1
|
Kaur R, Kumar S, Singh L. A comprehensive review: neuroinflammation and immune communication between the central nervous system and the periphery. Cytokine 2025; 192:156974. [PMID: 40449035 DOI: 10.1016/j.cyto.2025.156974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/30/2025] [Accepted: 05/27/2025] [Indexed: 06/02/2025]
Abstract
Immunity in the central nervous system (CNS) is generally attributed to neuron-associated microglia in the parenchyma. Microglial cells are specialized macrophages that interact closely with neurons to monitor them for signs of infection or injury. In addition to microglia, several other specialized macrophage populations are located at the borders of the CNS, including dural, leptomeningeal, perivascular, and choroid plexus macrophages. Collectively, these are CNS-associated macrophages (CAMs), but how these cells maintain the balance between the segregation of the CNS and the information transfer between the CNS parenchyma and the peripheral system is not well understood. The interaction between the immune system and the CNS is a newly emerging field of study that focuses on the functions of resident microglia and specialized macrophages, including leptomeningeal, choroid plexus, and perivascular macrophages. This review will help to improve understanding of the regulatory mechanisms of microglia and specialized macrophages and their involvement in the communication with the peripheral immune system. It could also advance neurological disease therapies that selectively target specific immune function parameters more effectively for managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Animal Biotechnology, ICAR-National Dairy Research Institute, Karnal, India.
| | - Satish Kumar
- Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, India
| | - Lakhwinder Singh
- Centre for Drug Discovery, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
2
|
Villacampa N, Sarlus H, Martorell P, Bhalla K, Gomez-Castro S, Vieira-Saecker A, Slutzkin I, Händler K, Venegas C, McManus R, Ulas T, Beyer M, Segal E, Heneka MT. Proliferating Microglia Exhibit Unique Transcriptional and Functional Alterations in Alzheimer's Disease. ASN Neuro 2025; 17:2506406. [PMID: 40387894 DOI: 10.1080/17590914.2025.2506406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
Proliferation of microglia represents a physiological process, which is accelerated in several neurodegenerative disorders including Alzheimer disease (AD). The effect of such neurodegeneration-associated microglial proliferation on function and disease progression remains unclear. Here, we show that proliferation results in profound alterations of cellular function by providing evidence that newly proliferated microglia show impaired beta-amyloid clearance in vivo. Through sorting of proliferating microglia of APP/PS1 mice and subsequent transcriptome analysis, we define unique proliferation-associated transcriptomic signatures that change with age and beta-amyloid accumulation and are characterized by enrichment of immune system-related pathways. Of note, we identify the DEAD-Box Helicase 3 X-Linked (DDX3X) as a key molecule to modulate microglia activation and cytokine secretion and it is expressed in the AD brain. Together, these results argue for a novel concept by which phenotypic and functional microglial changes occur longitudinally as a response to accelerated proliferation in a neurodegenerative environment.
Collapse
Affiliation(s)
- Nàdia Villacampa
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Heela Sarlus
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Paula Martorell
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Khushbu Bhalla
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Sergio Gomez-Castro
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Ana Vieira-Saecker
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Ilya Slutzkin
- Department of Computer Science and Applied Mathematic, Weizmann Institute of Science, Rehovot, Israel
| | - Kristian Händler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Carmen Venegas
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Róisín McManus
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Thomas Ulas
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Eran Segal
- Department of Computer Science and Applied Mathematic, Weizmann Institute of Science, Rehovot, Israel
| | - Michael T Heneka
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Nanda A, Pandey SK, Singh RK. Therapeutic potential of MK2 kinase inhibition in pathogenesis of Parkinson's disease. Expert Opin Ther Targets 2025:1-6. [PMID: 40298368 DOI: 10.1080/14728222.2025.2500421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/02/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Affiliation(s)
- Anjuman Nanda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| |
Collapse
|
4
|
Mimmi S, Parrotta EI, Tolomeo AM, Maisano D, Crapella V, Pingitore E, Fatima K, Zimbo AM, Talarico M, Cristiani CM, Scaramuzzino L, Valente D, Zannino C, Cuda G, Quattrone A, Iaccino E, Quattrone A. Neuronally-Derived Extracellular Vesicles Transforming Growth Factor Beta-1 Levels in Progressive Supranuclear Palsy. Mov Disord 2025. [PMID: 40317792 DOI: 10.1002/mds.30222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Differentiating progressive supranuclear palsy (PSP) from other parkinsonian disorders may be challenging. OBJECTIVES To investigate the role of transforming growth factor beta-1 (TGFβ1) in PSP. METHODS A total of 33 PSP, 39 Parkinson's disease (PD), 8 multiple system atrophy (MSA) patients, and 50 healthy controls (HC) were enrolled. TGFβ1 levels, including both active and inactive forms (latency-associated peptide [LAP]-TGFβ1), were measured in serum, total extracellular vesicles (EVs), and neuronally-derived EVs (NDEVs) using microfluidic assays and ELISA. RESULTS PSP patients exhibited a marked increase in TGFβ1 and LAP-TGFβ1 levels in NDEVs, while no differences were observed across groups in serum or total EVs. Receiver operating characteristic (ROC) analysis demonstrated outstanding performance in differentiating PSP from non-PSP patients (TGFβ1, area under the curve [AUC]: 0.97; LAP-TGFβ1, AUC: 1.00), HC, AUC: 1.00). CONCLUSIONS This study highlights TGFβ1 and LAP-TGFβ1 in NDEVs as promising blood-based non-invasive biomarkers for PSP diagnosis, paving the way for further research on these proteins in PSP. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Selena Mimmi
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, Padua, Italy
- Institute of Pediatric Research 'Città della Speranza', Padua, Italy
| | | | - Valentina Crapella
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elisabetta Pingitore
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Khushboo Fatima
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariagrazia Talarico
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Desirèe Valente
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gianni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Xu Z, Liu K, Zhang G, Yang F, He Y, Nan W, Li Y, Lin J. Transcriptome analysis reveals that the injection of mesenchymal stem cells remodels extracellular matrix and complement components of the brain through PI3K/AKT/FOXO1 signaling pathway in a neuroinflammation mouse model. Genomics 2025; 117:111033. [PMID: 40122474 DOI: 10.1016/j.ygeno.2025.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/23/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Neurological disorders are often accompanied by neuroinflammatory responses. Our previous research indicated that mesenchymal stem cells (MSCs) suppressed neuroinflammation in the brain. The mechanism of action remains not fully understood. In this study, we analyzed the impact of injected MSCs on the transcriptome in the brains of neuroinflammatory mouse model (NIM) with bioinformatical methods and conducted experimental validation with qPCR and Western blot. The results showed that the expression of extracellular matrix components changed, and the complement cascade was activated in the NIM brains. Injection of MSCs reversed the expression of ECM components and inhibited complement activation. MSCs may promote the improvement of neuronal synaptic function and alter the infiltration of immune cells into the brain. MSCs regulated the PI3K/AKT/Foxo1 signaling pathway. These findings will be very helpful for the development of MSCs-based therapy and the treatment of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Zhihao Xu
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Keqin Liu
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Guoqing Zhang
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Fen Yang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya''nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang 453003, China
| | - Wenbin Nan
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yonghai Li
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
6
|
Vijayaraghavan M, Murali SP, Thakur G, Li XJ. Role of glial cells in motor neuron degeneration in hereditary spastic paraplegias. Front Cell Neurosci 2025; 19:1553658. [PMID: 40302786 PMCID: PMC12037628 DOI: 10.3389/fncel.2025.1553658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
This review provides a comprehensive overview of hereditary spastic paraplegias (HSPs) and summarizes the recent progress on the role of glial cells in the pathogenesis of HSPs. HSPs are a heterogeneous group of neurogenetic diseases characterized by axonal degeneration of cortical motor neurons, leading to muscle weakness and atrophy. Though the contribution of glial cells, especially astrocytes, to the progression of other motor neuron diseases like amyotrophic lateral sclerosis (ALS) is well documented, the role of glial cells and the interaction between neurons and astrocytes in HSP remained unknown until recently. Using human pluripotent stem cell-based models of HSPs, a study reported impaired lipid metabolisms and reduced size of lipid droplets in HSP astrocytes. Moreover, targeting lipid dysfunction in astrocytes rescues axonal degeneration of HSP cortical neurons, demonstrating a non-cell-autonomous mechanism in axonal deficits of HSP neurons. In addition to astrocytes, recent studies revealed dysfunctions in HSP patient pluripotent stem cell-derived microglial cells. Increased microgliosis and pro-inflammation factors were also observed in HSP patients' samples, pointing to an exciting role of innate immunity and microglia in HSP. Building upon these recent studies, further investigation of the detailed molecular mechanism and the interplay between glial cell dysfunction and neuronal degeneration in HSP by combining human stem cell models, animal models, and patient samples will open avenues for identifying new therapeutic targets and strategies for HSP.
