1
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Williams ME, Naudé PJW. The relationship between HIV-1 neuroinflammation, neurocognitive impairment and encephalitis pathology: A systematic review of studies investigating post-mortem brain tissue. Rev Med Virol 2024; 34:e2519. [PMID: 38282400 PMCID: PMC10909494 DOI: 10.1002/rmv.2519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
The activities of HIV-1 in the central nervous system (CNS) are responsible for a dysregulated neuroinflammatory response and the subsequent development of HIV-associated neurocognitive disorders (HAND). The use of post-mortem human brain tissue is pivotal for studying the neuroimmune mechanisms of CNS HIV infection. To date, numerous studies have investigated HIV-1-induced neuroinflammation in post-mortem brain tissue. However, from the commonly investigated studies in this line of research, it is not clear which neuroinflammatory markers are consistently associated with HIV neurocognitive impairment (NCI) and neuropathology (i.e., HIV-encephalitis, HIVE). Therefore, we conducted a systematic review of the association between neuroinflammation and NCI/HIVE from studies investigating post-mortem brain tissue. Our aim was to synthesise the published data to date to provide commentary on the most noteworthy markers that are associated with NCI/HIVE. PubMed, Scopus, and Web of Science databases were searched using a search protocol designed specifically for this study. Sixty-one studies were included that investigated the levels of inflammatory markers based on their gene and protein expression in association with NCI/HIVE. The findings revealed that the (1) transcript expressions of IL-1β and TNF-α were consistently associated with NCI/HIVE, whereas CCL2 and IL-6 were commonly not associated with NCI/HIVE, (2) protein expressions of CD14, CD16, CD68, Iba-1, IL-1β and TNF-α were consistently associated with NCI/HIVE, while CD45, GFAP, HLA-DR, IL-1 and IL-6 were commonly not associated with NCI/HIVE, and (3) gene and protein expressions of CNS IL-1β and TNF-α were consistently associated with NCI/HIVE, while IL-6 was consistently not associated with NCI/HIVE. These markers highlight the commonly investigated markers in this line of research and elucidates the neuroinflammatory mechanisms in the HIV-1 brain that are involved in the pathophysiology of NCI/HIVE. These markers and related pathways should be investigated for the development of improved diagnostics, prognostics, and therapeutics of HAND.
Collapse
Affiliation(s)
| | - Petrus J. W. Naudé
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
3
|
Di Benedetto G, Burgaletto C, Serapide MF, Caltabiano R, Munafò A, Bellanca CM, Di Mauro R, Bernardini R, Cantarella G. TRAIL-R Deficient Mice Are Protected from Neurotoxic Effects of Amyloid-β. Int J Mol Sci 2022; 23:ijms231911625. [PMID: 36232931 PMCID: PMC9569968 DOI: 10.3390/ijms231911625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
TRAIL, a member of TNF superfamily, is a potent inducer of neuronal death. Neurotoxic effects of TRAIL appear mediated by its death receptor TRAIL-R2/DR5. To assess the role of TRAIL/TRAIL-R2 pathway in AD-related neurodegeneration, we studied the impact of the treatment with amyloid-β (Aβ) upon cell viability and inflammation in TRAIL-R-deficient mice (TRAIL-R−/−). Here, we demonstrate that the lack of TRAIL-R2 protects from death cultured TRAIL-R−/− mouse embryonic hippocampal cells after treatment with either Aβ1-42 or TRAIL. Consistently, stereotaxic injection of Aβ1-42 resulted in blunted caspase activation, as well as in reduction of JNK phosphorylation and increased AKT phosphorylation in TRAIL-R−/− mice. Moreover, the lack of TRAIL-R2 was associated with blunted constitutive p53 expression in mice that have undergone Aβ1-42 treatment, as well as in decrease of phosphorylated forms of tau and GSK3β proteins. Likewise, TRAIL-R2 appears essential to both TRAIL and Aβ-mediated neurotoxicity and inflammation. Indeed, hippocampi of TRAIL-R−/− mice challenged with Aβ1-42, showed a slight expression of microglial (Iba-1) and astrocytic (GFAP) markers along with attenuated levels of IL-1β, TNF-α, NOS2 and COX2. In conclusion, the bulk of these results demonstrate that the constitutive lack of TRAIL-R2 is associated with a substantial reduction of noxious effects of Aβ1-42, providing further evidence on the prominent role played by TRAIL in course of Aβ-related neurodegeneration and confirming that the TRAIL system represents a potential target for innovative AD therapy.
Collapse
Affiliation(s)
- Giulia Di Benedetto
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Chiara Burgaletto
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Maria Francesca Serapide
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Section of Anatomic Pathology, Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Antonio Munafò
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Carlo Maria Bellanca
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosaria Di Mauro
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Renato Bernardini
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-0954781190
| | - Giuseppina Cantarella
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Murray TE, Richards CM, Robert-Gostlin VN, Bernath AK, Lindhout IA, Klegeris A. Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res Bull 2022; 189:80-101. [PMID: 35988785 DOI: 10.1016/j.brainresbull.2022.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aβ), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Victoria N Robert-Gostlin
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
5
|
Burgaletto C, Munafò A, Di Benedetto G, De Francisci C, Caraci F, Di Mauro R, Bucolo C, Bernardini R, Cantarella G. The immune system on the TRAIL of Alzheimer's disease. J Neuroinflammation 2020; 17:298. [PMID: 33050925 PMCID: PMC7556967 DOI: 10.1186/s12974-020-01968-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive degeneration and loss of neurons in specific regions of the central nervous system. Chronic activation of the immune cells resident in the brain, peripheral immune cell trafficking across the blood-brain barrier, and release of inflammatory and neurotoxic factors, appear critical contributors of the neuroinflammatory response that drives the progression of neurodegenerative processes in AD. As the neuro-immune network is impaired in course of AD, this review is aimed to point out the essential supportive role of innate and adaptive immune response either in normal brain as well as in brain recovery from injury. Since a fine-tuning of the immune response appears crucial to ensure proper nervous system functioning, we focused on the role of the TNF superfamily member, TNF-related apoptosis-inducing ligand (TRAIL), which modulates both the innate and adaptive immune response in the pathogenesis of several immunological disorders and, in particular, in AD-related neuroinflammation. We here summarized mounting evidence of potential involvement of TRAIL signaling in AD pathogenesis, with the aim to provide clearer insights about potential novel therapeutic approaches in AD.
Collapse
Affiliation(s)
- Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Antonio Munafò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Cettina De Francisci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy.,Clinical Toxicology Unit, University Hospital, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy. .,Clinical Toxicology Unit, University Hospital, University of Catania, Catania, Italy.
