skin peptides (TSPs) and the cell-free supernatant of Lactobacillus plantarum WUH3 (LCFS) in developing a potential green and efficient dietary supplement therapy. Using enzymatic hydrolysis and ultrafiltration techniques, the most bioactive peptide fraction, TSPb (1-3 kDa), was identified. The effects of TSPb and LCFS-both individually and in combination-on H. pylori biofilm function, membrane morphology, and internal structure were systematically analyzed using urease activity, N-phenyl naphthylamine (NPN) uptake, nucleic acid leakage, scanning electron microscopy (SEM), and infrared (IR) spectroscopy. The results showed that both LCFS and TSPb significantly inhibited H. pylori urease activity, with inhibition rates of 53.60% and 54.21% at 24 h, respectively, and the highest inhibition rate of 74.64% was observed with their combined treatment. SEM, NPN fluorescence, and nucleic acid leakage analyses revealed distinct mechanisms of action for each treatment. LCFS treatment caused membrane surface loosening and morphological deformation, while TSPb induced the formation of localized membrane pores. IR spectroscopy further confirmed that the combined treatment led to a more severe disruption of the lipid and protein structure within the bacterium. Overall, compared to individual treatments, the combination of TSPb and LCFS exhibited enhanced intracellular penetration and a more significant effect on bacterial viability. This study successfully identified TSPb as a highly bioactive peptide and elucidated its potential synergistic antibacterial mechanism with LCFS. These findings provide scientific evidence for the development of functional antimicrobial foods and gastric health dietary supplements, offering a promising strategy for the prevention and management of H. pylori infections.
Collapse
Affiliation(s)
- Lei Gu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.G.); (Y.T.); (J.Z.); (N.T.); (X.W.)
| | - Yiying Tang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.G.); (Y.T.); (J.Z.); (N.T.); (X.W.)
| | - Jieshuai Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.G.); (Y.T.); (J.Z.); (N.T.); (X.W.)
| | - Ningping Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.G.); (Y.T.); (J.Z.); (N.T.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| | - Xichang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.G.); (Y.T.); (J.Z.); (N.T.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| | - Liping Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.G.); (Y.T.); (J.Z.); (N.T.); (X.W.)
| | - Changhua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.G.); (Y.T.); (J.Z.); (N.T.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
3
|
Yao M, Cao J, Zhang L, Wang K, Lin H, Qin L, Zhang Q, Qu C, Miao J, Xue C. Indole-3-Lactic Acid Derived from Lacticaseibacillus paracasei Inhibits Helicobacter pylori Infection via Destruction of Bacteria Cells, Protection of Gastric Mucosa Epithelial Cells, and Alleviation of Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15725-15739. [PMID: 38973111 DOI: 10.1021/acs.jafc.4c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Indole-3-lactic acid (ILA) has exhibited antimicrobial properties. However, its role in inhibiting Helicobacter pylori infection remains elusive. This study investigated the inhibitory effect of ILA produced by Lacticaseibacillus paracasei on H. pylori, which was further confirmed by cell and animal experiments. 5 mg/mL ILA was sufficient to directly inhibit the growth of H. pylori in vitro, with a urease inhibitory activity reaching 60.94 ± 1.03%, and the cell morphology and structure were destroyed. ILA inhibited 56.5% adhesion of H. pylori to GES-1 and significantly reduced the number of apoptotic cells. Furthermore, ILA suppresses H. pylori colonization by approximately 38% to 63%, reduced inflammation and oxidative stress in H. pylori-infected mice, and enhanced the enrichment and variety of gut microbiota, notably fostering the growth of beneficial bacteria such as Lactobacillus and Bifidobacterium strains. The results support that ILA derived from Lactobacillus can be applicated as a novel prebiotic in anti-H. pylori functional foods.
Collapse
Affiliation(s)
- Mengke Yao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhan Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Huan Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qing Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Vinothkanna A, Shi‐Liang X, Karthick Rajan D, Prathiviraj R, Sekar S, Zhang S, Wang B, Liu Z, Jia A. Feasible mechanisms and therapeutic potential of food probiotics to mitigate diabetes‐associated cancers: A comprehensive review and in silico validation. FOOD FRONTIERS 2024; 5:1476-1511. [DOI: 10.1002/fft2.406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractPeople with diabetes mellitus (DM) and hyperglycemia are linked with cancer risk. Diabetes and cancer have been corroborated by high morbidity and mortality rates. Studies revealed that elevated levels of insulin secretions trigger insulin‐like growth factor 1 (IGF‐1) production. Moreover, IGF‐1 is a key regulator involved in promoting cancer cell progression and is linked with DM. Cancer drug resistance and ototoxic effects can adversely affect the health and lifespan of an individual. However, naturally derived bioactive compounds are gaining attention for their nontoxic properties and specific behavior. Likewise, probiotics have also been regarded as safe and successful alternatives to treat DM‐linked cancers. The present review aims to highlight the therapeutic potential and feasible functions of probiotics to mitigate or inhibit DM‐associated cancers. Meanwhile, the intracellular signaling cascades involved in promoting DM‐linked cancer are enumerated for future prospective research. However, metabolomics interactions and protein–protein interactions are to be discussed for deeper insights into affirmative principles in diabetic‐linked cancers. Drug discovery and innovative preclinical evaluation need further adjuvant and immune‐enhancement therapies. Furthermore, the results of the in silico assessment could provide scientific excellence of IGF‐1 in diabetes and cancer. Overall, this review summarizes the mechanistic insights and therapeutic targets for diabetes‐associated cancer.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
- School of Life and Health Sciences Hainan University Haikou China
| | - Xiang Shi‐Liang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences Central South University Changsha Hunan China
| | | | - Soundarapandian Sekar
- Department of Biotechnology Bharathidasan University Tiruchirappalli Tamil Nadu India
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences Central South University Changsha Hunan China
| | - Bo Wang
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
| | - Zhu Liu
- School of Life and Health Sciences Hainan University Haikou China
| | - Ai‐Qun Jia
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
| |
Collapse
|
5
|
Anwer M, Wei MQ. Harnessing the power of probiotic strains in functional foods: nutritive, therapeutic, and next-generation challenges. Food Sci Biotechnol 2024; 33:2081-2095. [PMID: 39130669 PMCID: PMC11315846 DOI: 10.1007/s10068-024-01630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024] Open
Abstract
Functional foods have become an essential element of the diet in developed nations, due to their health benefits and nutritive values. Such food products are only called functional if they, "In addition to basic nutrition, have valuable effects on one or multiple functions of the human body, thereby enhancing general and physical conditions and/or reducing the risk of disease progression". Functional foods are currently one of the most extensively researched areas in the food and nutrition sciences. They are fortified and improved food products. Presently, probiotics are regarded as the most significant and commonly used functional food product. Diverse probiotic food products and supplements are used according to the evidence that supports their strength, functionality, and recommended dosage. This review provides an overview of the current functional food market, with a particular focus on probiotic microorganisms as pivotal functional ingredients. It offers insights into current research endeavors and outlines potential future directions in the field.
Collapse
Affiliation(s)
- Muneera Anwer
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215 Australia
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ming Q. Wei
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215 Australia
| |
Collapse
|
6
|
Yang H, Lin Y, Ma Y, Li J, Li J, Huo Z, Yang P, Zhang C. Screening Probiotics for Anti- Helicobacter pylori and Investigating the Effect of Probiotics on Patients with Helicobacter pylori Infection. Foods 2024; 13:1851. [PMID: 38928794 PMCID: PMC11202727 DOI: 10.3390/foods13121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are natural microbial agents with beneficial properties such as bacteriostatic and anti-infective properties. Lactobacillus plantarum Q21, Q25 and QA85, were isolated from the Chinese specialty fermented food "Jiangshui" and proved to be highly resistant to Helicobacter pylori (p < 0.0001). In vitro results showed that Q21, Q25 and QA85 strongly inhibited H. pylori and could specifically co-aggregate H. pylori in vitro (more than 56%). Strains have the potential to adhere to cells and hinder H. pylori colonization (p < 0.0001). To assess the anti-H. pylori efficacy of strains in vivo, volunteers were recruited and a self-controlled study of probiotic intervention was conducted. Compared to pre-probiotics, volunteers who took Q21, Q25 and QA85 for 1 month showed significant improvement in discomfort, a significant reduction in GSRS scores (p < 0.05), and modulation of inflammatory response (p < 0.05). Q21, Q25 and QA85 resulted in a decreasing trend of H. pylori load in volunteers (454.30 ± 327.00 vs. 328.35 ± 237.19, p = 0.06). However, the strains were not significantly effective in modulating the imbalance of the gut microbiota caused by H. pylori infection. In addition, strains affect metabolic pathways by increasing the levels of O-Phosphoethanolamine and other related metabolites, which may ameliorate associated symptoms. Therefore, Lactobacillus plantarum Q21, Q25 and QA85 can be regarded as a candidate probiotic preparation that exerts direct or indirect anti-H. pylori effects by inhibiting H. pylori activity and colonization, reducing inflammation and discomfort, maintaining homeostasis in the internal environment, affecting the metabolic pathways and repairing the body barrier. They can play a role in relieving H. pylori infection.
Collapse
Affiliation(s)
- Hui Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yuchan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jiaru Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Zeqi Huo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Pingrong Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Emmanuel BN, Peter DA, Peter MO, Adedayo IS, Olaifa K. Helicobacter pylori infection in Africa: comprehensive insight into its pathogenesis, management, and future perspectives. JOURNAL OF UMM AL-QURA UNIVERSITY FOR APPLIED SCIENCES 2024. [DOI: 10.1007/s43994-024-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/22/2024] [Indexed: 01/04/2025]
Abstract
AbstractHelicobacter pylori is a widespread bacterium that has effectively colonized half of the global population, with Africa having over 70% of the total burden of H. pylori infections (HPI). Considering its acknowledged classification of as bacterial carcinogens and their significant contribution to the development of gastrointestinal disorders such as gastritis, peptic ulcers, and gastric neoplasia, together with their growing resistance to antibiotics. Gaining insight into the etiology of this organism is crucial in order to investigate and develop appropriate treatment strategies. Furthermore, the rise of bacteria that are resistant to antibiotics presents an extra danger in managing this detrimental bacterium. Our review focuses on investigating the presence of H. pylori in Africa and analyzing the various factors that contribute to its extensive prevalence. We simplified the complex mechanisms that H. pylori utilizes to flourish in the human body, with a specific emphasis on its virulence factors and antibiotic resistance. These variables pose significant challenges to conventional treatment strategies. In addition, we analyze both conventional and developing diagnostic methods, as well as the current treatment approaches implemented in various African nations. In addition, we tackle the distinct healthcare obstacles of the region and put-up practical remedies. The main goal of this review is to improve the formulation of more efficient methods for the management and treatment of HPI in Africa.
