1
|
Yu Y, Li R, Yu X, Hu Y, Liao Z, Li W. Immuno-protective effect of neuropeptide Y immersion on the juvenile tilapia infected by Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109072. [PMID: 37709180 DOI: 10.1016/j.fsi.2023.109072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Neuropeptide Y (NPY), an important neurotransmitter, is widely distributed in the nervous systems of vertebrates. Multiple functions of NPY in mammals include the regulation of brain activity, emotion, stress response, feeding, digestion, metabolism and immune function. In the present study, we used synthetic NPY to immerse juvenile tilapia, thus firstly exploring the dose and time effect of this immersion. The results showed that the expression level of y8b and serum glucose increased after NPY immersion. When juvenile tilapia was challenged with Streptococcus agalactiae (S. agalactiae), no matter before or after the administration of NPY-immersion, it was found that NPY immersion could inhibit the expression of il-1β induced by S. agalactiae in telencephalon, hypothalamus, spleen and head kidney, and then promote the expression of il-10. In addition, NPY-immersion could reduce the activity of serum SOD but increase that of lysozyme, and ameliorate tissue damage in the head kidney and spleen of juvenile tilapia caused by S. agalactiae infection. This study firstly proposes the potential of NPY to be an immune protect factor in juvenile fish, and the results can provide a reference for the application of immersion administration in the immune protection of juvenile fish.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Ruoyun Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiaozheng Yu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yongqi Hu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zongzhen Liao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
2
|
Greene ES, Abdelli N, Dridi JS, Dridi S. Avian Neuropeptide Y: Beyond Feed Intake Regulation. Vet Sci 2022; 9:171. [PMID: 35448669 PMCID: PMC9028514 DOI: 10.3390/vetsci9040171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant and ubiquitously expressed neuropeptides in both the central and peripheral nervous systems, and its regulatory effects on feed intake and appetite- have been extensively studied in a wide variety of animals, including mammalian and non-mammalian species. Indeed, NPY has been shown to be involved in the regulation of feed intake and energy homeostasis by exerting stimulatory effects on appetite and feeding behavior in several species including chickens, rabbits, rats and mouse. More recent studies have shown that this neuropeptide and its receptors are expressed in various peripheral tissues, including the thyroid, heart, spleen, adrenal glands, white adipose tissue, muscle and bone. Although well researched centrally, studies investigating the distribution and function of peripherally expressed NPY in avian (non-mammalian vertebrates) species are very limited. Thus, peripherally expressed NPY merits more consideration and further in-depth exploration to fully elucidate its functions, especially in non-mammalian species. The aim of the current review is to provide an integrated synopsis of both centrally and peripherally expressed NPY, with a special focus on the distribution and function of the latter.
Collapse
Affiliation(s)
- Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| | - Nedra Abdelli
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jalila S. Dridi
- École Universitaire de Kinésithérapie, Université d’Orléans, Rue de Chartres, 45100 Orleans, France;
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| |
Collapse
|
3
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
4
|
Duarte LF, Reyes A, Farías MA, Riedel CA, Bueno SM, Kalergis AM, González PA. Crosstalk Between Epithelial Cells, Neurons and Immune Mediators in HSV-1 Skin Infection. Front Immunol 2021; 12:662234. [PMID: 34012447 PMCID: PMC8126613 DOI: 10.3389/fimmu.2021.662234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Wang W, Zheng Y, Li M, Lin S, Lin H. Recent Advances in Studies on the Role of Neuroendocrine Disorders in Obstructive Sleep Apnea-Hypopnea Syndrome-Related Atherosclerosis. Nat Sci Sleep 2021; 13:1331-1345. [PMID: 34349578 PMCID: PMC8326525 DOI: 10.2147/nss.s315375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is a common cause of death worldwide, and atherosclerosis (AS) and obstructive sleep apnea-hypopnea syndrome (OSAHS) critically contribute to the initiation and progression of cardiovascular diseases. OSAHS promotes endothelial injury, vascular smooth muscle cell (VSMC) proliferation, abnormal lipid metabolism, and elevated arterial blood pressure. However, the exact OSAHS mechanism that causes AS remains unclear. The nervous system is widely distributed in the central and peripheral regions. It regulates appetite, energy metabolism, inflammation, oxidative stress, insulin resistance, and vasoconstriction by releasing regulatory factors and participates in the occurrence and development of AS. Studies showed that OSAHS can cause changes in neurophysiological plasticity and affect modulator release, suggesting that neuroendocrine dysfunction may be related to the OSAHS mechanism causing AS. In this article, we review the possible mechanisms of neuroendocrine disorders in the pathogenesis of OSAHS-induced AS and provide a new basis for further research on the development of corresponding effective intervention strategies.
Collapse
Affiliation(s)
- Wanda Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Yanli Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Meimei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Huili Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| |
Collapse
|
6
|
Chen WC, Liu YB, Liu WF, Zhou YY, He HF, Lin S. Neuropeptide Y Is an Immunomodulatory Factor: Direct and Indirect. Front Immunol 2020; 11:580378. [PMID: 33123166 PMCID: PMC7573154 DOI: 10.3389/fimmu.2020.580378] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide Y (NPY), which is widely distributed in the nervous system, is involved in regulating a variety of biological processes, including food intake, energy metabolism, and emotional expression. However, emerging evidence points to NPY also as a critical transmitter between the nervous system and immune system, as well as a mediator produced and released by immune cells. In vivo and in vitro studies based on gene-editing techniques and specific NPY receptor agonists and antagonists have demonstrated that NPY is responsible for multifarious direct modulations on immune cells by acting on NPY receptors. Moreover, via the central or peripheral nervous system, NPY is closely connected to body temperature regulation, obesity development, glucose metabolism, and emotional expression, which are all immunomodulatory factors for the immune system. In this review, we focus on the direct role of NPY in immune cells and particularly discuss its indirect impact on the immune response.
Collapse
Affiliation(s)
- Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yi-Bin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Wei-Feng Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Ying-Ying Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
7
|
Ruiz HH, Becker S, Bai Y, Cortes-Burgos LA, Eckersdorff MM, Macdonald LE, Croll SD. Pharmacological inhibition of NPY receptors illustrates dissociable features of experimental colitis in the mouse DSS model: Implications for preclinical evaluation of efficacy in an inflammatory bowel disease model. PLoS One 2019; 14:e0220156. [PMID: 31369588 PMCID: PMC6675069 DOI: 10.1371/journal.pone.0220156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Administration of dextran sodium sulfate (DSS) to rodents at varying concentrations and exposure times is commonly used to model human inflammatory bowel disease (IBD). Currently, the criteria used to assess IBD-like pathology seldom include surrogate measures of visceral pain. Thus, we sought to standardize the model and then identify surrogate measures to assess effects on visceral pain. We used various 4% DSS protocols and evaluated effects on weight loss, colon pathology, biochemistry, RNA signature, and open field behavior. We then tested the therapeutic potential of NPY Y1 and/or Y2 receptor inhibition for the treatment of IBD pathology using this expanded panel of outcome measures. DSS caused weight loss and colon shrinkage, increased colon NPY and inflammatory cytokine expression, altered behaviors in the open field and induced a distinct gene metasignature that significantly overlapped with that of human IBD patients. Inhibition of Y1 and/or Y2 receptors failed to improve gross colon pathology. Y1 antagonism significantly attenuated colon inflammatory cytokine expression without altering pain-associated behaviors while Y2 antagonism significantly inhibited pain-associated behaviors in spite of a limited effect on inflammatory markers. A protocol using 7 days of 4% DSS most closely modeled human IBD pathology. In this model, rearing behavior potentially represents a tool for evaluating visceral pain/discomfort that may be pharmacologically dissociable from other features of pathology. The finding that two different NPY receptor antagonists exhibited different efficacy profiles highlights the benefit of including a variety of outcome measures in IBD efficacy studies to most fully evaluate the therapeutic potential of experimental treatments.