Collapse
Affiliation(s)
- Manaswini Vijayaraghavan
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Sarvika Periyapalayam Murali
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Gitika Thakur
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Wannemacher R, Stegmann F, Eikelberg D, Bühler M, Li D, Kohale SK, Asawapattanakul T, Ebbecke T, Raulf MK, Baumgärtner W, Lepenies B, Gerhauser I. Infection of a β-galactosidase-deficient mouse strain with Theiler's murine encephalomyelitis virus reveals limited immunological dysregulations in this lysosomal storage disease. Front Immunol 2025; 16:1467207. [PMID: 40270964 PMCID: PMC12014673 DOI: 10.3389/fimmu.2025.1467207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction A hallmark of many lysosomal storage diseases (LSD) is the alteration of immune responses, often starting before the onset of clinical disease. The present study aimed to investigate how GM1 gangliosidosis impacted the course of an acute central nervous system (CNS) virus infection before the clinical onset of LSD. Methods For this purpose, Glb1 -/- and wildtype control mice (both C57BL/6 background) were intracerebrally infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) at the age of 5 weeks and sacrificed 4, 7, 14 and 98 days post infection, respectively. Histology, immunohistochemistry, and flow cytometry was used to assess viral load and immune cell activation and infiltration. Results Both wildtype and Glb1 -/- mice were able to clear the virus from the CNS and did not develop any clinical symptoms of TMEV-associated disease, thus indicating no overt alteration in susceptibility to TMEV infection. However, in the early phase post infection, Glb1 -/- mice displayed a slightly delayed T cell response as well as an increase in the number and activation of CNS microglia. Discussion These results suggest that already in the early stage of disease (before clinical onset) GM1 gangliosidosis causes an impaired T cell response and microglial hyperreactivity.
Collapse
Affiliation(s)
- Rouven Wannemacher
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Felix Stegmann
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melanie Bühler
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dandan Li
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sayali Kalidas Kohale
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Thanaporn Asawapattanakul
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Tim Ebbecke
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marie-Kristin Raulf
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute for Parasitology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Chair of Biochemistry and Chemistry, Veterinary Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
8
|
Intonti S, Kokona D, Zinkernagel MS, Enzmann V, Stein JV, Conedera FM. Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways. Glia 2025; 73:822-839. [PMID: 39873321 PMCID: PMC11845847 DOI: 10.1002/glia.24656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia. Glial cells act as sentinels, detecting antigens released during degeneration and interacting with T-cells via MHC molecules, which are essential for immune responses. Microglia function as APCs via the MHC Class II pathway, upregulating key molecules such as Csf1r and cytokines. In contrast, Müller cells act through the MHC Class I pathway, exhibiting upregulated antigen processing genes and promoting a CD8+ T-cell response. Distinct cytokine signaling pathways, including TNF-α and IFN Type I, contribute to the immune balance. Human retinal specimens corroborate these findings, demonstrating glial activation and MHC expression correlating with degenerative changes. In vitro assays also confirmed differential T-cell migration responses to activated microglia and Müller cells, highlighting their role in shaping the immune milieu within the retina. In summary, our study emphasizes the involvement of retinal glial cells in modulating the immune response after insults to the retinal parenchyma. Unraveling the intricacies of glia-mediated antigen presentation in RD is essential for developing precise therapeutic interventions for retinal pathologies.
Collapse
Affiliation(s)
- Simona Intonti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Martin S. Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Jens V. Stein
- Department of Oncology, Microbiology and ImmunologyUniversity of FribourgFribourgSwitzerland
| | - Federica M. Conedera
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
- Department of Oncology, Microbiology and ImmunologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
9
|
Sinclair P, Jeffries W, Lebert N, Saeed M, Ullah A, Kabbani N. A predictive machine learning model for cannabinoid effect based on image detection of reactive oxygen species in microglia. PLoS One 2025; 20:e0320219. [PMID: 40131976 PMCID: PMC11936260 DOI: 10.1371/journal.pone.0320219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
Neuroinflammation is a key feature of human neurodisease including neuropathy and neurodegenerative disease and is driven by the activation microglia, immune cells of the nervous system. During activation microglia release pro-inflammatory cytokines as well as reactive oxygen species (ROS) that can drive local neuronal and glial damage. Phytocannabinoids are an important class of naturally occurring compounds found in the cannabis plant (Cannabis sativa) that interact with the body's endocannabinoid receptor system. Cannabidiol (CBD) is a prototype phytocannabinoid with anti-inflammatory properties observed in cells and animal models. We measured ROS in human microglia (HMC3) cells using CellROX, a fluorescent dynamic ROS indicator. We tested the effect of CBD on ROS level in the presence of three known immune activators: lipopolysaccharide (LPS), amyloid beta (Aβ42), and human immunodeficiency virus (HIV) glycoprotein (GP120). Confocal microscopy images within microglia were coupled to a deep learning model using a convolutional neural network (CNN) to predict ROS responses. Our study demonstrates a deep learning platform that can be used in the assessment of CBD effect in immune cells using ROS image measure.
Collapse
Affiliation(s)
- Patricia Sinclair
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, United Sates of America
| | - William Jeffries
- Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia, United Sates of America
| | - Nadege Lebert
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, United Sates of America
| | - Maheen Saeed
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, United Sates of America
| | - Aman Ullah
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, United Sates of America
- Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia, United Sates of America
| | - Nadine Kabbani
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, United Sates of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United Sates of America
| |
Collapse
|
10
|
Yang L, Zhu L, Lin B, Shi Y, Lai W, Li K, Tian L, Xi Z, Liu H. CuO-NPs Induce Apoptosis and Functional Impairment in BV2 Cells Through the CSF-1R/PLCγ2/ERK/Nrf2 Pathway. TOXICS 2025; 13:231. [PMID: 40278547 PMCID: PMC12031120 DOI: 10.3390/toxics13040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025]
Abstract
Copper oxide nanoparticles (CuO-NPs) induce neurological diseases, including neurobehavioral defects and neurodegenerative diseases. Direct evidence indicates that CuO-NPs induce inflammation in the central nervous system and cause severe neurotoxicity. However, the mechanism of CuO-NP-induced damage to the nervous system has rarely been studied, and the toxicity of different CuO-NP particle sizes and their copper ion (Cu2+) precipitation in microglia (BV2 cells) is worth exploring. Therefore, this study investigated CuO-NPs with different particle sizes (small particle size: S-CuO-NPs; large particle size: L-CuO-NPs), Cu2+ with equal molar mass (replaced by CuCl2 [Equ group]), and Cu2+ precipitated in a cell culture solution with CuO-NPs (replaced by CuCl2 [Pre group]), and examined the mechanism of action of each on BV2 microglia after co-culture for 12 h and 24 h. The activity of BV2 cells decreased, the morphology was damaged, and the apoptosis rate increased in all the exposed groups. Toxicity increased time- and dose-dependently, and was highest in the Equ group, followed by the S-CuO-NPs, L-CuO-NPs, and Pre groups, respectively. Subsequently, we investigated the mechanism of S-CuO-NP-induced cell injury, and revealed that S-CuO-NPs induced oxidative stress and inflammatory response and increased the membrane permeability of BV2 cells. Moreover, S-CuO-NPs reduced the ratio of p-CSF-1R/CSF-1R, p-PLCγ2/PLCγ2, p-extracellular signal-regulated kinase (ERK)/ERK, p-Nrf2/Nrf2, and Bcl-2/Bax protein expression in microglia, and elevated cleaved caspase-3 expression. The CSF-1R/PLCγ2/ERK/Nrf2 apoptotic pathway was activated. The downregulation of CX3CR1, CSF-1R, brain-derived neurotrophic factor (BDNF), and IGF-1 protein expression indicates impairment of the repair and protection functions of microglia in the nervous system. In summary, our results reveal that CuO-NPs promote an increase in inflammatory molecules in BV2 microglia through oxidative stress, activate the CSF-1R/PLCγ2/ERK/Nrf2 pathway, cause apoptosis, and ultimately result in neurofunctional damage to microglia.