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| |
Collapse
|
6
|
Gao S, Fang Y, Tu S, Chen H, Shao A. Insight into the divergent role of TRAIL in non-neoplastic neurological diseases. J Cell Mol Med 2020; 24:11070-11083. [PMID: 32827246 PMCID: PMC7576257 DOI: 10.1111/jcmm.15757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour necrosis factor–related apoptosis‐inducing ligand (TRAIL) is a member of the tumour necrosis factor (TNF) superfamily which mainly induces apoptosis of tumour cells and transformed cell lines with no systemic toxicity, whereas they share high sequence homology with TNF and CD95L. These unique effects of TRAIL have made it an important molecule in oncology research. However, the research on TRAIL‐related antineoplastic agents has lagged behind and has been limited by the extensive drug resistance in cancer cells. Given the several findings showing that TRAIL is involved in immune regulation and other pleiotropic biological effects in non‐malignant cells, TRAIL and its receptors have attracted widespread attention from researchers. In the central nervous system (CNS), TRAIL is highly correlated with malignant tumours such as glioma and other non‐neoplastic disorders such as acute brain injury, CNS infection and neurodegenerative disease. Many clinical and animal studies have revealed the dual roles of TRAIL in which it causes damage by inducing cell apoptosis, and confers protection by enhancing both pro‐ and non‐apoptosis effects in different neurological disorders and at different sites or stages. Its pro‐apoptotic effect produces a pro‐survival effect that cannot be underestimated. This review extensively covers in vitro and in vivo experiments and clinical studies investigating TRAIL. It also provides a summary of the current knowledge on the TRAIL signalling pathway and its involvement in pathogenesis, diagnosis and therapeutics of CNS disorders as a basis for future research.
Collapse
Affiliation(s)
- Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
McClintick JN, Tischfield JA, Deng L, Kapoor M, Xuei X, Edenberg HJ. Ethanol activates immune response in lymphoblastoid cells. Alcohol 2019; 79:81-91. [PMID: 30639126 PMCID: PMC6616005 DOI: 10.1016/j.alcohol.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022]
Abstract
The short-term effects of alcohol on gene expression in brain tissue cannot directly be studied in humans. Because neuroimmune signaling is altered by alcohol, immune cells are a logical, accessible choice to study and may provide biomarkers. RNAseq was used to study the effects of 48-h exposure to ethanol on lymphoblastoid cell lines (LCLs) from 20 alcoholic subjects and 20 control subjects. Ethanol exposure resulted in differential expression of 4456 of the 12,503 genes detectably expressed in the LCLs (FDR [false discovery rate] ≤ 0.05); 52% of these showed increased expression. Cells from alcoholic subjects and control subjects responded similarly. The genes whose expression changed fell into many pathways: NFκB, neuroinflammation, IL6, IL2, IL8, and dendritic cell maturation pathways were activated, consistent with increased signaling by NFκB, TNF, IL1, IL4, IL18, TLR4, and LPS. Signaling by Interferons A and B decreased, as did EIF2 signaling, phospholipase C signaling, and glycolysis. Baseline gene expression patterns were similar in LCLs from alcoholic subjects and control subjects. At relaxed stringency (p < 0.05), 465 genes differed, 230 of which were also affected by ethanol. There was a suggestion of compensation because baseline differences (no ethanol) were in the opposite direction of differences due to ethanol exposure in 78% of these genes. Pathways with IL8, phospholipase C, and α-adrenergic signaling were significant. The pattern of expression was consistent with increased signaling by several cytokines, including interferons, TLR2, and TLR3 in alcoholics. Expression of genes in the cholesterol biosynthesis pathway, including the rate-limiting enzyme HMGCR, was lower in alcoholic subjects. LCLs show many effects of ethanol exposure, some of which might provide biomarkers for alcohol use disorders. Identifying genes and pathways altered by ethanol can aid in interpreting which genes within loci identified by GWAS might play functional roles.
Collapse
Affiliation(s)
- Jeanette N McClintick
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Li Deng
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Manav Kapoor
- Departments of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Xiaoling Xuei
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Howard J Edenberg
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| |
Collapse
|
8
|
Zhao R, Li Y, Gorantla S, Poluektova LY, Lin H, Gao F, Wang H, Zhao J, Zheng JC, Huang Y. Small molecule ONC201 inhibits HIV-1 replication in macrophages via FOXO3a and TRAIL. Antiviral Res 2019; 168:134-145. [PMID: 31158413 DOI: 10.1016/j.antiviral.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/01/2023]
Abstract
Despite the success of antiretroviral therapy (ART), eradication of HIV-1 from brain reservoirs remains elusive. HIV-1 brain reservoirs include perivascular macrophages that are behind the blood-brain barrier and difficult to access by ART. Macrophages express transcription factor FOXO3a and the TNF superfamily cytokine TRAIL, which are known to target HIV-1-infected macrophages for viral inhibition. ONC201 is a novel and potent FOXO3a activator capable of inducing TRAIL. It can cross the blood-brain barrier, and has shown antitumor effects in clinical trials. We hypothesized that activation of FOXO3a/TRAIL by ONC201 will inhibit HIV-1 replication in macrophages. Using primary human monocyte-derived macrophages, we demonstrated that ONC201 dose-dependently decreased replication levels of both HIV-1 laboratory strain and primary strains as determined by HIV-1 reverse transcriptase activity assay. Consistent with data on HIV-1 replication, ONC201 also reduced intracellular and extracellular p24, viral RNA, and integrated HIV-1 DNA in infected macrophages. Blocking TRAIL or knockdown of FOXO3a with siRNA reversed ONC201-mediated HIV-1 suppression, suggesting that ONC201 inhibits HIV-1 through FOXO3a and TRAIL. The anti-HIV-1 effect of ONC201 was further validated in vivo in NOD/scid-IL-2Rgcnull mice. After intracranial injection of HIV-1-infected macrophages into the basal ganglia, we treated the mice daily with ONC201 through intraperitoneal injection for six days. ONC201 significantly decreased p24 levels in both the macrophages and the brain tissues, suggesting that ONC201 suppresses HIV-1 in vivo. Therefore, ONC201 can be a promising drug candidate to combat persistent HIV-1 infection in the brain.
Collapse
Affiliation(s)
- Runze Zhao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Yuju Li
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Santhi Gorantla
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Larisa Y Poluektova
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Hai Lin
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengtong Gao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Hongyun Wang
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jeffrey Zhao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jialin C Zheng
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| | - Yunlong Huang
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Tumor Necrosis Factor Alpha-Induced Recruitment of Inflammatory Mononuclear Cells Leads to Inflammation and Altered Brain Development in Murine Cytomegalovirus-Infected Newborn Mice. J Virol 2017; 91:JVI.01983-16. [PMID: 28122986 PMCID: PMC5375689 DOI: 10.1128/jvi.01983-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/06/2017] [Indexed: 12/24/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a significant cause of abnormal neurodevelopment and long-term neurological sequelae in infants and children. Resident cell populations of the developing brain have been suggested to be more susceptible to virus-induced cytopathology, a pathway thought to contribute to the clinical outcomes following intrauterine HCMV infection. However, recent findings in a newborn mouse model of the infection in the developing brain have indicated that elevated levels of proinflammatory mediators leading to mononuclear cell activation and recruitment could underlie the abnormal neurodevelopment. In this study, we demonstrate that treatment with tumor necrosis factor alpha (TNF-α)-neutralizing antibodies decreased the frequency of CD45+ Ly6Chi CD11b+ CCR2+ activated myeloid mononuclear cells (MMCs) and the levels of proinflammatory cytokines in the blood and the brains of murine CMV-infected mice. This treatment also normalized neurodevelopment in infected mice without significantly impacting the level of virus replication. These results indicate that TNF-α is a major component of the inflammatory response associated with altered neurodevelopment that follows murine CMV infection of the developing brain and that a subset of peripheral blood myeloid mononuclear cells represent a key effector cell population in this model of virus-induced inflammatory disease of the developing brain.IMPORTANCE Congenital human cytomegalovirus (HCMV) infection is the most common viral infection of the developing human fetus and can result in neurodevelopmental sequelae. Mechanisms of disease leading to neurodevelopmental deficits in infected infants remain undefined, but postulated pathways include loss of neuronal progenitor cells, damage to the developing vascular system of the brain, and altered cellular positioning. Direct virus-mediated cytopathic effects cannot explain the phenotypes of brain damage in most infected infants. Using a mouse model that recapitulates characteristics of the brain infection described in human infants, we have shown that TNF-α plays a key role in brain inflammation, including recruitment of inflammatory mononuclear cells. Neutralization of TNF-α normalized neurodevelopmental abnormalities in infected mice, providing evidence that virus-induced inflammation is a major component of disease in the developing brain. These results suggest that interventions limiting inflammation associated with the infection could potentially improve the neurologic outcome of infants infected in utero with HCMV.
