1
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
2
|
Yu L, Su X, Li S, Zhao F, Mu D, Qu Y. Microglia and Their Promising Role in Ischemic Brain Injuries: An Update. Front Cell Neurosci 2020; 14:211. [PMID: 32754016 PMCID: PMC7365911 DOI: 10.3389/fncel.2020.00211] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic brain injuries are common diseases with high morbidity, disability, and mortality rates, which have significant impacts on human health and life. Microglia are resident cells of the central nervous system (CNS). The inflammatory responses mediated by microglia play an important role in the occurrence and development of ischemic brain injuries. This article summarizes the activation, polarization, depletion, and repopulation of microglia after ischemic brain injuries, proposing new treatment strategies for such injuries through the modulation of microglial function.
Collapse
Affiliation(s)
- Luting Yu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shiping Li
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Fengyan Zhao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
3
|
Prochazkova P, Roubalova R, Dvorak J, Navarro Pacheco NI, Bilej M. Pattern recognition receptors in annelids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103493. [PMID: 31499098 DOI: 10.1016/j.dci.2019.103493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The existence of pattern recognition receptors (PRRs) on immune cells was discussed in 1989 by Charles Janeway, Jr., who proposed a general concept of the ability of PRRs to recognize and bind conserved molecular structures of microorganisms known as pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, PRRs trigger intracellular signaling cascades resulting in the expression of various proinflammatory molecules. These recognition molecules represent an important and efficient innate immunity tool of all organisms. As invertebrates lack the instruments of the adaptive immune system, based on "true" lymphocytes and functional antibodies, the importance of PRRs are even more fundamental. In the present review, the structure, specificity, and expression profiles of PRRs characterized in annelids are discussed, and their role in innate defense is suggested.
Collapse
Affiliation(s)
- P Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic.
| | - R Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - J Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - N I Navarro Pacheco
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - M Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| |
Collapse
|
4
|
Chen F, Li X, Li Z, Qiang Z, Ma H. Altered expression of MiR-186-5p and its target genes after spinal cord ischemia-reperfusion injury in rats. Neurosci Lett 2019; 718:134669. [PMID: 31805371 DOI: 10.1016/j.neulet.2019.134669] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/21/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Spinal cord ischemia-reperfusion (I/R) injury remains an unresolved problem, and the mechanism is not fully elaborated. In a rat model of spinal cord I/R injury, we performed microarray analysis to examine the altered expression of microRNAs (miRs) at 24 h after the modelling. miR-186-5p was chosen for further study. An miR mimic or anti-miR oligonucleotide was intrathecally infused before the surgical procedure. The participation of miR-186-5p and its potential target genes based on bioinformatics analysis were analysed next. Pre-treatment with the miR-186-5p mimic improved neurological function and histological assessment scores; reduced Evans Blue extravasation; attenuated spinal cord oedema; and decreased interleukin 15 (IL-15), IL-6, IL-1β, and tumour necrosis factor-α (TNF-α) expression at 24 h after the modelling. KEGG analysis showed that the group of potential target genes of miR-186-5p was notably enriched in several signalling cascades, such as the Wnt, Hippo, and PI3K-AKT pathways. Gene Ontology (GO) analysis revealed that the group of potential target genes of miR-186-5p was significantly enriched in several biological processes, such as 'Wnt signalling pathway', 'regulation of inflammatory response', and 'Toll-like receptor signalling pathway'. We further found that Wnt5a, TLR3, and chemokine (C-X-C motif) ligand 13 (CXCL13) were upregulated after the modelling and the miR-186-5p mimic reduced the induction of the aforementioned target genes. These data provide evidence that upregulation of miR-186-5p improves neurological outcomes induced by spinal cord I/R injury and may inhibit neuroinflammation through Wnt5a-, TLR3-, or CXCL13-mediated signal pathway in spinal cord I/R injury.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoqian Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Zhe Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Ziyun Qiang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
5
|
Prochazkova P, Roubalova R, Skanta F, Dvorak J, Pacheco NIN, Kolarik M, Bilej M. Developmental and Immune Role of a Novel Multiple Cysteine Cluster TLR From Eisenia andrei Earthworms. Front Immunol 2019; 10:1277. [PMID: 31275304 PMCID: PMC6591376 DOI: 10.3389/fimmu.2019.01277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022] Open
Abstract
Earthworms are not endowed with adaptive immunity and they are rely on the tools of innate immunity. Cells of the innate immune system utilize pattern recognition receptors, such as Toll-like receptors, to detect the pathogen-associated molecular patterns (PAMPs). The first earthworm TLR was isolated from Eisenia andrei earthworms (EaTLR), which belongs to the single cysteine cluster TLR (sccTLR). Here, we identified a new multiple cysteine cluster TLR (mccTLR) in E. andrei earthworms. Phylogenetic DNA analysis revealed that it has no variability within one earthworm as well as in the population. By screening of the tissue expression profile, the TLR was expressed primarily in earthworm seminal vesicles and receptacles suggesting a connection to sperm cells. Seminal vesicles are often heavily infected by gregarine parasites. As a sign of immune response, a strong melanization reaction is visible around parasites. Stimulation experiments with profilin from related parasite Toxoplasma gondii, led to the upregulation of mccEaTLR in the earthworm seminal vesicles. Also, profilin activated prophenoloxidase cascade, the efficient mechanism of innate immunity. However, its involvement in the NF-κB signaling was not proven. Further, we provide evidence that the antibiotics metronidazole and griseofulvin destroyed the developing spermatocytes. The observed decrease in the mccEaTLR mRNA levels after the antibiotic treatment of parasites is caused by the decline of sperm cells numbers rather than by diminution of the parasites. Since earthworms with extensively reduced parasite load had a similar amount of mccEaTLR mRNA, presumably, earthworm sperm cells have a certain level of mccEaTLR expressed as a standard, which can be augmented by particular antigenic stimulation. Also, mccEaTLR was expressed mainly in the early stages of earthworm development and presumably is primarily involved in early embryonic development. Expression of mccEaTLR in seminal vesicles correlates with the expression of endothelial monocyte-activation polypeptide II. High-throughput sequencing of gregarine DNA from seminal vesicles of individual earthworms resulted in great diversity of the observed genotypes. Phylogenetically, all observed OTUs belong to the clade of earthworm gregarines suggesting host specificity. Overall, mccEaTLR is supposed to play a function role in early embryonic development and potentially it participates in immune response against parasites.