Collapse
Affiliation(s)
- Linhui Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (L.Y.); (L.Z.)
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Lina Zhu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (L.Y.); (L.Z.)
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Kang Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Zhuge Xi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Huanliang Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| |
Collapse
|
11
|
Tang XS, He LY, Li SN, Zhang WC, Wu ZY, Hui AL. Design, Synthesis, and Anti-Inflammatory Activity Evaluation of Novel Indanone Derivatives for the Treatment of Vascular Dementia. Chem Biodivers 2025; 22:e202401931. [PMID: 39482800 DOI: 10.1002/cbdv.202401931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Vascular dementia (VaD) is a neurodegenerative disease resulting from cerebral vascular obstruction, leading to cognitive impairment, and currently lacks effective treatment options. Due to its complex pathogenesis, multi-target drug design (MTDLs) strategies are considered among the most promising therapeutic approaches. In this study, we designed and synthesized a series of novel indanone derivatives targeting targets related to vascular health and dementia. The results indicated that compound C5 exhibited excellent acetylcholinesterase inhibitory activity (IC50 =1.16 0.41 μM) and anti-platelet aggregation activity (IC50 =4.92±0.10 μM) within ranges of 0.1-1000 μM and 0.03-300 μM, respectively, possibly mediated by molecular docking interactions. Furthermore, compound C5 demonstrated protective effects on cells at concentrations ≤50 μM, significantly reducing the release of nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) in a concentration-dependent manner, showcasing its potent neuroinflammatory inhibitory effects. Anti-inflammatory therapies are regarded as effective strategies for treating VaD. Therefore, compound C5 holds promise as a novel candidate drug for further investigation into the treatment of vascular dementia.
Collapse
Affiliation(s)
- Xue-Song Tang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Lin-Yu He
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Sheng-Nan Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Wen-Cheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Ze-Yu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Ai-Ling Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| |
Collapse
|
12
|
Hu J, Ji WJ, Liu GY, Su XH, Zhu JM, Hong Y, Xiong YF, Zhao YY, Li WP, Xie W. IDO1 modulates pain sensitivity and comorbid anxiety in chronic migraine through microglial activation and synaptic pruning. J Neuroinflammation 2025; 22:42. [PMID: 39966822 PMCID: PMC11837436 DOI: 10.1186/s12974-025-03367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Chronic migraine is a prevalent and potentially debilitating neurological disorder that is often comorbid with mental health conditions (such as anxiety and depression), but the underlying mechanisms linking these conditions remain poorly understood. Indoleamine 2,3-dioxygenase 1 (IDO1) has been implicated in inflammatory processes, including neuroinflammation and pain. However, its role as a link between neuroinflammation and pain sensitization in chronic migraine is not well defined. METHODS Male mice were used to establish a model of chronic migraine by recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg). Using pharmacological approaches, transgenic strategies and adeno-associated virus (AAV) intervention, we investigated the role of IDO1 in pain sensitization and migraine-related mood disorders in an NTG-induced chronic migraine mouse model. We employed a combination of immunoblotting, immunohistochemistry, three-dimensional reconstruction, RNA sequencing, electrophysiology, in vivo fiber photometry, and behavioral assays to elucidate the underlying mechanisms involved. RESULTS Our findings demonstrated that pharmacological inhibition and genetic knockout of IDO1 significantly alleviated pain sensitivity in a chronic migraine model. Neuronal activity in the anterior cingulate cortex (ACC) was evaluated with in vitro c-Fos immunostaining as well as in vivo fiber photometry, and a shift in the excitation/inhibition (E/I) balance toward excitation was observed through whole-cell patch clamp recording. Notably, IDO1 expression was increased in the ACC, and AAV-mediated IDO1 knockdown in the ACC rescued pain sensitivity, electrophysiological E/I balance changes, and anxiety-like behavior in chronic migraine model mice. Furthermore, IDO1 regulated microglial activation and pruning of neuronal synapses in the ACC. IDO1's microglial pruning function appears to be mediated through the interferon (IFN) signaling pathway, and the behavioral changes induced by IDO1 knockdown in the ACC could be reversed by activating this pathway. CONCLUSIONS Our findings revealed that microglial IDO1 in the ACC drives pain sensitization and anxiety in chronic migraine, highlighting IDO1 as a potential therapeutic target for chronic migraine treatment.
Collapse
Affiliation(s)
- Jiao Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Wen-Juan Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Gui-Yu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Xiao-Hong Su
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jun-Ming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Yu Hong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Fan Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Yan Zhao
- Department of Critical Care Medicine, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China.
| | - Wei-Peng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
- Department of Neurology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510317, China.
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Ladjel-Mendil A, Ahras-Sifi N, Moussaoui H, Chérifi F, Laraba-Djebari F. Immunomodulatory effect of selective COX-2 inhibitor celecoxib on the neuropathological disorders and immunoinflammatory response induced by Kaliotoxin from Androctonus australis venom. Toxicon 2025; 255:108265. [PMID: 39884560 DOI: 10.1016/j.toxicon.2025.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
The immune response is increasingly being linked to the pathogenic processes underlying neurological disorders including potassium channel malfunction. Few investigations, meanwhile, have shown how cyclooxygenase-2 (COX-2) is involved in the neuroimmunopathology linked to potassium channel failure. Thus, using an animal model of neuropathology caused by kaliotoxin, an exclusive blocker of voltage-gated potassium channels from the scorpion venom of Androctonus australis hector, we examined the immunomodulatory impact of celecoxib (selective inhibitor of COX-2). The neural and systemic pathogenic effects of KTX can be considerably reduced by celecoxib-mediated COX-2 inhibition, according to the results. It most certainly works via controlling the immunoinflammatory exposure by raising IL-10 levels; decreasing proinflammatory cytokine levels including mostly TNFα and IL-6, and balancing oxidative status. Along with that, by significantly promoting tissue healing, COX-2 inhibitor also enhances cellular metabolism. One potential treatment approach for immunoinflammatory exacerbations linked to neurodegenerative is the COX-2 inhibitor.
Collapse
Affiliation(s)
- Amina Ladjel-Mendil
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| | - Nesrine Ahras-Sifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| | - Hadjila Moussaoui
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| | - Fatah Chérifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria; Algerian Academy of Sciences and Technology, Villa Rais Hamidou, Chemin Omar Kachkar, El Madania, Algiers, Algeria.
| |
Collapse
|
14
|
Liu P, Liu X, Ren M, Liu X, Shi X, Li M, Li S, Yang Y, Wang D, Wu Y, Yin F, Guo Y, Yang R, Cheng M, Xin Y, Kang J, Huang B, Ren K. Neuronal cathepsin S increases neuroinflammation and causes cognitive decline via CX3CL1-CX3CR1 axis and JAK2-STAT3 pathway in aging and Alzheimer's disease. Aging Cell 2025; 24:e14393. [PMID: 39453382 PMCID: PMC11822647 DOI: 10.1111/acel.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Aging is an intricate process involving interactions among multiple factors, which is one of the main risks for chronic diseases, including Alzheimer's disease (AD). As a member of cysteine protease, cathepsin S (CTSS) has been implicated in inflammation across various diseases. Here, we investigated the role of neuronal CTSS in aging and AD started by examining CTSS expression in hippocampus neurons of aging mice and identified a significant increase, which was negatively correlated with recognition abilities. Concurrently, we observed an elevation of CTSS concentration in the serum of elderly people. Transcriptome and fluorescence-activated cell sorting (FACS) results revealed that CTSS overexpression in neurons aggravated brain inflammatory milieu with microglia activation to M1 pro-inflammatory phenotype, activation of chemokine C-X3-C-motif ligand 1 (CX3CL1)-chemokine C-X3-C-motif receptor 1 (CX3CR1) axis and janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway. As CX3CL1 is secreted by neurons and acts on the CX3CR1 in microglia, our results revealed for the first time the role of neuron CTSS in neuron-microglia "crosstalk." Besides, we observed elevated CTSS expression in multiple brain regions of AD patients, including the hippocampus. Utilizing CTSS selective inhibitor, LY3000328, rescued AD-related pathological features in APP/PS1 mice. We further noticed that neuronal CTSS overexpression increased cathepsin B (CTSB) activity, but decreased cathepsin L (CTSL) activity in microglia. Overall, we provide evidence that CTSS can be used as an aging biomarker and plays regulatory roles through modulating neuroinflammation and recognition in aging and AD process.
