1
|
Dumargne H, Patural H, Charbonnieras F, Charier D, Biscarrat C, Chivot M, Argaud L, Cour M, Dargent A. Exploration of COVID-19 associated bradycardia using heart rate variability analysis in a case-control study of ARDS patients. Heart Lung 2024; 68:74-80. [PMID: 38941770 DOI: 10.1016/j.hrtlng.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Bradycardia and dysautonomia observed during SARS-Cov2 infection suggests involvement of the autonomic nervous system (ANS). Limited data exists on ANS dysregulation and its association with outcomes in patients with acute respiratory distress syndrome (ARDS) related to COVID-19 (C-ARDS) or other etiologies (NC-ARDS). OBJECTIVES We aimed to explore sympathovagal balance, assessed by heart rate variability (HRV), and its clinical prognostic value in C-ARDS compared with NC-ARDS. METHODS A single-center, prospective case-control study was conducted. Consecutive patients meeting ARDS criteria between 2020 and 2022 were included. HRV was assessed using 1-hour electrographic tracing during a stable, daytime period. RESULTS Twenty-four patients with C-ARDS and 19 with NC-ARDS were included. Age, sex and ARDS severity were similar between groups. The median heart rate was markedly lower in the C-ARDS group than in the NC-ARDS group (60 [53-72] versus 101 [91-112] bpm, p<.001). Most of HRV parameters were significantly increased in patients with C-ARDS. HRV correlated with heart rate only in patients with C-ARDS. A positive correlation was found between the low-to high-frequency ratio (LF/HF) and length of intensive care unit stay (r = 0.576, p<.001). CONCLUSION This study confirmed that C-ARDS was associated with marked bradycardia and severe ANS impairment, suggesting a sympathovagal imbalance with vagal overtone. Poor outcomes appeared to be more related to sympathetic rather than parasympathetic hyperactivation.
Collapse
Affiliation(s)
- Hugo Dumargne
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 69003 Lyon, France
| | - Hugues Patural
- Centre Hospitalier Universitaire de Saint Etienne, Service de réanimation pédiatrique, Saint-Etienne, France; INSERM, SAINBIOSE U1059, 42055 Saint-Etienne, France
| | - François Charbonnieras
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Service de Cardiologie soins intensifs, 69004 Lyon, France
| | - David Charier
- INSERM, SAINBIOSE U1059, 42055 Saint-Etienne, France; Centre Hospitalier Universitaire de Saint Etienne, Service d'Anesthésie-Réanimation, Saint-Etienne, France
| | - Charlotte Biscarrat
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 69003 Lyon, France
| | - Matthieu Chivot
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 69003 Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 69003 Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 69003 Lyon, France
| | - Auguste Dargent
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'Anesthésie-Réanimation Médecine Intensive-Réanimation, 69495 Pierre-Bénite, Lyon, France; APCSe VetAgro Sup UPSP 2016.A101, 69280 Marcy l'Etoile, France.
| |
Collapse
|
2
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 PMCID: PMC11560121 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Wellford SA, Moseman EA. Olfactory immune response to SARS-CoV-2. Cell Mol Immunol 2024; 21:134-143. [PMID: 38143247 PMCID: PMC10806031 DOI: 10.1038/s41423-023-01119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Krueger JM. Tripping on the edge of consciousness. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad039. [PMID: 37954093 PMCID: PMC10632728 DOI: 10.1093/sleepadvances/zpad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 11/14/2023]
Abstract
Herein the major accomplishments, trials and tribulations, and epiphanies experienced by James M. Krueger over the course of his career in sleep research are presented. They include the characterization of a) the supranormal EEG delta waves occurring during NREMS post sleep loss, b) Factor S as a muramyl peptide, c) the physiological roles of cytokines in sleep regulation, d) multiple other sleep regulatory substances, e) the dramatic changes in sleep over the course of infectious diseases, and f) sleep initiation within small neuronal/glial networks. The theory that the preservation of brain plasticity is the primordial sleep function is briefly discussed. These accomplishments resulted from collaborations with many outstanding scientists including James M. Krueger's mentors (John Pappenheimer and Manfred Karnovsky) and collaborators later in life, including Charles Dinarello, Louis Chedid, Mark Opp, Ferenc Obal jr., Dave Rector, Ping Taishi, Linda Toth, Jeannine Majde, Levente Kapas, Eva Szentirmai, Jidong Fang, Chris Davis, Sandip Roy, Tetsuya Kushikata, Fabio Garcia-Garcia, Ilia Karatsoreos, Mark Zielinski, and Alok De, plus many students, e.g. Jeremy Alt, Kathryn Jewett, Erika English, and Victor Leyva-Grado.