Collapse
Affiliation(s)
- Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Frantisek Skanta
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiri Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | - Miroslav Kolarik
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Baghel MS, Singh B, Dhuriya YK, Shukla RK, Patro N, Khanna VK, Patro IK, Thakur MK. Postnatal exposure to poly (I:C) impairs learning and memory through changes in synaptic plasticity gene expression in developing rat brain. Neurobiol Learn Mem 2018; 155:379-389. [PMID: 30195050 DOI: 10.1016/j.nlm.2018.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
Viral infection during early stage of life influences brain development and results in several neurodevelopmental disorders such as schizophrenia, autism and behavioral abnormalities. However, the mechanism through which infection causes long-term behavioral defects is not well known. To elucidate this, we have used synthetic polyinosinic-polycytidylic acid [poly (I:C)] which acts as a dsRNA molecule and interacts with toll-like receptor-3 (TLR-3) of microglia cells to evoke the immune system, thus mimicking the viral infection. Rat pups of postnatal day (PND) 7 were infused with a single dose of poly (I:C) (5 mg/kg BW) and vehicle alone to controls. When these pups grew to 3, 6 and 12 weeks, their spatial and fear conditioning memory were impaired as assessed by Morris water maze and passive avoidance test, respectively. We checked the immune activation by staining of TNF-α in the hippocampus and observed that poly (I:C) exposure elevated the number of TNF-α positive cells immediately after 12 h of infusion in one week rat and it persisted up to postnatal age of 3 and 12 weeks. Moreover, poly (I:C) significantly decreased the binding of 3H-QNB to the cholinergic receptors in the frontal cortex and hippocampus of 3 and 6 weeks rats as compared to control but did not change significantly in 12 weeks rats. RT-PCR and immunoblotting results showed that poly (I:C) exposure upregulated the expression of memory associated genes (BDNF, Arc, EGR1) at mRNA and protein level in frontal cortex and hippocampus of 3 weeks rats as compared to control. However, long-time persistence of poly (I:C) effects significantly decreased the expression of these genes in both brain regions of 12 weeks rats. Taken together, it is evident that early life exposure to poly (I:C) has a long-term effect and impairs learning and memory, probably through TNF-α mediated neuroinflammation and alteration in the expression of memory associated genes in frontal cortex and hippocampus of rats.
Collapse
Affiliation(s)
| | - Brijendra Singh
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474 011, India
| | - Yogesh Kumar Dhuriya
- CSIR - Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Rajendra Kumar Shukla
- CSIR - Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474 011, India
| | - Vinay Kumar Khanna
- CSIR - Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474 011, India
| | | |
Collapse
|
7
|
Liang D, Halpert MM, Konduri V, Decker WK. Stepping Out of the Cytosol: AIMp1/p43 Potentiates the Link Between Innate and Adaptive Immunity. Int Rev Immunol 2015; 34:367-81. [DOI: 10.3109/08830185.2015.1077829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Madeddu S, Woods TA, Mukherjee P, Sturdevant D, Butchi NB, Peterson KE. Identification of Glial Activation Markers by Comparison of Transcriptome Changes between Astrocytes and Microglia following Innate Immune Stimulation. PLoS One 2015. [PMID: 26214311 PMCID: PMC4516330 DOI: 10.1371/journal.pone.0127336] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The activation of astrocytes and microglia is often associated with diseases of the central nervous system (CNS). Understanding how activation alters the transcriptome of these cells may offer valuable insight regarding how activation of these cells mediate neurological damage. Furthermore, identifying common and unique pathways of gene expression during activation may provide new insight into the distinct roles these cells have in the CNS during infection and inflammation. Since recent studies indicate that TLR7 recognizes not only viral RNA but also microRNAs that are released by damaged neurons and elevated during neurological diseases, we first examined the response of glial cells to TLR7 stimulation using microarray analysis. Microglia were found to generate a much stronger response to TLR7 activation than astrocytes, both in the number of genes induced as well as fold induction. Although the primary pathways induced by both cell types were directly linked to immune responses, microglia also induced pathways associated with cellular proliferation, while astrocytes did not. Targeted analysis of a subset of the upregulated genes identified unique mRNA, including Ifi202b which was only upregulated by microglia and was found to be induced during both retroviral and bunyavirus infections in the CNS. In addition, other genes including Birc3 and Gpr84 as well as two expressed sequences AW112010 and BC023105 were found to be induced in both microglia and astrocytes and were upregulated in the CNS following virus infection. Thus, expression of these genes may a useful measurement of glial activation during insult or injury to the CNS.
