1
|
Gao M, Wang X, Su S, Feng W, Lai Y, Huang K, Cao D, Wang Q. Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases. Neural Regen Res 2025; 20:763-778. [PMID: 38886941 PMCID: PMC11433890 DOI: 10.4103/nrr.nrr-d-23-01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
Collapse
Affiliation(s)
- Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Weicheng Feng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yaona Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Candeloro R, Ferri C, Laudisi M, Baldi E, Pugliatti M, Castellazzi M. The Diagnostic Utility of Oligoclonal Bands in Multiple Sclerosis: A Time-Course Analysis. Biomedicines 2025; 13:440. [PMID: 40002853 PMCID: PMC11852916 DOI: 10.3390/biomedicines13020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Oligoclonal bands (OCBs) in cerebrospinal fluid (CSF) are a hallmark of MS and reflect intrathecal IgG synthesis and inflammation. This study aims to analyze the temporal distribution of IgG OCBs in the CSF of patients with a definitive diagnosis of MS. Methods: This retrospective study included 500 patients with diagnosed MS. Patients were divided into four groups according to diagnostic epochs: Group 1 (Pre-2001 or Pre-McDonald), Group 2 (2001-2010 or McDonald 2001-Polman 2010), Group 3 (2010-2018 or Polman 2010), and Group 4 (Post-2018 or Thompson 2017). Statistical analyses examined temporal and sex differences in OCB positivity rates. Results: OCB positivity was lower in Group 4 (69.2%) compared to Group 1 (85.4%) in the overall population (p = 0.0022). A decrease in OCB positivity was observed in Groups 3 (62.5%) and 4 (71.8%) compared to Group 1 (92.5%) among males (p = 0.0117 and p = 0.0198, respectively) and in Group 4 (68.1%) compared to Group 1 (82.5%) among females (p = 0.0274). Conclusions: The present study provides valuable insights into temporal trends in CSF positivity among patients diagnosed with MS. There was an overall decrease in OCB positivity rates over the years, particularly in the post-2018 period.
Collapse
Affiliation(s)
- Raffaella Candeloro
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (M.P.)
| | - Caterina Ferri
- Department of Neuroscience, “S. Anna” University Hospital, 44124 Ferrara, Italy; (C.F.); (M.L.); (E.B.)
| | - Michele Laudisi
- Department of Neuroscience, “S. Anna” University Hospital, 44124 Ferrara, Italy; (C.F.); (M.L.); (E.B.)
| | - Eleonora Baldi
- Department of Neuroscience, “S. Anna” University Hospital, 44124 Ferrara, Italy; (C.F.); (M.L.); (E.B.)
| | - Maura Pugliatti
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (M.P.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| | - Massimiliano Castellazzi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (M.P.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Patel PU, Regmi A, Dass AI, Rojas OL. Immune conversations at the border: meningeal immunity in health and disease. Front Immunol 2025; 16:1531068. [PMID: 39944687 PMCID: PMC11813769 DOI: 10.3389/fimmu.2025.1531068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/10/2025] [Indexed: 05/09/2025] Open
Abstract
The brain and spinal cord, collectively known as the central nervous system, are encapsulated by an overlapping series of membranes known as the meninges. Once considered primarily a physical barrier for central nervous system protection, the bordering meninges are now recognized as highly immunologically active. The meninges host diverse resident immune cells and serve as a critical interface with peripheral immunity, playing multifaceted roles in maintaining central nervous system homeostasis, responding to pathogenic threats, and neurological disorders. This review summarizes recent advancements in our understanding of meningeal immunity including its structural composition, physiological functions, and role in health and disease.
Collapse
Affiliation(s)
- Preya U. Patel
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Aryan Regmi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Angelina I. Dass
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Olga L. Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Vaccaro A, de Alves Pereira B, van de Walle T, Dimberg A. Tertiary Lymphoid Structures in Central Nervous System Disorders. Methods Mol Biol 2025; 2864:21-42. [PMID: 39527215 DOI: 10.1007/978-1-0716-4184-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The central nervous system (CNS) constitutes a tightly regulated milieu, where immune responses are strictly controlled to prevent neurological damage. This poses considerable challenges to the therapeutic management of CNS pathologies, such as autoimmune disorders and cancer. Tertiary lymphoid structures (TLS) are ectopic, lymph node-like structures containing B- and T-cells, often associated with chronic inflammation or cancer, which have been shown to be detrimental in autoimmunity but beneficial in cancer. In-depth studies of TLS induction in CNS disorders, as well as their precise role in regulating adaptive immune responses in this context, will be paramount to the development of novel TLS-targeting therapies. In the present chapter, we review the anatomical and physiological peculiarities shaping TLS formation in the CNS, their relevance in autoimmunity and cancer, as well as their implications for the development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Beatriz de Alves Pereira
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Pachner AR, Pike S, Smith AD, Gilli F. CXCL13 as a Biomarker: Background and Utility in Multiple Sclerosis. Biomolecules 2024; 14:1541. [PMID: 39766248 PMCID: PMC11673926 DOI: 10.3390/biom14121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
CXCL13 is a chemokine which is upregulated within the CNS in multiple sclerosis, Lyme neuroborreliosis, and other inflammatory diseases and is increasingly clinically useful as a biomarker. This review provides background for understanding its function in the immune system and its relationship to ectopic lymphoid follicles. Also reviewed are its utility in multiple sclerosis and Lyme neuroborreliosis and potential problems in its measurement. CXCL13 has the potential to be an exceptionally useful biomarker in a range of inflammatory diseases.
Collapse
Affiliation(s)
- Andrew R. Pachner
- Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA (A.D.S.); (F.G.)
| | | | | | | |
Collapse
|
6
|
Yang C, Cai YX, Wang ZF, Tian SF, Li ZQ. Tertiary lymphoid structures in the central nervous system. Trends Mol Med 2024:S1471-4914(24)00281-8. [PMID: 39578120 DOI: 10.1016/j.molmed.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Tertiary lymphoid structures (TLSs) frequently occur at sites of chronic inflammation. A more advanced stage of multiple sclerosis (MS) has been associated with certain TLSs. However, tumor-associated TLSs have been shown to correlate with a greater treatment response rate and a better prognosis in glioma mouse models. In this review, we evaluate the clinical significances of TLSs in prognosis and treatment response, as well as the status of TLS-directed therapies targeting alternative biochemical pathways in various central nervous system (CNS) disorders. Potential molecular mechanisms underlying the development of TLSs are also discussed. Exploring these areas may provide an essential understanding of the processes behind disease advancement, uncover new therapeutic objectives, and detect biomarkers that forecast disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu-Xiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Su-Fang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
7
|
Gadani SP, Singh S, Kim S, Hu J, Smith MD, Calabresi PA, Bhargava P. Spatial transcriptomics of meningeal inflammation reveals inflammatory gene signatures in adjacent brain parenchyma. eLife 2024; 12:RP88414. [PMID: 39475792 PMCID: PMC11524578 DOI: 10.7554/elife.88414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
While modern high efficacy disease modifying therapies have revolutionized the treatment of relapsing-remitting multiple sclerosis, they are less effective at controlling progressive forms of the disease. Meningeal inflammation is a recognized risk factor for cortical gray matter pathology which can result in disabling symptoms such as cognitive impairment and depression, but the mechanisms linking meningeal inflammation and gray matter pathology remain unclear. Here, we performed magnetic resonance imaging (MRI)-guided spatial transcriptomics in a mouse model of autoimmune meningeal inflammation to characterize the transcriptional signature in areas of meningeal inflammation and the underlying brain parenchyma. We found broadly increased activity of inflammatory signaling pathways at sites of meningeal inflammation, but only a subset of these pathways active in the adjacent brain parenchyma. Subclustering of regions adjacent to meningeal inflammation revealed the subset of immune programs induced in brain parenchyma, notably complement signaling and antigen processing/presentation. Trajectory gene and gene set modeling analysis confirmed variable penetration of immune signatures originating from meningeal inflammation into the adjacent brain tissue. This work contributes a valuable data resource to the field, provides the first detailed spatial transcriptomic characterization in a model of meningeal inflammation, and highlights several candidate pathways in the pathogenesis of gray matter pathology.
Collapse
Affiliation(s)
- Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, University of PittsburghPittsburghUnited States
| | - Saumitra Singh
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sophia Kim
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jingwen Hu
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew D Smith
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Solomon Snyder, Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pavan Bhargava
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
8
|
Ananthavarathan P, Sahi N, Chard DT. An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression. Expert Rev Neurother 2024; 24:201-216. [PMID: 38235594 DOI: 10.1080/14737175.2024.2304116] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear. AREAS COVERED The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning. EXPERT OPINION Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.
Collapse
Affiliation(s)
- Piriyankan Ananthavarathan
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Nitin Sahi
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Declan T Chard
- Clinical Research Associate & Consultant Neurologist, Institute of Neurology - Queen Square Multiple Sclerosis Centre, London, UK
| |
Collapse
|
9
|
Dahal S, Allette YM, Naunton K, Harrison DM. A pilot trial of ocrelizumab for modulation of meningeal enhancement in multiple sclerosis. Mult Scler Relat Disord 2024; 81:105344. [PMID: 38035495 PMCID: PMC10843730 DOI: 10.1016/j.msard.2023.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/24/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Autopsy data suggests that meningeal inflammation in multiple sclerosis (MS) is driven by CD20+ B-cells. Ocrelizumab is an anti-CD20 monoclonal antibody, and thus could potentially ameliorate meningeal inflammation in MS. Leptomeningeal enhancement (LME) on MRI is suggested as a surrogate biomarker of meningeal inflammation in MS, and thus may be a way of monitoring for this treatment effect. OBJECTIVES To determine if ocrelizumab impacts meningeal enhancement (ME) on 7T MRI in MS. METHODS Twenty-two patients with MS started on ocrelizumab by their treating physician were enrolled into this single-center, open-label, prospective trial. Participants underwent 7T MRI of the brain prior to first infusion, with screening for the presence of LME. Fourteen patients (48 ± 11 years; 11 women) had LME on the baseline scan and were invited to return for an additional 7T MRI after 1 year of treatment. Fourteen MS patients (49 ± 10 years; 11 women) on non-CD20 treatment from a separate observational cohort of annual 7T MRIs were used for comparison - matched for LME at baseline, age, and sex. Post-contrast FLAIR and subtraction images were reviewed for LME and paravascular and dural enhancement (PDE). RESULTS All subjects in the ocrelizumab and comparison groups had LME and PDE on their baseline scan. At the beginning of the study the mean number of foci of LME and PDE in the study group were 2.3 ± 1.7 and 6.6 ± 3.9 respectively. Mean LME and PDE count for the comparison group were 1.7 ± 1.5 and 7.8 ± 5.5. Mean volume of LME in the study group was 50.5 mm3 ± 65.0 mm3 and that of the PDE was 866 mm3 ± 937.9. Mean volume of LME and PDE for comparison group were 28.4 mm3 ± 36.0 and 885 mm3 ± 947.7 respectively. At follow-up, the number of patients with LME decreased to 8 (57 %) in both groups, whereas the proportion of patients with PDE was unchanged. Minimal mean change in the number of LME after 1 year were seen in both the study group (0.07 ± 2.9, p = 0.97) and comparison group (-0.71 ± 1.5, p = 0.08). Minimal mean change was seen in the volume of LME in both the study group (-21.91 mm3 ± 77.66, p = 0.27) and comparison group (3.4 mm3 ± 32.11, p = 0.77). There was minimal change in the mean number of foci of PDE after 1 year in both the study group (-0.71 ± 2.36, p = 0.32) and in the comparison group (-0.17 ± 3.89, p = 0.15). Mean change in volume of PDE was measurable, but not significant in both the study group (-397.1 mm3 ±959.6, p = 0.80) and in the comparison group (-417.0 mm3 ± 922.7) (p = 0.80). Comparisons between the changes in foci count and volume for both LME and PDE in the study versus comparison groups showed no significant differences. CONCLUSION In this small pilot trial, ocrelizumab did not significantly reduce the number or volume of foci of LME or PDE in MS patients.