Collapse
Affiliation(s)
- James M Krueger
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, USA
| |
Collapse
|
5
|
Kraus A, Garcia B, Ma J, Herrera KJ, Zwaka H, Harpaz R, Wong RY, Engert F, Salinas I. Olfactory detection of viruses shapes brain immunity and behavior in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533129. [PMID: 37034630 PMCID: PMC10081220 DOI: 10.1101/2023.03.17.533129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory sensory neurons (OSNs) are constantly exposed to pathogens, including viruses. However, serious brain infection via the olfactory route rarely occurs. When OSNs detect a virus, they coordinate local antiviral immune responses to stop virus progression to the brain. Despite effective immune control in the olfactory periphery, pathogen-triggered neuronal signals reach the CNS via the olfactory bulb (OB). We hypothesized that neuronal detection of a virus by OSNs initiates neuroimmune responses in the OB that prevent pathogen invasion. Using zebrafish ( Danio rerio ) as a model, we demonstrate viral-specific neuronal activation of OSNs projecting into the OB, indicating that OSNs are electrically activated by viruses. Further, behavioral changes are seen in both adult and larval zebrafish after viral exposure. By profiling the transcription of single cells in the OB after OSNs are exposed to virus, we found that both microglia and neurons enter a protective state. Microglia and macrophage populations in the OB respond within minutes of nasal viral delivery followed decreased expression of neuronal differentiation factors and enrichment of genes in the neuropeptide signaling pathway in neuronal clusters. Pituitary adenylate-cyclase-activating polypeptide ( pacap ), a known antimicrobial, was especially enriched in a neuronal cluster. We confirm that PACAP is antiviral in vitro and that PACAP expression increases in the OB 1 day post-viral treatment. Our work reveals how encounters with viruses in the olfactory periphery shape the vertebrate brain by inducing antimicrobial programs in neurons and by altering host behavior.
Collapse
|
6
|
Veldhuis Kroeze E, Bauer L, Caliendo V, van Riel D. In Vivo Models to Study the Pathogenesis of Extra-Respiratory Complications of Influenza A Virus Infection. Viruses 2021; 13:v13050848. [PMID: 34066589 PMCID: PMC8148586 DOI: 10.3390/v13050848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Animal models are an inimitable method to study the systemic pathogenesis of virus-induced disease. Extra-respiratory complications of influenza A virus infections are not extensively studied even though they are often associated with severe disease and mortality. Here we review and recommend mammalian animal models that can be used to study extra-respiratory complications of the central nervous system and cardiovascular system as well as involvement of the eye, placenta, fetus, lacteal gland, liver, pancreas, intestinal tract, and lymphoid tissues during influenza A virus infections.
Collapse
|
7
|
Lee JC, Nallani R, Cass L, Bhalla V, Chiu AG, Villwock JA. A Systematic Review of the Neuropathologic Findings of Post-Viral Olfactory Dysfunction: Implications and Novel Insight for the COVID-19 Pandemic. Am J Rhinol Allergy 2021; 35:323-333. [PMID: 32915650 PMCID: PMC10404900 DOI: 10.1177/1945892420957853] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Post-viral olfactory dysfunction is a common cause of both short- and long-term smell alteration. The coronavirus pandemic further highlights the importance of post-viral olfactory dysfunction. Currently, a comprehensive review of the neural mechanism underpinning post-viral olfactory dysfunction is lacking. OBJECTIVES To synthesize the existing primary literature related to olfactory dysfunction secondary to viral infection, detail the underlying pathophysiological mechanisms, highlight relevance for the current COVID-19 pandemic, and identify high impact areas of future research. METHODS PubMed and Embase were searched to identify studies reporting primary scientific data on post-viral olfactory dysfunction. Results were supplemented by manual searches. Studies were categorized into animal and human studies for final analysis and summary. RESULTS A total of 38 animal studies and 7 human studies met inclusion criteria and were analyzed. There was significant variability in study design, experimental model, and outcome measured. Viral effects on the olfactory system varies significantly based on viral substrain but generally include damage or alteration in components of the olfactory epithelium and/or the olfactory bulb. CONCLUSIONS The mechanism of post-viral olfactory dysfunction is highly complex, virus-dependent, and involves a combination of insults at multiple levels of the olfactory pathway. This will have important implications for future diagnostic and therapeutic developments for patients infected with COVID-19.
Collapse
Affiliation(s)
- Jason C. Lee
- Department of Otolaryngology—Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Rohit Nallani
- Department of Otolaryngology—Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Lauren Cass
- Department of Otolaryngology—Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Vidur Bhalla
- Saint Luke’s Hospital of Kansas City, Kansas City, Missouri
| | - Alexander G. Chiu
- Department of Otolaryngology—Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Jennifer A. Villwock
- Department of Otolaryngology—Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
8
|
Mori I. The olfactory bulb: A link between environmental agents and narcolepsy, from the standpoint of autoimmune etiology. Med Hypotheses 2019; 131:109294. [PMID: 31443760 DOI: 10.1016/j.mehy.2019.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
Abstract
Narcolepsy type 1 is a lifelong sleep disorder characterized by the loss of hypocretin-producing neurons in the brain. Environmental agents, including influenza, neurotoxic metals, and combustion smoke, have been implicated in the pathogenesis, especially in carriers of the human leukocyte antigen class II DQB1*06:02 allele. Sensitive experimental approaches have recently revealed hypocretin-autoreactive CD4+ and CD8+ T cells in the blood of narcoleptic patients. However, such potentially harmful cells are also detectable, to a lesser degree, in control DQB1*06:02 carriers, suggesting that the integrity of the blood-brain barrier (BBB) provides a neuroprotective effect. Here, we present the hypothesis that external toxic agents induce neuroinflammation in the olfactory bulb and concomitant overproduction of proinflammatory cytokines (e.g., tumor necrosis factor-α and interferon-γ); this, in turn, compromises the BBB, allowing autoimmune cells to access and kill hypocretinergic neurons. Such sequential pathological alterations could occur insidiously, passing unnoticed and consequently being underestimated. The elevated number of autoreactive T cells in narcoleptics relative to controls might reflect externally induced immunomodulation rather than a direct disease trigger.