Collapse
Affiliation(s)
- Silvia Madeddu
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Tyson A. Woods
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Piyali Mukherjee
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Dan Sturdevant
- Research Technologies Branch, RML, NIAID, NIH, Hamilton, Montana, United States of America
| | | | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
9
|
Chijiwa T, Oka T, Lkhagvasuren B, Yoshihara K, Sudo N. Prior chronic stress induces persistent polyI:C-induced allodynia and depressive-like behavior in rats: Possible involvement of glucocorticoids and microglia. Physiol Behav 2015; 147:264-73. [PMID: 25936823 DOI: 10.1016/j.physbeh.2015.04.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/03/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
When animals suffer from viral infections, they develop a set of symptoms known as the "sickness response." Recent studies suggest that psychological stress can modulate the sickness response. However, it remains uncertain whether acute and chronic psychosocial stresses have the same effect on viral infection-induced sickness responses. To address this question, we compared changes in polyI:C-induced sickness responses, such as fever, change of body weight and food intake, mechanical allodynia, and depressive-like behavior, in rats that had been pre-exposed to single and repeated social defeat stresses. Intraperitoneal injection of polyI:C induced a maximal fever of 38.0°C 3h after injection. Rats exposed to prior social defeat stress exhibited blunted febrile responses, which were more pronounced in the repeated stress group. Furthermore, only the repeated stress group showed late-onset and prolonged mechanical allodynia lasting until 8days after injection in the von Frey test and prolonged immobility time in the forced swim test 9days post-injection. To assess the role of glucocorticoids and microglia in the delayed and persistent development of these sickness responses in rats exposed to repeated stress, we investigated the effect of pretreatment with RU486, a glucocorticoid receptor antagonist, and minocycline, an inhibitor of microglial activation, on polyI:C-induced allodynia and depressive-like behavior. Pretreatment with either drug inhibited both the delayed allodynia and depressive-like behavior. The present study demonstrates that repeated, but not single, social defeat stress followed by systemic polyI:C administration induced prolonged allodynia and depressive-like behavior in rats. Our results show that even though a single-event psychosocial stress does not have any effect by itself, animals may develop persistent allodynia and depressive-like behavior when they suffer from an infectious disease if they are pre-exposed to repeated or chronic psychosocial stress. Furthermore, this study suggests that stress-induced corticosterone and microglial activation play a pivotal role in this phenomenon.
Collapse
Affiliation(s)
- Takeharu Chijiwa
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takakazu Oka
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Battuvshin Lkhagvasuren
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 2014; 10:643-60. [PMID: 25311587 DOI: 10.1038/nrneurol.2014.187] [Citation(s) in RCA: 642] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.
Collapse
|
11
|
Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol 2014; 258:5-16. [PMID: 25017883 DOI: 10.1016/j.expneurol.2014.01.001] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/12/2022]
Abstract
Pattern recognition receptors (PRRs) are part of the innate immune response and were originally discovered for their role in recognizing pathogens by ligating specific pathogen associated molecular patterns (PAMPs) expressed by microbes. Now the role of PRRs in sterile inflammation is also appreciated, responding to endogenous stimuli referred to as "damage associated molecular patterns" (DAMPs) instead of PAMPs. The main families of PRRs include Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-like receptors (RLRs), AIM2-like receptors (ALRs), and C-type lectin receptors. Broad expression of these PRRs in the CNS and the release of DAMPs in and around sites of injury suggest an important role for these receptor families in mediating post-injury inflammation. Considerable data now show that PRRs are among the first responders to CNS injury and activation of these receptors on microglia, neurons, and astrocytes triggers an innate immune response in the brain and spinal cord. Here we discuss how the various PRR families are activated and can influence injury and repair processes following CNS injury.
Collapse
Affiliation(s)
- Kristina A Kigerl
- Department of Neuroscience - Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, USA
| | | | - W Dalton Dietrich
- Department of Neurological Surgery - The Miami Project to Cure Paralysis, USA
| | - Phillip G Popovich
- Department of Neuroscience - Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, USA.
| | - Robert W Keane
- Department of Physiology & Biophysics - University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
12
|
Quan N. In-depth conversation: spectrum and kinetics of neuroimmune afferent pathways. Brain Behav Immun 2014; 40:1-8. [PMID: 24566385 PMCID: PMC6088807 DOI: 10.1016/j.bbi.2014.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 01/14/2023] Open
Abstract
Since my last review on neuroimmune communication afferents in 2008, this area has witnessed substantial growth. At a basic science level, numerous new and exciting phenomena have been described, adding both depth and complexity to the crosstalk between the immune system and the nervous system. At a translational level, accumulating evidence indicates neuroimmune interaction could be a contributing factor for many disease states, as well as an effective physiological mechanism that coordinates the activities of these two systems in healthy individuals or during tissue distress. Furthermore, new evidence suggests neuroimmune interactions are inherently dynamic: varying activities in either the nervous system or the immune system could impact interactions between them. In this review I will attempt to integrate multifarious, and sometimes disparate, findings into a modified conceptual framework that describes the concordance of neuroimmune communication through the cooperative connection between these two systems and the dysfunction that may arise when their inappropriate crosstalk occurs.
Collapse
Affiliation(s)
- Ning Quan
- Institute for Behavior Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Shestopalov VI, Slepak VZ. Molecular pathways of pannexin1-mediated neurotoxicity. Front Physiol 2014; 5:23. [PMID: 24575045 PMCID: PMC3920106 DOI: 10.3389/fphys.2014.00023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/10/2014] [Indexed: 01/09/2023] Open
Abstract
Pannexin1 (Panx1) forms non-selective membrane channels, structurally similar to gap junction hemichannels, and are permeable to ions, nucleotides, and other small molecules below 900 Da. Panx1 activity has been implicated in paracrine signaling and inflammasome regulation. Recent studies in different animal models showed that overactivation of Panx1 correlates with a selective demise of several types of neurons, including retinal ganglion cells, brain pyramidal, and enteric neurons. The list of Panx1 activators includes extracellular ATP, glutamate, high K(+), Zn(2+), fibroblast growth factors (FGFs),pro-inflammatory cytokines, and elevation of intracellular Ca(2+). Most of these molecules are released following mechanical, ischemic, or inflammatory injury of the CNS, and rapidly activate the Panx1 channel. Prolonged opening of Panx1 channel induced by these "danger signals" triggers a cascade of neurotoxic events capable of killing cells. The most vulnerable cell type are neurons that express high levels of Panx1. Experimental evidence suggests that Panx1 channels mediate at least two distinct neurotoxic processes: increased permeability of the plasma membrane and activation of the inflammasome in neurons and glia. Importantly, both pharmacological and genetic inactivation of Panx1 suppresses both these processes, providing a marked protection in several disease and injury models. These findings indicate that external danger signals generated after diverse types of injuries converge to activate Panx1. In this review we discuss molecular mechanisms associated with Panx1 toxicity and the crosstalk between different pathways.