Collapse
|
8
|
Lau LYJ, Quek SY. Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract. FOOD BIOENGINEERING 2024; 3:41-64. [DOI: 10.1002/fbe2.12078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/29/2024] [Indexed: 01/04/2025]
Abstract
AbstractProbiotics have become increasingly popular over the past two decades due to the continuously expanding scientific evidence indicating their beneficial effects on human health. Therefore, they have been applied in the food industry to produce functional food, which plays a significant role in human health and reduces disease risk. However, maintaining the viability of probiotics and targeting the successful delivery to the gastrointestinal tract remain two challenging tasks in food applications. Specifically, this paper reviews the potentially beneficial properties of probiotics, highlighting the use and challenges of probiotics in food application and the associated health benefits. Of foremost importance, this paper also explores the potential underlying molecular mechanisms of the enhanced effect of probiotics on gastrointestinal epithelial cells, including a discussion on various surface adhesion‐related proteins on the probiotic cell surface that facilitate colonization.
Collapse
Affiliation(s)
- Li Ying Jessie Lau
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| |
Collapse
|
9
|
Li J, Peng F, Huang H, Xu X, Guan Q, Xie M, Xiong T. Characterization, mechanism and in vivo validation of Helicobacter pylori antagonism by probiotics screened from infants' feces and oral cavity. Food Funct 2024; 15:1170-1190. [PMID: 38206113 DOI: 10.1039/d3fo04592g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Helicobacter pylori (H. pylori) infection is a major cause of chronic gastritis, intestinal metaplasia, and gastric carcinoma. Antibiotics, the conventional regimen for eliminating H. pylori, cause severe bacterial resistance, gut dysbiosis and hepatic insufficiency. Here, fifty lactic acid bacteria (LAB) were initially screened out of 266 strains obtained from infants' feces and oral cavity. The antagonistic properties of these 50 strains against H. pylori were investigated. Based on eight metrics combined with principal component analysis, three LAB with probiotic function and excellent anti-H. pylori capacity were affirmed. Combining dynamics test, metabolite assays, adhesion assays, co-cultivation experiments, and SEM and TEM observations, LAB were found to antagonize H. pylori by causing coccoid conversion and intercellular adhesion. Furthermore, it was found that LAB antagonized H. pylori by four pathways, i.e., production of anti-H. pylori substances, inhibition of H. pylori colonization, enhancement of the gastric mucosal barrier, and anti-inflammatory effect. In addition, animal model experiments verified that the final screened superior strain L. salivarius NCUH062003 had anti-H. pylori activity in vivo. LAB also reduced IL-8 secretion, ultimately alleviating the inflammatory response of gastric mucosa. Whole genome sequencing (WGS) data showed that the NCUH062003 genome contained the secondary metabolite biosynthesis gene cluster T3PKS. Furthermore, NCUH062003 had a strong energy metabolism and substance transport capacity, and produced a small molecule heat stable peptide (SHSP, 4.1-6.5 kDa). Meanwhile, LAB proved to be safe through antibiotic susceptibility testing and CARD database comparisons.
Collapse
Affiliation(s)
- Junyi Li
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Fei Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Hui Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Xiaoyan Xu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Qianqian Guan
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| |
Collapse
|
10
|
Yao G, Fan X, Lu D. Efficacy and safety of probiotic-supplemented bismuth quadruple therapy for the treatment of Helicobacter pylori infection: a systematic review and meta-analysis. J Int Med Res 2023; 51:3000605231203841. [PMID: 37848344 PMCID: PMC10586011 DOI: 10.1177/03000605231203841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVE We performed a meta-analysis to determine whether the addition of probiotics to the bismuth quadruple therapy (BQT) for Helicobacter pylori would improve the incidence of eradication and reduce that of side effects. METHODS Randomized controlled trials matching the inclusion criteria were collected from PubMed, Embase, Web of Science, and The Cochrane Central Register of Controlled Trials. A Mantel-Haenszel random-effects model was used to calculate pooled risk ratios (RRs) and 95% confidence intervals (CIs) for the incidences of eradication rate, side effects as a whole, diarrhea, and other side effects. RESULTS Ten studies were selected for inclusion in the meta-analysis. The pooled RRs for the eradication rates in intention-to-treat and per-protocol analyses of the probiotic group vs. the control group were 1.07 (95% CI: 1.02-1.11) and 1.04 (95% CI: 1.00-1.07), respectively. Probiotic supplementation reduced the incidences of side effects (RR 0.58, 95% CI: 0.37-0.91), diarrhea (RR 0.41, 95% CI: 0.25-0.67), and bitter taste (RR 0.63, 95% CI: 0.40-0.99). CONCLUSIONS The results of this meta-analysis support the use of probiotics in combination with BQT in the clinical management of patients with H. pylori infection.
Collapse
Affiliation(s)
- Gaoyan Yao
- Department of Gastroenterology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Xiaoyuan Fan
- Department of Gastroenterology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Dewen Lu
- Department of Gastroenterology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Forooghi Nia F, Rahmati A, Ariamanesh M, Saeidi J, Ghasemi A, Mohtashami M. The Anti-Helicobacter pylori effects of Limosilactobacillus reuteri strain 2892 isolated from Camel milk in C57BL/6 mice. World J Microbiol Biotechnol 2023; 39:119. [PMID: 36918449 DOI: 10.1007/s11274-023-03555-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
Helicobacter pylori infection (H. pylori) is associated with chronic gastritis, peptic ulcers, and gastric cancer. The present study provides information on the protective effects of Limosilactobacillus reuteri strain 2892 (L. reuteri 2892) isolated from camel's milk against H. pylori-induced gastritis in the stomach tissue of animal models. Animal assays revealed that L. reuteri 2892 pretreatment significantly downregulated the virulence factor cagA gene expression. It upregulated the expression level of tight junction molecules [zona occludens (ZO-1), claudin-4] and suppressed metalloproteinase (MMP)-2 and MMP-9 expressions. L. reuteri 2892 exhibited immunomodulatory effects on cytokine profile, as it reduced the serum concentrations of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and INF-γ and increased the anti-inflammatory cytokine, IL-10. In addition, L. reuteri 2892 showed anti-oxidative stress activity by regulating the levels of oxidative stress-associated markers [superoxide dismutase (SOD) and malondialdehyde (MDA)]. Our findings suggest that L. reuteri 2892 attenuates H. pylori-induced gastritis.
Collapse
Affiliation(s)
- Fatemeh Forooghi Nia
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mona Ariamanesh
- Department of Pathology, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Ahmad Ghasemi
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran. .,Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Mahnaz Mohtashami
- Department of Microbiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| |
Collapse
|
12
|
Saha UB, Saroj SD. Lactic acid bacteria: prominent player in the fight against human pathogens. Expert Rev Anti Infect Ther 2022; 20:1435-1453. [PMID: 36154442 DOI: 10.1080/14787210.2022.2128765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The human microbiome is a unique repository of diverse bacteria. Over 1000 microbial species reside in the human gut, which predominantly influences the host's internal environment and plays a significant role in host health. Lactic acid bacteria have long been employed for multiple purposes, ranging from food to medicines. Lactobacilli, which are often used in commercial food fermentation, have improved to the point that they might be helpful in medical applications. AREAS COVERED This review summarises various clinical and experimental evidence on efficacy of lactobacilli in treating a wide range of infections. Both laboratory based and clinical studies have been discussed. EXPERT OPINION Lactobacilli are widely accepted as safe biological treatments and host immune modulators (GRAS- Generally regarded as safe) by the US Food and Drug Administration and Qualified Presumption of Safety. Understanding the molecular mechanisms of lactobacilli in the treatment and pathogenicity of bacterial infections can help with the prediction and development of innovative therapeutics aimed at pathogens which have gained resistance to antimicrobials. To formulate effective lactobacilli based therapy significant research on the effectiveness of different lactobacilli strains and its association with demographic distribution is required. Also, the side effects of such therapy needs to be evaluated.
Collapse
Affiliation(s)
- Ujjayni B Saha
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| |
Collapse
|
13
|
Romano M, Gravina AG, Eusebi LH, Pellegrino R, Palladino G, Frazzoni L, Dajti E, Gasbarrini A, Di Mario F, Zagari RM. Management of Helicobacter pylori infection: Guidelines of the Italian Society of Gastroenterology (SIGE) and the Italian Society of Digestive Endoscopy (SIED). Dig Liver Dis 2022; 54:1153-1161. [PMID: 35831212 DOI: 10.1016/j.dld.2022.06.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori infection is very common and affects more than one-third of adults in Italy. Helicobacter pylori causes several gastro-duodenal diseases, such as gastritis, peptic ulcer and gastric malignancy, and extra-gastric diseases. The eradication of the bacteria is becoming complex to achieve due to increasing antimicrobial resistance. To address clinical questions related to the diagnosis and treatment of Helicobacter pylori infection, three working groups examined the following topics: (1) non-invasive and invasive diagnostic tests, (2) first-line treatment, and (3) rescue therapies for Helicobacter pylori infection. Recommendations are based on the best available evidence to help physicians manage Helicobacter pylori infection in Italy, and have been endorsed by the Italian Society of Gastroenterology and the Italian Society of Digestive Endoscopy.
Collapse
Affiliation(s)
- Marco Romano
- Department of Precision Medicine and Complex Operative Unit of Hepatogastroenterology and Digestive Endoscopy, University Hospital, University of Campania "Luigi Vanvitelli", Via Luigi de Crecchio, 80138, Napoli, Italy.