Collapse
Affiliation(s)
- Henry H. Ruiz
- Regeneron Pharmaceuticals, Neuroscience, Tarrytown, New York, United States of America
- The Graduate Center of the City University of New York, Graduate Program in Neuropsychology, New York, New York, United States of America
| | - Stephanie Becker
- Regeneron Pharmaceuticals, Neuroscience, Tarrytown, New York, United States of America
| | - Yu Bai
- Regeneron Pharmaceuticals, Neuroscience, Tarrytown, New York, United States of America
| | - Luz A. Cortes-Burgos
- Regeneron Pharmaceuticals, Neuroscience, Tarrytown, New York, United States of America
| | | | - Lynn E. Macdonald
- Regeneron Pharmaceuticals, Neuroscience, Tarrytown, New York, United States of America
| | - Susan D. Croll
- Regeneron Pharmaceuticals, Neuroscience, Tarrytown, New York, United States of America
- The Graduate Center of the City University of New York, Graduate Program in Neuropsychology, New York, New York, United States of America
- Queens College of the City University of New York, Psychology, Flushing, New York, United States of America
| |
Collapse
|
8
|
Ramspacher A, Neudert M, Koller A, Schlager S, Kofler B, Brunner SM. Influence of the regulatory peptide galanin on cytokine expression in human monocytes. Ann N Y Acad Sci 2019; 1455:185-195. [PMID: 31074091 PMCID: PMC6899851 DOI: 10.1111/nyas.14111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
Abstract
Current research into neuropeptides is bringing to light many remarkable functions of these endocrine/neurocrine/paracrine factors, such as their roles in modulating immune responses. Galanin is a neuropeptide expressed in both neural and non‐neural tissues and exerts its effects through three G protein–coupled receptors, GAL1,2,3‐R. It has been demonstrated that galanin has modulatory effects on immune cells, including neutrophils and natural killer cells. Because monocytes express GAL2‐R, and therefore are expected to be a target of galanin, we analyzed the effect of galanin on the expression of cytokines and chemokines by monocytes. Galanin increased the expression of IL‐1β up to 1.5‐fold, TNF‐α, IL‐10, IL‐18, and CCL3 up to twofold, and CXCL8 up to fourfold in nonactivated monocytes, but had no major effect on activated monocytes. A cross‐correlation analysis of cytokine expression profiles, irrespective of the activation status of the monocytes, revealed that galanin changed the cross‐correlation of the expression of certain cytokines. Galanin abolished several significant correlations in IFN‐γ–stimulated monocytes. For example, treatment with 10 nM galanin changed the Spearman's rank coefficient of IL‐18 and CXCL8 from 0.622 (P ≤ 0.01) to 0.126. These results further emphasize the importance of neuroregulatory peptides, such as galanin and their therapeutic potential to treat inflammatory diseases.
Collapse
Affiliation(s)
- Andrea Ramspacher
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Magdalena Neudert
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Andreas Koller
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.,University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Sandra Schlager
- Department of Blood Group Serology and Transfusion Medicine, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Susanne Maria Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Schmitz J, Zakrzewicz A, Wilker S, Kuncová J, Hecker A, Grau V, Padberg W, Holler JPN. Non-neuronal neuropeptide Y and its receptors during acute rejection of rat pulmonary allografts. Transpl Immunol 2017; 43-44:49-53. [PMID: 28438668 DOI: 10.1016/j.trim.2017.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/09/2017] [Accepted: 04/19/2017] [Indexed: 11/24/2022]
Abstract
This study tested the hypothesis that neuropeptide Y (NPY) and NPY receptors 1 (Y1) and 2 (Y2) participate in lung allograft rejection. Inflammation in grafts may include interaction between blood leukocytes and graft endothelial cells and marked accumulation of intravascular blood leukocytes. Fewer leukocytes accumulate in lung than in kidney allografts. Lung transplantion was performed in the Dark Agouti to Lewis rat strain combination. Intravascular and intraalveolar leukocytes were isolated from the grafts, and we evaluated the mRNA expression of NPY, Y1, and Y2 by real-time RT-PCR as well as the peptide expression of NPY by radioimmunoassay and immunohistochemistry. NPY and Y1 were expressed by pulmonary intravascular and intraalveolar leukocytes. Y1 was up-regulated by pulmonary intravascular and intraalveolar leukocytes during allograft rejection while Y2 could not be detected. Higher NPY expression levels in intravascular leukocytes were observed in lung compared to kidney allografts, which were investigated previously. Our findings suggest that an increased leukocytic expression of NPY in lung compared to kidney allografts results in a reduced accumulation of leukocytes in allograft vessels.
Collapse
Affiliation(s)
- Jessica Schmitz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University, Giessen, Germany.
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Jitka Kuncová
- Department of Physiology, Biomedical Center, Faculty of Medicine, Charles University, Plzeň, Czech Republic
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Julia P N Holler
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
10
|
MATIĆ M, PAUNOVIĆ M, OGNJANOVIĆ B, ŠTAJN A, SAIČIĆ Z. Neuropeptide Y reduces migration capacity of human choriocarcinomacell line by altering oxidative/antioxidative status. Turk J Biol 2017. [DOI: 10.3906/biy-1606-73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
11
|
Neuropeptide Y Negatively Influences Monocyte Recruitment to the Central Nervous System during Retrovirus Infection. J Virol 2015; 90:2783-93. [PMID: 26719257 DOI: 10.1128/jvi.02934-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/16/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Monocyte infiltration into the CNS is a hallmark of several viral infections of the central nervous system (CNS), including retrovirus infection. Understanding the factors that mediate monocyte migration in the CNS is essential for the development of therapeutics that can alter the disease process. In the current study, we found that neuropeptide Y (NPY) suppressed monocyte recruitment to the CNS in a mouse model of polytropic retrovirus infection. NPY(-/-) mice had increased incidence and kinetics of retrovirus-induced neurological disease, which correlated with a significant increase in monocytes in the CNS compared to wild-type mice. Both Ly6C(hi) inflammatory and Ly6C(lo) alternatively activated monocytes were increased in the CNS of NPY(-/-) mice following virus infection, suggesting that NPY suppresses the infiltration of both cell types. Ex vivo analysis of myeloid cells from brain tissue demonstrated that infiltrating monocytes expressed high levels of the NPY receptor Y2R. Correlating with the expression of Y2R on monocytes, treatment of NPY(-/-) mice with a truncated, Y2R-specific NPY peptide suppressed the incidence of retrovirus-induced neurological disease. These data demonstrate a clear role for NPY as a negative regulator of monocyte recruitment into the CNS and provide a new mechanism for suppression of retrovirus-induced neurological disease. IMPORTANCE Monocyte recruitment to the brain is associated with multiple neurological diseases. However, the factors that influence the recruitment of these cells to the brain are still not well understood. In the current study, we found that neuropeptide Y, a protein produced by neurons, affected monocyte recruitment to the brain during retrovirus infection. We show that mice deficient in NPY have increased influx of monocytes into the brain and that this increase in monocytes correlates with neurological-disease development. These studies provide a mechanism by which the nervous system, through the production of NPY, can suppress monocyte trafficking to the brain and reduce retrovirus-induced neurological disease.