Collapse
Affiliation(s)
- Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine Miami, FL, USA ; Vavilov Institute of General Genetics, Moscow, Russian Federation, University of Miami Miller School of Medicine Miami, FL, USA
| | - Vladlen Z Slepak
- Department of Molecular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA ; Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
14
|
Križaj D, Ryskamp DA, Tian N, Tezel G, Mitchell CH, Slepak VZ, Shestopalov VI. From mechanosensitivity to inflammatory responses: new players in the pathology of glaucoma. Curr Eye Res 2013; 39:105-19. [PMID: 24144321 DOI: 10.3109/02713683.2013.836541] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF THE STUDY Many blinding diseases of the inner retina are associated with degeneration and loss of retinal ganglion cells (RGCs). Recent evidence implicates several new signaling mechanisms as causal agents associated with RGC injury and remodeling of the optic nerve head. Ion channels such as Transient receptor potential vanilloid isoform 4 (TRPV4), pannexin-1 (Panx1) and P2X7 receptor are localized to RGCs and act as potential sensors and effectors of mechanical strain, ischemia and inflammatory responses. Under normal conditions, TRPV4 may function as an osmosensor and a polymodal molecular integrator of diverse mechanical and chemical stimuli, whereas P2X7R and Panx1 respond to stretch- and/or swelling-induced adenosine triphosphate release from neurons and glia. Ca(2+) influx, induced by stimulation of mechanosensitive ion channels in glaucoma, is proposed to influence dendritic and axonal remodeling that may lead to RGC death while (at least initially) sparing other classes of retinal neuron. The secondary phase of the retinal glaucoma response is associated with microglial activation and an inflammatory response involving Toll-like receptors (TLRs), cluster of differentiation 3 (CD3) immune recognition molecules associated with the T-cell antigen receptor, complement molecules and cell type-specific release of neuroactive cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). The retinal response to mechanical stress thus involves a diversity of signaling pathways that sense and transduce mechanical strain and orchestrate both protective and destructive secondary responses. CONCLUSIONS Mechanistic understanding of the interaction between pressure-dependent and independent pathways is only beginning to emerge. This review focuses on the molecular basis of mechanical strain transduction as a primary mechanism that can damage RGCs. The damage occurs through Ca(2+)-dependent cellular remodeling and is associated with parallel activation of secondary ischemic and inflammatory signaling pathways. Molecules that mediate these mechanosensory and immune responses represent plausible targets for protecting ganglion cells in glaucoma, optic neuritis and retinal ischemia.
Collapse
|
15
|
Khalil OS, Forrest CM, Pisar M, Smith RA, Darlington LG, Stone TW. Prenatal activation of maternal TLR3 receptors by viral-mimetic poly(I:C) modifies GluN2B expression in embryos and sonic hedgehog in offspring in the absence of kynurenine pathway activation. Immunopharmacol Immunotoxicol 2013; 35:581-93. [PMID: 23981041 DOI: 10.3109/08923973.2013.828745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the immune system during pregnancy is believed to lead to psychiatric and neurological disorders in the offspring, but the molecular changes responsible are unknown. Polyinosinic:polycytidylic acid (poly(I:C)) is a viral-mimetic double-stranded RNA complex which activates Toll-Like-Receptor-3 and can activate the metabolism of tryptophan through the oxidative kynurenine pathway to compounds that modulate activity of glutamate receptors. The aim was to determine whether prenatal administration of poly(I:C) affects the expression of neurodevelopmental proteins in the offspring and whether such effects were mediated via the kynurenine pathway. Pregnant rats were treated with poly(I:C) during late gestation and the offspring were allowed to develop to postnatal day 21 (P21). Immunoblotting of the brains at P21 showed decreased expression of sonic hedgehog, a key protein in dopaminergic neuronal maturation. Expression of α-synuclein was decreased, while tyrosine hydroxylase was increased. Disrupted in Schizophrenia-1 (DISC-1) and 5-HT2C receptor levels were unaffected, as were the dependence receptors Unc5H1, Unc5H3 and Deleted in Colorectal Cancer (DCC), the inflammation-related transcription factor NFkB and the inducible oxidative enzyme cyclo-oxygenase-2 (COX-2). An examination of embryo brains 5 h after maternal poly(I:C) showed increased expression of GluN2B, with reduced doublecortin and DCC but no change in NFkB. Despite altered protein expression, there were no changes in the kynurenine pathway. The results show that maternal exposure to poly(I:C) alters the expression of proteins in the embryos and offspring which may affect the development of dopaminergic function. The oxidation of tryptophan along the kynurenine pathway is not involved in these effects.
Collapse
Affiliation(s)
- Omari S Khalil
- Institute for Neuroscience and Psychology, University of Glasgow, West Medical Building , Glasgow , United Kingdom and
| | | | | | | | | | | |
Collapse
|
16
|
Matsui T, Motoki Y, Yoshida Y. Hypothermia reduces toll-like receptor 3-activated microglial interferon-β and nitric oxide production. Mediators Inflamm 2013; 2013:436263. [PMID: 23589665 PMCID: PMC3621171 DOI: 10.1155/2013/436263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 11/17/2022] Open
Abstract
Therapeutic hypothermia protects neurons after injury to the central nervous system (CNS). Microglia express toll-like receptors (TLRs) that play significant roles in the pathogenesis of sterile CNS injury. To elucidate the possible mechanisms involved in the neuroprotective effect of therapeutic hypothermia, we examined the effects of hypothermic culture on TLR3-activated microglial release of interferon (IFN)- β and nitric oxide (NO), which are known to be associated with neuronal cell death. When rat or mouse microglia were cultured under conditions of hypothermia (33°C) and normothermia (37°C) with a TLR3 agonist, polyinosinic-polycytidylic acid, the production of IFN- β and NO in TLR3-activated microglia at 48 h was decreased by hypothermia compared with that by normothermia. In addition, exposure to recombinant IFN- β and sodium nitroprusside, an NO donor, caused death of rat neuronal pheochromocytoma PC12 cells in a concentration-dependent manner after 24 h. Taken together, these results suggest that the attenuation of microglial production of IFN- β and NO by therapeutic hypothermia leads to the inhibition of neuronal cell death.