Collapse
|
10
|
Tisato V, Gonelli A, Voltan R, Secchiero P, Zauli G. Clinical perspectives of TRAIL: insights into central nervous system disorders. Cell Mol Life Sci 2016; 73:2017-27. [PMID: 26910728 PMCID: PMC4834097 DOI: 10.1007/s00018-016-2164-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/01/2022]
Abstract
The TNF-related apoptosis inducing ligand TRAIL is a member of the TNF superfamily that has been firstly studied and evaluated for its anti-cancer activity, and the insights into its biology have already led to the identification of several TRAIL-based anticancer strategies with strong clinical therapeutic potentials. Nonetheless, the TRAIL system is far more complex and it can lead to a wider range of biological effects other than the ability of inducing apoptosis in cancer cells. By virtue of the different receptors and the different signalling pathways involved, TRAIL plays indeed a role in the regulation of different processes of the innate and adaptive immune system and this feature makes it an intriguing molecule under consideration in the development/progression/treatment of several immunological disorders. In this context, central nervous system represents a peculiar anatomic site where, despite its "status" of immune-privileged site, both innate and adaptive inflammatory responses occur and are involved in several pathological conditions. A number of studies have evaluated the role of TRAIL and of TRAIL-related pathways as pro-inflammatory or protective stimuli, depending on the specific pathological condition, confirming a twofold nature of this molecule. In this light, the aim of this review is to summarize the main preclinical evidences of the potential/involvement of TRAIL molecule and TRAIL pathways for the treatment of central nervous system disorders and the key suggestions coming from their assessment in preclinical models as proof of concept for future clinical studies.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy.
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| |
Collapse
|
11
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
12
|
TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience 2015; 302:2-22. [DOI: 10.1016/j.neuroscience.2015.06.038] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/15/2022]
|
13
|
Mocchetti I, Bachis A, Avdoshina V. Neurotoxicity of human immunodeficiency virus-1: viral proteins and axonal transport. Neurotox Res 2011; 21:79-89. [PMID: 21948112 DOI: 10.1007/s12640-011-9279-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/09/2011] [Accepted: 09/19/2011] [Indexed: 12/13/2022]
Abstract
Human immunodeficiency virus-1 (HIV) infection of the central nervous system may cause a neurological syndrome termed HIV-associated neurocognitive disorder (HAND) which includes minor neurocognitive disorders or a more severe form of motor and cognitive impairments. Although treatment with highly active antiretroviral agents decreases the load of HIV in the brain, the prevalence of mild forms of HAND is actually increased due to longer life. Therefore, adjunctive and combined therapies must be developed to prevent and perhaps reverse the neurologic deficits observed in individuals with HAND. Key to developing effective therapies is a better understanding of the molecular and cellular mechanisms by which the virus causes this disorder. A number of HIV proteins has been shown to be released from HIV-infected cells. Moreover, these proteins have been shown to possess neurotoxic properties. This review describes new evidence of a direct interaction of the HIV protein gp120 with neurons, which might play a role in the etiopathology of HAND.
Collapse
Affiliation(s)
- Italo Mocchetti
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, NW, New Research Building WP13, Washington, DC 20057, USA.
| | | | | |
Collapse
|
14
|
Khandelwal PJ, Herman AM, Moussa CEH. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 2011; 238:1-11. [PMID: 21820744 DOI: 10.1016/j.jneuroim.2011.07.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022]
Abstract
Inflammation is secondary to protein accumulation in neurodegenerative diseases, including Alzheimer's, Parkinson's and Amyotrophic Lateral Sclerosis. Emerging evidence indicate sustained inflammatory responses, involving microglia and astrocytes in animal models of neurodegeneration. It is unknown whether inflammation is beneficial or detrimental to disease progression and how inflammatory responses are induced within the CNS. Persistence of an inflammatory stimulus or failure to resolve sustained inflammation can result in pathology, thus, mechanisms that counteract inflammation are indispensable. Here we review studies on inflammation mediated by innate and adaptive immunity in the early stages of neurodegeneration and highlight important areas for future investigation.
Collapse
Affiliation(s)
- Preeti J Khandelwal
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
15
|
Abstract
The human immunodeficiency virus displays a narrow tropism for CD4+ mononuclear cells, and activated CD4+ T lymphocytes are the main target. When these cells are depleted by viral replication, bystander apoptosis and increased cell turnover mediated by immune activation, there is a progressive immunodeficiency (i.e., AIDS). Despite this specific cell tropism, HIV-infected persons demonstrate pathology in nearly every organ system. This article reviews current understanding of tissue-specific HIV-1 infection in the CNS, the genital tract, and gastrointestinal-associated lymphoid tissue.
Collapse
Affiliation(s)
- Maile Ay Karris
- University of California, San Diego, Division of Infectious Diseases, Stein Clinical Research Bldg MC 0679, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Wilk A, Urbanska K, Yang S, Wang JY, Amini S, Del Valle L, Peruzzi F, Meggs L, Reiss K. Insulin-like growth factor-I-forkhead box O transcription factor 3a counteracts high glucose/tumor necrosis factor-α-mediated neuronal damage: implications for human immunodeficiency virus encephalitis. J Neurosci Res 2010; 89:183-98. [PMID: 21162126 DOI: 10.1002/jnr.22542] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 12/17/2022]
Abstract
In HIV patients, antiretroviral medications trigger metabolic abnormalities, including insulin resistance. In addition, the inflammatory cytokine tumor necrosis factor-α (TNFα), which is elevated in human immunodeficiency virus encephalitis (HIVE), also induces insulin resistance and inflicts neuronal damage in vitro. In differentiated PC12 cells and rat cortical neurons, high glucose (HG; 25 mM) triggers reactive oxygen species (ROS) accumulation, contributing to the retraction of neuronal processes, with only a minimal involvement of neuronal apoptosis. In the presence of TNFα, HG-treated neurons undergo massive apoptosis. Because mammalian homolog of the Forkhead family of transcription factors, Forkhead box O transcription factor 3a (FOXO3a), controls ROS metabolism, we asked whether FOXO3a could affect the fate of differentiated neurons in the paradigm of HIVE. We observed FOXO3a nuclear translocation in HG-treated neuronal cultures, accompanied by partial loss of mitochondrial potential and gradual retraction of neuronal processes. Addition of TNFα to HG-treated neurons increased expression of the FOXO-dependent proapoptotic gene Bim, which resulted in extensive apoptotic death. Insulin-like growth factor-I (IGF-I) significantly lowered intracellular ROS, which was accompanied by IGF-I-mediated FOXO3a nuclear export and decrease in its transcriptional activity. The clinical relevance of these findings is supported by detection of nuclear FOXO3a in TUNEL-positive cortical neurons from HIVE, especially in brain areas characterized by elevated TNFα.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, Louisianna 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Individuals suffering from human immunodeficiency virus type 1 (HIV-1) infection suffer from a wide range of neurological deficits. The most pronounced are the motor and cognitive deficits observed in many patients in the latter stages of HIV infection. Gross postmortem inspection shows cortical atrophy and widespread
neuronal loss. One of the more debilitating of the HIV-related syndromes is AIDS-related dementia, or HAD. Complete understanding of HIV neurotoxicity has been elusive. Both direct and indirect toxic mechanisms have been implicated in the neurotoxicity of the
HIV proteins, Tat and gp120. The glutamatergic system, nitric oxide, calcium, oxidative stress, apoptosis, and microglia have all been implicated in the pathogenesis of HIV-related neuronal degeneration. The aim of this review is to summarize the most
recent work and provide an overview to the current theories of HIV-related neurotoxicity and potential avenues of therapeutic interventions to prevent the neuronal loss and motor/cognitive deficits previously described.