Collapse
Affiliation(s)
- Isamu Mori
- Faculty of Health and Nutrition, Shubun University, Ichinomiya, Aichi 491-0938, Japan.
| |
Collapse
|
9
|
Mori I. The olfactory bulb: A link between environmental agents and narcolepsy. Med Hypotheses 2019; 126:66-68. [PMID: 31010502 DOI: 10.1016/j.mehy.2019.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/18/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Narcolepsy with cataplexy is a lifelong sleep disorder associated with orexin/hypocretin deficiency in the central nervous system. In addition to a genetic predisposition, a variety of environmental factors, such as influenza viruses, have been implicated in the pathogenesis of the disease. In this article, a hypothesis is proposed that environmental agents access the olfactory bulb and trigger neuroinflammation, which in turn induces neurodegeneration of orexinergic neurons in the lateral hypothalamus and other neuronal subpopulations regulating the sleep-wake cycle, which triggers the development of narcolepsy.
Collapse
Affiliation(s)
- Isamu Mori
- Faculty of Health and Nutrition, Shubun University, Ichinomiya, Aichi 491-0938, Japan.
| |
Collapse
|
10
|
Krueger JM, Nguyen JT, Dykstra-Aiello CJ, Taishi P. Local sleep. Sleep Med Rev 2018; 43:14-21. [PMID: 30502497 DOI: 10.1016/j.smrv.2018.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
The historic sleep regulatory paradigm invokes "top-down" imposition of sleep on the brain by sleep regulatory circuits. While remaining conceptually useful, many sleep phenomena are difficult to explain using that paradigm, including, unilateral sleep, sleep-walking, and poor performance after sleep deprivation. Further, all animals sleep after non-lethal brain lesions, regardless of whether the lesion includes sleep regulatory circuits, suggesting that sleep is a fundamental property of small viable neuronal/glial networks. That small areas of the brain can exhibit non-rapid eye movement sleep-like states is summarized. Further, sleep-like states in neuronal/glial cultures are described. The local sleep states, whether in vivo or in vitro, share electrophysiological properties and molecular regulatory components with whole animal sleep and exhibit sleep homeostasis. The molecular regulatory components of sleep are also involved in plasticity and inflammation. Like sleep, these processes, are initiated by local cell-activity dependent events, yet have at higher levels of tissue organization whole body functions. While there are large literatures dealing with local initiation and regulation of plasticity and inflammation, the literature surrounding local sleep is in its infancy and clinical applications of the local sleep concept are absent. Regardless, the local use-dependent sleep paradigm can advise and advance future research and clinical applications.
Collapse
Affiliation(s)
- James M Krueger
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA.
| | - Joseph T Nguyen
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| | - Cheryl J Dykstra-Aiello
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| | - Ping Taishi
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| |
Collapse
|
11
|
Mori I. Olfactory vector hypothesis for encephalitis lethargica. Med Hypotheses 2017; 103:128-130. [DOI: 10.1016/j.mehy.2017.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/24/2017] [Accepted: 05/06/2017] [Indexed: 11/28/2022]
|
12
|
Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease in focal cerebral ischemic rats. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:102-30. [PMID: 27335702 PMCID: PMC4913220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE/Melbourne School of Engineering, The University of Melbourne Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Durrant DM, Ghosh S, Klein RS. The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chem Neurosci 2016; 7:464-9. [PMID: 27058872 DOI: 10.1021/acschemneuro.6b00043] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In 1935, the olfactory route was hypothesized to be a portal for virus entry into the central nervous system (CNS). This hypothesis was based on experiments in which nasophayngeal infection with poliovirus in monkeys was prevented from spreading to their CNS via transection of olfactory tracts between the olfactory neuroepithelium (ONE) of the nasal cavity and the olfactory bulb (OB). Since then, numerous neurotropic viruses have been observed to enter the CNS via retrograde transport along axons of olfactory sensory neurons whose cell bodies reside in the ONE. Importantly, this route of infection can occur even after subcutaneous inoculation of arboviruses that can cause encephalitis in humans. While the olfactory route is now accepted as an important pathway for viral entry into the CNS, it is unclear whether it provides a way for infection to spread to other brain regions. More recently, studies of antiviral innate and adaptive immune responses within the olfactory bulb suggest it provides early virologic control. Here we will review the data demonstrating that neurotropic viruses gain access to the CNS initially via the olfactory route with emphasis on findings that suggest the OB is a critical immunosensory effector organ that effectively clears virus.