Collapse
Affiliation(s)
- Pei‐Pei Liu
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiao‐Hui Liu
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Ming‐Jing Ren
- Department of NephropathyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiao‐Tong Liu
- Department of Clinical LaboratoryThe First Hospital of Yongnian DistrictHebeiChina
| | - Xiao‐Qing Shi
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Ming‐Li Li
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shu‐Ang Li
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yang Yang
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Dian‐Dian Wang
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yue Wu
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Fan‐Xiang Yin
- Translational Medical CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yan‐Hong Guo
- Department of NephropathyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Run‐Zhou Yang
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Meng Cheng
- Henan BranchBank of ChinaZhengzhouHenanChina
| | - Yong‐Juan Xin
- Department of Child and Adolescent HealthPrecision Nutrition Innovation Center, School of Public Health, Zhengzhou UniversityZhengzhouHenanChina
| | - Jian‐Sheng Kang
- Clinical Systems Biology LaboratoriesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Bing Huang
- Pain and Related Disease Research LaboratoryShantou University Medical CollegeShantouGuangdongChina
| | - Kai‐Di Ren
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
15
|
Xie Y, Fang C, Lu L, Wang J, Wu L, Wang S, Guo Q, Yan W, Wei J, Duan F, Huang L. Extract of Tinospora sinensis alleviates LPS-induced neuroinflammation in mice by regulating TLR4/NF-κB/NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118807. [PMID: 39245241 DOI: 10.1016/j.jep.2024.118807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried rattan stem of Tinospora sinensis (Lour.) Merr. is valued for its efficacy of clearing heat and removing toxicity, calming and soothing the nerves. It is widely used in Tibetan medicine for the treatment of rheumatic and aging diseases. Studies have confirmed its anti-inflammatory and ameliorating effects on Alzheimer's disease; however, the anti-neuroinflammation efficacy and mechanism remain unclear. AIM This study aimed to explore the anti-neuroinflammation efficacy, major effective ingredients, and potential mechanism of extract of Tinosporae sinenisis (TIS). METHODS UPLC-Q-TOF/MS was used to identify the compounds of TIS and the plasma components of rats after gastric administration of TIS. C57BL/6 J mice were continuously intraperitoneally injected with lipopolysaccharide (LPS) (250 μg/kg) for 14 d to establish a neuroinflammation model. The effects of TIS (4.5 g/kg, 9 g/kg) on the learning and memory abilities in mice with neuroinflammation was evaluated using spontaneous activity, novel object recognition, and Morris water maze tests. Pathological changes in the hippocampus were observed using hematoxylin and eosin staining. Gene and protein levels of inflammatory factors in the brain were detected using qRT-PCR and ELISA kits. Iba-1 levels in the brain were detected using immunofluorescence to assess the degree of microglial activation. Network pharmacology, based on the components absorbed into plasma of TIS, was used to predict potential targets and pathways. Proteomics was used to study the differentially expressed proteins and related pathways in the brain tissue of mice with neuroinflammation. Finally, correlation analysis was performed on the results of network pharmacology and proteomics, and proteins related the anti-neuroinflammatory effect of TIS were detected by western blot. RESULTS A total of 39 compounds were identified in TIS: genipingentiobioside, isocorydin, reticuline, (-)-argemonine, tinosineside A, tinosinenside A, and costunolide were absorbed into the plasma. After continuous intraperitoneal injection of LPS into C57BL/6 J mice, microglia in the brain tissue were activated and the gene and protein levels of IL-1β, TNF-α, IL-6, and iNOS were increased in the brain tissue, suggesting that the neuroinflammation model was successfully established. TIS reduced Iba-1 levels and gene expression and protein levels of inflammatory factors in the brain of mice with neuroinflammation. Furthermore, TIS improved the pathological changes in the hippocampus and learning and memory abilities caused by neuroinflammation. Network pharmacology has predicted that TNF, IL-1β, and IκBKB are closely related to neuroinflammation. Proteomics identified key differentially expressed proteins, including TNF, NF-κB2, NF-κBIA, and TLR4. Toll-like receptor (TLR), NF-κB, and NOD-like receptor (NLR) signaling pathways are involved in neuroinflammation-related pathways. Correlation analysis revealed TLR, TNF and NLR signaling pathways were closely related to the anti-neuroinflammatory effects of TIS. We observed that TIS alleviated neuroinflammation by inhibiting the TLR4/NF-κB/NLRP3 pathway. CONCLUSION Thirty-nine compounds were identified from TIS, among which seven were absorbed into the plasma as prototype components. TIS alleviated LPS-induced neuroinflammation in mice, and its mechanism was related to inhibition of TLR4/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yongyan Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Cong Fang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Longhui Lu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jingjing Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Li Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuaikang Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qiujing Guo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jinghua Wei
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Feipeng Duan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China.
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China; Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
16
|
Xie Y, Qin Y, Wang J, Xu Z, Chen L, Kuang Y, Yang R, Huang L. Tinosinenside A inhibits neuroinflammation and protects HT22 cells by suppressing the TLR4/NF-κB/NLRP3 signaling pathway in BV2 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03828-2. [PMID: 39878812 DOI: 10.1007/s00210-025-03828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Microglia-mediated neuroinflammation plays a crucial role in Alzheimer's disease (AD). Tinosinenside A (Tis A) is a novel sesquiterpene glycoside isolated from the dried rattan stem of Tinospora sinensis (Lour.) Merr. Tis A exhibited anti-inflammatory and neuroprotective activities in vitro. However, the mechanism underlying the inhibition of neuroinflammation and protection of nerve cells remains obscure. This study used lipopolysaccharide (LPS)-induced inflammatory response in BV2 cells to simulate a neuroinflammatory model and used Aβ1-42-induced HT22 cells to establish an AD cell model, aiming to investigate the efficacy and mechanism of Tis A through anti-neuroinflammation to protect nerve cells. Tis A had no effect on the proliferation of BV2 and HT22 cells at the tested concentrations. The time- and dose-dependent effects of Tis A on the LPS-induced inflammatory response of BV2 cells demonstrated that the best anti-inflammatory efficacy appeared after 12 h of pretreatment. Tis A inhibited the gene levels of TNF-α, IL-6, IL-1β, iNOS, and IL-10 while enhancing the gene levels of IL-4 and TGF-β. Additionally, Tis A reduced the gene expression levels of CD16 and CD32 and increased the CD36 and CD206 gene expression levels. It also downregulated the protein expression of Iba-1 and iNOS while upregulating CD206. Tis A obviously inhibited NLRP3 gene and protein expression in LPS-stimulated BV2 cells. The inhibitory effect of Tis A on NLRP3 was counteracted by the NLRP3 activator nigericin and overexpression plasmid GV358. Tis A inhibits NLRP3 protein expression to reduce the assembly of NLRP3/ASC/Caspase-1 inflammasome, then regulates the TLR4/NF-κB/NLRP3 signaling pathway. It regulates microglia activation and M1/M2 phenotypic polarization, then inhibits the production of inflammatory factors, and reduces the apoptosis rate of HT22 cells under inflammatory conditions, improving the survival rate of nerve cells to protect neurons.