Collapse
Affiliation(s)
- David R. Wallace
- Department of Pharmacology and Physiology and Department of Forensic Sciences, Center for Health Sciences, Oklahoma State University, Tulsa, OK 74107-1898, USA
- *David R. Wallace:
| |
Collapse
|
18
|
Hoffmann O, Zipp F, Weber JR. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in central nervous system inflammation. J Mol Med (Berl) 2009; 87:753-63. [DOI: 10.1007/s00109-009-0484-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 12/17/2022]
|
19
|
Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected macrophages. PLoS One 2009; 4:e5397. [PMID: 19404407 PMCID: PMC2672636 DOI: 10.1371/journal.pone.0005397] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/01/2009] [Indexed: 01/14/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s) of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM) culture system was infected with macrophage-tropic HIV-1ADA, HIV-1JR-FL, or HIV-1BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF)-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1) activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN)-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages.
Collapse
|
20
|
Kuerten S, Asaad RJ, Schoenberger SP, Angelov DN, Lehmann PV, Tary-Lehmann M. The TRAIL of helpless CD8+ T cells in HIV infection. AIDS Res Hum Retroviruses 2008; 24:1175-83. [PMID: 18729775 DOI: 10.1089/aid.2008.0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our understanding of how CD4(+) T cells can regulate CD8(+) T cell responses in HIV infection is still incomplete. Recent evidence obtained in mice suggests that CD4(+) T cell help is required for efficient CD8(+) T cell-mediated immunity in chronic infection: CD8(+) T cells primed in the absence of such help release the TNF-related apoptosis-inducing ligand TRAIL and undergo apoptosis. Using a novel ELISPOT assay, in the present study we show that CD8(+) T cells are also a source of the antigen-specific TRAIL response in HIV-infected patients with CD4(+) T cell counts below 200. In patients with CD4(+) T cell counts above 200 TRAIL was not detectable. Accordingly, antigens to which patients have likely been exposed when CD4(+) T cell levels were high (e.g., influenza, CMV, and EBV) did not induce TRAIL. Within the HIV-positive donor population with low CD4(+) T cell counts a dissociation of the interferon-gamma (IFN-gamma) and TRAIL response to different HIV peptide epitopes was detectable suggesting impaired immunity to antigens that triggered TRAIL in the absence of IFN-gamma. Our findings emphasize that "helpless" CD8(+) T cells, i.e., cells that have been primed in the absence of CD4(+) T cell help, may play a crucial role in HIV infection. A "helpless" phenotype may impair CD8(+) T cell control of HIV and other infections and possibly contribute to the depletion of CD4(+) T cells via apoptosis. Immunizations and infections in this "helpless" state might result in ineffective CD8(+) T cell responses.
Collapse
Affiliation(s)
- Stefanie Kuerten
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
- Institut I fuer Anatomie, University of Cologne, Cologne, Germany
| | - Robert J. Asaad
- Center for AIDS Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Stephen P. Schoenberger
- Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | | | - Paul V. Lehmann
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
- Cellular Technology Limited, Cleveland, Ohio 44106
| | - Magdalena Tary-Lehmann
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
- Cellular Technology Limited, Cleveland, Ohio 44106
| |
Collapse
|
21
|
NeuroAIDS: characteristics and diagnosis of the neurological complications of AIDS. Mol Diagn Ther 2008; 12:25-43. [PMID: 18288880 DOI: 10.1007/bf03256266] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The neurological complications of AIDS (NeuroAIDS) include neurocognitive impairment and HIV-associated dementia (HAD; also known as AIDS dementia and HIV encephalopathy). HAD is the most significant and devastating central nervous system (CNS) complications associated with HIV infection. Despite recent advances in our knowledge of the clinical features, pathogenesis, and neurobiological aspects of HAD, it remains a formidable scientific and therapeutic challenge. An understanding of the mechanisms of HIV neuroinvasion, CNS proliferation, and HAD pathogenesis provide a basis for the interpretation of the diagnostic features of HAD and its milder form, HIV-associated minor cognitive/motor disorder (MCMD). Current diagnostic strategies are associated with significant limitations, but it is hoped that the use of biomarkers may assist researchers and clinicians in predicting the onset of the disease process and in evaluating the effects of new therapies.
Collapse
|
22
|
Jana M, Jana A, Pal U, Pahan K. A simplified method for isolating highly purified neurons, oligodendrocytes, astrocytes, and microglia from the same human fetal brain tissue. Neurochem Res 2007; 32:2015-22. [PMID: 17447141 PMCID: PMC2085356 DOI: 10.1007/s11064-007-9340-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/21/2007] [Indexed: 01/05/2023]
Abstract
Elucidation of the underlying pathogenic mechanisms leading to apoptosis of neurons and oligodendrocytes and activation of microglia and astrocytes in different neurodegenerative and neuroinflammatory disorders remains a challenge in neuroscience. In order to overcome the challenge and find out therapeutic remedies, it is important to study live and death processes in each and every cell type of the brain. Here we present a protocol of isolating highly purified microglia, astrocytes, oligodendrocytes, and neurons, all four major cell types of the CNS, from the same human fetal brain tissue. As found in vivo, these primary neurons and oligodendroglia underwent apoptosis and cell death in response to neurodegenerative challenges. On the other hand, astroglia, and microglia, cells that do not die in neurodegenerative brains, became activated after inflammatory challenge. The availability of highly purified human brain cells will increase the possibility of developing therapies for different neurodegenerative disorders.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
23
|
Piña-Oviedo S, Urbanska K, Radhakrishnan S, Sweet T, Reiss K, Khalili K, Del Valle L. Effects of JC virus infection on anti-apoptotic protein survivin in progressive multifocal leukoencephalopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1291-304. [PMID: 17392168 PMCID: PMC1829462 DOI: 10.2353/ajpath.2007.060689] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease of the central nervous system resulting from the productive infection of oligodendrocytes by the opportunistic polyomavirus JC virus (JCV). Apoptosis is a host defense mechanism to dispose of damaged cells; however, certain viruses have the ability to deregulate apoptotic pathways to complete their life cycles. One such pathway involves survivin, a member of the inhibitor of apoptosis family, which is abundantly expressed during development in proliferating tissues but should be absent in normal, terminally differentiated cells. Immunohistochemistry performed in 20 cases of PML revealed the presence of survivin in JCV-infected oligodendrocytes and bizarre astrocytes within demyelinated plaques. Survivin up-regulation was also found in oligodendroglial and astrocytic cultures infected with JCV. Cell cycle analysis and DNA laddering demonstrated a significantly lower number of cells undergoing apoptosis on JCV infection compared with noninfected cultures; small interfering RNA inhibition of survivin resulted in a dramatic increase in apoptotic cells in JCV-infected cultures. This is the first report describing the activation of survivin by JCV infection in vitro and in PML clinical cases. These observations provide new insights into the anti-apoptotic mechanisms used by JCV to complete its lytic cycle and may suggest new therapeutic targets for PML.