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine and Complex Operative Unit of Hepatogastroenterology and Digestive Endoscopy, University Hospital, University of Campania "Luigi Vanvitelli", Via Luigi de Crecchio, 80138, Napoli, Italy
| | - Leonardo Henry Eusebi
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Raffaele Pellegrino
- Department of Precision Medicine and Complex Operative Unit of Hepatogastroenterology and Digestive Endoscopy, University Hospital, University of Campania "Luigi Vanvitelli", Via Luigi de Crecchio, 80138, Napoli, Italy
| | - Giovanna Palladino
- Department of Precision Medicine and Complex Operative Unit of Hepatogastroenterology and Digestive Endoscopy, University Hospital, University of Campania "Luigi Vanvitelli", Via Luigi de Crecchio, 80138, Napoli, Italy
| | - Leonardo Frazzoni
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Elton Dajti
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Antonio Gasbarrini
- Complex Operating Unit of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Via della Pineta Sacchetti, 217, 00168, Rome, Italy
| | - Francesco Di Mario
- Geriatric-Rehabilitation Department, University of Parma, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Parma, Italy
| | - Rocco Maurizio Zagari
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| |
Collapse
|
14
|
Aximujiang K, Kaheman K, Wushouer X, Wu G, Ahemaiti A, Yunusi K. Lactobacillus acidophilus and HKL Suspension Alleviates Ulcerative Colitis in Rats by Regulating Gut Microbiota, Suppressing TLR9, and Promoting Metabolism. Front Pharmacol 2022; 13:859628. [PMID: 35600873 PMCID: PMC9118348 DOI: 10.3389/fphar.2022.859628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease with complex pathogenesis. The intestinal flora disturbance affects the homeostasis of the intestinal environment, leading to metabolic imbalance and immune abnormalities of the host, contributing to the perpetuation of intestinal inflammation. We suggest that the combination of anti-inflammatory therapy and the regulation of intestinal flora balance may help in the treatment process. Previously, we used a combination treatment consisting of Lactobacillus acidophilus (Lac) and Chinese medicine Huan Kui Le (HKL) suspension in a UC rat model, where the combined intervention was more effective than either treatment alone. Herein, the mechanism of action of this combined treatment has been investigated using 16S rRNA sequencing, immunohistochemistry, and ELISA methods in the colon, and untargeted metabolomics profiling in serum. Colon protein expression levels of IL-13 and TGF-β were upregulated, whereas those of TLR9 and TLR4 were downregulated, consistent with an anti-inflammatory effect. In addition, gut microbiota structure changed, shown by a decrease in opportunistic pathogens correlated with intestinal inflammation, such as Klebsiella and Escherichia-Shigella, and an increase in beneficial bacteria such as Bifidobacterium. The latter correlated positively with IL-13 and TGF-β and negatively with IFN-γ. Finally, this treatment alleviated the disruption of the metabolic profile observed in UC rats by increasing short-chain fatty acid (SCFA)-producing bacteria in the colonic epithelium. This combination treatment also affected the metabolism of lactic acid, creatine, and glycine and inhibited the growth of Klebsiella. Overall, we suggest that treatment combining probiotics and traditional Chinese medicine is a novel strategy beneficial in UC that acts by modulating gut microbiota and its metabolites, TLR9, and cytokines in different pathways.
Collapse
Affiliation(s)
- Kasimujiang Aximujiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Kuerbannaimu Kaheman
- Department of Rehabilitation Medicine, First Affiliated Hospital in Xinjiang Medical University, Urumqi, China
| | - Xilinguli Wushouer
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Guixia Wu
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Abulaiti Ahemaiti
- The Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Kurexi Yunusi
- Uygur Medical College, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
15
|
Keikha M, Kamali H. The impact of Saccharomyces boulardii adjuvant supplementation on alternation of gut microbiota after H. pylori eradication; a metagenomics analysis. GENE REPORTS 2022; 26:101499. [DOI: 10.1016/j.genrep.2022.101499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Chen MJ, Chen CC, Huang YC, Tseng CC, Hsu JT, Lin YF, Fang YJ, Wu MS, Liou JM. The efficacy of Lactobacillus acidophilus and rhamnosus in the reduction of bacterial load of Helicobacter pylori and modification of gut microbiota-a double-blind, placebo-controlled, randomized trial. Helicobacter 2021; 26:e12857. [PMID: 34708471 DOI: 10.1111/hel.12857] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Probiotics may alter the gut microbiota and may reduce antibiotic-related dysbiosis after H. pylori eradication. However, whether probiotics are effective in reducing the bacterial load of H. pylori and modifying the gut microbiota remains unknown. We aimed to assess the efficacy of Lactobacillus acidophilus and Lactobacillus rhamnosus in reducing the bacterial load of H. pylori and modifying the gut microbiota. MATERIALS AND METHODS In this double-blind, randomized, placebo-controlled trial, we recruited 40 adult subjects with moderate to high bacterial loads of H. pylori, defined as a mean delta over baseline (DOB) value of the 13 C-urea breath test (13 C-UBT) of 10 or greater every 4 days 6 times. Eligible subjects were randomized in a 1:1 ratio to receive either probiotics containing Lactobacillus acidophilus and Lactobacillus rhamnosus or placebo twice daily for 4 weeks. 13 C-UBT was measured weekly from the beginning of treatment to 2 weeks after treatment. Amplification of the V3 and V4 hypervariable regions of the 16S rRNA was performed for fecal microbiota. RESULTS A total of 40 subjects were randomized to receive probiotics or placebo. The DOB value was significantly lower in the probiotic group than in the placebo group after 4 weeks of treatment (26.0 vs. 18.5, p = .045). The DOB value was significantly reduced compared to that at baseline in the probiotic group (18.5 vs. 26.7, p = .001) but not in the placebo group (26.0 vs. 25.0, p = .648). However, the eradication rate for H. pylori was 0% in both groups. There was no significant difference in the DOB values between the two groups 1 and 2 weeks after discontinuation of the probiotics. There were also no significant changes observed in the α-diversity and β-diversity at week 4 compared to baseline in the probiotic group (p = .77 and 0.91) and the placebo group (p = .26 and 0.67). CONCLUSIONS Although the use of Lactobacillus acidophilus and Lactobacillus rhamnosus may reduce the bacterial load of H. pylori, there were no significant changes in the composition of gut microbiota. This trial is registered with ClinicalTrials.gov, NCT02725138.
Collapse
Affiliation(s)
- Mei-Jyh Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Chang Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chun Huang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Clinical Trial Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chieh-Chih Tseng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jing-Ting Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Fen Lin
- Taiwan Sugar Corporation Biotechnology Business R&D Division, Chia-Yi, Taiwan
| | - Yu-Jen Fang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | | |
Collapse
|
17
|
Kang S, Guo Y, Rao J, Jin H, You HJ, Ji GE. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus plantarum pH3A, monolaurin, and grapefruit seed extract. Food Funct 2021; 12:11024-11032. [PMID: 34657941 DOI: 10.1039/d1fo01480c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infection is the most common cause of gastritis and gastric ulcers. Considering the severe side effects of current antibiotic therapies, it is crucial to find an alternate treatment for H. pylori infection. In this study, we investigated the anti-H. pylori effects of a newly isolated strain of Lactobacillus plantarum (pH3A), monolaurin, grapefruit seed extract (GSE), and their synergies in vitro and in vivo. Monolaurin and GSE suppressed H. pylori growth and urease activity at a minimal inhibitory concentration (MIC) of 62.5 ppm. Live cells and cell-free culture supernatant (CFCS) of L. plantarum pH3A with or without pH adjustment also significantly inhibited H. pylori growth. Although synergy was not observed between monolaurin and GSE, the addition of CFCS significantly enhanced their anti-H. pylori activities. Moreover, L. plantarum pH3A significantly decreased the ability of H. pylori to adhere to AGS cells and interleukin (IL)-8 production in the H. pylori-stimulated AGS cell line. The addition of GSE or monolaurin strengthened these effects. In the in vivo study, H. pylori colonization of the mouse stomach and total serum IgG production were significantly reduced by L. plantarum pH3A treatment, but the addition of monolaurin or GSE did not contribute to these anti-H. pylori activities. Therefore, the L. plantarum pH3A strain can potentially be applied as an alternative anti-H. pylori therapy, but evidence of its synergy with monolaurin or GSE in vivo is still lacking.
Collapse
Affiliation(s)
- Sini Kang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111'' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China. .,Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Yaqing Guo
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Junhui Rao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111'' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China.
| | - Hui Jin
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Hyun Ju You
- Bio-MAX/N-BIO, Seoul National University, Seoul 08826, Korea.
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea. .,Research Center, BIFIDO Co., Ltd, Hongcheon 25117, Korea.
| |
Collapse
|
18
|
Keikha M, Karbalaei M. Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections. BMC Gastroenterol 2021; 21:388. [PMID: 34670526 PMCID: PMC8527827 DOI: 10.1186/s12876-021-01977-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the causative agent of stomach diseases such as duodenal ulcer and gastric cancer, in this regard incomplete eradication of this bacterium has become to a serious concern. Probiotics are a group of the beneficial bacteria which increase the cure rate of H. pylori infections through various mechanisms such as competitive inhibition, co-aggregation ability, enhancing mucus production, production of bacteriocins, and modulating immune response. RESULT In this study, according to the received articles, the anti-H. pylori activities of probiotics were reviewed. Based on studies, administration of standard antibiotic therapy combined with probiotics plays an important role in the effective treatment of H. pylori infection. According to the literature, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus rhamnosus GG, and Saccharomyces boulardii can effectively eradicate H. pylori infection. Our results showed that in addition to decrease gastrointestinal symptoms, probiotics can reduce the side effects of antibiotics (especially diarrhea) by altering the intestinal microbiome. CONCLUSION Nevertheless, antagonist activities of probiotics are H. pylori strain-specific. In general, these bacteria can be used for therapeutic purposes such as adjuvant therapy, drug-delivery system, as well as enhancing immune system against H. pylori infection.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
19
|
Kawaguchi AL, Guner YS, Sømme S, Quesenberry AC, Arthur LG, Sola JE, Downard CD, Rentea RM, Valusek PA, Smith CA, Slidell MB, Ricca RL, Dasgupta R, Renaud E, Miniati D, McAteer J, Beres AL, Grabowski J, Peter SDS, Gosain A. Management and outcomes for long-segment Hirschsprung disease: A systematic review from the APSA Outcomes and Evidence Based Practice Committee. J Pediatr Surg 2021; 56:1513-1523. [PMID: 33993978 PMCID: PMC8552809 DOI: 10.1016/j.jpedsurg.2021.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Long-Segment Hirschsprung Disease (LSHD) differs clinically from short-segment disease. This review article critically appraises current literature on the definition, management, outcomes, and novel therapies for patients with LSHD. METHODS Four questions regarding the definition, management, and outcomes of patients with LSHD were generated. English-language articles published between 1990 and 2018 were compiled by searching PubMed, Scopus, Cochrane Central Register of Controlled Trials, Web of Science, and Google Scholar. A qualitative synthesis was performed. RESULTS 66 manuscripts were included in this systematic review. Standardized nomenclature and preoperative evaluation for LSHD are recommended. Insufficient evidence exists to recommend a single method for the surgical repair of LSHD. Patients with LSHD may have increased long-term gastrointestinal symptoms, including Hirschsprung-associated enterocolitis (HAEC), but have a quality of life similar to matched controls. There are few surgical technical innovations focused on this disorder. CONCLUSIONS A standardized definition of LSHD is recommended that emphasizes the precise anatomic location of aganglionosis. Prospective studies comparing operative options and long-term outcomes are needed. Translational approaches, such as stem cell therapy, may be promising in the future for the treatment of long-segment Hirschsprung disease.