Collapse
|
12
|
Farzi A, Reichmann F, Holzer P. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol (Oxf) 2015; 213:603-27. [PMID: 25545642 DOI: 10.1111/apha.12445] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/10/2014] [Accepted: 12/21/2014] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY), one of the most abundant peptides in the nervous system, exerts its effects via five receptor types, termed Y1, Y2, Y4, Y5 and Y6. NPY's pleiotropic functions comprise the regulation of brain activity, mood, stress coping, ingestion, digestion, metabolism, vascular and immune function. Nerve-derived NPY directly affects immune cells while NPY also acts as a paracrine and autocrine immune mediator, because immune cells themselves are capable of producing and releasing NPY. NPY is able to induce immune activation or suppression, depending on a myriad of factors such as the Y receptors activated and cell types involved. There is an intricate relationship between psychological stress, mood disorders and the immune system. While stress represents a risk factor for the development of mood disorders, it exhibits diverse actions on the immune system as well. Conversely, inflammation is regarded as an internal stressor and is increasingly recognized to contribute to the pathogenesis of mood and metabolic disorders. Intriguingly, the cerebral NPY system has been found to protect against distinct disturbances in response to immune challenge, attenuating the sickness response and preventing the development of depression. Thus, NPY plays an important homeostatic role in balancing disturbances of physiological systems caused by peripheral immune challenge. This implication is particularly evident in the brain in which NPY counteracts the negative impact of immune challenge on mood, emotional processing and stress resilience. NPY thus acts as a unique signalling molecule in the interaction of the immune system with the brain in health and disease.
Collapse
Affiliation(s)
- A. Farzi
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - F. Reichmann
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - P. Holzer
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| |
Collapse
|
13
|
Holler JPN, Schmitz J, Roehrig R, Wilker S, Hecker A, Padberg W, Grau V. Expression of peptide YY by human blood leukocytes. Peptides 2014; 58:78-82. [PMID: 24969624 DOI: 10.1016/j.peptides.2014.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/17/2023]
Abstract
Peptide YY is produced by L cells in the mucosa of the distal ileum, colon, and rectum and may have systemic and paracrine functions. We hypothesized that peptide YY is expressed by peripheral blood mononuclear cells. The purpose of the present study was to evaluate the expression of peptide YY mRNA and peptide by peripheral blood mononuclear cells and differentiated THP-1 cells after lipopolysaccharide treatment as an in vitro model of inflammation. Blood was drawn by venipuncture from 18- to 63-year-old healthy male blood donors (n=63); peptide YY mRNA expression levels were detected in peripheral blood mononuclear cells from all healthy male subjects. In 3 subjects, peripheral blood mononuclear cells were cultured for 3 and 24h and peptide YY was detected in the cell culture supernatant. In human monocytic THP-1 cells treated with phorbol-12-myristate-13-acetate to induce differentiation to macrophages, treatment with lipopolysaccharide caused down-regulation of peptide YY mRNA levels. In summary, freshly isolated peripheral blood mononuclear cells from healthy humans expressed peptide YY. In vitro data suggested that peptide YY expression is down-regulated by differentiation of monocytes to macrophages and proinflammatory stimuli.
Collapse
Affiliation(s)
- Julia Pia Natascha Holler
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University, Feulgen-Str. 10-12, D-35385 Giessen, Germany.
| | - Jessica Schmitz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University, Feulgen-Str. 10-12, D-35385 Giessen, Germany.
| | - Rainer Roehrig
- Department of Anesthesiology, Intensive Care and Pain Medicine, Justus-Liebig-University of Giessen and Marburg, Campus Giessen, Rudolf-Bucheim-Straße 7, 35392 Giessen, Germany.
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University, Feulgen-Str. 10-12, D-35385 Giessen, Germany.
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University, Feulgen-Str. 10-12, D-35385 Giessen, Germany.
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University, Feulgen-Str. 10-12, D-35385 Giessen, Germany.
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University, Feulgen-Str. 10-12, D-35385 Giessen, Germany.
| |
Collapse
|
14
|
Veelken R, Schmieder RE. Renal denervation—implications for chronic kidney disease. Nat Rev Nephrol 2014; 10:305-13. [DOI: 10.1038/nrneph.2014.59] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Buttari B, Profumo E, Domenici G, Tagliani A, Ippoliti F, Bonini S, Businaro R, Elenkov I, Riganò R. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization. FASEB J 2014; 28:3038-49. [PMID: 24699455 DOI: 10.1096/fj.13-243485] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuropeptide Y (NPY), a major autonomic nervous system and stress mediator, is emerging as an important regulator of inflammation, implicated in autoimmunity, asthma, atherosclerosis, and cancer. Yet the role of NPY in regulating phenotype and functions of dendritic cells (DCs), the professional antigen-presenting cells, remains undefined. Here we investigated whether NPY could induce DCs to migrate, mature, and polarize naive T lymphocytes. We found that NPY induced a dose-dependent migration of human monocyte-derived immature DCs through the engagement of NPY Y1 receptor and the activation of ERK and p38 mitogen-activated protein kinases. NPY promoted DC adhesion to endothelial cells and transendothelial migration. It failed to induce phenotypic DC maturation, whereas it conferred a T helper 2 (Th2) polarizing profile to DCs through the up-regulation of interleukin (IL)-6 and IL-10 production. Thus, during an immune/inflammatory response NPY may exert proinflammatory effects through the recruitment of immature DCs, but it may exert antiinflammatory effects by promoting a Th2 polarization. Locally, at inflammatory sites, cell recruitment could be amplified in conditions of intense acute, chronic, or cold stress. Thus, altered or amplified signaling through the NPY-NPY-Y1 receptor-DC axis may have implications for the development of inflammatory conditions.-Buttari, B., Profumo, E., Domenici, G., Tagliani, A., Ippoliti, F., Bonini, S., Businaro, R., Elenkov, I., Riganò, R. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization.
Collapse
Affiliation(s)
- Brigitta Buttari
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Profumo
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giacomo Domenici
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Tagliani
- Department of Medico-Surgical Sciences and Biotechnologies and
| | - Flora Ippoliti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; and
| | - Sergio Bonini
- Institute of Neurobiology and Molecular Medicine, Italian National Research Council, Rome, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies and
| | - Ilia Elenkov
- Institute of Neurobiology and Molecular Medicine, Italian National Research Council, Rome, Italy
| | - Rachele Riganò
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy;
| |
Collapse
|
16
|
Augustyniak D, Nowak J, Lundy FT. Direct and indirect antimicrobial activities of neuropeptides and their therapeutic potential. Curr Protein Pept Sci 2013; 13:723-38. [PMID: 23305360 PMCID: PMC3601409 DOI: 10.2174/138920312804871139] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/07/2012] [Accepted: 09/15/2012] [Indexed: 02/07/2023]
Abstract
As global resistance to conventional antibiotics rises we need to develop new strategies to develop future novel therapeutics. In our quest to design novel anti-infectives and antimicrobials it is of interest to investigate host-pathogen interactions and learn from the complexity of host defense strategies that have evolved over millennia. A myriad of host defense molecules are now known to play a role in protection against human infection. However, the interaction between host and pathogen is recognized to be a multifaceted one, involving countless host proteins, including several families of peptides. The regulation of infection and inflammation by multiple peptide families may represent an evolutionary failsafe in terms of functional degeneracy and emphasizes the significance of host defense in survival. One such family is the neuropeptides (NPs), which are conventionally defined as peptide neurotransmitters but have recently been shown to be pleiotropic molecules that are integral components of the nervous and immune systems. In this review we address the antimicrobial and anti-infective effects of NPs both in vitro and in vivo and discuss their potential therapeutic usefulness in overcoming infectious diseases. With improved understanding of the efficacy of NPs, these molecules could become an important part of our arsenal of weapons in the treatment of infection and inflammation. It is envisaged that targeted therapy approaches that selectively exploit the anti-infective, antimicrobial and immunomodulatory properties of NPs could become useful adjuncts to our current therapeutic modalities.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | |
Collapse
|
17
|
Prolonged postsurgical recovery period and adverse effects of a leptin application in endotoxemic obese rodents. Life Sci 2013; 93:247-56. [DOI: 10.1016/j.lfs.2013.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/29/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023]
|
18
|
The neuropeptides α-MSH and NPY modulate phagocytosis and phagolysosome activation in RAW 264.7 cells. J Neuroimmunol 2013; 260:9-16. [PMID: 23689030 DOI: 10.1016/j.jneuroim.2013.04.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 11/20/2022]
Abstract
Within the immunosuppressive ocular microenvironment, there are constitutively present the immunomodulating neuropeptides alpha-melanocyte stimulating hormone (α-MSH) and neuropeptide Y (NPY) that promote suppressor functionality in macrophages. In this study, we examined the possibility that α-MSH and NPY modulate phagocytic activity in macrophages. The macrophages treated with α-MSH and NPY were significantly suppressed in their capacity to phagocytize unopsonized Escherichia coli and Staphylococcus aureus bioparticles, but not antibody-opsonized bioparticles. The neuropeptides significantly suppressed phagolysosome activation, and the FcR-associated generation of reactive oxidative species as well. This suppression corresponds to neuropeptide modulation of macrophage functionality within the ocular microenvironment to suppress the activation of immunogenic inflammation.