Collapse
Affiliation(s)
- Sergio Piña-Oviedo
- Department of Neuroscience, Neuropathology Core, Temple University School of Medicine, 1900 North 12th St., Suite 240, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Herbeuval JP, Shearer GM. HIV-1 immunopathogenesis: how good interferon turns bad. Clin Immunol 2007; 123:121-8. [PMID: 17112786 PMCID: PMC1930161 DOI: 10.1016/j.clim.2006.09.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 01/29/2023]
Abstract
The hallmark of acquired immunodeficiency syndrome (AIDS) is the progressive loss of CD4+ T cells that results from infection with human immunodeficiency virus type-1 (HIV-1). Despite 25 years of AIDS research, questions remain concerning the mechanisms responsible for HIV-induced CD4+ T cell depletion. Here we briefly review the in vitro and in vivo literature concerning the protective role of interferon-alpha (IFN-alpha) in HIV/AIDS. We then develop a laboratory- and clinically supported model of CD4+ T cell apoptosis in which either infectious or noninfectious HIV-1 induces the production of type I interferon by plasmacytoid dendritic cells (pDC). The interferon produced binds to its receptor on primary CD4+ T cells resulting in membrane expression of the TNF-related apoptosis-inducing ligand (TRAIL) death molecule. The binding of infectious or noninfectious HIV-1 to CD4 on these T cells results in expression of the TRAIL death receptor 5 (DR5), leading to the selective death of HIV-exposed CD4+ T cells.
Collapse
|
25
|
Uberti D, Ferrari-Toninelli G, Bonini SA, Sarnico I, Benarese M, Pizzi M, Benussi L, Ghidoni R, Binetti G, Spano P, Facchetti F, Memo M. Blockade of the tumor necrosis factor-related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity. Neuropsychopharmacology 2007; 32:872-80. [PMID: 16936710 DOI: 10.1038/sj.npp.1301185] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We originally suggested that inhibition of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) death pathway could be taken into consideration as a potential therapeutic strategy for Alzheimer's disease (AD). However, because the critical role of TRAIL in immune surveillance, the neutralization of TRAIL protein by an antibody to prevent its binding to death receptors is definitely a risky approach. Here, we demonstrated that the blockade of the TRAIL death receptor DR5 with a specific antibody completely prevented amyloid beta peptide (A beta) neurotoxicity in both neuronal cell line and primary cortical neurons. DR5 was demonstrated to be a key factor in TRAIL death pathway. In fact, whereas TRAIL expression was enhanced dose-dependently by concentrations of beta amyloid ranging from 10 nM to 1 microM, only the highest toxic dose of A beta (25 microM) induced the increased expression of DR5 and neuronal cell death. In addition, the increased expression of DR5 receptor after beta amyloid treatment was sustained by p53 transcriptional activity, as demonstrated by the data showing that the p53 inhibitor Pifithrin alpha prevented both beta amyloid-induced DR5 induction and cell death. These data suggest a sequential activation of p53 and DR5 upon beta amyloid exposure. Further insight into the key role of DR5 in AD was suggested by data showing a significant increase of DR5 receptor in cortical slices of AD brain. Thus, these findings may give intracellular TRAIL pathway a role in AD pathophysiology, making DR5 receptor a possible candidate as a pharmacological target.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia Medical School, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Abstract
Human immunodeficiency virus-1 (HIV-1) neuroinvasion occurs early (during period of initial viremia), leading to infection of a limited amount of susceptible cells with low CD4 expression. Protective cellular and humoral immunity eliminate and suppress viral replication relatively quickly due to peripheral immune responses and the low level of initial central nervous system (CNS) infection. Upregulation of the brain protective mechanisms against lymphocyte entry and survival (related to immune privilege) helps reduce viral load in the brain. The local immune compartment dictates local viral evolution as well as selection of cytotoxic lymphocytes and immunoglobulin G specificity. Such status can be sustained until peripheral immune anti-viral responses fail. Activation of microglia and astrocytes, due to local or peripheral triggers, increases chemokine production, enhances traffic of infected cells into the CNS, upregulates viral replication in resident brain macrophages, and significantly augments the spread of viral species. The combination of these factors leads to the development of HIV-1 encephalitis-associated neurocognitive decline and patient death. Understanding the immune-privileged state created by virus, the brain microenvironment, and the ability to enhance anti-viral immunity offer new therapeutic strategies for treatment of HIV-1 CNS infection.
Collapse
Affiliation(s)
- Yuri Persidsky
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA.
| | | |
Collapse
|
28
|
Huang Y, Erdmann N, Peng H, Herek S, Davis JS, Luo X, Ikezu T, Zheng J. TRAIL-mediated apoptosis in HIV-1-infected macrophages is dependent on the inhibition of Akt-1 phosphorylation. THE JOURNAL OF IMMUNOLOGY 2006; 177:2304-13. [PMID: 16887991 PMCID: PMC1892167 DOI: 10.4049/jimmunol.177.4.2304] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-1 uses mononuclear phagocytes (monocytes, tissue macrophages, and dendritic cells) as a vehicle for its own dissemination and as a reservoir for continuous viral replication. The mechanism by which the host immune system clears HIV-1-infected macrophages is not understood. TRAIL may play a role in this process. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The plasma level of TRAIL is increased in HIV-1-infected patients, particularly those with high viral loads. To study the effect of elevated TRAIL on mononuclear phagocytes, we used recombinant human (rh) TRAIL and human monocyte-derived macrophages (MDM) as an in vitro model. Our results demonstrated rhTRAIL-induced apoptosis in HIV-1-infected MDM and inhibited viral replication, while having a reduced effect on uninfected MDM. HIV-1 infection significantly decreased Akt-1 phosphorylation; rhTRAIL exposure further decreased Akt-1 phosphorylation. Infection with a dominant-negative Akt-1 adenovirus potentiated rhTRAIL-induced apoptosis, while constitutively active Akt-1 blocked rhTRAIL-induced apoptosis in HIV-1-infected MDM. From this data we conclude the death ligand TRAIL preferentially provokes apoptosis of HIV-1-infected MDM, and the mechanism is reliant upon the inhibition of Akt-1 phosphorylation. Understanding this mechanism may facilitate the elimination of HIV-1-infected macrophages and lead to new therapeutic avenues for treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Yunlong Huang
- Laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198
| | - Nathan Erdmann
- Laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198
| | - Hui Peng
- Laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198
| | - Shelley Herek
- Laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198
| | - John S. Davis
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
- Olson Center for Women’s Health, Department of Obstetrics Gynecology, University of Nebraska Medical Center, Omaha, NE 68198
- Veterans Affairs Medical Center, Omaha, NE 68105
| | - Xu Luo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Jialin Zheng
- Laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
- Address correspondence and reprint requests to Dr. Jialin Zheng, Center for Neurovirology and Neurodegenerative Disorders, Departments of Pharmacology and Experimental Neuroscience, Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880. E-mail address:
| |
Collapse
|
29
|
Zipp F, Aktas O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 2006; 29:518-27. [PMID: 16879881 DOI: 10.1016/j.tins.2006.07.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/23/2006] [Accepted: 07/20/2006] [Indexed: 11/16/2022]
Abstract
Classical knowledge distinguishes between inflammatory and non-inflammatory diseases of the brain. Either the immune system acts on the CNS and initiates a damage cascade, as in autoimmune (e.g. multiple sclerosis) and infectious conditions, or the primary insult is not inflammation but ischemia or degeneration, as in stroke and Alzheimer's disease, respectively. However, as we review here, recent advances have blurred this distinction. On the one hand, the classical inflammatory diseases of the brain also exhibit profound and early neurodegenerative features - remarkably, it has been known for more than a century that neuronal damage is a key feature of multiple sclerosis pathology, yet this was neglected until very recently. On the other hand, immune mechanisms might set the pace of progressive CNS damage in primary neurodegeneration. Despite differing initial events, increasing evidence indicates that even in clinically heterogeneous diseases, there might be common immunological pathways that result in neurotoxicity and reveal targets for more efficient therapies.