Collapse
Affiliation(s)
- Akemi L Kawaguchi
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yigit S Guner
- Department of Surgery University of California Irvine and Division of Pediatric Surgery Children's Hospital of Orange County, USA
| | - Stig Sømme
- Division of Pediatric Surgery, Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | | | - L Grier Arthur
- Division of Pediatric General, Thoracic, and Minimally Invasive Surgery, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Juan E Sola
- Division of Pediatric Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Cynthia D Downard
- Division of Pediatric Surgery, Hiram C. Polk, Jr, MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Rebecca M Rentea
- Department of Pediatric Surgery, Children's Mercy-Kansas City, Kansas City, MO, USA
| | - Patricia A Valusek
- Pediatric Surgical Associates, Children's Minnesota, Minneapolis, MN, USA
| | - Caitlin A Smith
- Division of Pediatric General and Thoracic Surgery, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, USA
| | - Mark B Slidell
- Section of Pediatric Surgery, Comer Children's Hospital, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Robert L Ricca
- Division of Pediatric Surgery, Naval Medical Center, Portsmouth, VA, USA
| | - Roshni Dasgupta
- Division of Pediatric General and Thoracic Surgery, Cincinnati Childrens Medical Center, University of Cincinnati, Cincinnati OH, USA
| | - Elizabeth Renaud
- Division of Pediatric Surgery, Alpert Medical School of Brown University, Hasbro Children's Hospital, Rhode Island Hospital, Providence, RI, USA
| | - Doug Miniati
- Division of Pediatric Surgery, Kaiser Permanente Roseville Women and Children's Center, Roseville, California, USA
| | | | - Alana L Beres
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California, Davis, Sacramento CA, USA
| | - Julia Grabowski
- Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University, Chicago, IL long, USA
| | - Shawn D St Peter
- Department of Surgery, Children's Mercy Hospital, Kansas City, MO, USA
| | - Ankush Gosain
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.
| |
Collapse
|
20
|
Zommiti M, Chikindas ML, Ferchichi M. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans. Probiotics Antimicrob Proteins 2021; 12:1266-1289. [PMID: 31376026 DOI: 10.1007/s12602-019-09570-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In livestock production, lactic acid bacteria (LAB) represent the most widespread microorganisms used as probiotics. For such critical use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. Recently, probiotics have become highly recognized as supplements for humans and in particular for animals because of their beneficial outcome on health improvement and well-being maintenance. Various factors, encompassing dietary and management constraints, have been demonstrated to tremendously influence the structure, composition, and activities of gut microbial communities in farm animals. Previous investigations reported the potential of probiotics in animal diets and nutrition. But a high rate of inconsistency in the efficiency of probiotics has been reported. This may be due, in a major part, to the dynamics of the gastrointestinal microbial communities. Under stressing surroundings, the direct-fed microbials may play a key role as the salient limiting factor of the severity of the dysbiosis caused by disruption of the normal intestinal balance. Probiotics are live microorganisms, which confer health benefits on the host by positively modifying the intestinal microflora. Thus, the aim of this review is to summarize and to highlight the positive influence of probiotics and potential probiotic microbe supplementation in animal feed with mention of several limitations.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ, USA
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia.
| |
Collapse
|
21
|
Zhou Q, Xue B, Gu R, Li P, Gu Q. Lactobacillus plantarum ZJ316 Attenuates Helicobacter pylori-Induced Gastritis in C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6510-6523. [PMID: 34096709 DOI: 10.1021/acs.jafc.1c01070] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helicobacter pylori is a highly prevalent human-specific pathogen that causes various gastric diseases. In the present study, Lactobacillus plantarum ZJ316, which could survive well in simulated gastrointestinal conditions, was found to have significant anti-H. pylori ability. Animal assays revealed that L. plantarum ZJ316 had preventive and therapeutic effects on H. pylori-induced gastritis. L. plantarum ZJ316 significantly decreased interferon γ (IFN-γ) and interleukin 6 (IL-6) levels, increased the IL-10 level, and repaired mucosal damage. Moreover, 16S rRNA gene sequencing revealed that the relative abundance of H. pylori could be significantly reduced by L. plantarum ZJ316 administration. Members of the families Dehalobacteriaceae and Geodermatophilaceae were more prevalent in the prevention group, while Lactobacillaceae and Actinomycetaceae were more prevalent in the treatment group. These results indicate that L. plantarum ZJ316 serves as a potential candidate for the prevention and treatment of H. pylori-induced gastritis by regulating the gastric microbiota and reducing mucosal inflammation.
Collapse
Affiliation(s)
- Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Bingyao Xue
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Rongcheng Gu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
22
|
Kim J, Balasubramanian I, Bandyopadhyay S, Nadler I, Singh R, Harlan D, Bumber A, He Y, Kerkhof LJ, Gao N, Su X, Ferraris RP. Lactobacillus rhamnosus GG modifies the metabolome of pathobionts in gnotobiotic mice. BMC Microbiol 2021; 21:165. [PMID: 34082713 PMCID: PMC8176599 DOI: 10.1186/s12866-021-02178-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Lactobacillus rhamnosus GG (LGG) is the most widely used probiotic, but the mechanisms underlying its beneficial effects remain unresolved. Previous studies typically inoculated LGG in hosts with established gut microbiota, limiting the understanding of specific impacts of LGG on host due to numerous interactions among LGG, commensal microbes, and the host. There has been a scarcity of studies that used gnotobiotic animals to elucidate LGG-host interaction, in particular for gaining specific insights about how it modifies the metabolome. To evaluate whether LGG affects the metabolite output of pathobionts, we inoculated with LGG gnotobiotic mice containing Propionibacterium acnes, Turicibacter sanguinis, and Staphylococcus aureus (PTS). Results 16S rRNA sequencing of fecal samples by Ion Torrent and MinION platforms showed colonization of germ-free mice by PTS or by PTS plus LGG (LTS). Although the body weights and feeding rates of mice remained similar between PTS and LTS groups, co-associating LGG with PTS led to a pronounced reduction in abundance of P. acnes in the gut. Addition of LGG or its secretome inhibited P. acnes growth in culture. After optimizing procedures for fecal metabolite extraction and metabolomic liquid chromatography-mass spectrometry analysis, unsupervised and supervised multivariate analyses revealed a distinct separation among fecal metabolites of PTS, LTS, and germ-free groups. Variables-important-in-projection scores showed that LGG colonization robustly diminished guanine, ornitihine, and sorbitol while significantly elevating acetylated amino acids, ribitol, indolelactic acid, and histamine. In addition, carnitine, betaine, and glutamate increased while thymidine, quinic acid and biotin were reduced in both PTS and LTS groups. Furthermore, LGG association reduced intestinal mucosal expression levels of inflammatory cytokines, such as IL-1α, IL-1β and TNF-α. Conclusions LGG co-association had a negative impact on colonization of P. acnes, and markedly altered the metabolic output and inflammatory response elicited by pathobionts. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02178-2.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | | | - Sheila Bandyopadhyay
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, 07102, USA
| | - Ian Nadler
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Rajbir Singh
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, 07102, USA
| | - Danielle Harlan
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Amanda Bumber
- Comparative Medicine Resources, Rutgers University, Newark, NJ, 07103, USA
| | - Yuling He
- Department of Medicine, Clinical Academic Building, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA.,Present address: Geriatric Endocrinology Division, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Nan Gao
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, 07102, USA
| | - Xiaoyang Su
- Department of Medicine, Clinical Academic Building, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| |
Collapse
|
23
|
Zommiti M, Feuilloley MGJ, Connil N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms 2020; 8:E1907. [PMID: 33266303 PMCID: PMC7760123 DOI: 10.3390/microorganisms8121907] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are known for their biotechnological potential. Moreover, LAB are distinguished by amazing criteria: Adjusting the intestinal environment, inhibiting pathogenic microbes in the gastrointestinal tract, ability to reduce pathogen adhesion activity, improving the balance of the microbiota inside the intestine, capabilities of regulating intestinal mucosal immunity, and maintaining intestinal barrier function. The escalating number of research and studies about beneficial microorganisms and their impact on promoting health has attracted a big interest in the last decades. Since antiquity, various based fermented products of different kinds have been utilized as potential probiotic products. Nevertheless, the current upsurge in consumers' interest in bioalternatives has opened new horizons for the probiotic field in terms of research and development. The present review aims at shedding light on the world of probiotics, a continuous story of astonishing success in various fields, in particular, the biomedical sector and pharmaceutical industry, as well as to display the importance of probiotics and their therapeutic potential in purpose to compete for sturdy pathogens and to struggle against diseases and acute infections. Shadows and future trends of probiotics use are also discussed.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université Tunis El-Manar, Tunis 1006, Tunisia
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, Normandie Université, F-27000 Evreux, France; (M.G.J.F.); (N.C.)