Collapse
Affiliation(s)
- Yongyan Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yinfang Qin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jingjing Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ziwei Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liping Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yunxia Kuang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ruwei Yang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China.
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
17
|
Jalouli M, Rahman MA, Biswas P, Rahman H, Harrath AH, Lee IS, Kang S, Choi J, Park MN, Kim B. Targeting natural antioxidant polyphenols to protect neuroinflammation and neurodegenerative diseases: a comprehensive review. Front Pharmacol 2025; 16:1492517. [PMID: 39981183 PMCID: PMC11840759 DOI: 10.3389/fphar.2025.1492517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025] Open
Abstract
Polyphenols, naturally occurring phytonutrients found in plant-based foods, have attracted significant attention for their potential therapeutic effects in neurological diseases and neuroinflammation. These compounds possess diverse neuroprotective capabilities, including antioxidant, anti-inflammatory, and anti-amyloid properties, which contribute to mitigating the progression of neurodegenerative conditions such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Dementia, Multiple Sclerosis (MS), Stroke, and Huntington's Disease (HD). Polyphenols have been extensively studied for their ability to regulate inflammatory responses by modulating the activity of pro-inflammatory genes and influencing signal transduction pathways, thereby reducing neuroinflammation and neuronal death. Additionally, polyphenols have shown promise in modulating various cellular signaling pathways associated with neuronal viability, synaptic plasticity, and cognitive function. Epidemiological and clinical studies highlight the potential of polyphenol-rich diets to decrease the risk and alleviate symptoms of neurodegenerative disorders and neuroinflammation. Furthermore, polyphenols have demonstrated their therapeutic potential through the regulation of key signaling pathways such as Akt, Nrf2, STAT, and MAPK, which play critical roles in neuroprotection and the body's immune response. This review emphasizes the growing body of evidence supporting the therapeutic potential of polyphenols in combating neurodegeneration and neuroinflammation, as well as enhancing brain health. Despite the substantial evidence and promising hypotheses, further research and clinical investigations are necessary to fully understand the role of polyphenols and establish them as advanced therapeutic targets for age-related neurodegenerative diseases and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Liu Z, Yoon CS, Cao TQ, Lee H, Kim IC, Yim JH, Sohn JH, Lee DS, Oh H. Anti-Neuroinflammatory Effects of Prenylated Indole Alkaloids from the Antarctic Fungus Aspergillus sp. Strain SF-7367. Molecules 2025; 30:294. [PMID: 39860162 PMCID: PMC11767326 DOI: 10.3390/molecules30020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/15/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Inflammation has always been considered a trigger or consequence of neurodegenerative diseases, and the inhibition of inflammation in the central nervous system can effectively protect nerve cells. Several studies have indicated that various natural products inhibit neuroinflammation. Among these, Antarctic fungal metabolites have pharmacological activities and a developmental value. Therefore, this study aimed to evaluate the anti-neuroinflammatory activity of an Antarctic fungus belonging to Aspergillus (strain SF-7367). Secondary metabolites of SF-7367 were isolated using high-performance liquid chromatography followed by validation of their anti-inflammatory effects in lipopolysaccharide-stimulated BV2 microglia and RAW264.7 macrophages. Chemical analysis of metabolites from the fungal strain revealed five known compounds: epideoxybrevianamide E (1), brevianamide V/W (2), brevianamide K (3), brevianamide Q (4), and brevianamide R (5). Among these compounds, brevianamide K showed significant anti-inflammatory activity against both cell types. Results of Western blotting and molecular docking showed that brevianamide K could regulate the activation of nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling. This indicates that brevianamide K present in Aspergillus sp. (strain SF-7367) can inhibit inflammatory responses by reducing lipopolysaccharide-induced nuclear translocation of NF-κB (p65). These findings suggest that Aspergillus sp. (strain SF-7367) and brevianamide K are candidate agents for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiming Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China;
| | - Chi-Su Yoon
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (C.-S.Y.); (T.Q.C.)
| | - Thao Quyen Cao
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (C.-S.Y.); (T.Q.C.)
| | - Hwan Lee
- Research Institute of Pharmaceutical Sciences (RIPS), College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Republic of Korea;
| | - Il-Chan Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (I.-C.K.); (J.H.Y.)
| | - Joung Han Yim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (I.-C.K.); (J.H.Y.)
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea;
| | - Dong-Sung Lee
- Research Institute of Pharmaceutical Sciences (RIPS), College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Republic of Korea;
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (C.-S.Y.); (T.Q.C.)
| |
Collapse
|
19
|
Ridley RB, Wang Y, Ildefonso CJ. Understanding the Different Microglia Functional States to Modulate Their Activity in Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:139-142. [PMID: 39930186 DOI: 10.1007/978-3-031-76550-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Recent advances in genomic, transcriptomic, and imaging have advanced our understanding of microglia cells and their role in neurodegenerative diseases. These dynamic cells can change into distinct functional subpopulations with unique genetic markers and specialized functions once they migrate to the injury site. The model illustrated in Fig. 23.1 predicts that once the tissue recovers from the injury, the predominant microglia functional state should be the homeostatic state and localize within the retina's inner plexiform layers. However, microglia cells do not return to the predominantly homeostatic functional state during retinal degeneration (von Bernhardi et al., Front Aging Neurosci 7:124, 2015). Studies in animal models suggest that during retinal degeneration, rather than maintaining the homeostatic state, microglia can become dysregulated and remain pro-inflammatory, thus exacerbating tissue damage (Rashid et al., Front Immunol 10:1975, 2019; Wang and Cepko, Front Immunol 13:843558, 2022). To address the increased inflammation and excessive phagocytosis seen in these models, some studies employed the use of genetic and pharmacological methods to deplete retinal microglia (Zhao et al., EMBO Mol Med 7:1179-1197, 2015; Wang et al., J Neurosci 36:2827-2842, 2016). Because of their multiple physiological functions, microglia depletion is not a feasible therapeutic approach to address neuroinflammation. Instead, manipulating microglia functions should take center stage when developing therapies for neuroinflammation. Thus, defining the genetic network that regulates microglia functional states is essential to developing therapies to modulate microglia.
Collapse
Affiliation(s)
- Raela B Ridley
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Yixiao Wang
- University of California San Francisco, San Francisco, CA, USA
| | - Cristhian J Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
20
|
Xing F, Su HY, Zhong HY, Li YZ, Zhang YY, Chen L, Zhou XL. Synthesis and biological evaluation of lappaconitine analogues as potential anti-neuroinflammatory agents by side chain modification and scaffold hopping strategy. Bioorg Med Chem 2025; 117:118012. [PMID: 39608210 DOI: 10.1016/j.bmc.2024.118012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Neuroinflammation mediated by microglia is widely recognized as a key pathophysiological mechanism in neurodegenerative diseases. Lappaconitine (LA) is a natural C18-diterpenoid alkaloid isolated from Aconitum sinomontanum Nakai, and previous study showed that LA and its derivatives inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells. However, the anti-neuroinflammatory effects of LA and its derivatives on microglia are still not clear. Here, LA analogues were designed and synthesized, and the anti-neuroinflammatory activity of the synthesized compounds was screened using LPS-induced overexpression of NO in BV-2 microglia. The screening results showed that compound 10 displayed the highest ability to inhibit NO production (IC50 = 9.98 ± 1.6 µM). Mechanistic investigations revealed that compound 10 attenuated LPS-activated neuroinflammation through suppression of TLR4/MyD88/NF-κB pathway in BV-2 microglia. Acute toxicity assays showed that compound 10 (LD50 = 508.1 mg/kg) was safer relative to LA (LD50 = 30.6 mg/kg). Collectively, our findings show that compound 10 could have potential as anti-neuroinflammatory agents.