Collapse
Affiliation(s)
- Frauke Zipp
- Institute of Neuroimmunology, Charité - Universitätsmedizin Berlin, 10098 Berlin, Germany.
| | | |
Collapse
|
30
|
Murata T, Tsuboi M, Hikita K, Kaneda N. Protective Effects of Neurotrophic Factors on Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Apoptosis of Murine Adrenal Chromaffin Cell Line tsAM5D. J Biol Chem 2006; 281:22503-16. [PMID: 16772303 DOI: 10.1074/jbc.m602579200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously established the murine adrenal chromaffin cell line tsAM5D, which was immortalized with the temperature-sensitive simian virus 40 large T-antigen. tsAM5D cells have the capacity to differentiate into neuron-like cells in response to neurotrophic factors when the culture temperature is shifted from 33 to 39 degrees C. In this model system, the temperature shift in the absence of neurotrophic factors led to cell death. Hoechst staining analysis revealed that typical apoptotic nuclei appeared in a time-dependent manner after the temperature shift. Upon shifting to 39 degrees C, the degradation of T-antigen was accompanied by the transcriptional activation of p53 protein. Among the p53 target genes, death receptor 5 (DR5), which is the receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), showed the highest level of induction. Interestingly, TRAIL-neutralizing antibody protected tsAM5D cells from the temperature shift-induced apoptotic cell death by blocking the activation of caspase-8 and -3, indicating the involvement of TRAIL-mediated death signaling in the temperature shift-induced apoptosis. Glial cell line-derived neurotrophic factor (GDNF) inhibited the TRAIL-mediated activation of caspase-8 in tsAM5D cells exposed to 39 degrees C and cooperated with basic fibroblast growth factor and ciliary neurotrophic factor. Interestingly, the temperature shift induced oligomerization of DR5, which is the earliest process necessary for transduction of the death signal. This oligomerization was inhibited by treatment with GDNF plus ciliary neurotrophic factor but not by that with GDNF alone or GDNF plus basic fibroblast growth factor. These results are discussed with respect to the intracellular mechanism underlying the protective function of neurotrophic factors against TRAIL-mediated death signaling.
Collapse
Affiliation(s)
- Tomiyasu Murata
- Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468-8503, Japan
| | | | | | | |
Collapse
|
31
|
Germano IM, Uzzaman M, Benveniste RJ, Zaurova M, Keller G. Apoptosis in human glioblastoma cells produced using embryonic stem cell–derived astrocytes expressing tumor necrosis factor–related apoptosis-inducing ligand. J Neurosurg 2006; 105:88-95. [PMID: 16871882 DOI: 10.3171/jns.2006.105.1.88] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Object
Embryonic stem (ES) cell–derived astrocytes have several theoretical and practical advantages as gene therapy vectors in the treatment of malignant gliomas. The aim of this study was to test the proapoptotic effects of ES cell–derived astrocytes expressing transgenic tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) in human malignant glioma cells.
Methods
Mouse ES cells containing a doxycycline-inducible transgene were engineered with human TRAIL (hTRAIL) and then directed to differentiate into astrocytes. The ES cell-derived–TRAIL-expressing astrocytes were cocultured with human malignant glioma cells. Reverse transcriptase polymerase chain reaction, immunocytochemistry, terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling, and flow cytometry were used to quantify results.
In vitro coculture of ES cell–derived astrocytes expressing hTRAIL with A172 human malignant glioma cells after doxycycline induction caused a significant decrease in cell viability from 85 ± 2% at baseline to 8 ± 2% posttreatment (p < 0.001). Labeling with apoptotic markers showed that cell death occurred by means of apoptosis. A significant increase in apoptotic rate (88 ± 3%) from baseline (4 ± 2%) was found in A172 cells after doxycycline induction (p < 0.005). This effect was superior to the apoptotic rate seen after treatment with recombinant TRAIL (57 ± 2%). A decrease in cell viability and an increase in the apoptotic rate were not found in TRAIL-expressing–ES cell-derived astrocytes after induction with doxycycline or in A172 cells exposed to doxycycline alone.
Conclusions
Engineering of transgenic hTRAIL by using ES cell–derived astrocytes induced apoptosis in human malignant glioma cells while sparing nontumor astrocytes. The apoptotic effects of transgenic hTRAIL are greater than those of recombinant hTRAIL. Analysis of these results suggests that hTRAIL-expressing–ES cell-derived astrocytes should be considered in the development of new in vivo strategies to treat malignant human gliomas.
Collapse
Affiliation(s)
- Isabelle M Germano
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
32
|
Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA. HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 2006; 12 Suppl 1:878-92. [PMID: 15832177 DOI: 10.1038/sj.cdd.4401623] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Infection with the human immunodeficiency virus-1 (HIV-1) can induce severe and debilitating neurological problems that include behavioral abnormalities, motor dysfunction and frank dementia. After infiltrating peripheral immune competent cells, in particular macrophages, HIV-1 provokes a neuropathological response involving all cell types in the brain. HIV-1 also incites activation of chemokine receptors, inflammatory mediators, extracellular matrix-degrading enzymes and glutamate receptor-mediated excitotoxicity, all of which can trigger numerous downstream signaling pathways and disrupt neuronal and glial function. This review will discuss recently uncovered pathologic neuroimmune and degenerative mechanisms contributing to neuronal damage induced by HIV-1 and potential approaches for development of future therapeutic intervention.