Collapse
Affiliation(s)
- Shishir Dahal
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States
| | - Yohance M Allette
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD, United States
| | - Kerry Naunton
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD, United States.
| |
Collapse
|
10
|
Santorella E, Balsbaugh JL, Ge S, Saboori P, Baker D, Pachter JS. Proteomic interrogation of the meninges reveals the molecular identities of structural components and regional distinctions along the CNS axis. Fluids Barriers CNS 2023; 20:74. [PMID: 37858244 PMCID: PMC10588166 DOI: 10.1186/s12987-023-00473-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
The meninges surround the brain and spinal cord, affording physical protection while also serving as a niche of neuroimmune activity. Though possessing stromal qualities, its complex cellular and extracellular makeup has yet to be elaborated, and it remains unclear whether the meninges vary along the neuroaxis. Hence, studies were carried-out to elucidate the protein composition and structural organization of brain and spinal cord meninges in normal, adult Biozzi ABH mice. First, shotgun, bottom-up proteomics was carried-out. Prominent proteins at both brain and spinal levels included Type II collagen and Type II keratins, representing extracellular matrix (ECM) and cytoskeletal categories, respectively. While the vast majority of total proteins detected was shared between both meningeal locales, more were uniquely detected in brain than in spine. This pattern was also seen when total proteins were subdivided by cellular compartment, except in the case of the ECM category where brain and spinal meninges each had near equal number of unique proteins, and Type V and type III collagen registered exclusively in the spine. Quantitative analysis revealed differential expression of several collagens and cytoskeletal proteins between brain and spinal meninges. High-resolution immunofluorescence and immunogold-scanning electronmicroscopy on sections from whole brain and spinal cord - still encased within bone -identified major proteins detected by proteomics, and highlighted their association with cellular and extracellular elements of variously shaped arachnoid trabeculae. Western blotting aligned with the proteomic and immunohistological analyses, reinforcing differential appearance of proteins in brain vs spinal meninges. Results could reflect regional distinctions in meninges that govern protective and/or neuroimmune functions.
Collapse
Affiliation(s)
- Elise Santorella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, 06269, USA
| | - Shujun Ge
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Parisa Saboori
- Department of Mechanical Engineering, Manhattan College, Bronx, NY, 10071, USA
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, England
| | - Joel S Pachter
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
11
|
Gupta K, Kesharwani A, Rua S, Singh SS, Siu C, Jank L, Smith MD, Calabresi PA, Bhargava P. BAFF blockade in experimental autoimmune encephalomyelitis reduces inflammation in the meninges and synaptic and neuronal loss in adjacent brain regions. J Neuroinflammation 2023; 20:229. [PMID: 37805549 PMCID: PMC10559498 DOI: 10.1186/s12974-023-02922-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Multiple sclerosis (MS) has traditionally been viewed as a chronic inflammatory disease affecting the white matter of the central nervous system. However, over the past two decades, increasing evidence has highlighted the role of gray matter pathology in MS-related disability. Numerous studies have linked the presence of leptomeningeal inflammation to a more severe disease course, underscoring its potential importance as a driver of gray matter pathology in MS. The major components of leptomeningeal inflammation include T cells, B cells, macrophages, follicular dendritic cells, and plasma cells. Since BAFF [B cell-activating factor of the tumor necrosis factor (TNF) family] promotes B cell survival and maturation and is a co-stimulator of T cells, we used anti-BAFF antibody 10F4 as a BAFF antagonist to study its effect on meningeal inflammation and adjacent brain regions in a relapsing-remitting PLP-EAE (rr-EAE) model of multiple sclerosis in SJL/J mice. rr-EAE mice were treated either with anti-BAFF antibody 10F4 or with IgG control antibody. We performed ultra-high field (11.7 T) MRI to identify areas of meningeal inflammation and track them over time in both treatment groups. We also performed histopathological analysis in brain sections of these mice to study the effects of the BAFF antagonist on leptomeningeal inflammation, and hippocampal and cortical neurons and synapses. We observed that BAFF antagonist treatment reduced B cells, T cells, and myeloid cells in regions of meningeal inflammation. Additionally, we noted that BAFF treatment protected against EAE-induced synaptic and neuronal loss in the adjacent cortex and in the CA1, CA3, and dentate gyrus regions of the hippocampus likely due to its effects on meningeal inflammation.
Collapse
Affiliation(s)
- Kanak Gupta
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Ajay Kesharwani
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Steven Rua
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Saumitra Sen Singh
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Catherine Siu
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Larissa Jank
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Matthew D Smith
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Peter A Calabresi
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Pavan Bhargava
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA.
| |
Collapse
|
12
|
Grabarczyk M, Ksiazek-Winiarek D, Glabinski A, Szpakowski P. Dietary Polyphenols Decrease Chemokine Release by Human Primary Astrocytes Responding to Pro-Inflammatory Cytokines. Pharmaceutics 2023; 15:2294. [PMID: 37765263 PMCID: PMC10537369 DOI: 10.3390/pharmaceutics15092294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are considered to be the dominant cell fraction of the central nervous system. They play a supportive and protective role towards neurons, and regulate inflammatory processes; they thus make suitable targets for drugs and supplements, such as polyphenolic compounds. However, due to their wide range, knowledge of their anti-inflammatory potential remains relatively incomplete. The aim of this study was therefore to determine whether myricetin and chrysin are able to decrease chemokine release in reactive astrocytes. To assess the antioxidant and anti-inflammatory potential of polyphenols, human primary astrocytes were cultured in the presence of a reactive and neurotoxic astrocyte-inducing cytokine mixture (TNF-α, IL-1a, C1q), either alone or in the presence of myricetin or chrysin. The examined polyphenols were able to modify the secretion of chemokines by human cortical astrocytes, especially CCL5 (chrysin), CCL1 (myricetin) and CCL2 (both), while cell viability was not affected. Surprisingly, the compounds did not demonstrate any antioxidant properties in the astrocyte cultures.
Collapse
|
13
|
Pike SC, Gilli F, Pachner AR. The CXCL13 Index as a Predictive Biomarker for Activity in Clinically Isolated Syndrome. Int J Mol Sci 2023; 24:11050. [PMID: 37446228 DOI: 10.3390/ijms241311050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a clinically heterogenous disease. Currently, we cannot identify patients with more active disease who may potentially benefit from earlier interventions. Previous data from our lab identified the CXCL13 index (ICXCL13), a measure of intrathecal production of CXCL13, as a potential biomarker to predict future disease activity in MS patients two years after diagnosis. Patients with clinically isolated syndrome (CIS) or radiologically isolated syndrome (RIS) underwent a lumbar puncture and blood draw, and the ICXCL13 was determined. They were then followed for at least 5 years for MS activity. Patients with high ICXCL13 were more likely to convert to clinically definite MS (82.4%) compared to those with low ICXCL13 (10.0%). The data presented below demonstrate that this predictive ability holds true in CIS and RIS patients, and for at least five years compared to our initial two-year follow-up study. These data support the concept that ICXCL13 has the potential to be used to guide immunomodulatory therapy in MS.
Collapse
Affiliation(s)
- Steven C Pike
- Department of Neurology, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies, Hanover, NH 03755, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Francesca Gilli
- Department of Neurology, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies, Hanover, NH 03755, USA
| | - Andrew R Pachner
- Department of Neurology, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
14
|
Magliozzi R, Howell OW, Calabrese M, Reynolds R. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol 2023:10.1038/s41582-023-00838-7. [PMID: 37400550 DOI: 10.1038/s41582-023-00838-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Owain W Howell
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
- Institute of Life Sciences, Swansea University, Swansea, UK
| | - Massimiliano Calabrese
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
15
|
Sun Y, Yu H, Guan Y. Glia Connect Inflammation and Neurodegeneration in Multiple Sclerosis. Neurosci Bull 2023; 39:466-478. [PMID: 36853544 PMCID: PMC10043151 DOI: 10.1007/s12264-023-01034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
Affiliation(s)
- Ye Sun
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
16
|
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
|
17
|
Schropp V, Chunder R, Dietel B, Tacke S, Kuerten S. The presence of cerebellar B cell aggregates is associated with a specific chemokine profile in the cerebrospinal fluid in a mouse model of multiple sclerosis. J Neuroinflammation 2023; 20:18. [PMID: 36717913 PMCID: PMC9885581 DOI: 10.1186/s12974-023-02695-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The presence of meningeal ectopic lymphoid structures (ELS) in a subgroup of patients diagnosed with secondary progressive multiple sclerosis (SPMS) corresponds to a pronounced cortical inflammation and an aggravated disease course. In MP4-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), B cell aggregates develop in the central nervous system (CNS) in the chronic stage of the disease. Therefore, the model is suitable for studying key molecules of ELS development and maintenance. Here, we investigated whether there is a specific cytokine and chemokine signature in paired cerebrospinal fluid (CSF) and serum samples associated with the presence of cerebellar B cell and T cell pathology and B cell aggregates of MP4-immunized mice. METHODS Paired CSF and serum samples were collected from the cisterna magna and periphery of MP4-immunized mice at the chronic stage of disease. A control group with mice immunized only with the adjuvant (vehicle) was included in the study. A selected panel of 34 cytokines and chemokines were measured by MAGPIX® for both cohorts. For the assessment of B cell and T cell infiltration, immunohistochemical staining was performed and analyzed using light microscopy. To detect specific chemokine receptors additional staining was conducted. RESULTS While we detected several upregulated cytokines and chemokines in the CSF of MP4-immunized mice independent of the extent of B cell and T cell pathology compared to vehicle-immunized mice, C-C motif chemokine ligand (CCL)-1 was associated with high B cell and T cell infiltration. Furthermore, the level of certain chemokines, including CCL1, CCL5, CCL7, CCL12, CCL22 and C-X-C motif chemokine ligand (CXCL)-13, was significantly increased (p < 0.05) in MP4-immunized mice showing a high number of B cell aggregates. While C-C motif chemokine receptor (CCR)5 had a ubiquitous expression independent of the extent of B cell and T cell pathology, C-X-C motif chemokine receptor (CXCR)-5 and CXCR6 expression was specifically associated with high B cell and T cell pathology. CONCLUSION Our data suggest that multiple cytokines and chemokines are involved in the pathophysiology of MP4-induced EAE. Furthermore, the presence of B cell aggregates was associated with a specific chemokine profile in the CSF, which might be useful for predicting the presence of these aggregates without the necessity to histologically screen the CNS tissue.