Collapse
|
19
|
Zhou JR, Zhang LD, Wei HF, Wang X, Ni HL, Yang F, Zhang T, Jiang CL. Neuropeptide Y induces secretion of high-mobility group box 1 protein in mouse macrophage via PKC/ERK dependent pathway. J Neuroimmunol 2013; 260:55-9. [PMID: 23623189 DOI: 10.1016/j.jneuroim.2013.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 11/26/2022]
Abstract
Despite increasing evidence highlighting the role of NPY in the modulation of inflammatory reaction, surprisingly little is known about the direct effects of NPY on the release of proinflammatory mediators. In the present work, we have evaluated the effects of NPY on the release of TNF-α, IL-1β, IL-6 and HMGB1 mediators in peritoneal macrophages. Our results demonstrate for the first time that NPY can directly induce active HMGB1 release and cytoplasmic translocation, while the production of TNF-α, IL-1β and IL-6 is not affected. PKC and ERK pathway inhibitors can abolish the promotive effect of NPY on HMGB1 secretion. Thus, our results indicate that NPY might impact on the innate immune system by directly potentiating the HMGB1 release from the macrophage.
Collapse
Affiliation(s)
- Jiang-Rui Zhou
- Laboratory of Stress Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Neuropeptide Y is produced by adipose tissue macrophages and regulates obesity-induced inflammation. PLoS One 2013; 8:e57929. [PMID: 23472120 PMCID: PMC3589443 DOI: 10.1371/journal.pone.0057929] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/28/2013] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is induced in peripheral tissues such as adipose tissue with obesity. The mechanism and function of NPY induction in fat are unclear. Given the evidence that NPY can modulate inflammation, we examined the hypothesis that NPY regulates the function of adipose tissue macrophages (ATMs) in response to dietary obesity in mice. NPY was induced by dietary obesity in the stromal vascular cells of visceral fat depots from mice. Surprisingly, the induction of Npy was limited to purified ATMs from obese mice. Significant basal production of NPY was observed in cultured bone marrow derived macrophage and dendritic cells (DCs) and was increased with LPS stimulation. In vitro, addition of NPY to myeloid cells had minimal effects on their activation profiles. NPY receptor inhibition promoted DC maturation and the production of IL-6 and TNFα suggesting an anti-inflammatory function for NPY signaling in DCs. Consistent with this, NPY injection into lean mice decreased the quantity of M1-like CD11c+ ATMs and suppressed Ly6chi monocytes. BM chimeras generated from Npy−/− donors demonstrated that hematopoietic NPY contributes to the obesity-induced induction of Npy in fat. In addition, loss of Npy expression from hematopoietic cells led to an increase in CD11c+ ATMs in visceral fat with high fat diet feeding. Overall, our studies suggest that NPY is produced by a range of myeloid cells and that obesity activates the production of NPY in adipose tissue macrophages with autocrine and paracrine effects.
Collapse
|
21
|
Gonçalves J, Ribeiro CF, Malva JO, Silva AP. Protective role of neuropeptide Y Y2receptors in cell death and microglial response following methamphetamine injury. Eur J Neurosci 2012; 36:3173-83. [DOI: 10.1111/j.1460-9568.2012.08232.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Makinde TO, Steininger R, Agrawal DK. NPY and NPY receptors in airway structural and inflammatory cells in allergic asthma. Exp Mol Pathol 2012; 94:45-50. [PMID: 22705097 DOI: 10.1016/j.yexmp.2012.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Neuropeptide Y (NPY) level is elevated in allergic asthmatic airways and activation of NPY receptor-1 (NPY-Y1) on antigen-presenting cells (APCs) is essential for T cell priming. Paradoxically, NPY-Y1 modulates hyper-responsiveness in T cells, suggesting a bimodal role for NPY in APCs and T cells. Therefore, determination of the temporal and spatial expression pattern of NPY and its receptors in asthmatic airways is essential to further understand the role of NPY in allergic asthma. METHODS Lungs were isolated from control and acute and chronic stages of OVA-sensitized and challenged mice (OVA). Stains, including H&E, PAS, and trichrome, were used to determine the severity of lung pathology. The expression patterns of NPY and NPY-Y receptors in the airways were determined using ELISA and immunofluorescence. Cytokine levels in the BALF were also measured. RESULTS NPY levels were undetectable in the BALF of control mice, but significantly increased in the OVA group at day 80. Levels of IL-4, TGF-β1 and TGF-β2, significantly increased and peaked on day 45 and decreased on day 80 in the OVA group, exhibiting an inverse correlation with NPY levels. NPY expression was localized to macrophage-like cells in the peri-bronchial and peri-vascular areas in the lung tissue. NPY-Y1 and -Y5 receptors were constitutively expressed by both structural and inflammatory cells in the lung tissue. CONCLUSIONS NPY produced by activated macrophage-like cells may be involved in regulating cytokine production and cellular activities of immune cells in asthma. However, it remains unclear whether such an increase in NPY is a defensive/compensatory mechanism to modulate the effects of inflammatory cytokines.
Collapse
Affiliation(s)
- Toluwalope O Makinde
- Center of Clinical and Translational Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
23
|
Dimitrijević M, Mitić K, Kuštrimović N, Vujić V, Stanojević S. NPY suppressed development of experimental autoimmune encephalomyelitis in Dark Agouti rats by disrupting costimulatory molecule interactions. J Neuroimmunol 2012; 245:23-31. [PMID: 22365383 DOI: 10.1016/j.jneuroim.2012.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/13/2012] [Accepted: 01/31/2012] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) suppressed clinical experimental autoimmune encephalomyelitis (EAE) and reduced numbers of CD28+, CD11b+ and CD80+ cells among spinal cord infiltrating cells at the peak of disease in Dark Agouti rat strain. Suppression of EAE was accompanied by the reduced expression of costimulatory CD80 and CD86 molecules on ED1+ macrophages and OX62+ dendritic cells in draining lymph nodes during the inductive phase of EAE. An inhibitor of dipeptidyl peptidase 4, an enzyme which terminates the action of NPY on Y1 receptor subtype, did not sustain the suppressive effect of NPY on the EAE development, suggesting involvement of Y2 and Y5 receptors.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Institute of Virology, Vaccines and Sera, "Torlak", Immunology Research Center "Branislav Janković", Vojvode Stepe 458, 11152 Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
24
|
The intriguing mission of neuropeptide Y in the immune system. Amino Acids 2011; 45:41-53. [DOI: 10.1007/s00726-011-1185-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
|
25
|
Neuropeptide Y inhibits interleukin-1β-induced phagocytosis by microglial cells. J Neuroinflammation 2011; 8:169. [PMID: 22136135 PMCID: PMC3239417 DOI: 10.1186/1742-2094-8-169] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/02/2011] [Indexed: 12/18/2022] Open
Abstract
Background Neuropeptide Y (NPY) is emerging as a modulator of communication between the brain and the immune system. However, in spite of increasing evidence that supports a role for NPY in the modulation of microglial cell responses to inflammatory conditions, there is no consistent information regarding the action of NPY on microglial phagocytic activity, a vital component of the inflammatory response in brain injury. Taking this into consideration, we sought to assess a potential new role for NPY as a modulator of phagocytosis by microglial cells. Methods The N9 murine microglial cell line was used to evaluate the role of NPY in phagocytosis. For that purpose, an IgG-opsonized latex bead assay was performed in the presence of lipopolysaccharide (LPS) and an interleukin-1β (IL-1β) challenge, and upon NPY treatment. A pharmacological approach using NPY receptor agonists and antagonists followed to uncover which NPY receptor was involved. Moreover, western blotting and immunocytochemical studies were performed to evaluate expression of p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27), in an inflammatory context, upon NPY treatment. Results Here, we show that NPY inhibits phagocytosis of opsonized latex beads and inhibits actin cytoskeleton reorganization triggered by LPS stimulation. Co-stimulation of microglia with LPS and adenosine triphosphate also resulted in increased phagocytosis, an effect inhibited by an interleukin-1 receptor antagonist, suggesting involvement of IL-1β signaling. Furthermore, direct application of LPS or IL-1β activated downstream signaling molecules, including p38 MAPK and HSP27, and these effects were inhibited by NPY. Moreover, we also observed that the inhibitory effect of NPY on phagocytosis was mediated via Y1 receptor activation. Conclusions Altogether, we have identified a novel role for NPY in the regulation of microglial phagocytic properties, in an inflammatory context.