Collapse
Affiliation(s)
- M Kaul
- Center for Neuroscience and Aging Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Debate: "is increasing neuroinflammation beneficial for neural repair?". J Neuroimmune Pharmacol 2006; 1:195-211. [PMID: 18040798 DOI: 10.1007/s11481-006-9021-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 04/26/2006] [Indexed: 12/18/2022]
|
34
|
Kadiu I, Glanzer JG, Kipnis J, Gendelman HE, Thomas MP. Mononuclear phagocytes in the pathogenesis of neurodegenerative diseases. Neurotox Res 2006; 8:25-50. [PMID: 16260384 DOI: 10.1007/bf03033818] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain mononuclear phagocytes (MP, bone marrow monocyte-derived macrophages, perivascular macrophages, and microglia) function to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of immune responses. MP are activated by a variety of environmental cues and such inflammatory responses elicit cell injury and death in the nervous system. MP immunoregulatory responses include secretion of neurotoxic factors, mobilization of adaptive immunity, and cell chemotaxis. This incites tissue remodelling and blood-brain barrier dysfunction. As disease progresses, MP secretions engage neighboring cells in a vicious cycle of autocrine and paracrine amplification of inflammation leading to tissue injury and ultimately destruction. Such pathogenic processes tilt the balance between the relative production of neurotrophic and neurotoxic factors and to disease progression. The ultimate effects that brain MP play in disease revolves "principally" around their roles in neurodegeneration. Importantly, common functions of brain MP in neuroimmunity link highly divergent diseases (for example, human immunodeficiency virus type-one associated dementia, Alzheimer's disease and Parkinson's disease). Research into this process from our own laboratories and those of others seek to harness MP inflammatory processes with the intent of developing therapeutic interventions that block neurodegenerative processes and improve the quality of life in affected people.
Collapse
Affiliation(s)
- I Kadiu
- Laboratory of Neuroregeneration, Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | |
Collapse
|
35
|
Ubol S, Kasisith J, Pitidhammabhorn D, Tepsumethanol V. Screening of pro-apoptotic genes upregulated in an experimental street rabies virus-infected neonatal mouse brain. Microbiol Immunol 2005; 49:423-31. [PMID: 15905604 DOI: 10.1111/j.1348-0421.2005.tb03746.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rabies virus (RABV) is able to induce apoptotic death of target cells. The molecular pathway of RABV-induced cell death is partially known. In the present study, cDNA array analysis was used as a tool to screen for pro-apoptotic genes that may be involved in RABV induction. RNA was extracted from the infected CNS and from mock-infected controls. When the mean gene expression was compared between the infected group and controls, 21 potential apoptotic genes were identified that exhibited more than 2.5-fold difference in their expression levels. These 21 genes can be grouped into two groups, those genes that participate in the commitment phase and those that play a role as executioners. Examples of genes in commitment phase were death receptors (Fas-L receptor, TNF-receptor), lysosomal proteases, calpain, caspase-1, signaling molecules (ERK, p38MAPK) and bcl-2 family members. Cytochrome c and caspase-3 were representatives of executioners. Based on types of genes activated during the commitment phase, two independent apoptotic mechanisms may be activated in response to the RV infection. The first is immune-mediated death which may operate through the receptor-ligand pathway activated by caspase-1 and the pro-inflammatory cytokine, IL-1beta. The other mechanism is a protease-mediated process which involves lysosomal proteases and calcium-dependent neutral proteases. These two stimulating pathways were followed by Bad, Bak, Bid activation and subsequently the upregulation of cytochrome c and caspase-3. In addition, mobilization of K+ ion and other accessory apoptotic genes such as annexins and clusterin were also upregulated.
Collapse
Affiliation(s)
- Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Ratchatewee, Bangkok, Thailand.
| | | | | | | |
Collapse
|
36
|
Jones G, Power C. Regulation of neural cell survival by HIV-1 infection. Neurobiol Dis 2005; 21:1-17. [PMID: 16298136 DOI: 10.1016/j.nbd.2005.07.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 02/03/2023] Open
Abstract
Infection by the lentivirus, human immunodeficiency virus type 1 (HIV-1), results in a variety of syndromes involving both the central (CNS) and the peripheral (PNS) nervous systems. Productive HIV-1 infection of the CNS is chiefly detectable in perivascular macrophages and microglia. HIV-1 encoded transcripts and proteins have also been detected in the PNS; however, productive viral replication appears to be sparse and restricted to the macrophage cell population. Despite the absence of productive infection of neurons, HIV-1 infection has been associated with neuronal loss in distinct regions of the brain. Neuronal cell loss may occur through both necrosis and apoptosis, although neuronal apoptosis appears to be a feature of AIDS, as only rare apoptotic neurons have been demonstrated in a few pre-AIDS cases. Although there is no clear consensus as to the underlying mechanism of HIV-induced neuropathogenesis, two complementary concepts predominate. Firstly, HIV-1 encoded proteins injure neurons directly without requiring the intermediary functions of nonneuronal cells. Alternatively, neuronal apoptosis may result indirectly from the secretion of neurotoxic host molecules by resident brain macrophages or microglia in response to HIV-1 infection, stimulation by viral proteins or immune activation. Herein, we review the neurological disorders and their underlying mechanisms associated with HIV infection, focusing on HIV-associated dementia (HAD) and HIV sensory neuropathy (HIV-SN). The evidence that neuronal loss in HIV-1-infected individuals may be due to neuronal apoptosis is then discussed. This review also summarizes the current data supporting both the direct and indirect mechanisms by which neuronal death may occur during infection with HIV-1 or the closely related lentiviruses SIV and FIV. Lastly, strategies are examined for treating or preventing HAD by targeting specific neurotoxic mechanisms.
Collapse
Affiliation(s)
- Gareth Jones
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
37
|
Huang Y, Erdmann N, Zhao J, Zheng J. The signaling and apoptotic effects of TNF-related apoptosis-inducing ligand in HIV-1 associated dementia. Neurotox Res 2005; 8:135-48. [PMID: 16260391 DOI: 10.1007/bf03033825] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HIV-1 Associated Dementia (HAD) develops during progressive HIV-1 infection and is characterized by cognitive impairments, behavioral disorders and potential progressive motor abnormality. Abnormal inflammation within the central nervous system (CNS), activation of macrophage/microglia and involvement of proinflammatory cytokines have been suggested as primary factors in the pathogenesis of HAD. Impairment of neuronal function and neuronal cell death are believed to be the end pathophysiological result of HAD. TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family of cytokines, was suggested to participate in apoptotic cell death during HAD. As a death ligand, TRAIL was originally thought to target only tumor cells. TRAIL is not typically present in CNS; however, emerging data show that TRAIL can be induced by immune stimuli on macrophage and microglia, major disease effector cells during HAD. Upregulated TRAIL may then cause neuronal apoptosis through direct interaction with TRAIL receptors on neurons or through macrophage death-mediated release of neurotoxins. In this review, we summarize the pivotal role of TRAIL in HAD and TRAIL-initiated intracellular death cascades that culminate in neuronal apoptosis as observed in HAD.