Collapse
Affiliation(s)
- Verena Schropp
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Rittika Chunder
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Barbara Dietel
- grid.5330.50000 0001 2107 3311Department of Cardiology and Angiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen University Hospital, 91054 Erlangen, Germany
| | - Sabine Tacke
- grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Stefanie Kuerten
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
18
|
Lucchini M, De Arcangelis V, Piro G, Nociti V, Bianco A, De Fino C, Di Sante G, Ria F, Calabresi P, Mirabella M. CSF CXCL13 and Chitinase 3-like-1 Levels Predict Disease Course in Relapsing Multiple Sclerosis. Mol Neurobiol 2023; 60:36-50. [PMID: 36215027 PMCID: PMC9758105 DOI: 10.1007/s12035-022-03060-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/03/2022] [Indexed: 12/29/2022]
Abstract
Several biomarkers from multiple sclerosis (MS) patients' biological fluids have been considered to support diagnosis, predict disease course, and evaluate treatment response. In this study, we assessed the CSF concentration of selected molecules implicated in the MS pathological process. To investigate the diagnostic and prognostic significance of CSF concentration of target candidate biomarkers in both relapsing (RMS, n = 107) and progressive (PMS, n = 18) MS patients and in other inflammatory (OIND, n = 10) and non-inflammatory (ONIND, n = 15) neurological disorders. We measured the CSF concentration of APRIL, BAFF, CHI3L1, CCL-2, CXCL-8, CXCL-10, CXCL-12, CXCL-13 through a Luminex Assay. MS patients were prospectively evaluated, and clinical and radiological activity were recorded. CHI3L1 and CXCL13 CSF levels were significantly higher in both MS groups compared to control groups, while CCL2, BAFF, and APRIL concentrations were lower in RMS patients compared to PMS and OIND. Considering RMS patients with a single demyelinating event, higher concentrations of CHI3L1, CXCL10, CXCL12, and CXCL13 were recorded in patients who converted to clinically defined MS(CDMS). RMS patients in the CXCL13 and CHI3L1 high concentration group had a significantly higher risk of relapse (HR 12.61 and 4.57), MRI activity (HR 7.04 and 2.46), and of any evidence of disease activity (HR 12.13 and 2.90) during follow-up. CSF CXCL13 and CHI3L1 levels represent very good prognostic biomarkers in RMS patients, and therefore can be helpful in the treatment choice. Higher CSF concentrations of neuro-inflammatory biomarkers were associated with a higher risk of conversion to CDMS in patients with a first clinical demyelinating event. Differential CSF BAFF and APRIL levels between RMS and PMS suggest a different modulation of B-cells pathways in the different phases of the disease.
Collapse
Affiliation(s)
- Matteo Lucchini
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Valeria De Arcangelis
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy
| | - Geny Piro
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Oncologia Medica, Rome, Italy
| | - Viviana Nociti
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Assunta Bianco
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Chiara De Fino
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy
| | - Gabriele Di Sante
- grid.9027.c0000 0004 1757 3630Dipartimento Di Medicina e Chirurgia, Sezione Di Anatomia Umana, Clinica e Forense, Università Degli Studi Di Perugia, Perugia, Italy
| | - Francesco Ria
- grid.8142.f0000 0001 0941 3192Dipartimento Di Medicina E Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.414603.4Dipartimento Di Scienze Di Laboratorio Ed Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Massimiliano Mirabella
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
19
|
Angelini G, Bani A, Constantin G, Rossi B. The interplay between T helper cells and brain barriers in the pathogenesis of multiple sclerosis. Front Cell Neurosci 2023; 17:1101379. [PMID: 36874213 PMCID: PMC9975172 DOI: 10.3389/fncel.2023.1101379] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) represent two complex structures protecting the central nervous system (CNS) against potentially harmful agents and circulating immune cells. The immunosurveillance of the CNS is governed by immune cells that constantly patrol the BCSFB, whereas during neuroinflammatory disorders, both BBB and BCSFB undergo morphological and functional alterations, promoting leukocyte intravascular adhesion and transmigration from the blood circulation into the CNS. Multiple sclerosis (MS) is the prototype of neuroinflammatory disorders in which peripheral T helper (Th) lymphocytes, particularly Th1 and Th17 cells, infiltrate the CNS and contribute to demyelination and neurodegeneration. Th1 and Th17 cells are considered key players in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis. They can actively interact with CNS borders by complex adhesion mechanisms and secretion of a variety of molecules contributing to barrier dysfunction. In this review, we describe the molecular basis involved in the interactions between Th cells and CNS barriers and discuss the emerging roles of dura mater and arachnoid layer as neuroimmune interfaces contributing to the development of CNS inflammatory diseases.
Collapse
Affiliation(s)
- Gabriele Angelini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Alessandro Bani
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Parham KA, Tan XXS, Morelli DM, Chowdhury L, Craig HC, Kerfoot SM. Pre–Germinal Center Interactions with T Cells Are Natural Checkpoints to Limit Autoimmune B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2022; 209:1703-1712. [DOI: 10.4049/jimmunol.2200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
|
21
|
Morille J, Mandon M, Rodriguez S, Roulois D, Leonard S, Garcia A, Wiertlewski S, Le Page E, Berthelot L, Nicot A, Mathé C, Lejeune F, Tarte K, Delaloy C, Amé P, Laplaud D, Michel L. Multiple Sclerosis CSF Is Enriched With Follicular T Cells Displaying a Th1/Eomes Signature. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200033. [PMID: 36266053 PMCID: PMC9585484 DOI: 10.1212/nxi.0000000000200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Tertiary lymphoid structures and aggregates are reported in the meninges of patients with multiple sclerosis (MS), especially at the progressive stage, and are strongly associated with cortical lesions and disability. Besides B cells, these structures comprise follicular helper T (Tfh) cells that are crucial to support B-cell differentiation. Tfh cells play a pivotal role in amplifying autoreactive B cells and promoting autoantibody production in several autoimmune diseases, but very few are known in MS. In this study, we examined the phenotype, frequency, and transcriptome of circulating cTfh cells in the blood and CSF of patients with relapsing-remitting MS (RRMS). METHODS The phenotype and frequency of cTfh cells were analyzed in the blood of 39 healthy controls and 41 untreated patients with RRMS and in the CSF and paired blood of 10 patients with drug-naive RRMS at diagnosis by flow cytometry. Using an in vitro model of blood-brain barrier, we assessed the transendothelial migratory abilities of the different cTfh-cell subsets. Finally, we performed an RNA sequencing analysis of paired CSF cTfh cells and blood cTfh cells in 8 patients sampled at their first demyelinating event. RESULTS The blood phenotype and frequency of cTfh cells were not significantly modified in patients with RRMS. In the CSF, we found an important infiltration of Tfh1 cells, with a high proportion of activated PD1+ cells. We demonstrated that the specific subset of Tfh1 cells presents increased migration abilities to cross an in vitro model of blood-brain barrier. Of interest, even at the first demyelinating event, cTfh cells in the CSF display specific characteristics with upregulation of EOMES gene and proinflammatory/cytotoxic transcriptomic signature able to efficiently distinguish cTfh cells from the CSF and blood. Finally, interactome analysis revealed potential strong cross talk between pathogenic B cells and CSF cTfh cells, pointing out the CSF as opportune supportive compartment and highlighting the very early implication of B-cell helper T cells in MS pathogenesis. DISCUSSION Overall, CSF enrichment in activated Tfh1 as soon as disease diagnosis, associated with high expression of EOMES, and a predicted high propensity to interact with CSF B cells suggest that these cells probably contribute to disease onset and/or activity.
Collapse
Affiliation(s)
- Jérémy Morille
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Marion Mandon
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Stéphane Rodriguez
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - David Roulois
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Simon Leonard
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Alexandra Garcia
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Sandrine Wiertlewski
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Emmanuelle Le Page
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Laureline Berthelot
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Arnaud Nicot
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Camille Mathé
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Flora Lejeune
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Karin Tarte
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Céline Delaloy
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Patricia Amé
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - David Laplaud
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University
| | - Laure Michel
- From the Université de Nantes (J.M., A.G., L.B., A.N., C.M., F.L., D.L.), INSERM, CR2TI, UMR1064, Nantes; Pôle Biologie (M.M., K.T., P.A., L.M.), Laboratoire SITI, University Hospital; INSERM UMR1236 MicrOenvironment and B-Cell: Immunopathology Cell Differentiation and Cancer (M.M., S.R., D.R., S.L., K.T., C.D., P.A., L.M.), Univ Rennes, Etablissement Français du Sang Bretagne, Rennes; LabEx IGO "Immunotherapy (S.L.), Graft, Oncology", Nantes; Service de neurologie (S.W., F.L., D.L.), CRC-SEP Pays de La Loire and CIC 1314, CHU Nantes; Neurology Department (E.L.P., L.M.), Rennes University Hospital; and Clinical Neuroscience Centre (E.L.P., L.M.), CIC_P1414 INSERM, Rennes, University Hospital, Rennes University.
| |
Collapse
|
22
|
Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10102604. [PMID: 36289863 PMCID: PMC9599335 DOI: 10.3390/biomedicines10102604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). The most common form of MS is a relapsing–remitting disease characterised by acute episodes of demyelination associated with the breakdown of the blood–brain barrier (BBB). In the relapsing–remitting phase there is often relative recovery (remission) from relapses characterised clinically by complete or partial resolution of neurological symptoms. In the later and progressive stages of the disease process, accrual of neurological disability occurs in a pathological process independent of acute episodes of demyelination and is accompanied by a trapped or compartmentalised inflammatory response, most notable in the connective tissue spaces of the vasculature and leptomeninges occurring behind an intact BBB. This review focuses on compartmentalised inflammation in MS and in particular, what we know about meningeal tertiary lymphoid structures (TLS; also called B cell follicles) which are organised clusters of immune cells, associated with more severe and progressive forms of MS. Meningeal inflammation and TLS could represent an important fluid or imaging marker of disease activity, whose therapeutic abrogation might be necessary to stop the most severe outcomes of disease.