Collapse
Affiliation(s)
- Douglas M. Durrant
- Biological
Sciences Department, California State Polytechnic University, 3801 West
Temple Ave., Pomona, California 91768, United States
| | | | | |
Collapse
|
14
|
Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:1-28. [PMID: 27073740 PMCID: PMC4788729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE/Melbourne School of Engineering, The University of Melbourne Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
Davis CJ, Dunbrasky D, Oonk M, Taishi P, Opp MR, Krueger JM. The neuron-specific interleukin-1 receptor accessory protein is required for homeostatic sleep and sleep responses to influenza viral challenge in mice. Brain Behav Immun 2015; 47:35-43. [PMID: 25449578 PMCID: PMC4418942 DOI: 10.1016/j.bbi.2014.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/14/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022] Open
Abstract
Interleukin-1β (IL1) is involved in sleep regulation and sleep responses induced by influenza virus. The IL1 receptor accessory protein (AcP) and an alternatively spliced isoform of AcP found primarily in neurons, AcPb, form part of the IL1 signaling complex. IL1-induced sleep responses depend on injection time. In rat cortex, both IL1 mRNA and AcPb mRNA peak at Zeitgeber Time (ZT) 0 then decline over the daylight hours. Sleep deprivation enhances cortical IL1 mRNA and AcPb mRNA levels, but not AcP mRNA. We used wild type (WT) and AcPb knockout (KO) mice and performed sleep deprivation between ZT10 and 20 or between ZT22 and 8 based on the time of day expression profiles of AcPb and IL1. We hypothesized that the magnitude of the responses to sleep loss would be strain- and time of day-dependent. In WT mice, NREMS and REMS rebounds occurred regardless of when they were deprived of sleep. In contrast, when AcPbKO mice were sleep deprived from ZT10 to 20 NREMS and REMS rebounds were absent. The AcPbKO mice expressed sleep rebound if sleep loss occurred from ZT22 to 8 although the NREMS responses were not as robust as those that occurred in WT mice. We also challenged mice with intranasal H1N1 influenza virus. WT mice exhibited the expected enhanced sleep responses. In contrast, the AcPbKO mice had less sleep after influenza challenge compared to their own baseline values and compared to WT mice. Body temperature and locomotor activity responses after viral challenge were lower and mortality was higher in AcPbKO than in WT mice. We conclude that neuron-specific AcPb plays a critical role in host defenses and sleep homeostasis.
Collapse
Affiliation(s)
- Christopher J. Davis
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210,Corresponding Author: Christopher J. Davis, P.O. Box 1495, Spokane, WA 99202, Phone No. 509-358-7820,
| | - Danielle Dunbrasky
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| | - Marcella Oonk
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| | - Ping Taishi
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| | - Mark R. Opp
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98104
| | - James M. Krueger
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| |
Collapse
|
16
|
Daulatzai MA. Olfactory dysfunction: its early temporal relationship and neural correlates in the pathogenesis of Alzheimer’s disease. J Neural Transm (Vienna) 2015; 122:1475-97. [DOI: 10.1007/s00702-015-1404-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022]
|
17
|
van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 2015; 235:277-87. [PMID: 25294743 DOI: 10.1002/path.4461] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 02/01/2023]
Abstract
The olfactory nerve consists mainly of olfactory receptor neurons and directly connects the nasal cavity with the central nervous system (CNS). Each olfactory receptor neuron projects a dendrite into the nasal cavity on the apical side, and on the basal side extends its axon through the cribriform plate into the olfactory bulb of the brain. Viruses that can use the olfactory nerve as a shortcut into the CNS include influenza A virus, herpesviruses, poliovirus, paramyxoviruses, vesicular stomatitis virus, rabies virus, parainfluenza virus, adenoviruses, Japanese encephalitis virus, West Nile virus, chikungunya virus, La Crosse virus, mouse hepatitis virus, and bunyaviruses. However, mechanisms of transport via the olfactory nerve and subsequent spread through the CNS are poorly understood. Proposed mechanisms are either infection of olfactory receptor neurons themselves or diffusion through channels formed by olfactory ensheathing cells. Subsequent virus spread through the CNS could occur by multiple mechanisms, including trans-synaptic transport and microfusion. Viral infection of the CNS can lead to damage from infection of nerve cells per se, from the immune response, or from a combination of both. Clinical consequences range from nervous dysfunction in the absence of histopathological changes to severe meningoencephalitis and neurodegenerative disease.
Collapse
Affiliation(s)
- Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
19
|
Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and α-synuclein's prion-like behavior in Parkinson's disease--is there a link? Mol Neurobiol 2013; 47:561-74. [PMID: 22544647 PMCID: PMC3589652 DOI: 10.1007/s12035-012-8267-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/04/2012] [Indexed: 01/24/2023]
Abstract
Parkinson's disease patients exhibit progressive spreading of aggregated α-synuclein in the nervous system. This slow process follows a specific pattern in an inflamed tissue environment. Recent research suggests that prion-like mechanisms contribute to the propagation of α-synuclein pathology. Little is known about factors that might affect the prion-like behavior of misfolded α-synuclein. In this review, we suggest that neuroinflammation plays an important role. We discuss causes of inflammation in the olfactory bulb and gastrointestinal tract and how this may promote the initial misfolding and aggregation of α-synuclein, which might set in motion events that lead to Parkinson's disease neuropathology. We propose that neuroinflammation promotes the prion-like behavior of α-synuclein and that novel anti-inflammatory therapies targeting this mechanism could slow disease progression.