Collapse
|
26
|
Ferreira R, Santos T, Cortes L, Cochaud S, Agasse F, Silva AP, Xapelli S, Malva JO. Neuropeptide Y inhibits interleukin-1 beta-induced microglia motility. J Neurochem 2011; 120:93-105. [DOI: 10.1111/j.1471-4159.2011.07541.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Stadler J, Le TP, Haas P, Nave H. Distinct effects of NPY13-36, a specific NPY Y2 agonist, in a model of rodent endotoxemia on leukocyte subsets and cytokine levels. Ann Anat 2011; 193:486-93. [PMID: 22074679 DOI: 10.1016/j.aanat.2011.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/09/2011] [Accepted: 10/10/2011] [Indexed: 11/30/2022]
Abstract
Even now, sepsis remains a major problem in modern clinical medicine, leading to systemic inflammatory response including altered leukocyte subset distribution and increased cytokine release. As immune cells are known to express NPY receptors, we investigated the effects of a specific NPY Y(2) receptor agonist (NPY(13-36)) and/or the corresponding Y(2) receptor antagonist BIIE0246 treatment on blood (by FACS analyses) and tissue (by immunohistochemistry) leukocyte subsets as well as on levels of IL-4, IL-6, IL-10, TNF-α, INF-γ (by Cytometric Bead Array) in healthy and acutely endotoxemic rats. Results show a significant decrease in blood monocytes after LPS challenge in endotoxemic control animals (by 93%), in endotoxemic NPY(13-36) treated animals (by 83%) and in endotoxemic BIIE0246 treated animals (by 88%) as compared to the corresponding healthy controls. Endotoxemic control animals showed a significant increase of TNF-α (by 98%) as compared to the healthy control group. A treatment with NPY(13-36) significantly stabilized TNF-α level in endotoxemic animals. This study indicates distinct subset- and cytokine-specific in vivo effects induced by an NPY Y(2) receptor specific treatment after a short-term LPS challenge.
Collapse
Affiliation(s)
- Jan Stadler
- Institute for Functional and Applied Anatomy, Hannover Medical School, Germany
| | | | | | | |
Collapse
|
28
|
Mitić K, Stanojević S, Kuštrimović N, Vujić V, Dimitrijević M. Neuropeptide Y modulates functions of inflammatory cells in the rat: distinct role for Y1, Y2 and Y5 receptors. Peptides 2011; 32:1626-33. [PMID: 21699939 DOI: 10.1016/j.peptides.2011.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Neuropeptide Y (NPY) has been reported to be a potent anti-inflammatory peptide with ability to directly modulate activity of granulocytes and macrophages. The present study aimed to correlate the effects of NPY in vivo on lipopolysaccharide-induced air-pouch exudates cells and in vitro on peripheral blood leukocytes functions. The role of different Y receptors was examined using NPY-related peptides and antagonists with diverse subtype specificity and selectivity for Y receptors. Y1, Y2 and Y5 receptors were detected on air-pouch exudates cells (flow cytometry) and peripheral blood granulocytes (immunocytochemistry). NPY in vivo reduced inflammatory cells accumulation into the air pouch, and decreased their adherence and phagocytic capacity via Y2/Y5 and Y1/Y2 receptors, respectively. Quite the opposite, NPY in vitro potentiated adhesiveness and phagocytosis of peripheral blood granulocytes and monocytes by activating Y1 receptor. The differences between in vivo and in vitro effects of NPY on rat inflammatory cells functions are mostly due to dipeptidyl peptidase 4 activity. In addition, suppressive effect of NPY in vivo is highly dependent on the local microenvironment, peptide truncation and specific Y receptors interplay.
Collapse
Affiliation(s)
- Katarina Mitić
- Institute of Virology, Vaccines and Sera, Torlak, Immunology Research Center Branislav Janković, Vojvode Stepe 458, 11152 Belgrade, Serbia
| | | | | | | | | |
Collapse
|
29
|
Ferreira R, Xapelli S, Santos T, Silva AP, Cristóvão A, Cortes L, Malva JO. Neuropeptide Y modulation of interleukin-1{beta} (IL-1{beta})-induced nitric oxide production in microglia. J Biol Chem 2010; 285:41921-34. [PMID: 20959451 PMCID: PMC3009919 DOI: 10.1074/jbc.m110.164020] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/14/2010] [Indexed: 01/19/2023] Open
Abstract
Given the modulatory role of neuropeptide Y (NPY) in the immune system, we investigated the effect of NPY on the production of NO and IL-1β in microglia. Upon LPS stimulation, NPY treatment inhibited NO production as well as the expression of inducible nitric-oxide synthase (iNOS). Pharmacological studies with a selective Y(1) receptor agonist and selective antagonists for Y(1), Y(2), and Y(5) receptors demonstrated that inhibition of NO production and iNOS expression was mediated exclusively through Y(1) receptor activation. Microglial cells stimulated with LPS and ATP responded with a massive release of IL-1β, as measured by ELISA. NPY inhibited this effect, suggesting that it can strongly impair the release of IL-1β. Furthermore, we observed that IL-1β stimulation induced NO production and that the use of a selective IL-1 receptor antagonist prevented NO production upon LPS stimulation. Moreover, NPY acting through Y(1) receptor inhibited LPS-stimulated release of IL-1β, inhibiting NO synthesis. IL-1β activation of NF-κB was inhibited by NPY treatment, as observed by confocal microscopy and Western blotting analysis of nuclear translocation of NF-κB p65 subunit, leading to the decrease of NO synthesis. Our results showed that upon LPS challenge, microglial cells release IL-1β, promoting the production of NO through a NF-κB-dependent pathway. Also, NPY was able to strongly inhibit NO synthesis through Y(1) receptor activation, which prevents IL-1β release and thus inhibits nuclear translocation of NF-κB. The role of NPY in key inflammatory events may contribute to unravel novel gateways to modulate inflammation associated with brain pathology.