Collapse
Affiliation(s)
- Rachael Kee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence:
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Owain W. Howell
- Institute of Life Sciences, Swansea University, Wales SA2 8QA, UK
| | - Denise C. Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
23
|
Intrathecal B cell-related markers for an optimized biological investigation of multiple sclerosis patients. Sci Rep 2022; 12:16425. [PMID: 36180495 PMCID: PMC9525661 DOI: 10.1038/s41598-022-19811-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
In multiple sclerosis (MS) disease, the importance of the intrathecal B cell response classically revealed as IgG oligoclonal bands (OCB) in cerebrospinal fluid (CSF) was reaffirmed again in the recently revised diagnostic criteria. We aimed to optimize Laboratory investigation by testing the performance of new B cell-related molecules in CSF (Ig free light chains (FLCκ and λ) and CXCL13 (B-Cell Attracting chemokine1)) for MS diagnosis. 320 paired (CSF-serum) samples were collected from 160 patients with MS (n = 82) and non-MS diseases (n = 78). All patients benefited from IgG index determination, OCB detection, CSF CXCL13 and FLC (κ and λ) measurement in CSF and serum for metrics calculation (κ/λ ratio, FLC-related indexes, and κFLC-intrathecal fraction (IF)). CXCL13 and FLC metrics in CSF were higher in patients with MS and positive OCB. As expected, κFLC metrics—in particular, κFLC index and κFLC IF—had the highest accuracy for MS diagnosis. κ index showed the best performance (sensitivity 83% and specificity 91.7%) at a cut-off of 14.9. Most of the FLC-related parameters were positively correlated with IgG index and the level of CXCL13. In conclusion, the quantitative, standardizable, and technically simple CSF FLCκ metrics seem to be reliable for MS diagnosis, but could not replace OCB detection. CXCL13 appears to be an effective parameter reflecting the intrathecal B cell response. An optimized way for CSF testing combining the conventional and the new B cell-related parameters is proposed in this study.
Collapse
|
24
|
The Brave New World of Early Treatment of Multiple Sclerosis: Using the Molecular Biomarkers CXCL13 and Neurofilament Light to Optimize Immunotherapy. Biomedicines 2022; 10:biomedicines10092099. [PMID: 36140203 PMCID: PMC9495360 DOI: 10.3390/biomedicines10092099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a highly heterogeneous disease involving a combination of inflammation, demyelination, and CNS injury. It is the leading cause of non-traumatic neurological disability in younger people. There is no cure, but treatments in the form of immunomodulatory drugs (IMDs) are available. Experience over the last 30 years has shown that IMDs, also sometimes called disease-modifying therapies, are effective in downregulating neuroinflammatory activity. However, there are a number of negatives in IMD therapy, including potential for significant side-effects and adverse events, uncertainty about long-term benefits regarding disability outcomes, and very high and increasing financial costs. The two dozen currently available FDA-approved IMDs also are heterogeneous with respect to efficacy and safety, especially long-term safety, and determining an IMD treatment strategy is therefore challenging for the clinician. Decisions about optimal therapy have been particularly difficult in early MS, at the time of the initial clinical demyelinating event (ICDE), at a time when early, aggressive treatment would best be initiated on patients destined to have a highly inflammatory course. However, given the fact that the majority of ICDE patients have a more benign course, aggressive immunosuppression, with its attendant risks, should not be administered to this group, and should only be reserved for patients with a more neuroinflammatory course, a decision that can only be made in retrospect, months to years after the ICDE. This quandary of moderate vs. aggressive therapy facing clinicians would best be resolved by the use of biomarkers that are predictive of future neuroinflammation. Unfortunately, biomarkers, especially molecular biomarkers, have not thus far been particularly useful in assisting clinicians in predicting the likelihood of future neuroinflammation, and thus guiding therapy. However, the last decade has seen the emergence of two highly promising molecular biomarkers to guide therapy in early MS: the CXCL13 index and neurofilament light. This paper will review the immunological and neuroscientific underpinnings of these biomarkers and the data supporting their use in early MS and will propose how they will likely be used to maximize benefit and minimize risk of IMDs in MS patients.
Collapse
|
25
|
Szpakowski P, Ksiazek-Winiarek D, Turniak-Kusy M, Pacan I, Glabinski A. Human Primary Astrocytes Differently Respond to Pro- and Anti-Inflammatory Stimuli. Biomedicines 2022; 10:biomedicines10081769. [PMID: 35892669 PMCID: PMC9331936 DOI: 10.3390/biomedicines10081769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
For a long time, astrocytes were considered a passive brain cell population. However, recently, many studies have shown that their role in the central nervous system (CNS) is more active. Previously, it was stated that there are two main functional phenotypes of astrocytes. However, nowadays, it is clear that there is rather a broad spectrum of these phenotypes. The major goal of this study was to evaluate the production of some inflammatory chemokines and neurotrophic factors by primary human astrocytes after pro- or anti-inflammatory stimulation. We observed that only astrocytes induced by inflammatory mediators TNFα/IL-1a/C1q produced CXCL10, CCL1, and CXCL13 chemokines. Unstimulated astrocytes and those cultured with anti-inflammatory cytokines (IL-4, IL-10, or TGF-β1) did not produce these chemokines. Interestingly, astrocytes cultured in proinflammatory conditions significantly decreased the release of neurotrophic factor PDGF-A, as compared to unstimulated astrocytes. However, in response to anti-inflammatory cytokine TGF-β1, astrocytes significantly increased PDGF-A production compared to the medium alone. The production of another studied neurotrophic factor BDNF was not influenced by pro- or anti-inflammatory stimulation. The secretory response was accompanied by changes in HLA-DR, CD83, and GFAP expression. Our study confirms that astrocytes differentially respond to pro- and anti-inflammatory stimuli, especially to inflammatory cytokines TNF-α, IL-1a, and C1q, suggesting their role in leukocyte recruitment.
Collapse
|
26
|
Bhargava P, Hartung HP, Calabresi PA. Contribution of B cells to cortical damage in multiple sclerosis. Brain 2022; 145:3363-3373. [PMID: 35775595 DOI: 10.1093/brain/awac233] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
Multiple sclerosis is associated with lesions not just in the white matter, but also involving the cortex. Cortical involvement has been linked to greater disease severity and hence understanding the factor underlying cortical pathology could help identify new therapeutic strategies for multiple sclerosis. The critical role of B cells in multiple sclerosis has been clarified by multiple pivotal trials of B cell depletion in people with multiple sclerosis. The presence of B cell rich areas of meningeal inflammation in multiple sclerosis has been identified at all stages of multiple sclerosis. Leptomeningeal inflammation is associated with greater extent of cortical demyelination and neuronal loss and with greater disease severity. Recent studies have identified several potential mechanisms by which B cells may mediate cortical injury including antibody production, extracellular vesicles containing neurotoxic substances and production of pro-inflammatory cytokines. Additionally, B cells may indirectly mediate cortical damage through effects on T cells, macrophages or microglia. Several animal models replicate the meningeal inflammation and cortical injury noted in people with multiple sclerosis. Studies in these models have identified BTK inhibition and type II anti-CD20 antibodies as potential agents that can impact meningeal inflammation. Trials of anti-CD20 monoclonal antibodies in people with multiple sclerosis have unsuccessfully attempted to eliminate B cells in the leptomeninges. New strategies to target B cells in multiple sclerosis include BTK inhibition and cell-based therapies aimed at B cells infected with Epstein Barr virus. Future studies will clarify the mechanisms by which B cells mediate cortical injury and treatment strategies that can target B cells in the leptomeninges and CNS parenchyma.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans Peter Hartung
- Department of Neurology, Heinrich-Heine University, Dusseldorf, Germany.,Brain and Mind Center, University of Sydney, Sydney, Australia.,Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
James Bates RE, Browne E, Schalks R, Jacobs H, Tan L, Parekh P, Magliozzi R, Calabrese M, Mazarakis ND, Reynolds R. Lymphotoxin-alpha expression in the meninges causes lymphoid tissue formation and neurodegeneration. Brain 2022; 145:4287-4307. [PMID: 35776111 DOI: 10.1093/brain/awac232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
Organised meningeal immune cell infiltrates are suggested to play an important role in cortical grey matter pathology in the multiple sclerosis brain, but the mechanisms involved are as yet unresolved. Lymphotoxin-alpha plays a key role in lymphoid organ development and cellular cytotoxicity in the immune system and its expression is increased in the cerebrospinal fluid of naïve and progressive multiple sclerosis patients and post-mortem meningeal tissue. Here we show that persistently increased levels of lymphotoxin alpha in the cerebral meninges can give rise to lymphoid-like structures and underlying multiple sclerosis-like cortical pathology. Stereotaxic injections of recombinant lymphotoxin-alpha into the rat meninges led to acute meningeal inflammation and subpial demyelination that resolved after 28 days, with demyelination being dependent on prior sub-clinical immunisation with myelin oligodendrocyte glycoprotein. Injection of a lymphotoxin-alpha lentiviral vector into the cortical meningeal space, to produce chronic localised over-expression of the cytokine, induced extensive lymphoid-like immune cell aggregates, maintained over 3 months, including T-cell rich zones containing podoplanin+ fibroblastic reticular stromal cells and B-cell rich zones with a network of follicular dendritic cells, together with expression of lymphoid chemokines and their receptors. Extensive microglial and astroglial activation, subpial demyelination and marked neuronal loss occurred in the underlying cortical parenchyma. Whereas subpial demyelination was partially dependent on prior myelin oligodendrocyte glycoprotein immunisation, the neuronal loss was present irrespective of immunisation. Conditioned medium from LTα treated microglia was able to induce a reactive phenotype in astrocytes. Our results show that chronic lymphotoxin-alpha overexpression alone is sufficient to induce formation of meningeal lymphoid-like structures and subsequent neurodegeneration, similar to that seen in the progressive multiple sclerosis brain.