Collapse
Affiliation(s)
- Carla M. Lema Tomé
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Trevor Tyson
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Nolwen L. Rey
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Stefan Grathwohl
- F. Hoffmann-La Roche Ltd, pRED, Pharma Research & Early Development, DTA CNS, Grenzacherstrasse 124, Basel, 4070 Switzerland
| | - Markus Britschgi
- F. Hoffmann-La Roche Ltd, pRED, Pharma Research & Early Development, DTA CNS, Grenzacherstrasse 124, Basel, 4070 Switzerland
| | - Patrik Brundin
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503 USA
| |
Collapse
|
20
|
Landreau F, Galeano P, Caltana LR, Masciotra L, Chertcoff A, Pontoriero A, Baumeister E, Amoroso M, Brusco HA, Tous MI, Savy VL, Lores Arnaiz MDR, de Erausquin GA. Effects of two commonly found strains of influenza A virus on developing dopaminergic neurons, in relation to the pathophysiology of schizophrenia. PLoS One 2012; 7:e51068. [PMID: 23251423 PMCID: PMC3519479 DOI: 10.1371/journal.pone.0051068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/01/2012] [Indexed: 12/22/2022] Open
Abstract
Influenza virus (InfV) infection during pregnancy is a known risk factor for neurodevelopment abnormalities in the offspring, including the risk of schizophrenia, and has been shown to result in an abnormal behavioral phenotype in mice. However, previous reports have concentrated on neuroadapted influenza strains, whereas increased schizophrenia risk is associated with common respiratory InfV. In addition, no specific mechanism has been proposed for the actions of maternal infection on the developing brain that could account for schizophrenia risk. We identified two common isolates from the community with antigenic configurations H3N2 and H1N1 and compared their effects on developing brain with a mouse modified-strain A/WSN/33 specifically on the developing of dopaminergic neurons. We found that H1N1 InfV have high affinity for dopaminergic neurons in vitro, leading to nuclear factor kappa B activation and apoptosis. Furthermore, prenatal infection of mothers with the same strains results in loss of dopaminergic neurons in the offspring, and in an abnormal behavioral phenotype. We propose that the well-known contribution of InfV to risk of schizophrenia during development may involve a similar specific mechanism and discuss evidence from the literature in relation to this hypothesis.
Collapse
Affiliation(s)
- Fernando Landreau
- Cultivo de Tejidos, Departamento Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr Carlos G. Malbran”, Buenos Aires, Argentina
| | - Pablo Galeano
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones “Prof. Dr. Alberto C. Taquini” (ININCA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura R. Caltana
- Instituto de Biología Celular y Neurociencia “Profesor E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Masciotra
- Instituto de Biología Celular y Neurociencia “Profesor E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín Chertcoff
- Bioterio Central, Instituto Nacional de Producción de Biológicos, ANLIS “Dr Carlos G. Malbran”, Buenos Aires, Argentina
| | - A. Pontoriero
- Virus Respiratorios, Departamento Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr Carlos G. Malbran”, Buenos Aires, Argentina
| | - Elsa Baumeister
- Virus Respiratorios, Departamento Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr Carlos G. Malbran”, Buenos Aires, Argentina
| | - Marcela Amoroso
- Microscopía Electrónica, Departamento Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr Carlos G. Malbran”, Buenos Aires, Argentina
- Facultad de Psicología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Herminia A. Brusco
- Bioterio Central, Instituto Nacional de Producción de Biológicos, ANLIS “Dr Carlos G. Malbran”, Buenos Aires, Argentina
| | - Mónica I. Tous
- Cultivo de Tejidos, Departamento Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr Carlos G. Malbran”, Buenos Aires, Argentina
| | - Vilma L. Savy
- Virus Respiratorios, Departamento Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr Carlos G. Malbran”, Buenos Aires, Argentina
| | - María del Rosario Lores Arnaiz
- Microscopía Electrónica, Departamento Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr Carlos G. Malbran”, Buenos Aires, Argentina
- Facultad de Psicología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel A. de Erausquin
- Roskamp Laboratory of Brain Development, Modulation and Repair, Department of Psychiatry and Neurosciences, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
21
|
Dysfunctional nucleus tractus solitarius: its crucial role in promoting neuropathogenetic cascade of Alzheimer's dementia--a novel hypothesis. Neurochem Res 2012; 37:846-68. [PMID: 22219130 DOI: 10.1007/s11064-011-0680-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/16/2011] [Accepted: 12/15/2011] [Indexed: 12/22/2022]
Abstract
The pathophysiological mechanism(s) underlying Alzheimer's disease (AD) still remain unclear, and no disease-modifying or prophylactic therapies are currently available. Unraveling the fundamental neuropathogenesis of AD is an important challenge. Several studies on AD have suggested lesions in a number of CNS areas including the basal forebrain, hippocampus, entorhinal cortex, amygdale/insula, and the locus coeruleus. However, plausible unifying studies on the upstream factors that involve these heterogeneous regions and herald the onset of AD pathogenesis are not available. The current article presents a novel nucleus tractus solitarius (NTS) vector hypothesis that underpins several disparate biological mechanisms and neural circuits, and identifies relevant hallmarks of major presumptive causative factor(s) linked to the NTS, in older/aging individuals. Aging, obesity, infection, sleep apnea, smoking, neuropsychological states, and hypothermia-all activate inflammatory cytokines and oxidative stress. The synergistic impact of systemic proinflammatory mediators activates microglia and promotes neuroinflammation. Acutely, the innate immune response is protective defending against pathogens/toxins; however, when chronic, it causes neuroinflammation and neuronal dysfunction, particularly in brainstem and neocortex. The NTS in the brainstem is an essential multiple signaling hub, and an extremely important central integration site of baroreceptor, chemoreceptor, and a multitude of sensory afferents from gustatory, gastrointestinal, cardiac, pulmonary, and upper airway systems. Owing to persistent neuroinflammation, the dysfunctional NTS exerts deleterious impact on nucleus ambiguus, dorsal motor nucleus of vagus, hypoglossal, parabrachial, locus coeruleus and many key nuclei in the brainstem, and the hippocampus, entorhinal cortex, prefrontal cortex, amygdala, insula, and basal forebrain in the neocortex. The neuronal and synaptic dysfunction emanating from the inflamed NTS may affect its interconnected pathways impacting almost the entire CNS--which is already primed by neuroinflammation, thus promoting cognitive and neuropsychiatric symptoms. The upstream factors discussed here may underpin the neuropathopgenesis of AD. AD pathology is multifactorial; the current perspective underscores the value of attenuating disparate upstream factors--in conjunction with anticholinesterase, anti-inflammatory, immunosuppressive, and anti-oxidant pharmacotherapy. Amelioration of the NTS pathology may be of central importance in countering the neuropathological cascade of AD. The NTS, therefore, may be a potential target of novel therapeutic strategies.