Collapse
Affiliation(s)
- Tomohiro Matsui
- Department of Laboratory Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yukari Motoki
- Department of Laboratory Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yusuke Yoshida
- ACEL, Inc., SIC1 1201, 5-4-21 Nishihashimoto, Midori-ku, Sagamihara, Kanagawa 252-0131, Japan
| |
Collapse
|
17
|
Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 2013; 35:102-29. [PMID: 23446060 PMCID: PMC4531048 DOI: 10.1159/000346157] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex, recapitulating structural and functional characteristics observed in schizophrenia. In addition, elevated expression of inflammation-related genes in brain tissue and increased production of cytokines by blood cells from patients with schizophrenia indicate immunological dysfunction and abnormal inflammatory responses, which are also important underlying features in experimental models. Microglia, resident immune defenders of the central nervous system, play important roles in the development and protection of neural cells, but can contribute to injury under pathological conditions. This article discusses oligodendroglial changes in schizophrenia and focuses on microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage. These include disorders associated with premature birth, and animal models of perinatal bacterial and viral infection, oxygen deprivation (hypoxia) and excess (hyperoxia), and elevated systemic proinflammatory cytokine levels. We briefly review the effects of treatment with antipsychotic and anti-inflammatory agents in models of perinatal brain injury, and comment on the therapeutic potential of these strategies. By understanding the neurobiological basis of oligodendroglial abnormalities in schizophrenia, it is hoped that patients will benefit from the availability of targeted and more efficacious treatment options.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|
18
|
Schomberg D, Olson JK. Immune responses of microglia in the spinal cord: Contribution to pain states. Exp Neurol 2012; 234:262-70. [DOI: 10.1016/j.expneurol.2011.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/05/2011] [Accepted: 12/13/2011] [Indexed: 01/24/2023]
|
19
|
Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011; 121:367-87. [PMID: 21745188 PMCID: PMC4231819 DOI: 10.1042/cs20110164] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of mammalian TLRs (Toll-like receptors), first identified in 1997 based on their homology with Drosophila Toll, greatly altered our understanding of how the innate immune system recognizes and responds to diverse microbial pathogens. TLRs are evolutionarily conserved type I transmembrane proteins expressed in both immune and non-immune cells, and are typified by N-terminal leucine-rich repeats and a highly conserved C-terminal domain termed the TIR [Toll/interleukin (IL)-1 receptor] domain. Upon stimulation with their cognate ligands, TLR signalling elicits the production of cytokines, enzymes and other inflammatory mediators that can have an impact on several aspects of CNS (central nervous system) homoeostasis and pathology. For example, TLR signalling plays a crucial role in initiating host defence responses during CNS microbial infection. Furthermore, TLRs are targets for many adjuvants which help shape pathogen-specific adaptive immune responses in addition to triggering innate immunity. Our knowledge of TLR expression and function in the CNS has greatly expanded over the last decade, with new data revealing that TLRs also have an impact on non-infectious CNS diseases/injury. In particular, TLRs recognize a number of endogenous molecules liberated from damaged tissues and, as such, influence inflammatory responses during tissue injury and autoimmunity. In addition, recent studies have implicated TLR involvement during neurogenesis, and learning and memory in the absence of any underlying infectious aetiology. Owing to their presence and immune-regulatory role within the brain, TLRs represent an attractive therapeutic target for numerous CNS disorders and infectious diseases. However, it is clear that TLRs can exert either beneficial or detrimental effects in the CNS, which probably depend on the context of tissue homoeostasis or pathology. Therefore any potential therapeutic manipulation of TLRs will require an understanding of the signals governing specific CNS disorders to achieve tailored therapy.
Collapse
Affiliation(s)
- Mark L. Hanke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
20
|
Nicotra L, Loram LC, Watkins LR, Hutchinson MR. Toll-like receptors in chronic pain. Exp Neurol 2011; 234:316-29. [PMID: 22001158 DOI: 10.1016/j.expneurol.2011.09.038] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/16/2022]
Abstract
Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed.
Collapse
Affiliation(s)
- Lauren Nicotra
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|
21
|
Cuvillier-Hot V, Boidin-Wichlacz C, Slomianny C, Salzet M, Tasiemski A. Characterization and immune function of two intracellular sensors, HmTLR1 and HmNLR, in the injured CNS of an invertebrate. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:214-226. [PMID: 20920526 DOI: 10.1016/j.dci.2010.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/24/2010] [Accepted: 09/25/2010] [Indexed: 05/29/2023]
Abstract
Unlike mammals, the CNS of the medicinal leech can regenerate damaged neurites, thus restoring neural functions. Our group recently demonstrated that the injured leech nerve cord is able to mount an immune response, which promotes the regenerative processes. This defense mechanism is microorganism-specific, suggesting that the leech CNS is able to discriminate among microbial components. We report here the characterization of two receptors potentially implicated in this detection: HmTLR1 and HmNLR. Interestingly, HmTLR1 presents an endosomal distribution in neurons and appears as a chimera combining the mammalian intraendosomal domain of TLR3 and the cytoplasmic section of TLR13, while HmNLR is cytosolic and has the highest homology to NLRC3 receptors. Both receptors show patterns of induction upon stimulation that suggest their involvement in the leech neuroimmune response. This work constitutes the first demonstration in an invertebrate of (i) an intracellular TLR and (ii) a cytosolic PRR related to the NLR family.