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, Normandie Université, F-27000 Evreux, France; (M.G.J.F.); (N.C.)
| |
Collapse
|
24
|
Pakwan C, Chitov T, Chantawannakul P, Manasam M, Bovonsombut S, Disayathanoowat T. Bacterial compositions of indigenous Lanna (Northern Thai) fermented foods and their potential functional properties. PLoS One 2020; 15:e0242560. [PMID: 33206720 PMCID: PMC7673563 DOI: 10.1371/journal.pone.0242560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/04/2020] [Indexed: 01/22/2023] Open
Abstract
Many indigenous fermented foods of Northern Thailand and neighbouring regions have traditionally been known for their health benefits. In this study, we explored the communities of bacteria in selected fermented foods which are commonly consumed among ethnic groups around Northern Thailand, for which information on their microbial compositions or their functional properties is still limited. The selected food groups included Thua Nao (alkaline fermented soybean product), Nham (fermented pork sausage/loaf), Nam phak (fermented Chinese cabbage) and Miang (fermented leaves from Miang Tea trees). Bacteria in these fermented foods were isolated and enumerated. Bacterial communities were determined using a culture-independent (pyrosequencing) approach. Lactic acid bacteria were recovered from all of these fermented food samples, with levels ranging from 3.1 to 7.5 log CFU/g throughout the fermentation processes. Analysis of the 16S rRNA gene from the fermented food samples using 454-pyrosequencing resulted in 113,844 sequences after quality evaluation. Lactic acid bacteria were found in high proportions in Nham, Nam phak and Miang. Bacillus was predominant in Thua nao, in which significant proportions of Lactic acid bacteria of the family Leuconostocaceae were also found. Groups of lactic acid bacteria found varied among different food samples, but three genera were predominant: Lactococcus, Lactobacillus and Leuconostoc, of which many members are recognised as probiotics. The results showed that these traditional Thai fermented food products are rich sources of beneficial bacteria and can potentially be functional/probiotic foods.
Collapse
Affiliation(s)
- Chonthicha Pakwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Thararat Chitov
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center (ESRC), Chiang Mai University, Chiang Mai, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center (ESRC), Chiang Mai University, Chiang Mai, Thailand
| | - Manop Manasam
- Department of Thai Art, Faculty of Fine Art, Chiang Mai University, Chiang Mai, Thailand
| | - Sakunnee Bovonsombut
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center (ESRC), Chiang Mai University, Chiang Mai, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Youssef A, Afifi A, Hamed A, Enany M. First report of PCR-based detection of Helicobacter species DNA in Camelus dromedarius in Egypt. Vet World 2020; 13:1898-1901. [PMID: 33132603 PMCID: PMC7566247 DOI: 10.14202/vetworld.2020.1898-1901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/10/2020] [Indexed: 11/22/2022] Open
Abstract
Background and Aim: Helicobacter species infections have epidemiological and zoonotic impacts, and different species of Helicobacter have been implicated in infecting humans and animals. The aim of this study was to investigate Helicobacter species infections in Camelus dromedarius. Materials and Methods: Fecal samples were collected from 32 camels from 9 camel farms located at Ismailia Governorate, Egypt. The collected samples were investigated by bacteriological isolation and conventional polymerase chain reaction (PCR) assays targeting the 16S ribosomal RNA gene. Results: Although Helicobacter species could not be isolated from all the examined samples, Helicobacter DNA was detected in 2 (22.22%) of the 9 camel farms. Of the 32 camel fecal samples examined, 4 (12.5%) were positive for Helicobacter species as analyzed by the PCR assay. Conclusion: To the best of our knowledge, this is the first report of PCR-based detection of Helicobacter species infections in C. dromedarius. Further epidemiological studies are required to clarify Helicobacter species infections in camels.
Collapse
Affiliation(s)
- Ahmed Youssef
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Afifi
- Department of Microbiology (Bacteriology), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ayman Hamed
- Department of Biotechnology, Animal Health Research Institute, 7 Nady El Seid St., Dokki, Giza, Egypt
| | - Mohamed Enany
- Department of Biotechnology, Animal Health Research Institute, 7 Nady El Seid St., Dokki, Giza, Egypt
| |
Collapse
|
26
|
Aponte M, Murru N, Shoukat M. Therapeutic, Prophylactic, and Functional Use of Probiotics: A Current Perspective. Front Microbiol 2020; 11:562048. [PMID: 33042069 PMCID: PMC7516994 DOI: 10.3389/fmicb.2020.562048] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are considered as the twenty-first century panpharmacon due to their competent remedial power to cure from gastrointestinal dysbiosis, systematic metabolic diseases, and genetic impairments up to complicated neurodegenerative disorders. They paved the way for an innovative managing of various severe diseases through palatable food products. The probiotics' role as a "bio-therapy" increased their significance in food and medicine due to many competitive advantages over traditional treatment therapies. Their prophylactic and therapeutic potential has been assessed through hundreds of preclinical and clinical studies. In addition, the food industry employs probiotics as functional and nutraceutical ingredients to enhance the added value of food product in terms of increased health benefits. However, regardless of promising health-boosting effects, the probiotics' efficacy still needs an in-depth understanding of systematic mechanisms and factors supporting the healthy actions.
Collapse
Affiliation(s)
- Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Mahtab Shoukat
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
27
|
Zagari RM, Frazzoni L, Marasco G, Fuccio L, Bazzoli F. Treatment of Helicobacter pylori infection: a clinical practice update. Minerva Med 2020; 112:281-287. [PMID: 32700868 DOI: 10.23736/s0026-4806.20.06810-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Helicobacter pylori infection still represents a major health issue, especially in developing countries, with an estimate of 4 billion of infected subjects in 2015. The increase of antibiotic resistance has undermined the efficacy of standard triple therapy leading to more complex regimens. This review summarizes recommendations of international guidelines and reports the most recent evidence from meta-analyses and clinical trials on the treatment of Helicobacter pylori infection. The choice of H. pylori eradication regimen should be based on the local prevalence of clarithromycin resistance and the previous use of macrolides. Quadruple therapies (bismuth quadruple and concomitant) are the recommended regimens for the first-line treatment; a 14-day clarithromycin-containing triple therapy is suggested in areas with low prevalence of clarithromycin resistance and in patients without previous use of macrolides. Data on the efficacy of sequential therapy against clarithromycin resistant H. pylori strains are contradictory, and its use in the treatment of H. pylori infection is generally discouraged. Second-line treatments include levofloxacin-containing triple therapy and bismuth quadruple therapy. Probiotic supplementation should be used with the aim to reduce antibiotic-related adverse events. Recent evidence would support current guideline recommendations for the treatment of Helicobacter pylori infection.
Collapse
Affiliation(s)
- Rocco M Zagari
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy -
| | - Leonardo Frazzoni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Lorenzo Fuccio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Franco Bazzoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Saracino IM, Pavoni M, Saccomanno L, Fiorini G, Pesci V, Foschi C, Piccirilli G, Bernardini G, Holton J, Figura N, Lazzarotto T, Borghi C, Vaira B. Antimicrobial Efficacy of Five Probiotic Strains Against Helicobacter pylori. Antibiotics (Basel) 2020; 9:antibiotics9050244. [PMID: 32403331 PMCID: PMC7277513 DOI: 10.3390/antibiotics9050244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Treatment of Helicobacter pylori (H. pylori) infection is a challenge for clinicians. The large increase in drug-resistant strains makes the formulation of new therapeutic strategies fundamental. The frequent onset of side effects during antibiotic treatment (mainly due to intestinal dysbiosis) should not be underestimated as it may cause the interruption of treatment, failure of H. pylori eradication and clonal selection of resistant bacteria. Probiotic integration during antibiotic treatment can exert a dual function: a direct antagonistic effect on H. pylori and a balancing effect on dysbiosis. Therefore, it fulfills the definition of a new therapeutic strategy to successfully treat H. pylori infection. Data reported in literature give promising but discrepant results. Aim: To assess in vitro bacteriostatic and bactericidal activity of probiotic strains against H. pylori. Materials and methods: L. casei, L. paracasei, L. acidophilus, B. lactis and S. thermophilus strains were used. Agar well diffusion and time-kill curves were carried out to detect bacteriostatic and bactericidal activity, respectively. Results: All probiotic strains showed both bacteriostatic and bactericidal activity vs. H. pylori. Conclusions: Such findings prompted us to plan a protocol of treatment in which probiotics are given to infected patients in association with antibiotic therapy.
Collapse
Affiliation(s)
- Ilaria Maria Saracino
- Department of Surgical and Medical Sciences, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (M.P.); (L.S.); (G.F.); (V.P.); (C.B.)
| | - Matteo Pavoni
- Department of Surgical and Medical Sciences, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (M.P.); (L.S.); (G.F.); (V.P.); (C.B.)
| | - Laura Saccomanno
- Department of Surgical and Medical Sciences, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (M.P.); (L.S.); (G.F.); (V.P.); (C.B.)
| | - Giulia Fiorini
- Department of Surgical and Medical Sciences, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (M.P.); (L.S.); (G.F.); (V.P.); (C.B.)
| | - Valeria Pesci
- Department of Surgical and Medical Sciences, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (M.P.); (L.S.); (G.F.); (V.P.); (C.B.)
| | - Claudio Foschi
- Microbiology and Clinical Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (C.F.); (G.P.); (T.L.)
| | - Giulia Piccirilli
- Microbiology and Clinical Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (C.F.); (G.P.); (T.L.)
| | - Giulia Bernardini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (G.B.); (N.F.)
| | - John Holton
- Department of Health & Social Sciences, University of Middlesex, London NW4 4HE, UK;
| | - Natale Figura
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (G.B.); (N.F.)
| | - Tiziana Lazzarotto
- Microbiology and Clinical Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (C.F.); (G.P.); (T.L.)
| | - Claudio Borghi
- Department of Surgical and Medical Sciences, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (M.P.); (L.S.); (G.F.); (V.P.); (C.B.)
| | - Berardino Vaira
- Department of Surgical and Medical Sciences, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (M.P.); (L.S.); (G.F.); (V.P.); (C.B.)