Collapse
|
22
|
Hodgson NR, Bohnet SG, Majde JA, Krueger JM. Influenza virus pathophysiology and brain invasion in mice with functional and dysfunctional Mx1 genes. Brain Behav Immun 2012; 26:83-9. [PMID: 21821116 PMCID: PMC3221813 DOI: 10.1016/j.bbi.2011.07.238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/12/2011] [Accepted: 07/20/2011] [Indexed: 12/22/2022] Open
Abstract
Mice with a dysfunctional myxovirus resistance-1 (dMx1) gene transport intranasally-instilled PR8 influenza virus to the olfactory bulb (OB) within 4 h post-infection. To determine if the presence of a functional Mx1 (fMx1) gene would influence this brain viral localization and/or disease, we infected mature C57BL/6 dMx1 and fMx1 mice under the same conditions and observed sickness behaviors, viral nucleoprotein (NP) RNA expression and innate immune mediator (IIM) mRNA expression in selected tissues at 15 and 96 h post-infection. Virus invaded the OB and lungs comparably in both sub-strains at 15 and 96 h as determined by nested PCR. In contrast, virus was present in blood and somatosensory cortex of dMx1, but not fMx1 mice at 96 h. At 15 h, sickness behaviors were comparable in both sub-strains. By 96 h dMx1, but not fMx1, were moribund. In both 15 and 96 h lungs, viral NP was significantly elevated in the dMx1 mice compared to the fMx1 mice, as determined by quantitative PCR. OB expression of most IIM mRNAs was similar at both time periods in both sub-strains. In contrast, lung IIM mRNAs were elevated in fMx1 at 15 h, but by 96 h were consistently reduced compared to dMx1 mice. In conclusion, functional Mx1 did not alter OB invasion by virus but attenuated illness compared to dMx1 mice. Inflammation was similar in OBs and lungs of both strains at 15 h but by 96 h it was suppressed in lungs, but not in OBs, of fMx1 mice.
Collapse
Affiliation(s)
| | | | | | - James M. Krueger
- Corresponding Author: Dr. James M. Krueger, WWAMI Medical Education Program and the Sleep and Performance Research Center, Washington State University, Spokane, WA 99210-1495, , Phone: 509-358-7808, Fax: 509-358-7627
| |
Collapse
|
23
|
Autonomic dysfunction in 2009 pandemic influenza A (H1N1) virus-related infection: A pediatric comparative study. Auton Neurosci 2011; 162:77-83. [DOI: 10.1016/j.autneu.2011.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 02/25/2011] [Accepted: 03/10/2011] [Indexed: 01/08/2023]
|
24
|
Krueger JM, Taishi P, De A, Davis CJ, Winters BD, Clinton J, Szentirmai E, Zielinski MR. ATP and the purine type 2 X7 receptor affect sleep. J Appl Physiol (1985) 2010; 109:1318-27. [PMID: 20829501 DOI: 10.1152/japplphysiol.00586.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep is dependent upon prior brain activities, e.g., after prolonged wakefulness sleep rebound occurs. These effects are mediated, in part, by humoral sleep regulatory substances such as cytokines. However, the property of wakefulness activity that initiates production and release of such substances and thereby provides a signal for indexing prior waking activity is unknown. We propose that extracellular ATP, released during neuro- and gliotransmission and acting via purine type 2 (P2) receptors, is such a signal. ATP induces cytokine release from glia. Cytokines in turn affect sleep. We show here that a P2 receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP), increased non-rapid eye movement sleep (NREMS) and electroencephalographic (EEG) delta power while two different P2 receptor antagonists, acting by different inhibitory mechanisms, reduced spontaneous NREMS in rats. Rat P2X7 receptor protein varied in the somatosensory cortex with time of day, and P2X7 mRNA was altered by interleukin-1 treatment, by sleep deprivation, and with time of day in the hypothalamus and somatosensory cortex. Mice lacking functional P2X7 receptors had attenuated NREMS and EEG delta power responses to sleep deprivation but not to interleukin-1 treatment compared with wild-type mice. Data are consistent with the hypothesis that extracellular ATP, released as a consequence of cell activity and acting via P2 receptors to release cytokines and other sleep regulatory substances, provides a mechanism by which the brain could monitor prior activity and translate it into sleep.