Collapse
Affiliation(s)
- Rachel E James Bates
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Eleanor Browne
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Renee Schalks
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Heather Jacobs
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Li Tan
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Puja Parekh
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Roberta Magliozzi
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK.,Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Massimiliano Calabrese
- Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Nicholas D Mazarakis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
28
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Boussamet L, Rajoka MSR, Berthelot L. Microbiota, IgA and Multiple Sclerosis. Microorganisms 2022; 10:microorganisms10030617. [PMID: 35336190 PMCID: PMC8954136 DOI: 10.3390/microorganisms10030617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by immune cell infiltration in the central nervous system and destruction of myelin sheaths. Alterations of gut bacteria abundances are present in MS patients. In mouse models of neuroinflammation, depletion of microbiota results in amelioration of symptoms, and gavage with MS patient microbiota exacerbates the disease and inflammation via Th17 cells. On the other hand, depletion of B cells using anti-CD20 is an efficient therapy in MS, and growing evidence shows an important deleterious role of B cells in MS pathology. However, the failure of TACI-Ig treatment in MS highlighted the potential regulatory role of plasma cells. The mechanism was recently demonstrated involving IgA+ plasma cells, specific for gut microbiota and producing IL-10. IgA-coated bacteria in MS patient gut exhibit also modifications. We will focus our review on IgA interactions with gut microbiota and IgA+ B cells in MS. These recent data emphasize new pathways of neuroinflammation regulation in MS.
Collapse
Affiliation(s)
- Léo Boussamet
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Laureline Berthelot
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
- Correspondence:
| |
Collapse
|
30
|
Mapunda JA, Tibar H, Regragui W, Engelhardt B. How Does the Immune System Enter the Brain? Front Immunol 2022; 13:805657. [PMID: 35273596 PMCID: PMC8902072 DOI: 10.3389/fimmu.2022.805657] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple Sclerosis (MS) is considered the most frequent inflammatory demyelinating disease of the central nervous system (CNS). It occurs with a variable prevalence across the world. A rich armamentarium of disease modifying therapies selectively targeting specific actions of the immune system is available for the treatment of MS. Understanding how and where immune cells are primed, how they access the CNS in MS and how immunomodulatory treatments affect neuroinflammation requires a proper knowledge on the mechanisms regulating immune cell trafficking and the special anatomy of the CNS. The brain barriers divide the CNS into different compartments that differ with respect to their accessibility to cells of the innate and adaptive immune system. In steady state, the blood-brain barrier (BBB) limits immune cell trafficking to activated T cells, which can reach the cerebrospinal fluid (CSF) filled compartments to ensure CNS immune surveillance. In MS immune cells breach a second barrier, the glia limitans to reach the CNS parenchyma. Here we will summarize the role of the endothelial, epithelial and glial brain barriers in regulating immune cell entry into the CNS and which immunomodulatory treatments for MS target the brain barriers. Finally, we will explore current knowledge on genetic and environmental factors that may influence immune cell entry into the CNS during neuroinflammation in Africa.
Collapse
Affiliation(s)
| | - Houyam Tibar
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | - Wafa Regragui
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | | |
Collapse
|
31
|
Pachner AR. The Neuroimmunology of Multiple Sclerosis: Fictions and Facts. Front Neurol 2022; 12:796378. [PMID: 35197914 PMCID: PMC8858985 DOI: 10.3389/fneur.2021.796378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
There have been tremendous advances in the neuroimmunology of multiple sclerosis over the past five decades, which have led to improved diagnosis and therapy in the clinic. However, further advances must take into account an understanding of some of the complex issues in the field, particularly an appreciation of "facts" and "fiction." Not surprisingly given the incredible complexity of both the nervous and immune systems, our understanding of the basic biology of the disease is very incomplete. This lack of understanding has led to many controversies in the field. This review identifies some of these controversies and facts/fictions with relation to the basic neuroimmunology of the disease (cells and molecules), and important clinical issues. Fortunately, the field is in a healthy transition from excessive reliance on animal models to a broader understanding of the disease in humans, which will likely lead to many improved treatments especially of the neurodegeneration in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Andrew R. Pachner
- Dartmouth–Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
32
|
Salvador AFM, Kipnis J. Immune response after central nervous system injury. Semin Immunol 2022; 59:101629. [PMID: 35753867 DOI: 10.1016/j.smim.2022.101629] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Traumatic injuries of the central nervous system (CNS) affect millions of people worldwide, and they can lead to severely damaging consequences such as permanent disability and paralysis. Multiple factors can obstruct recovery after CNS injury. One of the most significant is the progressive neuronal death that follows the initial mechanical impact, leading to the loss of undamaged cells via a process termed secondary neurodegeneration. Efforts to define treatments that limit the spread of damage, while important, have been largely ineffectual owing to gaps in the mechanistic understanding that underlies the persisting neuronal cell death. Inflammation, with its influx of immune cells that occurs shortly after injury, has been associated with secondary neurodegeneration. However, the role of the immune system after CNS injury is far more complex. Studies have indicated that the immune response after CNS injury is detrimental, owing to immune cell-produced factors (e.g., pro-inflammatory cytokines, free radicals, neurotoxic glutamate) that worsen tissue damage. Our lab and others have also demonstrated the beneficial immune response that occurs after CNS injury, with the release of growth factors such as brain-derived growth factor (BDNF) and interleukin (IL-10) and the clearance of apoptotic and myelin debris by immune cells1-4. In this review, we first discuss the multifaceted roles of the immune system after CNS injury. We then speculate on how advancements in single-cell RNA technologies can dramatically change our understanding of the immune response, how the spinal cord meninges serve as an important site for hosting immunological processes critical for recovery, and how the origin of peripherally recruited immune cells impacts their function in the injured CNS.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA.
| | - Jonathan Kipnis
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Damianidou O, Theotokis P, Grigoriadis N, Petratos S. Novel contributors to B cell activation during inflammatory CNS demyelination; An oNGOing process. Int J Med Sci 2022; 19:164-174. [PMID: 34975310 PMCID: PMC8692119 DOI: 10.7150/ijms.66350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/11/2021] [Indexed: 11/05/2022] Open
Abstract
Over the past two decades, the development of targeted immunotherapeutics for relapsing-remitting multiple sclerosis has been successfully orchestrated through the efficacious modulation of neuroinflammatory outcomes demonstrated in the experimental autoimmune encephalomyelitis (EAE) model. In this model, the focus of developing immunomodulatory therapeutics has been demonstrated through their effectiveness in modifying the pro-inflammatory Th1 and Th17-dependent neuropathological outcomes of demyelination, oligodendrocytopathy and axonal dystrophy. However, recent successful preclinical and clinical trials have advocated for the significance of B cell-dependent immunopathogenic responses and has led to the development of novel biologicals that target specific B cell phenotypes. In this context, a new molecule, B-cell activating factor (BAFF), has emerged as a positive regulator of B cell survival and differentiation functioning through various signaling pathways and potentiating the activity of various receptor complexes through pleiotropic means. One possible cognate receptor for BAFF includes the Nogo receptor (NgR) and its homologs, previously established as potent inhibitors of axonal regeneration during central nervous system (CNS) injury and disease. In this review we provide current evidence for BAFF-dependent signaling through the NgR multimeric complex, elucidating their association within the CNS compartment and underlying the importance of these potential pathogenic molecular regulators as possible therapeutic targets to limit relapse rates and potentially MS progression.
Collapse
Affiliation(s)
- Olympia Damianidou
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Paschalis Theotokis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| |
Collapse
|
34
|
Hassani A, Reguraman N, Shehab S, Khan G. Primary Peripheral Epstein-Barr Virus Infection Can Lead to CNS Infection and Neuroinflammation in a Rabbit Model: Implications for Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:764937. [PMID: 34899715 PMCID: PMC8656284 DOI: 10.3389/fimmu.2021.764937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Epstein-Barr virus (EBV) is a common herpesvirus associated with malignant and non-malignant conditions. An accumulating body of evidence supports a role for EBV in the pathogenesis of multiple sclerosis (MS), a demyelinating disease of the CNS. However, little is known about the details of the link between EBV and MS. One obstacle which has hindered research in this area has been the lack of a suitable animal model recapitulating natural infection in humans. We have recently shown that healthy rabbits are susceptible to EBV infection, and viral persistence in these animals mimics latent infection in humans. We used the rabbit model to investigate if peripheral EBV infection can lead to infection of the CNS and its potential consequences. We injected EBV intravenously in one group of animals, and phosphate-buffered saline (PBS) in another, with and without immunosuppression. Histopathological changes and viral dynamics were examined in peripheral blood, spleen, brain, and spinal cord, using a range of molecular and histopathology techniques. Our investigations uncovered important findings that could not be previously addressed. We showed that primary peripheral EBV infection can lead to the virus traversing the CNS. Cell associated, but not free virus in the plasma, correlated with CNS infection. The infected cells within the brain were found to be B-lymphocytes. Most notably, animals injected with EBV, but not PBS, developed inflammatory cellular aggregates in the CNS. The incidence of these aggregates increased in the immunosuppressed animals. The cellular aggregates contained compact clusters of macrophages surrounded by reactive astrocytes and dispersed B and T lymphocytes, but not myelinated nerve fibers. Moreover, studying EBV infection over a span of 28 days, revealed that the peak point for viral load in the periphery and CNS coincides with increased occurrence of cellular aggregates in the brain. Finally, peripheral EBV infection triggered temporal changes in the expression of latent viral transcripts and cytokines in the brain. The present study provides the first direct in vivo evidence for the role of peripheral EBV infection in CNS pathology, and highlights a unique model to dissect viral mechanisms contributing to the development of MS.