Collapse
Affiliation(s)
| | - Sara Xapelli
- From the Center for Neuroscience and Cell Biology
| | - Tiago Santos
- From the Center for Neuroscience and Cell Biology
| | - Ana Paula Silva
- the Institute of Pharmacology and Experimental Therapeutics
- the Institute of Biomedical Research on Light and Image
| | - Armando Cristóvão
- From the Center for Neuroscience and Cell Biology
- the Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luísa Cortes
- From the Center for Neuroscience and Cell Biology
| | - João O. Malva
- From the Center for Neuroscience and Cell Biology
- the Institute of Biochemistry, Faculty of Medicine, and
| |
Collapse
|
30
|
Nader GA, Dastmalchi M, Alexanderson H, Grundtman C, Gernapudi R, Esbjörnsson M, Wang Z, Rönnelid J, Hoffman EP, Nagaraju K, Lundberg IE. A longitudinal, integrated, clinical, histological and mRNA profiling study of resistance exercise in myositis. Mol Med 2010; 16:455-64. [PMID: 20809047 DOI: 10.2119/molmed.2010.00016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/11/2010] [Indexed: 12/20/2022] Open
Abstract
Polymyositis and dermatomyositis are orphan, chronic skeletal muscle disorders characterized by weakness, infiltrations by mononuclear inflammatory cells, and fibrosis. Until recently, patients were advised to refrain from physical activity because of fears of exacerbation of muscle inflammation. However, recent studies have shown that moderate exercise training in combination with immunosuppressive drugs can improve muscle performance. Despite the positive effects of exercise training, the molecular mechanisms underlying the exercise-associated clinical improvements remain poorly understood. The present study was designed to define, at the molecular level, the effects of resistance exercise training on muscle performance and disease progression in myositis patients. We evaluated changes in muscle strength, histology and genome-wide mRNA profiles to determine the beneficial effects of exercise and determine the possible molecular changes associated with improved muscle performance. A total of 8 myositis patients underwent a 7-wk resistance exercise training program that resulted in improved muscle strength and increased maximal oxygen uptake (VO(2max)). Training also resulted in marked reductions in gene expression, reflecting reductions in proinflammatory and profibrotic gene networks, changes that were also accompanied by a reduction in tissue fibrosis. Consistent with the exercise-associated increase in VO(2max), a subset of transcripts was associated with a shift toward oxidative metabolism. The changes in gene expression reported in the present study are in agreement with the performance improvements induced by exercise and suggest that resistance exercise training can induce a reduction in inflammation and fibrosis in skeletal muscle.
Collapse
Affiliation(s)
- Gustavo A Nader
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dimitrijević M, Stanojević S, Mitić K, Kustrimović N, Vujić V, Miletić T, Kovacević-Jovanović V. Modulation of granulocyte functions by peptide YY in the rat: age-related differences in Y receptors expression and plasma dipeptidyl peptidase 4 activity. ACTA ACUST UNITED AC 2010; 159:100-9. [PMID: 19896984 DOI: 10.1016/j.regpep.2009.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/09/2009] [Accepted: 11/01/2009] [Indexed: 12/14/2022]
Abstract
It has been acknowledged that aging exerts detrimental effects on cells of the innate immune system and that neuropeptides, including neuropeptide Y (NPY) and NPY-related peptides fine-tune the activity of these cells through a receptor specific mechanism. The present study investigated the age-dependent potential of peptide YY (PYY) to modulate different granulocyte functions. The PYY reduced the carrageenan-elicited granulocyte accumulation into the air-pouch of aged (24 months) rats, and markedly decreased the phagocytosis of zymosan, as well as the H(2)O(2) production, when applied in vivo (20 microg/air-pouch). The anti-inflammatory effect of PYY was less prominent in adult (8 months) and young (3 months) rats. However, the proportions of granulocytes expressing Y1, Y2 and Y5 receptor subtypes were significantly lower in both aged and young rats when compared to adult rats. Furthermore, the aging was found to be associated with the diminished dipeptidyl peptidase 4 (DP4, an enzyme converting the NPY and PYY to Y2/Y5 receptor selective agonists) activity in plasma. In conclusion, the diverse age-related anti-inflammatory effect of PYY in rats originates from different expression levels of Y1, Y2, and Y5 receptor subtypes in addition to different plasma DP4 activity.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Immunology Research Center Branislav Janković, Institute of Virology, Vaccines and Sera, Torlak, Vojvode Stepe 458, 11221 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Holler J, Zakrzewicz A, Kaufmann A, Wilhelm J, Fuchs-Moll G, Dietrich H, Padberg W, Kuncová J, Kummer W, Grau V. Neuropeptide Y is expressed by rat mononuclear blood leukocytes and strongly down-regulated during inflammation. THE JOURNAL OF IMMUNOLOGY 2008; 181:6906-12. [PMID: 18981110 DOI: 10.4049/jimmunol.181.10.6906] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY), a classical sympathetic comediator, regulates immunological functions including T cell activation and migration of blood leukocytes. A NPY-mediated neuroimmune cross-talk is well conceivable in sympathetically innervated tissues. In denervated, e.g., transplanted organs, however, leukocyte function is not fundamentally disturbed. Thus, we hypothesized that NPY is expressed by blood leukocytes themselves and regulated during inflammation. NPY mRNA and peptide expression were analyzed in mononuclear leukocytes isolated from the blood vessels of healthy rat kidneys, as well as from the blood vessels of isogeneic and allogeneic renal grafts transplanted in the Dark Agouti to Lewis or in the Fischer 344 to Lewis rat strain combination. Depending on the donor strain, acute allograft rejection is either fatal or reversible but both experimental models are characterized by massive accumulation of intravascular leukocytes. Leukocytes, predominantly monocytes, isolated from the blood vessels of untreated kidneys and isografts expressed high amounts of NPY mRNA and peptide, similar to expression levels in sympathetic ganglia. During acute allograft rejection, leukocytic NPY expression drastically dropped to approximately 1% of control levels in both rat strain combinations. In conclusion, NPY is an abundantly produced and tightly regulated cytokine of mononuclear blood leukocytes.
Collapse
Affiliation(s)
- Julia Holler
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, University of Giessen Lung Center, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dimitrijević M, Stanojević S, Mitić K, Kustrimović N, Vujić V, Miletić T, Kovacević-Jovanović V. The anti-inflammatory effect of neuropeptide Y (NPY) in rats is dependent on dipeptidyl peptidase 4 (DP4) activity and age. Peptides 2008; 29:2179-87. [PMID: 18805447 DOI: 10.1016/j.peptides.2008.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/21/2008] [Accepted: 08/21/2008] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY)-induced modulation of the immune and inflammatory responses is regulated by tissue-specific expression of different receptor subtypes (Y1-Y6) and the activity of the enzyme dipeptidyl peptidase 4 (DP4, CD26) which terminates the action of NPY on Y1 receptor subtype. The present study investigated the age-dependent effect of NPY on inflammatory paw edema and macrophage nitric oxide production in Dark Agouti rats exhibiting a high-plasma DP4 activity, as acknowledged earlier. The results showed that NPY suppressed paw edema in adult and aged, but not in young rats. Furthermore, plasma DP4 activity decreased, while macrophage DP4 activity, as well as macrophage CD26 expression increased with aging. The use of NPY-related peptides and Y receptor-specific antagonists revealed that anti-inflammatory effect of NPY is mediated via Y1 and Y5 receptors. NPY-induced suppression of paw edema in young rats following inhibition of DP4 additionally emphasized the role for Y1 receptor in the anti-inflammatory action of NPY. In contrast to the in vivo situation, NPY stimulated macrophage nitric oxide production in vitro only in young rats, and this effect was mediated via Y1 and Y2 receptors. It can be concluded that age-dependant modulation of inflammatory reactions by NPY is determined by plasma, but not macrophage DP4 activity at different ages.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Institute of Virology, Vaccines and Sera "Torlak", Immunology Research Center "Branislav Janković", Vojvode Stepe 458, 11221 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Haas P, Straub RH, Bedoui S, Nave H. Peripheral but not central leptin treatment increases numbers of circulating NK cells, granulocytes and specific monocyte subpopulations in non-endotoxaemic lean and obese LEW-rats. ACTA ACUST UNITED AC 2008; 151:26-34. [DOI: 10.1016/j.regpep.2008.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 04/02/2008] [Accepted: 05/07/2008] [Indexed: 12/01/2022]