- Correspondence: ; Tel./Fax: +39-0512-144-140
| |
Collapse
|
29
|
Gebremariam HG, Qazi KR, Somiah T, Pathak SK, Sjölinder H, Sverremark Ekström E, Jonsson AB. Lactobacillus gasseri Suppresses the Production of Proinflammatory Cytokines in Helicobacter pylori-Infected Macrophages by Inhibiting the Expression of ADAM17. Front Immunol 2019; 10:2326. [PMID: 31636639 PMCID: PMC6788455 DOI: 10.3389/fimmu.2019.02326] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
The ability of Helicobacter pylori to evade the host immune system allows the bacterium to colonize the host for a lifetime. Long-term infection with H. pylori causes chronic inflammation, which is the major risk factor for the development of gastric ulcers and gastric cancer. Lactobacilli are part of the human microbiota and have been studied as an adjunct treatment in H. pylori eradication therapy. However, the molecular mechanisms by which lactobacilli act against H. pylori infection have not been fully characterized. In this study, we investigated the anti-inflammatory effects of Lactobacillus strains upon coincubation of host macrophages with H. pylori. We found that Lactobacillus gasseri Kx110A1 (L. gas), a strain isolated from a human stomach, but not other tested Lactobacillus species, blocked the production of the proinflammatory cytokines TNF and IL-6 in H. pylori-infected macrophages. Interestingly, L. gas also inhibited the release of these cytokines in LPS or LTA stimulated macrophages, demonstrating a general anti-inflammatory property. The inhibition of these cytokines did not occur through the polarization of macrophages from the M1 (proinflammatory) to M2 (anti-inflammatory) phenotype or through the altered viability of H. pylori or host cells. Instead, we show that L. gas suppressed the release of TNF and IL-6 by reducing the expression of ADAM17 (also known as TNF-alpha-converting enzyme, TACE) on host cells. Our findings reveal a novel mechanism by which L. gas prevents the production of the proinflammatory cytokines TNF and IL-6 in host macrophages.
Collapse
Affiliation(s)
- Hanna G Gebremariam
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Khaleda Rahman Qazi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tanvi Somiah
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sushil Kumar Pathak
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Department of Bioscience and Bioinformatics, Khallikote University, Berhampur, India
| | - Hong Sjölinder
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Center for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden
| | - Eva Sverremark Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
Garcia-Castillo V, Marín-Vega AM, Ilabaca A, Albarracín L, Marcial G, Kitazawa H, Garcia-Cancino A, Villena J. Characterization of the immunomodulatory and anti- Helicobacter pylori properties of the human gastric isolate Lactobacillus rhamnosus UCO-25A. BIOFOULING 2019; 35:922-937. [PMID: 31646895 DOI: 10.1080/08927014.2019.1675153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
The ability to form biofilms and the potential immunomodulatory properties of the human gastric isolate Lactobacillus rhamnosus UCO-25A were characterized in vitro. It was demonstrated that L. rhamnosus UCO-25A is able to form biofilms on abiotic and cell surfaces, and to modulate the inflammatory response triggered by Helicobacter pylori infection in gastric epithelial cells and THP-1 macrophages. L. rhamnosus UCO-25A exhibited a substantial anti-inflammatory effect in both cell lines and improved IL-10 levels produced by challenged macrophages. Additionally, UCO-25A protected AGS cells against H. pylori infection with a higher pathogen inhibition when a biofilm was formed. Given the importance of inflammation in H. pylori-mediated diseases, the differential modulation of the inflammatory response in the gastric mucosa by an autochthonous strain is an attractive alternative for improving H. pylori eradication and reducing the severity of the diseases that arise from the resulting chronic inflammation.
Collapse
Affiliation(s)
- Valeria Garcia-Castillo
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ana María Marín-Vega
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Alejandra Ilabaca
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Leonardo Albarracín
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Laboratory of Computing Science, Faculty of Exact Sciences and Technology, Tucuman University, Tucuman, Argentina
| | - Guillermo Marcial
- Laboratory of Technology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Apolinaria Garcia-Cancino
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
31
|
Pohl D, Keller PM, Bordier V, Wagner K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J Gastroenterol 2019; 25:4629-4660. [PMID: 31528091 PMCID: PMC6718044 DOI: 10.3748/wjg.v25.i32.4629] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers, mucosa associated tissue lymphoma and gastric adenocarcinoma. In recent years, an alarming increase in antimicrobial resistance and subsequently failing empiric H. pylori eradication therapies have been noted worldwide, also in many European countries. Therefore, rapid and accurate determination of H. pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important. Traditionally, detection of H. pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time. Recent advances in diagnostics provide new tools, like real-time polymerase chain reaction (PCR) and line probe assays, to diagnose H. pylori infection and antimicrobial resistance to certain antibiotics, directly from clinical specimens. Moreover, high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome, thereby allowing identification of resistance mutations and associated antibiotic resistance. In the first part of this review, we will give an overview on currently available diagnostic methods for detection of H. pylori and its drug resistance and their implementation in H. pylori management. The second part of the review focusses on the use of next generation sequencing technology in H. pylori research. To this end, we conducted a literature search for original research articles in English using the terms “Helicobacter”, “transcriptomic”, “transcriptome”, “next generation sequencing” and “whole genome sequencing”. This review is aimed to bridge the gap between current diagnostic practice (histology, rapid urease test, H. pylori culture, PCR and line probe assays) and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H. pylori management guidelines and subsequently improve public health.
Collapse
Affiliation(s)
- Daniel Pohl
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern 3010, Switzerland
| | - Valentine Bordier
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Karoline Wagner
- Institute of Medical Microbiology, University of Zurich, Zurich 8006, Switzerland
| |
Collapse
|
32
|
Yoon JY, Cha JM, Hong SS, Kim HK, Kwak MS, Jeon JW, Shin HP. Fermented milk containing Lactobacillus paracasei and Glycyrrhiza glabra has a beneficial effect in patients with Helicobacter pylori infection: A randomized, double-blind, placebo-controlled study. Medicine (Baltimore) 2019; 98:e16601. [PMID: 31464895 PMCID: PMC6736393 DOI: 10.1097/md.0000000000016601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lactobacillus paracasei and Glycyrrhiza glabra have been reported as having beneficial effects on Helicobacter pylori infection. We aimed to assess the efficacy and safety of fermented milk containing L paracasei HP7 and G glabra in patients with H pylori infection. METHODS This multicenter, prospective, randomized, double-blind, placebo-controlled clinical trial was conducted in 2 hospitals from April to December 2017. Patients with H pylori infection were randomized into either the treatment group (fermented milk with L paracasei HP7 and G glabra) or placebo group (fermented milk only) once daily for 8 weeks. The primary endpoint was the gastric load of H pylori measured by C-urea breath test (UBT). Secondary endpoints were histologic and clinical improvement. RESULTS A total of 142 patients were randomly allocated to the treatment (n = 71) or placebo groups (n = 71). Compared to baseline data, the quantitative value of C-UBT at 8 weeks was significantly reduced in the treatment group (from 20.8 ± 13.2% to 16.9 ± 10.8%, P = .035), but not in the placebo group (P = .130). Chronic inflammation improved significantly only in the treatment group (P = .013), whereas the neutrophil activity deteriorated significantly only in the placebo group (P = .003). Moreover, the treatment group had significant improvement in gastrointestinal symptoms (P = .049) and quality of life (P = .029). No serious adverse events were observed. CONCLUSION The combination of fermented milk containing L paracasei and G glabra reduced H pylori density and improved histologic inflammation. However, their mechanisms of action should be elucidated in further studies.
Collapse
Affiliation(s)
- Jin Young Yoon
- Department of Internal Medicine, Division of Gastroenterology, Kyung Hee University Hospital at Gang Dong, Kyung Hee University School of Medicine
| | - Jae Myung Cha
- Department of Internal Medicine, Division of Gastroenterology, Kyung Hee University Hospital at Gang Dong, Kyung Hee University School of Medicine
| | | | - Hyung Kyung Kim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Min Seob Kwak
- Department of Internal Medicine, Division of Gastroenterology, Kyung Hee University Hospital at Gang Dong, Kyung Hee University School of Medicine
| | - Jung Won Jeon
- Department of Internal Medicine, Division of Gastroenterology, Kyung Hee University Hospital at Gang Dong, Kyung Hee University School of Medicine
| | - Hyun Phil Shin
- Department of Internal Medicine, Division of Gastroenterology, Kyung Hee University Hospital at Gang Dong, Kyung Hee University School of Medicine
| |
Collapse
|
33
|
Eslami M, Yousefi B, Kokhaei P, Jazayeri Moghadas A, Sadighi Moghadam B, Arabkari V, Niazi Z. Are probiotics useful for therapy of Helicobacter pylori diseases? Comp Immunol Microbiol Infect Dis 2019; 64:99-108. [PMID: 31174707 DOI: 10.1016/j.cimid.2019.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
|
34
|
Investigations of families of patients diagnosed with gastric carcinoma in Bulgaria. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2019. [DOI: 10.1016/j.cegh.2018.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Asgari B, Kermanian F, Hedayat Yaghoobi M, Vaezi A, Soleimanifar F, Yaslianifard S. The Anti- Helicobacter pylori Effects of Lactobacillus acidophilus, L. plantarum, and L. rhamnosus in Stomach Tissue of C57BL/6 Mice. Visc Med 2019; 36:137-143. [PMID: 32356850 DOI: 10.1159/000500616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background and Aim Helicobacter pylori is one of the most common pathogenic bacteria in the human gut, and is also one of the most important factors that cause digestive disorders such as chronic inflammation, gastric ulcers, and even gastric cancer. Since the use of various antibiotics to treat H. pylori infection is associated with the development of resistance in this bacterium, the aim of this study was to determine the anti-H. pylori effects of Lactobacillus acidophilus, L. plantarum, and L. rhamnosus in the stomach tissue of C57BL/6 mice. Materials and Methods In this experimental study, 70 mice in ten groups were evaluated from July to September 2017 in the microbiology laboratory of the School of Medicine, Alborz University of Medical Sciences, Karaj, Iran. After induction of H. pylori infection in mice with the standard strain of H. pylori (ATCC 43504), the infected mice were treated with drug and Lactobacillus species in different groups. Then, the anti-H. pylori effects of lactobacilli were evaluated by stool antigen test and tissue staining. Results Based on ELISA results and histological findings, a reduction of inflammation was observed. The group which was only exposed to L. rhamnosus and the one which was exposed to all three strains of Lactobacillus showed the highest antimicrobial effect on H. pylori. Conclusion According to the results of this study, probiotic bacteria including L. acidophilus, L. plantarum, and L. rhamnosus could be useful in the reduction of H. pylori infection in the mouse model.