Collapse
Affiliation(s)
- Asma Hassani
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Narendran Reguraman
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
35
|
Hill DG, Ward A, Nicholson LB, Jones GW. Emerging roles for IL-6 family cytokines as positive and negative regulators of ectopic lymphoid structures. Cytokine 2021; 146:155650. [PMID: 34343865 DOI: 10.1016/j.cyto.2021.155650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
IL-6 family cytokines display broad effects in haematopoietic and non-haematopoietic cells that regulate immune homeostasis, host defence, haematopoiesis, development, reproduction and wound healing. Dysregulation of these activities places this cytokine family as important mediators of autoimmunity, chronic inflammation and cancer. In this regard, ectopic lymphoid structures (ELS) are a pathological hallmark of many tissues affected by chronic disease. These inducible lymphoid aggregates form compartmentalised T cell and B cell zones, germinal centres, follicular dendritic cell networks and high endothelial venules, which are defining qualities of peripheral lymphoid organs. Accordingly, ELS can support local antigen-specific responses to self-antigens, alloantigens, pathogens and tumours. ELS often correlate with severe disease progression in autoimmune conditions, while tumour-associated ELS are associated with enhanced anti-tumour immunity and a favourable prognosis in cancer. Here, we discuss emerging roles for IL-6 family cytokines as regulators of ELS development, maintenance and activity and consider how modulation of these activities has the potential to aid the successful treatment of autoimmune conditions and cancers where ELS feature.
Collapse
Affiliation(s)
- David G Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Amy Ward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Lindsay B Nicholson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
36
|
Zhan J, Kipp M, Han W, Kaddatz H. Ectopic lymphoid follicles in progressive multiple sclerosis: From patients to animal models. Immunology 2021; 164:450-466. [PMID: 34293193 PMCID: PMC8517596 DOI: 10.1111/imm.13395] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Ectopic lymphoid follicles (ELFs), resembling germinal centre‐like structures, emerge in a variety of infectious and autoimmune and neoplastic diseases. ELFs can be found in the meninges of around 40% of the investigated progressive multiple sclerosis (MS) post‐mortem brain tissues and are associated with the severity of cortical degeneration and clinical disease progression. Of predominant importance for progressive neuronal damage during the progressive MS phase appears to be meningeal inflammation, comprising diffuse meningeal infiltrates, B‐cell aggregates and compartmentalized ELFs. However, the absence of a uniform definition of ELFs impedes reproducible and comparable neuropathological research in this field. In this review article, we will first highlight historical aspects and milestones around the discovery of ELFs in the meninges of progressive MS patients. In the next step, we discuss how animal models may contribute to an understanding of the mechanisms underlying ELF formation. Finally, we summarize challenges in investigating ELFs and propose potential directions for future research.
Collapse
Affiliation(s)
- Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University Health Science Cente, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
37
|
Ciurkiewicz M, Floess S, Beckstette M, Kummerfeld M, Baumgärtner W, Huehn J, Beineke A. Transcriptome analysis following neurotropic virus infection reveals faulty innate immunity and delayed antigen presentation in mice susceptible to virus-induced demyelination. Brain Pathol 2021; 31:e13000. [PMID: 34231271 PMCID: PMC8549031 DOI: 10.1111/bpa.13000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system cause acute or delayed neuropathology and clinical consequences ranging from asymptomatic courses to chronic, debilitating diseases. The outcome of viral encephalitis is partially determined by genetically programed immune response patterns of the host. Experimental infection of mice with Theiler's murine encephalomyelitis virus (TMEV) causes diverse neurologic diseases, including TMEV‐induced demyelinating disease (TMEV‐IDD), depending on the used mouse strain. The aim of the present study was to compare initial transcriptomic changes occurring in the brain of TMEV‐infected SJL (TMEV‐IDD susceptible) and C57BL/6 (TMEV‐IDD resistant) mice. Animals were infected with TMEV and sacrificed 4, 7, or 14 days post infection. RNA was isolated from brain tissue and analyzed by whole‐transcriptome sequencing. Selected differences were confirmed on a protein level by immunohistochemistry. In mock‐infected SJL and C57BL/6 mice, >200 differentially expressed genes (DEGs) were detected. Following TMEV‐infection, the number of DEGs increased to >700. Infected C57BL/6 mice showed a higher expression of transcripts related to antigen presentation via major histocompatibility complex (MHC) I, innate antiviral immune responses and cytotoxicity, compared with infected SJL animals. Expression of many of those genes was weaker or delayed in SJL mice, associated with a failure of viral clearance in this mouse strain. SJL mice showed prolonged elevation of MHC II and chemotactic genes compared with C57BL/6 mice, which presumably facilitates the induction of chronic demyelinating disease. In addition, elevated expression of several genes associated with immunomodulatory or –suppressive functions was observed in SJL mice. The exploratory study confirms previous observations in the model and provides an extensive list of new immunologic parameters potentially contributing to different outcomes of viral encephalitis in two mouse strains.
Collapse
Affiliation(s)
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
38
|
Nishri Y, Fainstein N, Goldfarb S, Hampton D, Macrini C, Meinl E, Chandran S, Ben-Hur T. Modeling compartmentalized chronic immune-mediated demyelinating CNS disease in the Biozzi ABH mouse. J Neuroimmunol 2021; 356:577582. [PMID: 33910137 DOI: 10.1016/j.jneuroim.2021.577582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
We explored whether experimental autoimmune encephalomyelitis (EAE) in Biozzi mice recapitulates temporal dynamics of tissue injury, immune-pathogenesis and CNS compartmentalization occurring in progressive multiple sclerosis (MS). Chronic EAE exhibited relapsing and progressing disease, partial closure of BBB, reduced tissue inflammatory activity, and development of meningeal ectopic lymphoid tissue, directly opposing (potentially driving) spinal subpial demyelinated plaques. A T cell predominant disease during relapses transformed into a B cell predominant disease in late chronic EAE, with high serum anti-MOG reactivity. Thus, late chronic Biozzi EAE recapitulates essential features of progressive MS, and is suitable for developing disease modifying and regenerative therapies.
Collapse
Affiliation(s)
- Yossi Nishri
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nina Fainstein
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Smadar Goldfarb
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - David Hampton
- Centre for Clinical Brain Sciences, MS Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Caterina Macrini
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, MS Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Tamir Ben-Hur
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
39
|
Bhargava P, Kim S, Reyes AA, Grenningloh R, Boschert U, Absinta M, Pardo C, Van Zijl P, Zhang J, Calabresi PA. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain 2021; 144:1396-1408. [PMID: 33724342 DOI: 10.1093/brain/awab045] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Leptomeningeal inflammation in multiple sclerosis is associated with worse clinical outcomes and greater cortical pathology. Despite progress in identifying this process in multiple sclerosis patients using post-contrast fluid-attenuated inversion recovery imaging, early trials attempting to target meningeal inflammation have been unsuccessful. There is a lack of appropriate model systems to screen potential therapeutic agents targeting meningeal inflammation. We utilized ultra-high field (11.7 T) MRI to perform post-contrast imaging in SJL/J mice with experimental autoimmune encephalomyelitis induced via immunization with proteolipid protein peptide (PLP139-151) and complete Freund's adjuvant. Imaging was performed in both a cross-sectional and longitudinal fashion at time points ranging from 2 to 14 weeks post-immunization. Following imaging, we euthanized animals and collected tissue for pathological evaluation, which revealed dense cellular infiltrates corresponding to areas of contrast enhancement involving the leptomeninges. These areas of meningeal inflammation contained B cells (B220+), T cells (CD3+) and myeloid cells (Mac2+). We also noted features consistent with tertiary lymphoid tissue within these areas, namely the presence of peripheral node addressin-positive structures, C-X-C motif chemokine ligand-13 (CXCL13)-producing cells and FDC-M1+ follicular dendritic cells. In the cortex adjacent to areas of meningeal inflammation we identified astrocytosis, microgliosis, demyelination and evidence of axonal stress/damage. Since areas of meningeal contrast enhancement persisted over several weeks in longitudinal experiments, we utilized this model to test the effects of a therapeutic intervention on established meningeal inflammation. We randomized mice with evidence of meningeal contrast enhancement on MRI scans performed at 6 weeks post-immunization, to treatment with either vehicle or evobrutinib [a Bruton tyrosine kinase (BTK) inhibitor] for a period of 4 weeks. These mice underwent serial imaging; we examined the effect of treatment on the areas of meningeal contrast enhancement and noted a significant reduction in the evobrutinib group compared to vehicle (30% reduction versus 5% increase; P = 0.003). We used ultra-high field MRI to identify areas of meningeal inflammation and to track them over time in SJL/J mice with experimental autoimmune encephalomyelitis, and then used this model to identify BTK inhibition as a novel therapeutic approach to target meningeal inflammation. The results of this study provide support for future studies in multiple sclerosis patients with imaging evidence of meningeal inflammation.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sol Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arthur A Reyes
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Martina Absinta
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carlos Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jiangyang Zhang
- Department of Radiology, New York University, New York, NY, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Mitsdoerffer M, Di Liberto G, Dötsch S, Sie C, Wagner I, Pfaller M, Kreutzfeldt M, Fräßle S, Aly L, Knier B, Busch DH, Merkler D, Korn T. Formation and immunomodulatory function of meningeal B cell aggregates in progressive CNS autoimmunity. Brain 2021; 144:1697-1710. [PMID: 33693558 DOI: 10.1093/brain/awab093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Meningeal B lymphocyte aggregates have been described in autopsy material of patients with chronic multiple sclerosis. The presence of meningeal B cell aggregates has been correlated with worse disease. However, the functional role of these meningeal B cell aggregates is not understood. Here, we use a mouse model of multiple sclerosis, the spontaneous opticospinal encephalomyelitis model, which is built on the double transgenic expression of myelin oligodendrocyte glycoprotein-specific T-cell and B-cell receptors, to show that the formation of meningeal B cell aggregates is dependent on the expression of α4 integrins by antigen-specific T cells. T cell-conditional genetic ablation of α4 integrins in opticospinal encephalomyelitis mice impaired the formation of meningeal B cell aggregates, and surprisingly, led to a higher disease incidence as compared to opticospinal encephalomyelitis mice with α4 integrin-sufficient T cells. B cell-conditional ablation of α4 integrins in opticospinal encephalomyelitis mice resulted in the entire abrogation of the formation of meningeal B cell aggregates, and opticospinal encephalomyelitis mice with α4 integrin-deficient B cells suffered from a higher disease burden than regular opticospinal encephalomyelitis mice. While anti-CD20 antibody-mediated systemic depletion of B cells in opticospinal encephalomyelitis mice after onset of disease failed to efficiently decrease meningeal B cell aggregates without significantly modulating disease progression, treatment with anti-CD19 chimeric antigen receptor-T cells eliminated meningeal B cell aggregates and exacerbated clinical disease in opticospinal encephalomyelitis mice. Since about 20% of B cells in organized meningeal B cell aggregates produced either IL-10 or IL-35, we propose that meningeal B cell aggregates might also have an immunoregulatory function as to the immunopathology in adjacent spinal cord white matter. The immunoregulatory function of meningeal B cell aggregates needs to be considered when designing highly efficient therapies directed against meningeal B cell aggregates for clinical application in multiple sclerosis.