|
35
|
Painsipp E, Herzog H, Holzer P. Implication of neuropeptide-Y Y2 receptors in the effects of immune stress on emotional, locomotor and social behavior of mice. Neuropharmacology 2008; 55:117-26. [PMID: 18508096 DOI: 10.1016/j.neuropharm.2008.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/22/2008] [Accepted: 05/06/2008] [Indexed: 01/09/2023]
Abstract
Neuropeptide Y (NPY) is involved in the regulation of emotional behavior, and there is indirect evidence for a role of NPY in the cerebral responses to peripheral immune challenge. Since the NPY receptors involved in these reactions are not known, we investigated the effect of Escherichia coli lipopolysaccharide (LPS) on emotional, locomotor and social behavior, body temperature and circulating corticosterone in female Y2 (Y2-/-) and Y4 (Y4-/-) receptor knockout mice. LPS (0.1mg/kg injected IP 2.5h before testing) increased rectal temperature in control and Y4-/- mice to a larger degree than in Y2-/- animals. Both Y2-/- and Y4-/- mice exhibited reduced anxiety-related and depression-like behavior in the open field, elevated plus-maze and tail suspension test, respectively. While depression-like behavior was not changed by LPS, anxiety-related behavior was enhanced by LPS in Y2-/-, but not control and Y4-/- animals. Y2-/- mice were also particularly susceptible to the effect of LPS to attenuate locomotor behavior and social interaction with another mouse. The corticosterone response to LPS was blunted in Y2-/- mice which presented elevated levels of circulating corticosterone following vehicle treatment. These data show that Y2-/- mice are particularly sensitive to the effects of LPS-evoked immune stress to attenuate locomotion and social interaction and to increase anxiety-like behavior, while the LPS-induced rise of temperature and circulating corticosterone is suppressed by Y2 receptor knockout. Our observations attest to an important role of endogenous NPY acting via Y2 receptors in the cerebral response to peripheral immune challenge.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Corticosterone/blood
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Female
- Fever/etiology
- Immobility Response, Tonic/drug effects
- Immobility Response, Tonic/physiology
- Lipopolysaccharides/pharmacology
- Locomotion/physiology
- Maze Learning/drug effects
- Mice
- Mice, Knockout
- Receptors, Neuropeptide Y/deficiency
- Receptors, Neuropeptide Y/physiology
- Social Behavior
- Stress, Psychological/blood
- Stress, Psychological/chemically induced
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | | | | |
Collapse
|
36
|
Bedoui S, Kromer A, Gebhardt T, Jacobs R, Raber K, Dimitrijevic M, Heine J, von Hörsten S. Neuropeptide Y receptor-specifically modulates human neutrophil function. J Neuroimmunol 2008; 195:88-95. [DOI: 10.1016/j.jneuroim.2008.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/28/2022]
|
37
|
Abstract
We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
38
|
Prenzler NK, Macke C, Horn R, Brabant G, Pabst R, Richter M, Nave H. Obesity influences the food consumption and cytokine pattern in ghrelin-treated endotoxemic rats. Life Sci 2007; 81:80-7. [PMID: 17532346 DOI: 10.1016/j.lfs.2007.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/18/2007] [Accepted: 04/23/2007] [Indexed: 12/27/2022]
Abstract
Obese patients have an increased incidence of systemic infections and higher morbidity and mortality rates than normal weight subjects. Ghrelin is a potent orexigenic signal from the stomach and seems to play a role in the generation and control of immune interactions. To examine a possible benefit of a single ghrelin application on acute endotoxemia, chronic intravenous (i.v.) cannulated lean and diet-induced obese male LEW rats were treated with a bolus injection of either ghrelin (10 nmol/kg) or vehicle, 10 min prior to a challenge with a sublethal bolus of endotoxin (100 microg/kg) or vehicle. Multiple blood samples were taken within a period from 24 h before the experiment up to 24 h after the endotoxin challenge to measure ghrelin and cytokine levels. Additionally, food consumption was recorded and ghrelin expression in fore- and glandular stomach was evaluated immunohistochemically. Despite higher serum ghrelin levels, the food consumption was significantly decreased in obese endotoxemic rats compared to lean littermates after ghrelin treatment. Furthermore we could show an increase of anti-inflammatory IL-10 serum levels after ghrelin treatment of normal weight endotoxemic and an opposite effect in obese animals. As the therapy of disease-associated cachexia and various immunological problems in endotoxemia is still insufficient, peptides such as ghrelin with their modulating abilities for the endocrine and the immune system are of special interest. However, the present study shows that the beneficial effects of ghrelin were attenuated in obese endotoxemic animals. These data further document the necessity to differentiate between normal weight and obese subjects in the attempt to establish ghrelin as a therapeutic target in endotoxemia.
Collapse
Affiliation(s)
- Nils K Prenzler
- Department of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Stanojević S, Mitić K, Vujić V, Kovacević-Jovanović V, Dimitrijević M. Exposure to acute physical and psychological stress alters the response of rat macrophages to corticosterone, neuropeptide Y and beta-endorphin. Stress 2007; 10:65-73. [PMID: 17454968 DOI: 10.1080/10253890601181289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The objective of the present study was to investigate the effect of acute exposure to electric tail shock stress (ES) and a stress witnessing procedure (SW), as models for physical and psychological stress paradigms, respectively on adherence, phagocytosis and hydrogen peroxide (H(2)O(2)) release from rat peritoneal macrophages. In addition, we studied the in vitro effects of corticosterone (CORT), neuropeptide Y (NPY) and beta-endorphin (BE) on adherence, phagocytosis and H(2)O(2) release from macrophages isolated from control rats and from rats that had been exposed to ES or SW procedures 24 h earlier. ES and SW comparably diminished phagocytosis and H(2)O(2) release, but did not influence macrophage adherence. In vitro treatment with CORT and NPY notably suppressed phagocytosis and potentiated H(2)O(2) release from macrophages. BE suppressed both phagocytosis and H(2)O(2) release from macrophages. Previous exposure to ES and SW altered the responsiveness of the isolated macrophages to their in vitro treatment with mediators of stress, making the cells less sensitive to the influence of CORT and NPY and to a lesser extent to BE. It could be concluded that changes in the local macrophage milieu induced by ES and SW 24 h earlier modify macrophage responses to subsequent in vitro exposure to the stress mimics, CORT, NPY and BE.