Collapse
Affiliation(s)
- Virginie Cuvillier-Hot
- Laboratoire de Neuroimmunologie et Neurochimie Evolutive, Université Nord de France, CNRS FRE 3249, Cité Scientifique, 59655 Villeneuve d'Ascq, France.
| | | | | | | | | |
Collapse
|
22
|
Shi XQ, Zekki H, Zhang J. The role of TLR2 in nerve injury-induced neuropathic pain is essentially mediated through macrophages in peripheral inflammatory response. Glia 2010; 59:231-41. [DOI: 10.1002/glia.21093] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Butchi NB, Du M, Peterson KE. Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia. Glia 2010; 58:650-64. [PMID: 19998480 DOI: 10.1002/glia.20952] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors 7 (TLR7) and 9 (TLR9) are important mediators of innate immune responses. Both receptors are located in endosomal compartments, recognize nucleic acids, and signal via Myeloid differentiation factor 88 (MyD88). In the current study, we analyzed TLR7 and TLR9 induced activation of astrocytes and microglia, two cell types that contribute to innate immune responses in the CNS. TLR7 and TLR9 agonists induced similar cytokine profiles within each cell type. However, there were notable differences in the cytokine profile between astrocytes and microglia, including the production of the anti-inflammatory cytokine IL-10 and antiapoptotic cytokines G-CSF and IL-9 by microglia but not astrocytes. Costimulation studies demonstrated that the TLR7 agonist, imiquimod, could inhibit TLR9 agonist-induced innate immune responses, in both cell types, in a concentration-dependent manner. Surprisingly, this inhibition was not mediated by TLR7, as deficiency in TLR7 did not alter suppression of the TLR9 agonist-induced responses. The suppression of innate immune responses was also not due to an inhibition of TLR9 agonist uptake. This suggested that imiquimod suppression may be a direct effect, possibly by blocking CpG-ODN binding and/or signaling with TLR9, thus limiting cell activation. An antagonistic relationship was also observed between the two receptors in microglia, with TLR7 deficiency resulting in enhanced cytokine responses to CpG-ODN stimulation. Thus, both TLR7 and its agonist can have inhibitory effects on TLR9-induced cytokine responses in glial cells.
Collapse
Affiliation(s)
- Niranjan B Butchi
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
24
|
Abstract
Following traumatic spinal cord injury (SCI), activated glia and inflammatory leukocytes contribute to both neurodegeneration and repair. The mechanisms that control these divergent functions are poorly understood. Toll-like receptors (TLRs) are a highly conserved family of receptors involved in pathogen recognition and host defense. However, recently it was shown that TLRs are expressed on a range of neuronal and non-neuronal cells (e.g., glia, stem/progenitor cells and leukocytes), and that nonpathogenic molecules released from sites of tissue injury, i.e., danger-associated molecular patterns (DAMPs), can activate cells via TLRs. This review will discuss how DAMPs acting at various TLRs may influence injury and repair processes of relevance to SCI, i.e., neurotoxicity, demyelination, growth cone collapse and stem/progenitor cell turnover.
Collapse
Affiliation(s)
- Kristina A Kigerl
- Center for Brain and Spinal Cord Repair, Department of Molecular Virology, Immunology, & Medical Genetics, The Ohio State University College of Medicine, Columbus, OH, USA
| | | |
Collapse
|
25
|
Aravalli RN, Peterson PK, Lokensgard JR. Toll-like receptors in defense and damage of the central nervous system. J Neuroimmune Pharmacol 2007; 2:297-312. [PMID: 18040848 DOI: 10.1007/s11481-007-9071-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/01/2007] [Indexed: 12/13/2022]
Abstract
Members of the Toll-like receptor (TLR) family play critical roles as regulators of innate and adaptive immune responses. TLRs function by recognizing diverse molecular patterns on the surface of invading pathogens. In the brain, microglial cells generate neuroimmune responses through production of proinflammatory mediators. The upregulation of cytokines and chemokines in response to microbial products and other stimuli has both beneficial and deleterious effects. Emerging evidence demonstrates a central role for TLRs expressed on microglia as a pivotal factor in generating these neuroimmune responses. Therefore, understanding the basis of TLR signaling in producing these responses may provide insights into how activated microglia attempt to strike a balance between defense against invading pathogens and inflicting irreparable brain damage. These insights may lead to innovative therapies for CNS infections and neuroinflammatory diseases based on the modulation of microglial cell activation through TLR signaling.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
26
|
Cameron JS, Alexopoulou L, Sloane JA, DiBernardo AB, Ma Y, Kosaras B, Flavell R, Strittmatter SM, Volpe J, Sidman R, Vartanian T. Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. J Neurosci 2007; 27:13033-41. [PMID: 18032677 PMCID: PMC4313565 DOI: 10.1523/jneurosci.4290-06.2007] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 09/11/2007] [Accepted: 10/10/2007] [Indexed: 11/21/2022] Open
Abstract
Toll is a cell surface receptor with well described roles in the developmental patterning of invertebrates and innate immunity in adult Drosophila. Mammalian toll-like receptors represent a family of Toll orthologs that function in innate immunity by recognizing molecular motifs unique to pathogens or injured tissue. One member in this family of pattern recognition receptors, toll-like receptor 3 (TLR3), recognizes viral double-stranded RNA and host mRNA. We examined the expression and function of TLRs in the nervous system and found that TLR3 is expressed in the mouse central and peripheral nervous systems and is concentrated in the growth cones of neurons. Activation of TLR3 by the synthetic ligand polyinosine:polycytidylic acid (poly I:C) or by mRNA rapidly causes growth cone collapse and irreversibly inhibits neurite extension independent of nuclear factor kappaB. Mice lacking functional TLR3 were resistant to the neurodegenerative effects of poly I:C. Neonatal mice injected with poly I:C were found to have fewer axons exiting dorsal root ganglia and displayed related sensorimotor deficits. No effect of poly I:C was observed in mice lacking functional TLR3. Together, these findings provide evidence that an innate immune pattern recognition receptor functions autonomously in neurons to regulate axonal growth and advances a novel hypothesis that this class of receptors may contribute to injury and limited CNS regeneration.