Collapse
Affiliation(s)
- Feng Xing
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Hong-Yi Su
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - He-Yang Zhong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu-Zhu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yin-Yong Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China; School of Life Science and Engineering, Yibin Institute of Southwest Jiaotong University, Yibin 644000, China.
| |
Collapse
|
21
|
Snijders GJLJ, Gigase FAJ. Neuroglia in mood disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:287-302. [PMID: 40148049 DOI: 10.1016/b978-0-443-19102-2.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Multiple lines of evidence indicate that mood disorders, such as major depressive and bipolar disorder, are associated with abnormalities in neuroglial cells. This chapter discusses the existing literature investigating the potential role of astrocytes, oligodendrocytes, and microglia in mood pathology. We will describe evidence from in vivo imaging, postmortem, animal models based on (stress) paradigms that mimic depressive-like behavior, and biomarker studies in blood and cerebrospinal fluid in patients with mood disorders. The effect of medication used in the treatment of mood disorders, such as antidepressants and lithium, on glial function is discussed. Lastly, we highlight the most relevant findings about potential deficiencies in glia-glia crosstalk in mood disorders. Overall, decreased astrocyte and oligodendrocyte density and expression and microglial changes in homeostatic functions have frequently been put forward in MDD pathology. Studies of BD report similar findings to some extent; however, the evidence is less well established. Together, these findings are suggestive of reduced glial cell function leading to potential white matter abnormalities, glutamate dysregulation, disrupted neuronal functioning, and neurotransmission. However, more research is required to better understand the exact mechanisms underlying glial cell contributions to mood disorder development.
Collapse
Affiliation(s)
- Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
22
|
Yu MC, Li XL, Ning ML, Yan ZZ, Yu WT. USP22 inhibits microglial M1 polarization by regulating the PU.1/NLRP3 inflammasome pathway. Brain Res Bull 2025; 220:111157. [PMID: 39631712 DOI: 10.1016/j.brainresbull.2024.111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/10/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE This study aimed to investigate the effect of Ubiquitin-Specific Peptidase 22 (USP22) on the inflammatory response mediated by BV-2 mouse microglia and explore the role of the PU box binding protein 1 (PU.1)/NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome in the USP22-induced polarization of BV-2 cells. METHODS The BV-2 mouse microglia line was cultured in vitro, and plasmid and siRNA transfection was performed to overexpress or knockdown USP22. Subsequently, BV-2 cells were treated with lipopolysaccharide (LPS) and interferon-gamma (IFN-γ) and interleukin (IL)-4 to induce M1 and M2 polarization, respectively. Western blot was used to detect the expression levels of USP22, PU.1, M1 polarization markers [inducible nitric oxide synthase (iNOS), and cluster of differentiation (CD) 86], M2 polarization markers [arginase 1 (Arg1), and CD206], in BV-2 cells from different treatment groups. Additionally, measurement was performed on the inflammasome NLRP3, and its activation-related proteins [NIMA-related kinase7 (NEK7), cleaved-caspase 1, apoptosis-associated speck-like protein containing a CARD (ASC)]. Enzyme-linked immunosorbent (ELISA) assay was employed to determine the levels of inflammatory cytokines tumor necrosis factor-alpha (TNF-α), IL-1 β, and IL-10 in the cells. Furthermore, immunofluorescence was utilized to analyze the levels of iNOS and Arg1-positive BV-2 cells in different treatment groups. Moreover, the ubiquitination level of PU.1 was detected using immunoprecipitation. RESULTS The protein expression level of USP22 was significantly down-regulated in BV-2 cells treated with M1 polarization. Overexpression of USP22 remarkably reduced the protein levels of iNOS and CD86, but markedly increased the protein levels of Arg1 and CD206 in cells. Besides, there was a notable reduction in the levels of TNF-α and IL-1 β in the cell culture medium, while a remarkable increase was observed in the level of IL-10. Additionally, the level of iNOS-positive cells was significantly decreased, while the level of Arg1-positive cells was considerably increased. However, up-regulation of PU.1 expression could reverse the above results and promoted the expression of NLRP3 and its activation-related proteins. Notably, overexpression of USP22 significantly down-regulated the protein expression and ubiquitination level of PU.1. CONCLUSION USP22 inhibits the M1 polarization of BV-2 mouse microglia. The PU.1/NLRP3 inflammasome pathway may be a critical regulatory pathway of USP22 in BV-2 cell polarization.
Collapse
Affiliation(s)
- Ming-Chen Yu
- Department of Orthopedics, Changzhou Geriatric hospital affiliated to Soochow University, Changzhou 213000, China; Department of Orthopedics, Changzhou NO. 7 People's Hospital, Changzhou 213000, China
| | - Xiao-Lin Li
- Department of Orthopedics, Changzhou Geriatric hospital affiliated to Soochow University, Changzhou 213000, China; Department of Orthopedics, Changzhou NO. 7 People's Hospital, Changzhou 213000, China
| | - Ming-Liang Ning
- Department of Orthopedics, Changzhou Geriatric hospital affiliated to Soochow University, Changzhou 213000, China; Department of Orthopedics, Changzhou NO. 7 People's Hospital, Changzhou 213000, China
| | - Zhen-Zhong Yan
- Department of Orthopedics, Changzhou Geriatric hospital affiliated to Soochow University, Changzhou 213000, China; Department of Orthopedics, Changzhou NO. 7 People's Hospital, Changzhou 213000, China
| | - Wan-Tao Yu
- Department Of Orthopdics, The First People's Hospital of Changzhou, Changzhou 213000, China.
| |
Collapse
|
23
|
Kim ME, Lee JS. Mechanisms and Emerging Regulators of Neuroinflammation: Exploring New Therapeutic Strategies for Neurological Disorders. Curr Issues Mol Biol 2024; 47:8. [PMID: 39852123 PMCID: PMC11763386 DOI: 10.3390/cimb47010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation is a complex and dynamic response of the central nervous system (CNS) to injury, infection, and disease. While acute neuroinflammation plays a protective role by facilitating pathogen clearance and tissue repair, chronic and dysregulated inflammation contributes significantly to the progression of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. This review explores the cellular and molecular mechanisms underlying neuroinflammation, focusing on the roles of microglia, astrocytes, and peripheral immune cells. Key signaling pathways, including NF-κB, JAK-STAT, and the NLRP3 inflammasome, are discussed alongside emerging regulators such as non-coding RNAs, epigenetic modifications, and the gut-brain axis. The therapeutic landscape is evolving, with traditional anti-inflammatory drugs like NSAIDs and corticosteroids offering limited efficacy in chronic conditions. Immunomodulators, gene and RNA-based therapeutics, and stem cell methods have all shown promise for more specific and effective interventions. Additionally, the modulation of metabolic states and gut microbiota has emerged as a novel strategy to regulate neuroinflammation. Despite significant progress, challenges remain in translating these findings into clinically viable therapies. Future studies should concentrate on integrated, interdisciplinary methods to reduce chronic neuroinflammation and slowing the progression of neurodegenerative disorders, providing opportunities for revolutionary advances in CNS therapies.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Department of Biological Science, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
24
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 PMCID: PMC11641752 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
25
|
Geloso MC, Zupo L, Corvino V. Crosstalk between peripheral inflammation and brain: Focus on the responses of microglia and astrocytes to peripheral challenge. Neurochem Int 2024; 180:105872. [PMID: 39362496 DOI: 10.1016/j.neuint.2024.105872] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
A growing body of evidence supports the link between peripheral inflammation and impairment of neurologic functions, including mood and cognitive abilities. The pathogenic event connecting peripheral inflammation and brain dysfunction is represented by neuroinflammation, a pathogenic phenomenon that provides an important contribution to neurodegeneration and cognitive decline also in Alzheimer's, Parkinson's, Huntington's diseases, as well as in Multiple Sclerosis. It is driven by resident brain immune cells, microglia and astrocytes, that acquire an activated phenotype in response to proinflammatory molecules moving from the periphery to the brain parenchyma. Although a huge progress has been made in clarifying cellular and molecular mechanisms bridging peripheral and central inflammation, a clear picture has not been achieved so far. Therefore, experimental models are of crucial relevance to clarify knowledge gaps in this regard. Many findings demonstrate that systemic inflammation induced by pathogen-associated molecular patterns, such as lipopolysaccharide (LPS), is able to trigger neuroinflammation. Therefore, LPS-administration is widely considered a useful tool to study this phenomenon. On this basis, the present review will focus on in vivo studies based on acute and subacute effects of systemic administration of LPS, with special attention on the state of art of microglia and astrocyte response to peripheral challenge.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Gemelli Science and Technology Park (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy.