Collapse
Affiliation(s)
- Behnoush Asgari
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Kermanian
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mojtaba Hedayat Yaghoobi
- Department of Infectious Diseases, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirabass Vaezi
- Department of Internal Medicine, Bahonar's Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Soleimanifar
- Dietary Supplements and Probiotic Research Center, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Dietary Supplements and Probiotic Research Center, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
36
|
Chakravarty K, Gaur S. Role of Probiotics in Prophylaxis of Helicobacter pylori Infection. Curr Pharm Biotechnol 2019; 20:137-145. [PMID: 30827235 DOI: 10.2174/1389201020666190227203107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori, a pathogenic bacterium, has been known to be the root cause of numerous gastrointestinal disorders. In patients showing symptoms of its infection, antibiotic therapy is a likely treatment. However, the high cost of antibiotic therapy, associated antibiotic resistance along with other adverse effects has led to the use of probiotics for Helicobacter pylori treatment. In recent times, probiotics have played an essential role as complementary prophylaxis for gastrointestinal diseases, thus minimizing antibiotics’ usage and their side effects. Probiotics are live microbial agents that exude beneficial effects on their hosts when administered in the proper dosage. The growth of the organism has been reported to be inhibited to a great extent by probiotics and research employing animal models has shown a significant reduction in H. pylori-associated gastric inflammation. In human clinical trials, it has been observed that treatment with probiotics alleviated gastritis symptoms caused by H. pylori and reduced colonization of the organism. As expected, complete eradication of H. pylori infection has not yet been reported by the administration of probiotics alone. Complement treatments using probiotics have shown to benefit infected individuals by decreasing the harmful effects of H. pylori eradication treatment using antibiotics. Long-term administration of probiotics might have favourable outcomes in H. pylori infection especially by decreasing the risk of development of diseases caused by increased levels of gastric inflammation. One such chronic condition is gastric ulcer which occurs due to considerable damage to the mucosal barrier by H. pylori colonization. This review provides a brief description of the promising role of probiotics as a complementary treatment to control H. pylori infection and consequently the management of various gastrointestinal disorders among populations with a special focus on gastric ulcer.
Collapse
Affiliation(s)
- Kashyapi Chakravarty
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector - 62, Noida, U.P, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector - 62, Noida, U.P, India
| |
Collapse
|
37
|
Qureshi N, Li P, Gu Q. Probiotic therapy in Helicobacter pylori infection: a potential strategy against a serious pathogen? Appl Microbiol Biotechnol 2019; 103:1573-1588. [PMID: 30610283 DOI: 10.1007/s00253-018-09580-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is a highly prevalent human pathogen responsible for chronic inflammation of the gastric tissues, gastroduodenal ulcers, and cancer. The treatment includes a pair of antibiotics with a proton pump inhibitor PPI. Despite the presence of different treatments, the infection rate is still increasing both in developed and developing states. The challenge of treatment failure is greatly due to the resistance of H. pylori to antibiotics and its side effects. Probiotics potential to cure H. pylori infection is well-documented. Probiotics combined with conventional treatment regime appear to have great potential in eradicating H. pylori infection, therefore, provide an excellent alternative approach to manage H. pylori load and its threatening disease outcome. Notably, anti-H. pylori activity of probiotics is strain specific,therefore establishing standard guidelines regarding the dose and formulation of individual strain is inevitable. This review is focused on probiotic's antagonism against H. pylori summarizing their three main potential aspects: their efficiency (i) as an alternative to H. pylori eradication treatment, (ii) as an adjunct to H. pylori eradication treatment and (iii) as a vaccine delivery vehicle.
Collapse
Affiliation(s)
- Nuzhat Qureshi
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
38
|
Buckley M, Lacey S, Doolan A, Goodbody E, Seamans K. The effect of Lactobacillus reuteri supplementation in Helicobacter pylori infection: a placebo-controlled, single-blind study. BMC Nutr 2018; 4:48. [PMID: 32153909 PMCID: PMC7050722 DOI: 10.1186/s40795-018-0257-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori is the major cause of chronic gastritis, and considered as a risk factor for peptic ulcer and gastric cancer. The H. pylori standard antibiotic therapy fails in about 25–30% of cases, particularly because of the increasing occurrence of resistance to antibiotics. The aim of the current study was to investigate whether the strain Lactobacillus reuteri DSM17648 which has been previously shown to reduce Helicobacter pylori load additionally improves gastrointestinal symptoms in H. pylori positive subjects when used in a 28 days supplementation. Methods In a single-blinded, placebo controlled study 24 H. pylori-positive adults (13 females, 11 males; median age: 43.5) with mild dyspepsia (mean GSRS score: 11.82) received placebo for 28 days followed by Pylopass™ containing the L. reuteri DSM 17648 (2 × 1010 cells per day) for the following 28 days. After 28 days of Pylopass™ supplementation the change in H. pylori load was measured by 13C urea breath test (13C-UBT) and the change in symptoms were determined by the Gastrointestinal Symptom Rating Scale (GSRS). In addition, blood assessments were conducted to measure the physiological changes relevant in terms of safety. Results After a 28-day supplementation phase with Pylopass™ there was a trend for reduction of H. pylori load in 62.5% of the subjects and for the overall GSRS scores in 66.7% of subjects. The overall GSRS scores from baseline to day 56 following all 24 subjects undergoing the placebo phase followed by the Pylopass™ phase was significantly decreased (p = 0.005). The mean 13C-UBT δ value decreased by 22.5% during the Pylopass™ supplementation phase (− 3.14), while the mean 13C-UBT δ increased by 37.3% (+ 3.79) in the placebo phase. No side effects were reported in either study phase. Conclusion The results demonstrated that L. reuteri DSM17648 has the potential to suppress H. pylori infection, and may lead to an improvement of H. pylori-associated gastro intestinal symptoms. Further studies with adequate power should be performed. Trial registration Clinicaltrials.gov: NCT02051348 (January 30, 2014).
Collapse
Affiliation(s)
- Martin Buckley
- 1Mercy University Hospital, Grenville Place, Centre, Cork, T12 WE28 Ireland
| | - Sean Lacey
- 2Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, T12 P928 Ireland
| | - Andrea Doolan
- 3Atlantia Food Clinical Trials, Heron House Offices First Floor, Blackpool Retail Park, Cork, T23 R50R Ireland
| | - Emily Goodbody
- 3Atlantia Food Clinical Trials, Heron House Offices First Floor, Blackpool Retail Park, Cork, T23 R50R Ireland
| | - Kelly Seamans
- 3Atlantia Food Clinical Trials, Heron House Offices First Floor, Blackpool Retail Park, Cork, T23 R50R Ireland
| |
Collapse
|
39
|
Innovative Perspectives of Integrated Chinese Medicine on H. pylori. Chin J Integr Med 2018; 24:873-880. [PMID: 29882207 DOI: 10.1007/s11655-017-2934-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori (H. pylori) treatment requires the development of more effective therapies, mainly owing to the challenges posed by the bacterial resistance to antibiotics. In China, critically high infection and antibiotic resistance rates have limited the application of classic H. pylori eradication therapies. Consequently, researchers are attempting to find new solutions by drawing from traditional medicine. This article reviews basic scientific and clinical progress in the use of integrated Chinese and Western medicine (IM) to treat H. pylori; describes the conflicting results between in vivo and in vitro studies in this regard; discusses the observed clinical effects of IM, with emphasis on traditional patent medicines; and proposes a role for IM in both the diagnosis and treatment of H. pylori, including the use of tongue manifestation as an early diagnostic method and capitalizing on IM's direct and indirect methods for enhancing antibiotic effect.
Collapse
|
40
|
Debraekeleer A, Remaut H. Future perspective for potentialHelicobacter pylorieradication therapies. Future Microbiol 2018; 13:671-687. [PMID: 29798689 DOI: 10.2217/fmb-2017-0115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ayla Debraekeleer
- Department of Structural & Molecular Microbiology, VIB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Department of Structural & Molecular Microbiology, VIB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
41
|
Opekun AR, Gonzales SA, Al-Saadi MA, Graham DY. Brief report: Lactobacillus bulgaricus GLB44 (Proviotic ™ ) plus esomeprazole for Helicobacter pylori eradication: A pilot study. Helicobacter 2018; 23:e12476. [PMID: 29504209 PMCID: PMC6913170 DOI: 10.1111/hel.12476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Recent studies of Lactobacillus delbrueckii subsp. bulgaricus GLB44 plus a proton-pump inhibitor (PPI) reported cures of more than 90% of patients with active Helicobacter pylori infections. AIM To confirm the high H. pylori cure rates reported previously. METHOD A pilot study was done in healthy H. pylori-infected volunteers using 3-gram sachet (3 billion cells) of L. delbrueckii GLB44 plus 22.3 mg of esomeprazole b.i.d., for 14 days. The result was determined by urea breath testing 4 weeks after therapy. Stopping rules required for ending enrollment if less than 3 of the first 10 subjects were cured. RESULTS Nine subjects were entered and because all failed to achieve negative urea breath test, the stopping rule required the study to end. CONCLUSION We were unable to confirm reports of achieving a high H. pylori cure rate with L. delbrueckii GLB44 plus a PPI.
Collapse
Affiliation(s)
- Antone R Opekun
- Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Savannah A Gonzales
- Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Mahmoud A Al-Saadi
- Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - David Y Graham
- Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
42
|
Eichenseher J. Peptic Ulcer Disease. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Goderska K, Agudo Pena S, Alarcon T. Helicobacter pylori treatment: antibiotics or probiotics. Appl Microbiol Biotechnol 2018; 102:1-7. [PMID: 29075827 PMCID: PMC5748437 DOI: 10.1007/s00253-017-8535-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 01/10/2023]
Abstract
Treatment of Helicobacter pylori infection is important for the management of gastrointestinal disorders such as peptic ulcer and gastric cancer. Due to the increase in the prevalence of H. pylori resistance to antibiotics, triple therapy with clarithromycin is no longer the best treatment for H. pylori, especially in some areas where the local resistance to this antibiotic is higher than 20%. Alternative treatments have been proposed for the eradication of H. pylori. Some of them including novel antibiotics or classical ones in different combinations; these treatments are being used in the regular clinical practice as novel and more effective treatments. Others therapies are using probiotics associated to antibiotics to treat this infection.The present article is a revision of H. pylori eradication treatment, focusing on emerging approaches to avoid the treatment failure, using new therapies with antimicrobials or with probiotics.