Collapse
Affiliation(s)
- Jill S. Cameron
- Department of Neurology, Beth Israel Deaconess Medical Center, Program in Neuroscience and the Center for Neurodegeneration and Repair, and
| | | | - Jacob A. Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Program in Neuroscience and the Center for Neurodegeneration and Repair, and
| | - Allitia B. DiBernardo
- Department of Neurology, Beth Israel Deaconess Medical Center, Program in Neuroscience and the Center for Neurodegeneration and Repair, and
| | - Yinghua Ma
- Department of Neurology, Beth Israel Deaconess Medical Center, Program in Neuroscience and the Center for Neurodegeneration and Repair, and
| | - Bela Kosaras
- Department of Neurology, Beth Israel Deaconess Medical Center, Program in Neuroscience and the Center for Neurodegeneration and Repair, and
| | - Richard Flavell
- Section of Immunobiology and
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, 06520
| | - Stephen M. Strittmatter
- Department of Neurology and Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06510
| | - Joseph Volpe
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115
| | - Richard Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Program in Neuroscience and the Center for Neurodegeneration and Repair, and
| | - Timothy Vartanian
- Department of Neurology, Beth Israel Deaconess Medical Center, Program in Neuroscience and the Center for Neurodegeneration and Repair, and
| |
Collapse
|
27
|
Esen N, Kielian T. Effects of low dose GM-CSF on microglial inflammatory profiles to diverse pathogen-associated molecular patterns (PAMPs). J Neuroinflammation 2007; 4:10. [PMID: 17374157 PMCID: PMC1839084 DOI: 10.1186/1742-2094-4-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 03/20/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND It is well appreciated that obtaining sufficient numbers of primary microglia for in vitro experiments has always been a challenge for scientists studying the biological properties of these cells. Supplementing culture medium with granulocyte-macrophage colony-stimulating factor (GM-CSF) partially alleviates this problem by increasing microglial yield. However, GM-CSF has also been reported to transition microglia into a dendritic cell (DC)-like phenotype and consequently, affect their immune properties. METHODS Although the concentration of GM-CSF used in our protocol for mouse microglial expansion (0.5 ng/ml) is at least 10-fold less compared to doses reported to affect microglial maturation and function (>/= 5 ng/ml), in this study we compared the responses of microglia derived from mixed glial cultures propagated in the presence/absence of low dose GM-CSF to establish whether this growth factor significantly altered the immune properties of microglia to diverse bacterial stimuli. These stimuli included the gram-positive pathogen Staphylococcus aureus (S. aureus) and its cell wall product peptidoglycan (PGN), a Toll-like receptor 2 (TLR2) agonist; the TLR3 ligand polyinosine-polycytidylic acid (polyI:C), a synthetic mimic of viral double-stranded RNA; lipopolysaccharide (LPS) a TLR4 agonist; and the TLR9 ligand CpG oligonucleotide (CpG-ODN), a synthetic form of bacteria/viral DNA. RESULTS Interestingly, the relative numbers of microglia recovered from mixed glial cultures following the initial harvest were not influenced by GM-CSF. However, following the second and third collections of the same mixed cultures, the yield of microglia from GM-CSF-supplemented flasks was increased two-fold. Despite the ability of GM-CSF to expand microglial numbers, cells propagated in the presence/absence of GM-CSF demonstrated roughly equivalent responses following S. aureus and PGN stimulation. Specifically, the induction of tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2/CXCL2), and major histocompatibility complex (MHC) class II, CD80, CD86 expression by microglia in response to S. aureus were similar regardless of whether cells had been exposed to GM-CSF during the mixed culture period. In addition, microglial phagocytosis of intact bacteria was unaffected by GM-CSF. In contrast, upon S. aureus stimulation, CD40 expression was induced more prominently in microglia expanded in GM-CSF. Analysis of microglial responses to additional pathogen-associate molecular patterns (PAMPs) revealed that low dose GM-CSF did not significantly alter TNF-alpha or MIP-2 production in response to the TLR3 and TLR4 agonists polyI:C or LPS, respectively; however, cells expanded in the presence of GM-CSF produced lower levels of both mediators following CpG-ODN stimulation. CONCLUSION We demonstrate that low levels of GM-CSF are sufficient to expand microglial numbers without significantly affecting their immunological responses following activation of TLR2, TLR4 or TLR3 signaling. Therefore, low dose GM-CSF can be considered as a reliable method to achieve higher microglial yields without introducing dramatic activation artifacts.
Collapse
Affiliation(s)
- Nilufer Esen
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tammy Kielian
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
28
|
Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG. Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem 2007; 99:1073-87. [PMID: 17081140 DOI: 10.1111/j.1471-4159.2006.04147.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Clinical and experimental data indicate that spinal cord injury (SCI) elicits pathological T-cell responses. Implicit in these data, but poorly understood, is that B lymphocytes (B cells) also contribute to the delayed pathophysiology of spinal trauma. Here, for the first time, we show that experimental spinal contusion injury elicits chronic systemic and intraspinal B cell activation with the emergence of a B cell-dependent organ-specific and systemic autoimmune response. Specifically, using sera from spinal cord injured mice, immunoblots reveal oligoclonal IgG reactivity against multiple CNS proteins. We also show SCI-induced synthesis of autoantibodies that bind nuclear antigens including DNA and RNA. Elevated levels of anti-DNA antibodies are a distinguishing feature of systemic lupus erythematosus and, via their ability to cross-react with neuronal antigens, can cause neuropathology. We show a similar pathologic potential for the autoantibodies produced after SCI. Thus, mammalian SCI produces marked dysregulation of B cell function (i.e. autoimmunity) with pathological potential.