| | - Luca Zupo
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Valentina Corvino
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
26
|
Lai Z, Ye T, Zhang M, Mu Y. Exosomes as Vehicles for Noncoding RNA in Modulating Inflammation: A Promising Regulatory Approach for Ischemic Stroke and Myocardial Infarction. J Inflamm Res 2024; 17:7485-7501. [PMID: 39464334 PMCID: PMC11505480 DOI: 10.2147/jir.s484119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Exosomes have grown as promising carriers for noncoding RNAs (ncRNAs) in the treatment of inflammation, particularly in conditions like ischemic stroke and myocardial infarction. These ncRNAs, which include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), play a crucial role in regulating inflammatory pathways, presenting new therapeutic opportunities. In both ischemic stroke and myocardial infarction, inflammation significantly influences disease progression and severity. Exosomes can deliver ncRNAs directly to specific cells and tissues, providing a targeted approach to modulate gene expression and reduce inflammation. Their biocompatibility and low risk of inducing immune responses make exosomes ideal therapeutic vehicles. Ongoing research is focused on optimizing the loading of ncRNAs into exosomes, ensuring efficient delivery, and understanding the mechanisms by which these ncRNAs mitigate inflammation. In ischemic stroke, exosome-derived ncRNAs originate from various cell types, including neurons, M2 microglia, patient serum, genetically engineered HEK293T cells, and mesenchymal stromal cells. In the case of myocardial infarction, these ncRNAs are sourced from mesenchymal stem cells, endothelial cells, and patient plasma. These exosome-loaded ncRNAs play a significant role in modulating inflammation in both ischemic stroke and myocardial infarction. As this research advances, therapies based on exosomes may completely change how diseases linked to inflammation are treated, offering new avenues for patient care and recovery. This review explores the latest advancements in understanding how exosomes impact specific inflammatory components, with a particular emphasis on the role of ncRNAs contained in exosomes. The review concludes by highlighting the clinical potential of exosome-derived ncRNAs as innovative therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Zhuhong Lai
- Department of Cardiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Tingqiao Ye
- Department of Cardiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Mingjun Zhang
- Department of Cardiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Ying Mu
- Department of Cardiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| |
Collapse
|
27
|
Wang LY, Zhang L, Bai XY, Qiang RR, Zhang N, Hu QQ, Cheng JZ, Yang YL, Xiang Y. The Role of Ferroptosis in Amyotrophic Lateral Sclerosis Treatment. Neurochem Res 2024; 49:2653-2667. [PMID: 38864944 DOI: 10.1007/s11064-024-04194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with a challenging treatment landscape, due to its complex pathogenesis and limited availability of clinical drugs. Ferroptosis, an iron-dependent form of programmed cell death (PCD), stands distinct from apoptosis, necrosis, autophagy, and other cell death mechanisms. Recent studies have increasingly highlighted the role of iron deposition, reactive oxygen species (ROS) accumulation, oxidative stress, as well as systemic Xc- and glutamate accumulation in the antioxidant system in the pathogenesis of amyotrophic lateral sclerosis. Therefore, targeting ferroptosis emerges as a promising strategy for amyotrophic lateral sclerosis treatment. This review introduces the regulatory mechanism of ferroptosis, the relationship between amyotrophic lateral sclerosis and ferroptosis, and the drugs used in the clinic, then discusses the current status of amyotrophic lateral sclerosis treatment, hoping to provide new directions and targets for its treatment.
Collapse
Affiliation(s)
- Le Yi Wang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Rong Rong Qiang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Ning Zhang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Jun Zhi Cheng
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China.
| |
Collapse
|
28
|
Huang L, Li X, Li Z, Zhu H, Han Y, Zeng J, Wen M, Zeng H. PD-1 mediates microglia polarization via the MAPK signaling pathway to protect blood-brain barrier function during cerebral ischemia/reperfusion. Brain Res Bull 2024; 216:111055. [PMID: 39173779 DOI: 10.1016/j.brainresbull.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Cerebral ischemia is characterized by its rapid onset and high rates of recurrence, morbidity, and mortality, with blood-brain barrier (BBB) permeability playing a vital role in brain injury. Therefore, it is important to understand the molecular mechanism which regulates the BBB during cerebral ischemia. MATERIALS AND METHODS An in vitro model of oxygen-glucose deprivation (OGD) and an in vivo model of cerebral ischemia/reperfusion (I/R) were constructed. PD-1 overexpression vectors and vectors containing si-RNA were transfected and injected into in vitro and in vivo models. Western blotting, real-time quantitative PCR (qPCR), immunofluorescence (IF) analysis, and immunohistochemical staining were employed to evaluate the expression levels of programmed cell death-1 (PD-1), microglia M1 and M2 biomarkers, and tight junction proteins. Flow cytometry and ELISA were used to measure the levels of pro-inflammatory cytokines. The BBB permeability of brain tissues was evaluated by Evans blue dye (EBD) extravasation and transendothelial electrical resistance (TEER). Brain water content was measured to assess the extent of inflammatory exudation. The infarct volume and neurological severity score (NSS) were used to assess the severity of brain injury. Brain cell apoptosis was assessed by the TUNEL assay and hematoxylin-eosin (H&E) staining. RESULTS PD-1 helped to convert the microglia M1 phenotype to the M2 phenotype and to reduce BBB permeability both in vitro and in vivo. Overexpression of PD-1 promoted a shift of the M1 phenotype to the M2 phenotype and reduced BBB permeability via the ERK and p38 MAPK signaling pathways. PD-1 reduced inflammatory exudation, BBB permeability, cell apoptosis, and brain injury in vivo. CONCLUSION Our present study verified that PD-1 exerts an anti-inflammatory effect by converting the microglia M1 phenotype to the M2 phenotype, reducing BBB permeability, and thereby relieves brain injury caused by cerebral ischemia. PD-1 is potential therapeutic target for brain injury caused by cerebral ischemia.
Collapse
Affiliation(s)
- Linqiang Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Xinping Li
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Zhuo Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Huishan Zhu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Yongli Han
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Juhao Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Miaoyun Wen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Hongke Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China.
| |
Collapse
|
29
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
30
|
Salama RM, Darwish SF, Yehia R, Eissa N, Elmongy NF, Abd-Elgalil MM, Schaalan MF, El Wakeel SA. Apilarnil exerts neuroprotective effects and alleviates motor dysfunction by rebalancing M1/M2 microglia polarization, regulating miR-155 and miR-124 expression in a rotenone-induced Parkinson's disease rat model. Int Immunopharmacol 2024; 137:112536. [PMID: 38909495 DOI: 10.1016/j.intimp.2024.112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Microglial activation contributes to the neuropathology of Parkinson's disease (PD). Inhibiting M1 while simultaneously boosting M2 microglia activation may therefore be a potential treatment for PD. Apilarnil (API) is a bee product produced from drone larvae. Recent research has demonstrated the protective effects of API on multiple body systems. Nevertheless, its impact on PD or the microglial M1/M2 pathway has not yet been investigated. Thus, we intended to evaluate the dose-dependent effects of API in rotenone (ROT)-induced PD rat model and explore the role of M1/M2 in mediating its effect. Seventy-two Wistar rats were equally grouped as; control, API, ROT, and groups in which API (200, 400, and 800 mg/kg, p.o.) was given simultaneously with ROT (2 mg/kg, s.c.) for 28 days. The high dose of API (800 mg/kg) showed enhanced motor function, higher expression of tyrosine hydroxylase and dopamine levels, less dopamine turnover and α-synuclein expression, and a better histopathological picture when compared to the ROT group and the lower two doses. API's high dose exerted its neuroprotective effects through abridging the M1 microglial activity, illustrated in the reduced expression of miR-155, Iba-1, CD36, CXCL10, and other pro-inflammatory markers' levels. Inversely, API high dose enhanced M2 microglial activity, witnessed in the elevated expression of miR-124, CD206, Ym1, Fizz1, arginase-1, and other anti-inflammatory indices, in comparison to the diseased group. To conclude, our study revealed a novel neuroprotective impact for API against experimentally induced PD, where the high dose showed the highest protection via rebalancing M1/M2 polarization.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Rana Yehia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, British University in Egypt (BUE), Cairo, Egypt.