Collapse
Affiliation(s)
- James M Krueger
- Sleep and Performance Research Center, Programs in Neuroscience, Dept. of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Stock C, Teyssier G, Pichot V, Goffaux P, Barthelemy JC, Patural H. Autonomic dysfunction with early respiratory syncytial virus-related infection. Auton Neurosci 2010; 156:90-5. [DOI: 10.1016/j.autneu.2010.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 01/22/2010] [Accepted: 03/15/2010] [Indexed: 01/08/2023]
|
26
|
Majde JA. Neuroinflammation resulting from covert brain invasion by common viruses - a potential role in local and global neurodegeneration. Med Hypotheses 2010; 75:204-13. [PMID: 20236772 PMCID: PMC2897933 DOI: 10.1016/j.mehy.2010.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 02/21/2010] [Indexed: 11/22/2022]
Abstract
Neurodegenerative diseases are a horrendous burden for their victims, their families, and society as a whole. For half a century scientists have pursued the hypothesis that these diseases involve a chronic viral infection in the brain. However, efforts to consistently detect a specific virus in brains of patients with such diseases as Alzheimer's or multiple sclerosis have generally failed. Neuropathologists have become increasingly aware that most patients with neurodegenerative diseases demonstrate marked deterioration of the brain olfactory bulb in addition to brain targets that define the specific disease. In fact, the loss of the sense of smell may precede overt neurological symptoms by many years. This realization that the olfactory bulb is a common target in neurodegenerative diseases suggests the possibility that microbes and/or toxins in inhaled air may play a role in their pathogenesis. With regard to inhaled viruses, neuropathologists have focused on those viruses that infect and kill neurons. However, a recent study shows that a respiratory virus with no neurotropic properties can rapidly invade the mouse olfactory bulb from the nasal cavity. Available data suggest that this strain of influenza is passively transported to the bulb via the olfactory nerves (mechanism unknown), and is taken up by glial cells in the outer layers of the bulb. The infected glial cells appear to be activated by the virus, secrete proinflammatory cytokines, and block further spread of virus within the brain. At the time that influenza symptoms become apparent (15 h post-infection), but not prior to symptom onset (10 h post-infection), proinflammatory cytokine-expressing neurons are increased in olfactory cortical pathways and hypothalamus as well as in the olfactory bulb. The mice go on to die of pneumonitis with severe acute phase and respiratory disease symptoms but no classical neurological symptoms. While much remains to be learned about this intranasal influenza-brain invasion model, it suggests the hypothesis that common viruses encountered in our daily life may initiate neuroinflammation via olfactory neural networks. The numerous viruses that we inhale during a lifetime might cause the death of only a few neurons per infection, but this minor damage would accumulate over time and contribute to age-related brain shrinkage and/or neurodegenerative diseases. Elderly individuals with a strong innate inflammatory system, or ongoing systemic inflammation (or both), might be most susceptible to these outcomes. The evidence for the hypothesis that common respiratory viruses may contribute to neurodegenerative processes is developed in the accompanying article.
Collapse
Affiliation(s)
- Jeannine A Majde
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| |
Collapse
|
27
|
Ng YP, Lee SMY, Cheung TKW, Nicholls JM, Peiris JSM, Ip NY. Avian influenza H5N1 virus induces cytopathy and proinflammatory cytokine responses in human astrocytic and neuronal cell lines. Neuroscience 2010; 168:613-23. [PMID: 20398740 DOI: 10.1016/j.neuroscience.2010.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 12/11/2022]
Abstract
It has previously been reported that the avian H5N1 type of influenza A virus can be detected in neurons and astrocytes of human brains in autopsy cases. However, the underlying neuropathogenicity remains unexplored. In this study, we used differentiated human astrocytic and neuronal cell lines as models to examine the effect of H5N1 influenza A viral infection on the viral growth kinetics and immune responses of the infected cells. We found that the influenza virus receptors, sialic acid-alpha2,3-galactose and sialic acid-alpha2,6-galactose, were expressed on differentiated human astrocytic and neuronal cells. Both types of cells could be infected with H5N1 influenza A viruses, but progeny viruses were only produced from infected astrocytic cells but not neuronal cells. Moreover, increased expression of interleukin (IL)-6 and/or tumor necrosis factor alpha (TNF-alpha) mRNA was detected in both astrocytic and neuronal cells at 6 and 24 h post-infection. To examine the biological consequences of such enhanced cytokine expression, differentiated astrocytic and neuronal cells were directly treated with these two cytokines. TNF-alpha treatment induced apoptosis, as well as proinflammatory cytokine, chemokine and inflammatory responses in differentiated astrocytic and neuronal cells. Taken together, our findings reveal that avian influenza H5N1 viruses can infect human astrocytic and neuronal cells, resulting in the induction of direct cellular damage and proinflammatory cytokine cascades. Our observations suggest that avian influenza H5N1 infection can trigger profound CNS injury, which may play an important role in the influenza viral pathogenesis.