Collapse
Affiliation(s)
- Kamila Goderska
- Faculty of Food Science and Nutrition, Institute of Food Technology of Plant Origin, Department of Fermentation and Biosynthesis, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland.
| | - Sonia Agudo Pena
- Faculty of Food Science and Nutrition, Institute of Food Technology of Plant Origin, Department of Fermentation and Biosynthesis, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Teresa Alarcon
- Department of Microbiology, Hospital Universitario de La Princesa, 28006, Madrid, Spain
| |
Collapse
|
44
|
Alvi S, Javeed A, Akhtar B, Sharif A, Akhtar MF. Probiotics for cure of Helicobacter pylori infection: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017; 20:2215-2222. [DOI: 10.1080/10942912.2016.1233432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/03/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Sadia Alvi
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aqeel Javeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Bushra Akhtar
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Department of Pharmacy, University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
45
|
Takeda S, Igoshi K, Tsend-Ayush C, Oyunsuren T, Sakata R, Koga Y, Arima Y, Takeshita M. Lactobacillus paracasei strain 06TCa19 suppresses inflammatory chemokine induced by Helicobacter pylori in human gastric epithelial cells. Hum Cell 2017; 30:258-266. [PMID: 28434172 DOI: 10.1007/s13577-017-0172-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/11/2017] [Indexed: 02/08/2023]
Abstract
Helicobacter (H.) pylori infection is an important risk factor for gastric cancer that causes gastric inflammation. Inflammatory chemokines such as interleukin (IL)-8 and regulated on activation normal T cell expressed and secreted (RANTES) are elevated in the gastric mucosa by H. pylori. This study aimed to investigate the effects of Lactobacillus paracasei strain 06TCa19, a probiotic strain, on IL-8 and RANTES expression and production induced by H. pylori using human gastric epithelial cell lines. Strain 06TCa19 was shown to suppress H. pylori-mediated elevation of gene expression related to these chemokines in MKN45 cells. The strain also suppressed the increase in IL-8 and RANTES products induced by H. pylori in AGS cells as well as in MKN45 cells. In MKN45 cells inoculated with H. pylori, strain 06TCa19 was shown to downregulate the activation of NF-κB and p38 MAPK signaling pathways. Additionally, the level of the CagA virulence protein of H. pylori in the MKN45 cells and the number of viable H. pylori adhering to MKN45 cells decreased with the addition of strain 06TCa19. Moreover, the strain 06TCa19 notably increased lactic acid in the supernatant of MKN45 cells. Thus, lactic acid released from strain 06TCa19 might have inhibited the adhesion of H. pylori to MKN45 cells and prevented the insertion of H. pylori CagA into the cells, and elevation of IL-8 and RANTES genes and proteins might be suppressed by downregulating the NF-κB and p38 MAPK pathways. Therefore, use of strain 06TCa19 may prevent H. pylori-associated gastric inflammation.
Collapse
Affiliation(s)
- Shiro Takeda
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Keiji Igoshi
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto, 259-1193, Japan
| | - Chuluunbat Tsend-Ayush
- Food and Biotechnology School, Mongolian University of Science and Technology, Ulaanbaatar, 15160, Mongolia
| | | | - Ryoichi Sakata
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yasuhiro Koga
- Laboratory for Infectious Diseases, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Yuo Arima
- Research and Development Division, Minami Nihon Rakuno Kyodo Co. Ltd., Takagi 5282, Miyakonojo, Miyazaki, 885-0003, Japan
| | - Masahiko Takeshita
- Research and Development Division, Minami Nihon Rakuno Kyodo Co. Ltd., Takagi 5282, Miyakonojo, Miyazaki, 885-0003, Japan.
| |
Collapse
|
46
|
Mladenova-Hristova I, Grekova O, Patel A. Zoonotic potential of Helicobacter spp. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:265-269. [PMID: 28655571 DOI: 10.1016/j.jmii.2016.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/12/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022]
Abstract
The genus Helicobacter contains more than 35 species. Helicobacter pylori is the most important in terms of human health. Discovery of these helicobacters gives opportunity to understand the relationship between these bacteria which colonise the animal and human gut and their effect on the host. Infection with Helicobacter spp. and the associated diseases in their hosts allow us to study the pathogenic mechanisms. The potential zoonotic pathway for the transmission of Helicobacter spp. and epidemiology of this genus, deserve more attention to these emerging pathogens.
Collapse
Affiliation(s)
- Irena Mladenova-Hristova
- Department of Hygiene, Epidemiology and Inf. Diseases, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Olga Grekova
- Department of Hygiene, Epidemiology and Inf. Diseases, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Ami Patel
- Division of Dairy and Food Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India.
| |
Collapse
|
47
|
Mamo G. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 156:433-464. [PMID: 27432247 DOI: 10.1007/10_2016_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these bioactive compounds. In addition to their products, whole cell anaerobes have very interesting applications for enhancing the quality of life. Probiotic anaerobes have been on the market for many years and are receiving growing acceptance as health promoters. Gut anaerobes have been used to treat patients suffering from severe Clostridium difficile infection syndromes including diarrhoea and colitis which cannot be treated by other means. Whole cell anaerobes are also studied to detect and cure cancer. In recent years, evidence is emerging that anaerobes constituting the microbiome are linked to our overall health. A dysfunctional microbiome is believed to be the cause of many diseases including cancer, allergy, infection, obesity, diabetes and several other disorders. Maintaining normal microflora is believed to alleviate some of these serious health problems. Indeed, the use of probiotics and prebiotics which favourably change the number and composition of the gut microflora is known to render a health promoting effect. Our interaction with the microbiome anaerobes is complex. In fact, not only our lives but also our identities are more closely linked to the anaerobic microbial world than we may possibly imagine. We are just at the beginning of unravelling the secret of association between the microbiome and human body, and a clear understanding of the association may bring a paradigm shift in the way we diagnose and treat diseases and disorders. This chapter highlights some of the work done on bioactive compounds and whole cell applications of the anaerobes that foster human health and improve the quality of life.
Collapse
Affiliation(s)
- Gashaw Mamo
- Biotechnology, Center for Chemistry & Chemical Engineering, Lund University, 221 00, Lund, Sweden.
| |
Collapse
|
48
|
Huang Y, Wang QL, Cheng DD, Xu WT, Lu NH. Adhesion and Invasion of Gastric Mucosa Epithelial Cells by Helicobacter pylori. Front Cell Infect Microbiol 2016; 6:159. [PMID: 27921009 PMCID: PMC5118847 DOI: 10.3389/fcimb.2016.00159] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is the main pathogenic bacterium involved in chronic gastritis and peptic ulcer and a class 1 carcinogen in gastric cancer. Current research focuses on the pathogenicity of H. pylori and the mechanism by which it colonizes the gastric mucosa. An increasing number of in vivo and in vitro studies demonstrate that H. pylori can invade and proliferate in epithelial cells, suggesting that this process might play an important role in disease induction, immune escape and chronic infection. Therefore, to explore the process and mechanism of adhesion and invasion of gastric mucosa epithelial cells by H. pylori is particularly important. This review examines the relevant studies and describes evidence regarding the adhesion to and invasion of gastric mucosa epithelial cells by H. pylori.
Collapse
Affiliation(s)
- Ying Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| | - Qi-Long Wang
- Department of General Surgery, Tianjin Haihe Hospital Tianjin, China
| | - Dan-Dan Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| | - Wen-Ting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| |
Collapse
|
49
|
Salas-Jara MJ, Ilabaca A, Vega M, García A. Biofilm Forming Lactobacillus: New Challenges for the Development of Probiotics. Microorganisms 2016; 4:E35. [PMID: 27681929 PMCID: PMC5039595 DOI: 10.3390/microorganisms4030035] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Probiotics are live bacteria, generally administered in food, conferring beneficial effects to the host because they help to prevent or treat diseases, the majority of which are gastrointestinal. Numerous investigations have verified the beneficial effect of probiotic strains in biofilm form, including increased resistance to temperature, gastric pH and mechanical forces to that of their planktonic counterparts. In addition, the development of new encapsulation technologies, which have exploited the properties of biofilms in the creation of double coated capsules, has given origin to fourth generation probiotics. Up to now, reviews have focused on the detrimental effects of biofilms associated with pathogenic bacteria. Therefore, this work aims to amalgamate information describing the biofilms of Lactobacillus strains which are used as probiotics, particularly L. rhamnosus, L. plantarum, L. reuteri, and L. fermentum. Additionally, we have reviewed the development of probiotics using technology inspired by biofilms.
Collapse
Affiliation(s)
- María José Salas-Jara
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| | - Alejandra Ilabaca
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| | - Marco Vega
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| | - Apolinaria García
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| |
Collapse
|
50
|
KHODER GHALIA, AL-MENHALI ASMAA, AL-YASSIR FARAH, KARAM SHERIFM. Potential role of probiotics in the management of gastric ulcer. Exp Ther Med 2016; 12:3-17. [PMID: 27347010 PMCID: PMC4906699 DOI: 10.3892/etm.2016.3293] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/03/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer is one of the most common chronic gastrointestinal diseases characterized by a significant defect in the mucosal barrier. Helicobacter pylori (H. pylori) infection and the frequent long-term use of non-steroidal anti-inflammatory drugs are major factors involved in gastric ulcer development. Acid inhibitors and antibiotics are commonly used to treat gastric ulcer. However, in the last few decades, the accumulating evidence for resistance to antibiotics and the side effects of antibiotics and acid inhibitors have drawn attention to the possible use of probiotics in the prevention and treatment of gastric ulcer. Probiotics are live microorganisms that when administered in adequate amounts confer health benefits on the host. Currently, the available experimental and clinical studies indicate that probiotics are promising for future applications in the management of gastric ulcers. This review aims to provide an overview of the general health benefits of probiotics on various systemic and gastrointestinal disorders with a special focus on gastric ulcer and the involved cellular and molecular mechanisms: i) Protection of gastric mucosal barrier; ii) upregulation of prostaglandins, mucus, growth factors and anti-inflammatory cytokines; iii) increased cell proliferation to apoptosis ratio; and iv) induction of angiogenesis. Finally, some of the available data on the possible use of probiotics in H. pylori eradication are discussed.
Collapse
Affiliation(s)
- GHALIA KHODER
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - ASMA A. AL-MENHALI
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| | - FARAH AL-YASSIR
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| | - SHERIF M. KARAM
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| |
Collapse
|