Collapse
Affiliation(s)
- Y Huang
- The Laboratory of Neurotoxicology at the Center for Neurovirology & Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | |
Collapse
|
38
|
Herbeuval JP, Grivel JC, Boasso A, Hardy AW, Chougnet C, Dolan MJ, Yagita H, Lifson JD, Shearer GM. CD4+ T-cell death induced by infectious and noninfectious HIV-1: role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis. Blood 2005; 106:3524-31. [PMID: 16046522 PMCID: PMC1895067 DOI: 10.1182/blood-2005-03-1243] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has been proposed that direct and indirect mechanisms contribute to the unresolved issue of CD4(+) T-cell depletion that results from HIV-1 infection. We recently reported that plasma levels of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) are elevated in HIV-1-infected patients and that they correlate with viral load. The present study investigates the expression of TRAIL death receptor 5 (DR5) in the peripheral-blood mononuclear cells (PBMCs) of HIV-1-infected patients and its role in CD4(+) T-cell death. DR5 expression was elevated and associated with the apoptotic marker annexin V. Apoptosis was reduced in CD4(+) T cells when cultured with anti-DR5 antibody. CD4(+), but not CD8(+), T cells from uninfected donors expressed TRAIL, DR5, and activated caspase-3 when cultured with infectious or noninfectious HIV-1, resulting in preferential apoptosis of CD4(+) T cells. TRAIL, caspase-3 expression, and apoptosis were type 1 interferon (IFN) dependent. Induction of apoptosis and DR5 expression required glycoprotein 120 (gp120)-CD4 interaction. Finally, we analyzed DR5 expression by CD4(+) T cells in highly active antiretroviral therapy (HAART)-treated patients. The decreased viral loads and increased CD4 counts of HAART-responsive patients were associated with a decrease in DR5 mRNA expression by CD4(+) T lymphocytes. We propose a novel model in which a type 1 IFN-regulated TRAIL /DR5 mechanism induces apoptosis of HIV-1-exposed CD4(+) T cells.
Collapse
Affiliation(s)
- Jean-Philippe Herbeuval
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lum JJ, Schnepple DJ, Badley AD. Acquired T-cell sensitivity to TRAIL mediated killing during HIV infection is regulated by CXCR4-gp120 interactions. AIDS 2005; 19:1125-33. [PMID: 15990565 DOI: 10.1097/01.aids.0000176212.16205.23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Sensitivity towards apoptosis induced by ligation of the tumor necrosis factor family of death receptors is controlled in part by death receptor expression. Whereas cellular activation enhances Fas receptor expression and induces Fas sensitivity, such cellular activation neither alters TRAIL receptor expression nor induces TRAIL sensitivity. Cells infected by HIV acquire sensitivity to TRAIL induced death, although the mechanisms by which this is achieved are undefined. OBJECTIVE To define the mechanism by which cells from HIV infected patients acquire sensitivity to TRAIL mediated killing. DESIGN In vitro assessment of TRAIL receptor expression and TRAIL sensitivity. METHODS Treatment of Jurkat T cells, peripheral blood lymphocytes from HIV negative donors, or human osteogenic seroma (HOS) cells expressing CD4, CXCR4 or CCR5 with T tropic gp120, M tropic gp120, or agonistic antibodies against CD4, CXCR4 or CCR5. TRAIL receptors were measured by flow cytometry or reverse transcription-PCR and TRAIL sensitivity was assessed by incubation with recombinant TRAIL followed by Annexin V fluorescein isothiocyanate/Propidium Iodide (PI) staining. RESULTS Treatment of uninfected Jurkat T cells, as well as primary T cells with gp120 results in the upregulation of TRAIL death receptor expression and acquired sensitivity to TRAIL mediated cell death. The increase in TRAIL death receptor expression and acquisition of TRAIL sensitivity requires the chemokine coreceptor CXCR4 but not CCR5 or the CD4 receptor. CONCLUSIONS These results indicate that chemokine receptor interactions regulate TRAIL receptor expression and provide an explanation for the acquired T cell sensitivity to TRAIL mediated killing death during HIV infection.
Collapse
Affiliation(s)
- Julian J Lum
- Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
40
|
Abstract
Apoptosis has been suggested to cause severe CD4+ T cell depletion in patients infected with HIV. This review focuses on the biological events involved in death ligand-induced apoptosis during HIV infection. Among these ligands, TRAIL appears critical in HIV-infection. Death ligand-induced apoptosis might be a major pathogenic event in many virus-induced diseases including AIDS and the clarification of its mechanism will aid in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Yoshiharu Miura
- Laboratory of Viral Pathogenesis, Research Center for AIDS, Institute for Virus Research, Kyoto University, Japan.
| | | |
Collapse
|
41
|
Nardacci R, Antinori A, Kroemer G, Piacentini M. Cell death mechanisms in HIV-associated dementia: the involvement of syncytia. Cell Death Differ 2005; 12 Suppl 1:855-8. [PMID: 15846379 DOI: 10.1038/sj.cdd.4401590] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- R Nardacci
- National Institute for Infectious Diseases, 'Lazzaro Spallanzani', Via Portuense 292, 00149 Rome, Italy
| | | | | | | |
Collapse
|
42
|
Peng H, Huang Y, Duan Z, Erdmann N, Xu D, Herek S, Zheng J. Cellular IAP1 regulates TRAIL-induced apoptosis in human fetal cortical neural progenitor cells. J Neurosci Res 2005; 82:295-305. [PMID: 16180223 DOI: 10.1002/jnr.20629] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neural stem/progenitor cells (NPCs) are present in the developing and adult central nervous system. NPC apoptosis is an important aspect of normal brain development. We show that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 2 is highly expressed on human NPCs derived from fetal cortex, yet TRAIL induces only minimal levels of apoptosis in NPCs. Caspase-8 mRNA and protein, an important factor in the TRAIL-mediated death pathway, is present at low levels in human NPCs. In contrast, inhibitors of apoptosis proteins (IAP), such as c-IAP1, are highly expressed. The transcription inhibitor actinomycin D sensitized human NPCs to TRAIL-induced apoptosis. Further, inhibition of cellular inhibitors of apoptosis protein 1 (c-IAP1) expression by small interfering RNA (siRNA) increased TRAIL-mediated caspase-3 activation and apoptosis; thus, c-IAP1 protects NPCs against TRAIL-induced apoptosis and suppresses caspase-3 activation. These findings illustrate the mechanisms for NPC resistance to apoptotic agonists such as TRAIL, and demonstrate a potentially important mechanism in CNS disease states.
Collapse
Affiliation(s)
- Hui Peng
- Laboratory of Neurotoxicology at the Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | | | | |
Collapse
|
43
|
Zheng J, Zhuang W, Yan N, Kou G, Peng H, McNally C, Erichsen D, Cheloha A, Herek S, Shi C. Classification of HIV-1-mediated neuronal dendritic and synaptic damage using multiple criteria linear programming. Neuroinformatics 2004; 2:303-26. [PMID: 15365193 DOI: 10.1385/ni:2:3:303] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability to identify neuronal damage in the dendritic arbor during HIV-1-associated dementia (HAD) is crucial for designing specific therapies for the treatment of HAD. To study this process, we utilized a computer-based image analysis method to quantitatively assess HIV-1 viral protein gp120 and glutamate-mediated individual neuronal damage in cultured cortical neurons. Changes in the number of neurites, arbors, branch nodes, cell body area, and average arbor lengths were determined and a database was formed (http://dm.ist.unomaha. edu/database.htm). We further proposed a two-class model of multiple criteria linear programming (MCLP) to classify such HIV-1-mediated neuronal dendritic and synaptic damages. Given certain classes, including treatments with brain-derived neurotrophic factor (BDNF), glutamate, gp120 or non-treatment controls from our in vitro experimental systems, we used the two-class MCLP model to determine the data patterns between classes in order to gain insight about neuronal dendritic damages. This knowledge can be applied in principle to the design and study of specific therapies for the prevention or reversal of neuronal damage associated with HAD. Finally, the MCLP method was compared with a well-known artificial neural network algorithm to test for the relative potential of different data mining applications in HAD research.
Collapse
Affiliation(s)
- Jialin Zheng
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, Department of Pathology, University of Nebraska Medical Center, Omaha, NE 68198-6880, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|