Collapse
MESH Headings
- Acute Disease
- Animals
- Cell Adhesion/drug effects
- Cells, Cultured
- Corticosterone/pharmacology
- Electroshock
- Hydrogen Peroxide/metabolism
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Male
- Neuropeptide Y/pharmacology
- Phagocytosis/drug effects
- Rats
- Rats, Inbred Strains
- Stress, Physiological/etiology
- Stress, Physiological/pathology
- Stress, Physiological/physiopathology
- Stress, Psychological/etiology
- Stress, Psychological/pathology
- Stress, Psychological/physiopathology
- Tail
- beta-Endorphin/pharmacology
Collapse
Affiliation(s)
- Stanislava Stanojević
- Institute of Immunology and Virology Torlak, Immunology Research Centre Branislav Jankovic, Vojvode Stepe 458, Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
40
|
Dimitrijević M, Stanojević S, Mićić S, Vujić V, Kovacević-Jovanović V, Mitić K, von Hörsten S, Kosec D. Neuropeptide Y (NPY) modulates oxidative burst and nitric oxide production in carrageenan-elicited granulocytes from rat air pouch. Peptides 2006; 27:3208-15. [PMID: 17010476 DOI: 10.1016/j.peptides.2006.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/27/2006] [Accepted: 08/28/2006] [Indexed: 12/19/2022]
Abstract
We studied the effects of neuropeptide Y (NPY) and NPY-related receptor specific peptides on functions of carrageenan-elicited granulocytes in vitro and ability of NPY to modulate carrageenan-induced air pouch inflammation in rats in vivo. Anti-inflammatory effect of NPY comprises reduced granulocyte accumulation into the air pouch, to some extent attenuation of phagocytosis, attained via Y1 receptor, and considerable decrease in peroxide production, albeit mediated via Y2 and Y5 receptors activation. Conversely, NPY increases nitric oxide production and this potentiation is mediated via Y1 receptor. It is concluded that NPY Y1 and Y2/Y5 receptors' interaction participates in NPY-induced modulation of granulocyte functions related to inflammation.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Immunology Research Center "Branislav Janković", Institute of Immunology and Virology "Torlak", Vojvode Stepe 458, 11152 Belgrade, Serbia.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Stanojević S, Vujić V, Kovacević-Jovanović V, Mitić K, Kosec D, Hörsten SV, Dimitrijević M. Age-related effect of peptide YY (PYY) on paw edema in the rat: the function of Y1 receptors on inflammatory cells. Exp Gerontol 2006; 41:793-9. [PMID: 16809015 DOI: 10.1016/j.exger.2006.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 03/29/2006] [Accepted: 05/02/2006] [Indexed: 11/21/2022]
Abstract
It is well documented that neuropeptides participate in local inflammatory reaction and modulate functions of inflammatory cells. The aim of the study was to determine a link between in vivo and in vitro effects of NPY-related peptides on inflammatory response with respect to ageing. Peptide YY (PYY) intraplantarly applied decreases concanavalin A-induced paw edema in 3 and 8 months, but not in 24 months old male rats of Albino Oxford strain. The use of NPY-related receptor-specific peptides and Y1 receptor antagonist revealed that anti-inflammatory effect of PYY is mediated via NPY Y1 receptors. PYY in vitro decreases adherence of macrophages from 8 months, but not from 3 and 24 months old rats and this effect is also mediated via NPY Y1 receptor. Additionally, PYY (10(-6)M) decreases NBT reduction in macrophages from 3 and 8 months old rats, and suppresses NO production in cells from 24 months old rats, albeit regardless of absence of in vivo effect of PYY on inflammation in aged rats. It is concluded that aged rats are less responsive to anti-inflammatory action of PYY compared to adult and young rats, and that ageing is associated with altered NPY Y1 receptor functioning.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Center "Branislav Janković", Institute of Immunology and Virology "Torlak", Vojvode Stepe 458, 11152 Belgrade, Serbia and Montenegro
| | | | | | | | | | | | | |
Collapse
|
42
|
Pick M, Perry C, Lapidot T, Guimaraes-Sternberg C, Naparstek E, Deutsch V, Soreq H. Stress-induced cholinergic signaling promotes inflammation-associated thrombopoiesis. Blood 2006; 107:3397-406. [PMID: 16380450 DOI: 10.1182/blood-2005-08-3240] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractTo study the role of the stress-induced “readthrough” acetylcholinesterase splice variant, AChE-R, in thrombopoiesis, we used transgenic mice overexpressing human AChE-R (TgR). Increased AChE hydrolytic activity in the peripheral blood of TgR mice was associated with increased thrombopoietin levels and platelet counts. Bone marrow (BM) progenitor cells from TgR mice presented an elevated capacity to produce mixed (GEMM) and megakaryocyte (Mk) colonies, which showed intensified labeling of AChE-R and its interacting proteins RACK1 and PKC. When injected with bacterial lipopolysaccharide (LPS), parent strain FVB/N mice, but not TgR mice, showed reduced platelet counts. Therefore, we primed human CD34+ cells with the synthetic ARP26 peptide, derived from the cleavable C-terminus of AChE-R prior to transplantation, into sublethally irradiated NOD/SCID mice. Engraftment of human cells (both CD45+ and CD41+ Mk) was significantly increased in mice that received ARP26-primed CD34+ human cells versus mice that received fresh nonprimed CD34+ human cells. Moreover, ARP26 induced polyploidization and proplatelet shedding in human MEG-01 promegakaryotic cells, and human platelet engraftment increased following ex vivo expansion of ARP26-treated CD34+ cells as compared to cells expanded with thrombopoietin and stem cell factor. Our findings implicate AChE-R in thrombopoietic recovery, suggesting new therapeutic modalities for supporting platelet production.
Collapse
Affiliation(s)
- Marjorie Pick
- Department of Hematology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
43
|
Rittner HL, Mousa SA, Labuz D, Beschmann K, Schäfer M, Stein C, Brack A. Selective local PMN recruitment by CXCL1 or CXCL2/3 injection does not cause inflammatory pain. J Leukoc Biol 2006; 79:1022-32. [PMID: 16522746 DOI: 10.1189/jlb.0805452] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polymorphonuclear cells (PMN) are recruited in early inflammation and are believed to contribute to inflammatory pain. However, studies demonstrating a hyperalgesic role of PMN did not examine selective PMN recruitment or did not document effective PMN recruitment. We hypothesized that hyperalgesia does not develop after chemokine-induced PMN selective recruitment and is independent of PMN infiltration in complete Freund's adjuvant (CFA)-induced, local inflammation. PMN were recruited by intraplantar injection of CXC chemokine ligand 1 (CXCL1; keratinocyte-derived chemokine), CXCL2/3 (macrophage inflammatory protein-2), or CFA, with or without preceding systemic PMN depletion. Chemokine inoculation resulted in dose (0-30 microg)- and time (0-12 h)-dependent, selective recruitment of PMN as quantified by flow cytometry. CXCL2/3, but not CXCL1, was less effective at high doses, probably as a result of significant down-regulation of CXC chemokine receptor 2 expression on blood PMN. Neither chemokine caused mechanical or thermal hyperalgesia as determined by the Randall-Selitto and Hargreaves test, respectively, despite comparable expression of activation markers (i.e., CD11b, CD18, and L-selectin) on infiltrating PMN. In contrast, CFA injection induced hyperalgesia, independent of PMN recruitment. c-Fos mRNA and immunoreactivity in the spinal cord were increased significantly after inoculation of CFA-independent of PMN-migration but not of CXCL2/3. Measurement of potential hyperalgesic mediators showed that hyperalgesia correlated with local prostaglandin E2 (PGE2) but not with interleukin-1beta production. In summary, hyperalgesia, local PGE2 production, and spinal c-Fos expression occur after CFA-induced inflammation but not after CXCL1- or CXCL2/3-induced, selective PMN recruitment. Thus, PMN seem to be less important in inflammatory hyperalgesia than previously thought.
Collapse
Affiliation(s)
- Heike L Rittner
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Felies M, von Hörsten S, Pabst R, Nave H. Neuropeptide Y stabilizes body temperature and prevents hypotension in endotoxaemic rats. J Physiol 2004; 561:245-52. [PMID: 15388781 PMCID: PMC1665346 DOI: 10.1113/jphysiol.2004.073635] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The on-going high mortality from sepsis motivates continuous research for novel therapeutic strategies. Neuropeptide Y (NPY), a sympathetic neurotransmitter, has been shown to increase survival in experimental septic shock in rats. This protective effect might be due to immunological, cardiovascular or thermoregulatory effects. The aim of this study was to examine the in vivo effect of peripherally administered NPY on body temperature, blood pressure and heart rate in endotoxaemic animals. In order to obtain clinically relevant data, various physiological parameters were monitored in parallel via radio-telemetry in chronically intravenously cannulated, freely behaving rats. Rats received a sublethal bolus of lipopolysaccharide (LPS, 100 microg kg(-1) I.V.) and the three parameters were continuously recorded for 72 h. Endotoxaemic rats showed a long-lasting hypotension, an initial hypothermia (-0.5 degrees C), followed by a prolonged febrile phase (+1.6 degrees C 6 h after endotoxin challenge) associated with a decrease of the circadian rhythm amplitude of temperature. Pretreatment with NPY (160 pmol kg(-1) I.V. over 75 min) prevented hypotension and significantly stabilized body temperature immediately following the application. The febrile phase was effectively reduced for at least 72 h. These telemetrically obtained findings clearly demonstrate that pretreatment with NPY positively influences two life-threatening symptoms in endotoxaemia and might be a future option for a successful clinical treatment regimen.
Collapse
Affiliation(s)
- Melanie Felies
- Department of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|