Collapse
Affiliation(s)
- Meike Mitsdoerffer
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany.,Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Giovanni Di Liberto
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Sarah Dötsch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Christopher Sie
- Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Ingrid Wagner
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Monika Pfaller
- Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Mario Kreutzfeldt
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Simon Fräßle
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Lilian Aly
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany
| | - Benjamin Knier
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany.,National Center for Infection Research (DZIF), Technical University of Munich, 81675 Munich, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany.,Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), DZNE site Munich, 81377 Munich, Germany
| |
Collapse
|
41
|
Silva BA, Miglietta E, Ferrari CC. Insights into the role of B cells in the cortical pathology of Multiple sclerosis: evidence from animal models and patients. Mult Scler Relat Disord 2021; 50:102845. [PMID: 33636613 DOI: 10.1016/j.msard.2021.102845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system (CNS) that affects both white and gray matter. Although it has been traditionally considered as a T cell mediated disease, the role of B cell in MS pathology has become a topic of great research interest. Cortical lesions, key feature of the progressive forms of MS, are involved in cognitive impairment and worsening of the patients' outcome. These lesions present pathognomonic hallmarks, such as: absence of blood-brain barrier (BBB) disruption, limited inflammatory events, reactive microglia, neurodegeneration, demyelination and meningeal inflammation. B cells located in the meninges, either as part of diffuse inflammation or as part of follicle-like structures, are strongly associated with cortical damage. The function of CD20-expressing B cells in MS is further highlighted by the success of specific therapies using anti-CD20 antibodies. The possible roles of B cells in pathology go beyond their ability to produce antibodies, as they also present antigens to T cells, secrete cytokines (both pathogenic and protective) within the CNS to modulate T and myeloid cell functions, and are involved in meningeal inflammation. Here, we will review the contributions of B cells to the pathogenesis of meningeal inflammation and cortical lesions in MS patients as well as in preclinical animal models.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Buenos Aires, Argentina; Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA, CONICET, Buenos Aires, Argentina; Centro Universitario de Esclerosis Múltiple, División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Esteban Miglietta
- Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA, CONICET, Buenos Aires, Argentina
| | - Carina Cintia Ferrari
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Buenos Aires, Argentina; Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Bakhuraysah MM, Theotokis P, Lee JY, Alrehaili AA, Aui PM, Figgett WA, Azari MF, Abou-Afech JP, Mackay F, Siatskas C, Alderuccio F, Strittmatter SM, Grigoriadis N, Petratos S. B-cells expressing NgR1 and NgR3 are localized to EAE-induced inflammatory infiltrates and are stimulated by BAFF. Sci Rep 2021; 11:2890. [PMID: 33536561 PMCID: PMC7858582 DOI: 10.1038/s41598-021-82346-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/14/2021] [Indexed: 02/01/2023] Open
Abstract
We have previously reported evidence that Nogo-A activation of Nogo-receptor 1 (NgR1) can drive axonal dystrophy during the neurological progression of experimental autoimmune encephalomyelitis (EAE). However, the B-cell activating factor (BAFF/BlyS) may also be an important ligand of NgR during neuroinflammation. In the current study we define that NgR1 and its homologs may contribute to immune cell signaling during EAE. Meningeal B-cells expressing NgR1 and NgR3 were identified within the lumbosacral spinal cords of ngr1+/+ EAE-induced mice at clinical score 1. Furthermore, increased secretion of immunoglobulins that bound to central nervous system myelin were shown to be generated from isolated NgR1- and NgR3-expressing B-cells of ngr1+/+ EAE-induced mice. In vitro BAFF stimulation of NgR1- and NgR3-expressing B cells, directed them into the cell cycle DNA synthesis phase. However, when we antagonized BAFF signaling by co-incubation with recombinant BAFF-R, NgR1-Fc, or NgR3 peptides, the B cells remained in the G0/G1 phase. The data suggest that B cells express NgR1 and NgR3 during EAE, being localized to infiltrates of the meninges and that their regulation is governed by BAFF signaling.
Collapse
Affiliation(s)
- Maha M Bakhuraysah
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
- Faculty of Applied Medical Sciences, Taif University, Taif, 26521, Kingdom of Saudi Arabia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, 54636, Thessaloniki, Macedonia, Greece
| | - Jae Young Lee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
- Toolgen Inc., Gasan Digital-Ro, 08594, Geumcheon, Seoul, Korea
| | - Amani A Alrehaili
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
- Faculty of Applied Medical Sciences, Taif University, Taif, 26521, Kingdom of Saudi Arabia
| | - Pei-Mun Aui
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
| | - William A Figgett
- Department of Microbiology and Immunology, School of Biomedical Science, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Michael F Azari
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
| | - John-Paul Abou-Afech
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
| | - Fabienne Mackay
- Department of Microbiology and Immunology, School of Biomedical Science, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | | | - Frank Alderuccio
- Department of Immunology and Pathology, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, 54636, Thessaloniki, Macedonia, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia.
| |
Collapse
|
43
|
Möckel T, Basta F, Weinmann-Menke J, Schwarting A. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in Systemic Lupus Erythematosus (SLE). Autoimmun Rev 2020; 20:102736. [PMID: 33333233 DOI: 10.1016/j.autrev.2020.102736] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022]
Abstract
The B cell activating factor (BAFF), or B lymphocyte stimulator (BLyS), is a B cell survival factor which supports autoreactive B cells and prevents their deletion. BAFF expression is closely linked with autoimmunity and is enhanced by genetic alterations and viral infections. Furthermore, BAFF seems to be involved in adipogenesis, atherosclerosis, neuro-inflammatory processes and ischemia reperfusion (I/R) injury. BAFF is commonly overexpressed in Systemic Lupus Erythematosus (SLE) and strongly involved in the pathogenesis of the disease. The relationship between BAFF levels, disease activity and damage accrual in SLE is controversial, but growing evidence is emerging on its role in renal involvement. Belimumab, a biologic BAFF inhibitor, has been the first biologic agent licensed for SLE therapy so far. As Rituximab (RTX) has been shown to increase BAFF levels following B cell depletion, the combination therapy of RTX plus belimumab (being evaluated in two RCT) seems to be a valuable option for several clinical scenarios. In this review we will highlight the growing body of evidence of immune and non-immune related BAFF expression in experimental and clinical settings.
Collapse
Affiliation(s)
- Tamara Möckel
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Fabio Basta
- Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| | - Julia Weinmann-Menke
- Department of Internal Medicine I, Division of Nephrology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Schwarting
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| |
Collapse
|
44
|
Cohen M, Giladi A, Raposo C, Zada M, Li B, Ruckh J, Deczkowska A, Mohar B, Shechter R, Lichtenstein RG, Amit I, Schwartz M. Meningeal lymphoid structures are activated under acute and chronic spinal cord pathologies. Life Sci Alliance 2020; 4:4/1/e202000907. [PMID: 33277355 PMCID: PMC7723261 DOI: 10.26508/lsa.202000907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/01/2022] Open
Abstract
We found that acute insult to the central nervous system induces the formation of lymphocyte aggregates reminiscent of tertiary lymphoid structures within the spinal cord meninges. Unlike draining CNS-cervical lymph nodes, meningeal lymphocytes are locally activated during neuro-inflammtion and neurodegeneration. Tertiary lymphoid structures (TLS) are organized aggregates of B and T cells formed ectopically during different stages of life in response to inflammation, infection, or cancer. Here, we describe formation of structures reminiscent of TLS in the spinal cord meninges under several central nervous system (CNS) pathologies. After acute spinal cord injury, B and T lymphocytes locally aggregate within the meninges to form TLS-like structures, and continue to accumulate during the late phase of the response to the injury, with a negative impact on subsequent pathological conditions, such as experimental autoimmune encephalomyelitis. Using a chronic model of spinal cord pathology, the mSOD1 mouse model of amyotrophic lateral sclerosis, we further showed by single-cell RNA-sequencing that a meningeal lymphocyte niche forms, with a unique organization and activation state, including accumulation of pre-B cells in the spinal cord meninges. Such a response was not found in the CNS-draining cervical lymph nodes. The present findings suggest that a special immune response develops in the meninges during various neurological pathologies in the CNS, a possible reflection of its immune privileged nature.
Collapse
Affiliation(s)
- Merav Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Catarina Raposo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mor Zada
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Baoguo Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Ruckh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Boaz Mohar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ravid Shechter
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Rachel G Lichtenstein
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel .,Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| |
Collapse
|
45
|
Trolese MC, Mariani A, Terao M, de Paola M, Fabbrizio P, Sironi F, Kurosaki M, Bonanno S, Marcuzzo S, Bernasconi P, Trojsi F, Aronica E, Bendotti C, Nardo G. CXCL13/CXCR5 signalling is pivotal to preserve motor neurons in amyotrophic lateral sclerosis. EBioMedicine 2020; 62:103097. [PMID: 33161233 PMCID: PMC7670099 DOI: 10.1016/j.ebiom.2020.103097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CXCL13 is a B and T lymphocyte chemokine that mediates neuroinflammation through its receptor CXCR5. This chemokine is highly expressed by motoneurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) SOD1G93A (mSOD1) mice during the disease, particularly in fast-progressing mice. Accordingly, in this study, we investigated the role of this chemokine in ALS. METHODS We used in vitro and in vivo experimental paradigms derived from ALS mice and patients to investigate the expression level and distribution of CXCL13/CXCR5 axis and its role in MN death and disease progression. Moreover, we compared the levels of CXCL13 in the CSF and serum of ALS patients and controls. FINDINGS CXCL13 and CXCR5 are overexpressed in the spinal MNs and peripheral axons in mSOD1 mice. CXCL13 inhibition in the CNS of ALS mice resulted in the exacerbation of motor impairment (n = 4/group;Mean_Diff.=27.81) and decrease survival (n = 14_Treated:19.2 ± 1.05wks, n = 17_Controls:20.2 ± 0.6wks; 95% CI: 0.4687-1.929). This was corroborated by evidence from primary spinal cultures where the inhibition or activation of CXCL13 exacerbated or prevented the MN loss. Besides, we found that CXCL13/CXCR5 axis is overexpressed in the spinal cord MNs of ALS patients, and CXCL13 levels in the CSF discriminate ALS (n = 30) from Multiple Sclerosis (n = 16) patients with a sensitivity of 97.56%. INTERPRETATION We hypothesise that MNs activate CXCL13 signalling to attenuate CNS inflammation and prevent the neuromuscular denervation. The low levels of CXCL13 in the CSF of ALS patients might reflect the MN dysfunction, suggesting this chemokine as a potential clinical adjunct to discriminate ALS from other neurological diseases. FUNDING Vaccinex, Inc.; Regione Lombardia (TRANS-ALS).