Collapse
Affiliation(s)
- Daniel P Ankeny
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
29
|
Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide. BMC Cancer 2006; 6:281. [PMID: 17156435 PMCID: PMC1705811 DOI: 10.1186/1471-2407-6-281] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 12/08/2006] [Indexed: 02/08/2023] Open
Abstract
Background Recently it has been reported that, toll-like receptors (TLRs) are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS) via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. Methods Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometric analysis, respectively. Activation of nuclear factor (NF)-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP) kinase and interferon regulatory factor (IRF)-3 was detected by immunoblot analysis. Results Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. Conclusion Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3.
Collapse
|
30
|
Schiller M, Metze D, Luger TA, Grabbe S, Gunzer M. Immune response modifiers--mode of action. Exp Dermatol 2006; 15:331-41. [PMID: 16630072 DOI: 10.1111/j.0906-6705.2006.00414.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The innate immune system governs the interconnecting pathways of microbial recognition, inflammation, microbial clearance, and cell death. A family of evolutionarily conserved receptors, known as the Toll-like receptors (TLRs), is crucial in early host defense against invading pathogens. Upon TLR stimulation, nuclear factor-kappaB activation and the interferon (IFN)-regulatory factor 3 pathway initiate production of pro-inflammatory cytokines, such as interleukin-1 and tumor necrosis factor-alpha, and production of type I IFNs (IFN-alpha and IFN-beta), respectively. The innate immunity thereby offers diverse targets for highly selective therapeutics, such as small molecular synthetic compounds that modify innate immune responses. The notion that activation of the innate immune system is a prerequisite for the induction of acquired immunity raised interest in these immune response modifiers as potential therapeutics for viral infections and various tumors. A scenario of dermal events following skin cancer treatment with imiquimod presumably comprises (i) an initial low amount of pro-inflammatory cytokine secretion by macrophages and dermal dendritic cells (DCs), thereby (ii) attracting an increasing number type I IFN-producing plasmacytoid DCs (pDCs) from the blood; (iii) Langerhans cells migrate into draining lymph nodes, leading to an increased presentation of tumor antigen in the draining lymph node, and (iv) consequently an increased generation of tumor-specific T cells and finally (v) an accumulation of tumoricidal effector cells in the treated skin area. The induction of predominately T helper (Th)1-type cytokine profiles by TLR agonists such as imiquimod might have further benefits by shifting the dominant Th2-type response in atopic diseases such as asthma and atopic dermatitis to a more potent Th1 response.
Collapse
Affiliation(s)
- Meinhard Schiller
- Department of Dermatology and Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University Hospital Münster, Münster, Germany.
| | | | | | | | | |
Collapse
|
31
|
Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA. Microglia recognize double-stranded RNA via TLR3. THE JOURNAL OF IMMUNOLOGY 2006; 176:3804-12. [PMID: 16517751 DOI: 10.4049/jimmunol.176.6.3804] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microglia are CNS resident innate immune cells of myeloid origin that become activated and produce innate proinflammatory molecules upon encountering bacteria or viruses. TLRs are a phylogenetically conserved diverse family of sensors for pathogen-associated molecular patterns that drive innate immune responses. We have recently shown that mice deficient in TLR3 (TLR3(-/-) mice) are resistant to lethal encephalitis and have reduced microglial activation after infection with West Nile virus, a retrovirus that produces dsRNA. We wished to determine whether microglia recognize dsRNA through the TLR3 pathway. In vitro, murine wild-type primary cultured microglia responded to synthetic dsRNA polyinosinic-polycytidylic acid (poly(I:C)) by increasing TLR3 and IFN-beta mRNA and by morphologic activation. Furthermore, wild-type microglia dose dependently secreted TNF-alpha and IL-6 after poly(I:C) challenge, whereas TLR3(-/-) microglia produced diminished cytokines. Activation of MAPK occurred in a time-dependent fashion following poly(I:C) treatment of wild-type microglia, but happened with delayed kinetics in TLR3(-/-) microglia. As an in vivo model of encephalitis, wild-type or TLR3(-/-) mice were injected intracerebroventricularly with poly(I:C) or LPS, and microglial activation was assessed by cell surface marker or phospho-MAPK immunofluorescence. After intracerebroventricular injection of poly(I:C), microgliosis was clearly evident in wild-type mice but was nearly absent in TLR3(-/-) animals. When taken together, our results demonstrate that microglia recognize dsRNA through TLR3 and associated signaling molecules and suggest that these cells are key sensors of dsRNA-producing viruses that may invade the CNS.
Collapse
Affiliation(s)
- Terrence Town
- Section of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
32
|
Ponomarev ED, Shriver LP, Dittel BN. CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. THE JOURNAL OF IMMUNOLOGY 2006; 176:1402-10. [PMID: 16424167 DOI: 10.4049/jimmunol.176.3.1402] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microglial cells are monocytic lineage cells that reside in the CNS and have the capacity to become activated during various pathological conditions. Although it was demonstrated that activation of microglial cells could be achieved in vitro by the engagement of CD40-CD40L interactions in combination with proinflammatory cytokines, the exact factors that mediate activation of microglial cells in vivo during CNS autoimmunity are ill-defined. To investigate the role of CD40 in microglial cell activation during experimental autoimmune encephalomyelitis (EAE), we used bone marrow chimera mice that allowed us to distinguish microglial cells from peripheral macrophages and render microglial cells deficient in CD40. We found that the first step of microglial cell activation was CD40-independent and occurred during EAE onset. The first step of activation consisted of microglial cell proliferation and up-regulation of the activation markers MHC class II, CD40, and CD86. At the peak of disease, microglial cells underwent a second step of activation, which was characterized by a further enhancement in activation marker expression along with a reduction in proliferation. The second step of microglial cell activation was CD40-dependent and the failure of CD40-deficient microglial cells to achieve a full level of activation during EAE was correlated with reduced expansion of encephalitogenic T cells and leukocyte infiltration in the CNS, and amelioration of clinical symptoms. Thus, our findings demonstrate that CD40 expression on microglial cells is necessary to complete their activation process during EAE, which is important for disease progression.
Collapse
Affiliation(s)
- Eugene D Ponomarev
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201, USA
| | | | | |
Collapse
|