Collapse
Affiliation(s)
- Y P Ng
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Time of day differences in the number of cytokine-, neurotrophin- and NeuN-immunoreactive cells in the rat somatosensory or visual cortex. Brain Res 2010; 1337:32-40. [PMID: 20398636 DOI: 10.1016/j.brainres.2010.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/31/2010] [Accepted: 04/07/2010] [Indexed: 12/22/2022]
Abstract
Sensory input to different cortical areas differentially varies across the light-dark cycle and likely is responsible, in part, for activity-dependent changes in time-of-day differences in protein expression such as Fos. In this study we investigate time-of-day differences between dark (just before light onset) and light (just before dark onset) for the number of immunoreactive (IR) neurons that stained for tumor necrosis factor alpha (TNFalpha), interleukin-1 beta (IL1 beta), nerve growth factor (NGF), the neuronal nuclear protein (NeuN) and Fos in the rat somatosensory cortex (Sctx) and visual cortex (Vctx). Additionally, astrocyte IL1 beta-IR in the Sctx and Vctx was determined. TNFalpha and IL1 beta, as well as the immediate early gene protein Fos, were higher at the end of the dark phase (2300 h) compared to values obtained at the end of the light phase (1100 h) in the Sctx and Vctx. IL1 beta-IR in Sctx and Vctx astrocytes was higher at 2300 h than that observed at 1100 h. . In contrast, the number of NGF-IR neurons was higher in the Vctx than in the Sctx but did not differ in time. However, the density of the NGF-IR neurons in layer V was greater at 2300 h in the Sctx than at 1100 h. NeuN-IR was higher at 2300 h in the Sctx but was lower at this time in the Vctx compared to 1100 h. These data demonstrate that expressions of the molecules examined are dependent on activity, the sleep-wake cycle and brain location. These factors interact to modulate time-of-day expression.
Collapse
|
29
|
Majde JA, Kapás L, Bohnet SG, De A, Krueger JM. Attenuation of the influenza virus sickness behavior in mice deficient in Toll-like receptor 3. Brain Behav Immun 2010; 24:306-15. [PMID: 19861156 PMCID: PMC2818367 DOI: 10.1016/j.bbi.2009.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/14/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022] Open
Abstract
Certain sickness behaviors occur consistently in influenza-infected humans and mice. These include body temperature changes, somnolence, and anorexia. Several cytokines serve as mediators of the influenza acute phase response (APR), including these sickness behaviors, and one likely inducer of these cytokines is dsRNA produced during viral replication. TLR3 is known to be one of the host cellular components capable of recognizing dsRNA and activating cytokine synthesis. To determine the role of TLR3-detected viral dsRNA in the causation of viral symptoms, TLR3-deficient mice (TLR3 knockouts, or KOs) were infected with a marginally-lethal dose of mouse-adapted X-31 influenza virus. TLR3 KOs and their wild-type (WT) controls were monitored for baseline body temperature, locomotor activity, and sleep profiles prior to infection. Both mouse strains were then infected and monitored for changes in these sickness behaviors plus body weight changes and mortality for up to 14days post-infection. Consistent with the observations that influenza pathology is reduced in TLR3 KOs, we showed that hypothermia after post-infection day 5 and the total loss of body weight were attenuated in the TLR3 KOs. Sleep changes characteristic of this infection model [particularly increased non-rapid-eye-movement sleep (NREMS)] were also attenuated in TLR3 KOs and returned to baseline values more rapidly. Locomotor activity suppression was similar in both strains. Therefore virus-associated dsRNA detected by TLR3 appears to play a substantial role in mediating several aspects of the influenza syndrome in mice.
Collapse
Affiliation(s)
- Jeannine A. Majde
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| | - Levente Kapás
- WWAMI Medical Education Program, Washington State University, Spokane, WA 99210-1495
| | - Stewart G. Bohnet
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| | - Alok De
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - James M. Krueger
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| |
Collapse
|
30
|
Leyva-Grado VH, Churchill L, Harding J, Krueger JM. The olfactory nerve has a role in the body temperature and brain cytokine responses to influenza virus. Brain Behav Immun 2010; 24:281-8. [PMID: 19836444 PMCID: PMC2818451 DOI: 10.1016/j.bbi.2009.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 11/30/2022] Open
Abstract
Mouse-adapted human influenza virus is detectable in the olfactory bulbs of mice within hours after intranasal challenge and is associated with enhanced local cytokine mRNA and protein levels. To determine whether signals from the olfactory nerve influence the unfolding of the acute phase response (APR), we surgically transected the olfactory nerve in mice prior to influenza infection. We then compared the responses of olfactory-nerve-transected (ONT) mice to those recorded in sham-operated control mice using measurements of body temperature, food intake, body weight, locomotor activity and immunohistochemistry for cytokines and the viral antigen, H1N1. ONT did not change baseline body temperature (Tb); however, the onset of virus-induced hypothermia was delayed for about 13 h in the ONT mice. Locomotor activity, food intake and body weights of the two groups were similar. At 15 h post-challenge fewer viral antigen-immunoreactive (IR) cells were observed in the olfactory bulb (OB) of ONT mice compared to sham controls. The number of tumor necrosis factor alpha (TNFalpha)- and interleukin 1beta (IL1beta)-IR cells in ONT mice was also reduced in the OB and other interconnected regions in the brain compared to sham controls. These results suggest that the olfactory nerve pathway is important for the initial pathogenesis of the influenza-induced APR.
Collapse
Affiliation(s)
- Victor H Leyva-Grado
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|