Collapse
Affiliation(s)
- Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Alessandro Mariani
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Massimiliano de Paola
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Silvia Bonanno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Pia Bernasconi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Eleonora Aronica
- Department of Pathology, Academic Medic\\\al Centre, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|
46
|
Baniahmad A, Birkner K, Görg J, Loos J, Zipp F, Wasser B, Bittner S. The frequency of follicular T helper cells differs in acute and chronic neuroinflammation. Sci Rep 2020; 10:20485. [PMID: 33235306 PMCID: PMC7686332 DOI: 10.1038/s41598-020-77588-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/10/2020] [Indexed: 11/09/2022] Open
Abstract
Beyond the major role of T cells in the pathogenesis of the autoimmune neuroinflammatory disorder multiple sclerosis (MS), recent studies have highlighted the impact of B cells on pathogenic inflammatory processes. Follicular T helper cells (Tfh) are essential for the promotion of B cell-driven immune responses. However, their role in MS and its murine model, experimental autoimmune encephalomyelitis (EAE), is poorly investigated. A first step to achieving a better understanding of the contribution of Tfh cells to the disease is the consideration of Tfh cell localization in relation to genetic background and EAE induction method. Here, we investigated the Tfh cell distribution during disease progression in disease relevant organs in three different EAE models. An increase of Tfh frequency in the central nervous system (CNS) was observed during peak of C57BL/6 J EAE, paralleling chronic disease activity, whereas in relapsing-remitting SJL EAE mice Tfh cell frequencies were increased during remission. Furthermore, transferred Tfh-skewed cells polarized in vitro induced mild clinical symptoms in B6.Rag1-/- mice. We identified significantly higher levels of Tfh cells in the dura mater than in the CNS both in C57BL/6 and in SJL/J mice. Overall, our study emphasizes diverse, non-static roles of Tfh cells during autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Adalie Baniahmad
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Katharina Birkner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Johanna Görg
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Julia Loos
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Beatrice Wasser
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.
| |
Collapse
|
47
|
Magliozzi R, Marastoni D, Calabrese M. The BAFF / APRIL system as therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2020; 24:1135-1145. [PMID: 32900236 DOI: 10.1080/14728222.2020.1821647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The complex system of BAFF (B-cell-activating factor of the TNF family) and APRIL (A proliferation-inducing ligand) has been studied in animal models of autoimmune diseases such as those resembling human systemic lupus erythematosus and Sjogren's syndrome and multiple sclerosis (MS). Accumulating evidence suggests that BAFF and APRIL have a physiological role in B cell immunity regulation, however inappropriate production of these factors may represent a key event which disrupts immune tolerance which is associated with systemic autoimmune diseases. AREAS COVERED We provide an update on the latest studies of the BAFF/APRIL system in multiple sclerosis, as well as on related clinical trials. EXPERT OPINION Experimental and clinical evidence suggests that increased BAFF levels may interfere directly and indirectly with B cell immunity; this can lead to breakdown of immune tolerance, the production of autoantibodies and continuous local intracerebral inflammation and brain tissue destruction. A more comprehensive understanding of the cell/molecular mechanism immune reactions specifically regulated by BAFF/APRIL in MS would better elucidate the specific cell phenotype targeted by actual anti-BAFF/APRIL therapies; this may enable the identification of either specific biomarkers of MS subgroups that would benefit of anti-BAFF/APRIL treatments or new targets of MS-specific anti-BAFF/APRIL therapies.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| |
Collapse
|
48
|
Karpus WJ. Cytokines and Chemokines in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2020; 204:316-326. [PMID: 31907274 DOI: 10.4049/jimmunol.1900914] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022]
Abstract
Experimental autoimmune encephalomyelitis is a CD4+ T cell-mediated demyelinating disease of the CNS that serves as a model for multiple sclerosis. Cytokines and chemokines shape Th1 and Th17 effector responses as well as regulate migration of leukocytes to the CNS during disease. The CNS cellular infiltrate consists of Ag-specific and nonspecific CD4+ and CD8+ T cells, neutrophils, B cells, monocytes, macrophages, and dendritic cells. The mechanism of immune-mediated inflammation in experimental autoimmune encephalomyelitis has been extensively studied in an effort to develop therapeutic modalities for multiple sclerosis and, indeed, has provided insight in modern drug discovery. The present Brief Review highlights critical pathogenic aspects of cytokines and chemokines involved in generation of effector T cell responses and migration of inflammatory cells to the CNS. Select cytokines and chemokines are certainly important in the regulatory response, which involves T regulatory, B regulatory, and myeloid-derived suppressor cells. However, that discussion is beyond the scope of this brief review.
Collapse
Affiliation(s)
- William J Karpus
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
49
|
Masouris I, Klein M, Ködel U. The potential for CXCL13 in CSF as a differential diagnostic tool in central nervous system infection. Expert Rev Anti Infect Ther 2020; 18:875-885. [PMID: 32479125 DOI: 10.1080/14787210.2020.1770596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Central nervous system (CNS) infections can be life-threatening and are often associated with disabling sequelae. One important factor in most CNS infections is a timely pathogen-specific treatment. The diagnostic methods available, however, do not always reach a satisfying sensitivity and specificity. In these cases, there is need for additional diagnostic biomarkers. Chemokines represent potential candidates as biomarkers, since they are an important pillar of the host immune response. The aim of this review is to discuss the diagnostic potential of cerebrospinal fluid (CSF) CXCL13 in patients with CNS infections. Areas covered: Data were obtained from a literature search in PubMed up to October 2019. This review focusses on articles on the potential of CXCL13 as a diagnostic tool. The majority of identified studies aimed to characterize its role in two diseases, namely Lyme neuroborreliosis and neurosyphilis. Expert opinion: CSF CXCL13 has a significant potential as a diagnostic and monitoring add-on marker in Lyme neuroborreliosis. Differences in study design, control groups and clinical parameters between studies, however, affect sensitivity, specificity and cutoff values, underlining the need of further studies to address these issues and pave the way for a generalized clinical practice.
Collapse
Affiliation(s)
- Ilias Masouris
- Department of Neurology, University Hospital, Ludwig Maximilian University , Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig Maximilian University , Munich, Germany
| | - Uwe Ködel
- Department of Neurology, University Hospital, Ludwig Maximilian University , Munich, Germany
| |
Collapse
|
50
|
Gil-Varea E, Fedetz M, Eixarch H, Spataro N, Villar LM, Urcelay E, Saiz A, Fernández Ó, Leyva L, Ramió-Torrentà L, Vandenbroeck K, Otaegui D, Castillo-Triviño T, Izquierdo G, Malhotra S, Bosch E, Navarro A, Alcina A, Montalban X, Matesanz F, Comabella M. A New Risk Variant for Multiple Sclerosis at 11q23.3 Locus Is Associated with Expansion of CXCR5+ Circulating Regulatory T Cells. J Clin Med 2020; 9:jcm9030625. [PMID: 32110891 PMCID: PMC7141122 DOI: 10.3390/jcm9030625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies and meta-analysis have contributed to the identification of more than 200 loci associated with multiple sclerosis (MS). However, a proportion of MS heritability remains unknown. We aimed to uncover new genetic variants associated with MS and determine their functional effects. For this, we resequenced the exons and regulatory sequences of 14 MS risk genes in a cohort of MS patients and healthy individuals (n = 1070) and attempted to validate a selection of signals through genotyping in an independent cohort (n = 5138). We identified three new MS-associated variants at C-X-C motif chemokine receptor 5 (CXCR5), Ts translation elongation factor, mitochondrial (TSFM) and cytochrome P450 family 24 subfamily A member 1 (CYP24A1). Rs10892307 resulted in a new signal at the CXCR5 region that explains one of the associations with MS within the locus. This polymorphism and three others in high linkage disequilibrium mapped within regulatory regions. Of them, rs11602393 showed allele-dependent enhancer activity in the forward orientation as determined by luciferase reporter assays. Immunophenotyping using peripheral blood mononuclear cells from MS patients associated the minor allele of rs10892307 with increased percentage of regulatory T cells expressing CXCR5. This work reports a new signal for the CXCR5 MS risk locus and points to rs11602393 as the causal variant. The expansion of CXCR5+ circulating regulatory T cells induced by this variant could cause its MS association.
Collapse
Affiliation(s)
- Elia Gil-Varea
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.G.-V.); (H.E.); (S.M.); (X.M.)
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (M.F.); (A.A.)
| | - Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.G.-V.); (H.E.); (S.M.); (X.M.)
| | - Nino Spataro
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
| | - Luisa María Villar
- Departments of Immunology and Neurology, Multiple Sclerosis Unit, Hospital Ramon y Cajal, (IRYCIS), 28034 Madrid, Spain;
| | - Elena Urcelay
- Lab. of Genetics of Complex Diseases, Hospital Clinico San Carlos, Instituto de Investigacion Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Albert Saiz
- Servicio de Neurología, Hospital Clinic and Institut d’Investigació Biomèdica Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain;
| | - Óscar Fernández
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (Ó.F.); (L.L.)
| | - Laura Leyva
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (Ó.F.); (L.L.)
| | - Lluís Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute (IdIBGi), Department of Medical Sciences, Faculty of Medicine, University of Girona, 17190 Girona, Spain;
| | - Koen Vandenbroeck
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - David Otaegui
- Neurosciences Area, Biodonostia Health Research Institute, 20014 San Sebastián, Spain;
| | | | - Guillermo Izquierdo
- Departamento de Neurología, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
| | - Sunny Malhotra
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.G.-V.); (H.E.); (S.M.); (X.M.)
| | - Elena Bosch
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (E.B.); (A.N.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 43200 Reus, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (E.B.); (A.N.)
- Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (M.F.); (A.A.)
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.G.-V.); (H.E.); (S.M.); (X.M.)
- Center for Multiple Sclerosis, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (M.F.); (A.A.)
- Correspondence: (F.M.); (M.C.); Tel.: +34-958-181-668 (F.M.); +34-932-746-834 (M.C.); Fax: +34-932-746-084 (M.C.)
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.G.-V.); (H.E.); (S.M.); (X.M.)
- Correspondence: (F.M.); (M.C.); Tel.: +34-958-181-668 (F.M.); +34-932-746-834 (M.C.); Fax: +34-932-746-084 (M.C.)
| |
Collapse
|