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates.
| | - Noura F Elmongy
- Physiology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Mona M Abd-Elgalil
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
| | - Mona F Schaalan
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A El Wakeel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
31
|
Yuan ZY, Zhang X, Yu ZZ, Wang XY, Zeng ZH, Wei MX, Qiu MT, Wang J, Cheng J, Yi LT. Polygonatum sibiricum Polysaccharides Alleviate Depressive-like Symptoms in Chronic Restraint Stress-Induced Mice via Microglial Regulation in Prefrontal Cortex. Polymers (Basel) 2024; 16:2358. [PMID: 39204578 PMCID: PMC11359046 DOI: 10.3390/polym16162358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Microglia respond to stressors by secreting cytokines or growth factors, playing a crucial role in maintaining brain homeostasis. While the antidepressant-like effects of Polygonatum sibiricum polysaccharides (PSPs) have been observed in mice, their potential effectiveness involving microglial regulation remains unknown. This study investigates the antidepressant-like mechanism of PSP by regulating microglial phenotype and signaling pathways in the prefrontal cortex of chronic restraint stress (CRS)-induced mice. PSP was extracted, purified, characterized, and orally administered to CRS mice. High-performance gel permeation chromatography (HPGPC) revealed that PSP has a molecular weight of 5.6 kDa. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that PSP exhibited a layered structure with densely packed, irregular surfaces. PSP treatment significantly increased sucrose preference (low: 71%, p < 0.01; medium: 69%, p < 0.05; high: 75%, p < 0.001 vs. CRS: 58%) and reduced immobility time (low: 74 s, p < 0.01; medium: 68 s, p < 0.01; high: 79 s, p < 0.05 vs. CRS: 129 s), indicating the alleviation of depressive-like behaviors. PSP inhibited microglial activation (PSP, 131/mm2 vs. CRS, 173/mm2, p = 0.057), reversing CRS-induced microglial hypertrophy and hyper-ramification. Furthermore, PSP inactivated microglial activation by inhibiting NLRP3/ASC/caspase-1/IL-1β signaling pathways, increasing BDNF synthesis and activating brain-derived neurotrophic factor (BDNF)-mediated neurogenesis (PSP, 80/per DG vs. CRS, 49/per DG, p < 0.01). In conclusion, PSP exerts antidepressant-like effects through the regulation of microglial activity and neuroinflammatory pathways, indicating it as a potential natural compound for depression treatment.
Collapse
Affiliation(s)
- Zhong-Yu Yuan
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Z.-Y.Y.); (X.Z.); (Z.-Z.Y.); (X.-Y.W.); (Z.-H.Z.); (M.-X.W.); (M.-T.Q.); (J.W.)
| | - Xuan Zhang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Z.-Y.Y.); (X.Z.); (Z.-Z.Y.); (X.-Y.W.); (Z.-H.Z.); (M.-X.W.); (M.-T.Q.); (J.W.)
| | - Zong-Zhong Yu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Z.-Y.Y.); (X.Z.); (Z.-Z.Y.); (X.-Y.W.); (Z.-H.Z.); (M.-X.W.); (M.-T.Q.); (J.W.)
| | - Xin-Yu Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Z.-Y.Y.); (X.Z.); (Z.-Z.Y.); (X.-Y.W.); (Z.-H.Z.); (M.-X.W.); (M.-T.Q.); (J.W.)
| | - Zi-Heng Zeng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Z.-Y.Y.); (X.Z.); (Z.-Z.Y.); (X.-Y.W.); (Z.-H.Z.); (M.-X.W.); (M.-T.Q.); (J.W.)
| | - Meng-Xuan Wei
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Z.-Y.Y.); (X.Z.); (Z.-Z.Y.); (X.-Y.W.); (Z.-H.Z.); (M.-X.W.); (M.-T.Q.); (J.W.)
| | - Meng-Ting Qiu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Z.-Y.Y.); (X.Z.); (Z.-Z.Y.); (X.-Y.W.); (Z.-H.Z.); (M.-X.W.); (M.-T.Q.); (J.W.)
| | - Jun Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Z.-Y.Y.); (X.Z.); (Z.-Z.Y.); (X.-Y.W.); (Z.-H.Z.); (M.-X.W.); (M.-T.Q.); (J.W.)
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Z.-Y.Y.); (X.Z.); (Z.-Z.Y.); (X.-Y.W.); (Z.-H.Z.); (M.-X.W.); (M.-T.Q.); (J.W.)
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Z.-Y.Y.); (X.Z.); (Z.-Z.Y.); (X.-Y.W.); (Z.-H.Z.); (M.-X.W.); (M.-T.Q.); (J.W.)
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
32
|
Harjunpää H, Tallberg R, Cui Y, Guenther C, Liew HK, Seelbach A, Saldo Rubio G, Airavaara M, Fagerholm SC. β2-Integrins Regulate Microglial Responses and the Functional Outcome of Hemorrhagic Stroke In Vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:519-525. [PMID: 38921973 DOI: 10.4049/jimmunol.2300815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Stroke is one of the leading causes of death and long-term disabilities worldwide. In addition to interruption of blood flow, inflammation is widely recognized as an important factor mediating tissue destruction in stroke. Depending on their phenotype, microglia, the main leukocytes in the CNS, are capable of either causing further tissue damage or promoting brain restoration after stroke. β2-integrins are cell adhesion molecules that are constitutively expressed on microglia. The function of β2-integrins has been investigated extensively in animal models of ischemic stroke, but their role in hemorrhagic stroke is currently poorly understood. We show in this study that dysfunction of β2-integrins is associated with improved functional outcome and decreased inflammatory cytokine expression in the brain in a mouse model of hemorrhagic stroke. Furthermore, β2-integrins affect microglial phenotype and cytokine responses in vivo. Therefore, our findings suggest that targeting β2-integrins in hemorrhagic stroke may be beneficial.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Robert Tallberg
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hock-Kean Liew
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Anna Seelbach
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Guillem Saldo Rubio
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Momen YS, Mishra J, Kumar N. Brain-Gut and Microbiota-Gut-Brain Communication in Type-2 Diabetes Linked Alzheimer's Disease. Nutrients 2024; 16:2558. [PMID: 39125436 PMCID: PMC11313915 DOI: 10.3390/nu16152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
The gastrointestinal (GI) tract, home to the largest microbial population in the human body, plays a crucial role in overall health through various mechanisms. Recent advancements in research have revealed the potential implications of gut-brain and vice-versa communication mediated by gut-microbiota and their microbial products in various diseases including type-2 diabetes and Alzheimer's disease (AD). AD is the most common type of dementia where most of cases are sporadic with no clearly identified cause. However, multiple factors are implicated in the progression of sporadic AD which can be classified as non-modifiable (e.g., genetic) and modifiable (e.g. Type-2 diabetes, diet etc.). Present review focusses on key players particularly the modifiable factors such as Type-2 diabetes (T2D) and diet and their implications in microbiota-gut-brain (MGB) and brain-gut (BG) communication and cognitive functions of healthy brain and their dysfunction in Alzheimer's Disease. Special emphasis has been given on elucidation of the mechanistic aspects of the impact of diet on gut-microbiota and the implications of some of the gut-microbial products in T2D and AD pathology. For example, mechanistically, HFD induces gut dysbiosis with driven metabolites that in turn cause loss of integrity of intestinal barrier with concomitant colonic and systemic chronic low-grade inflammation, associated with obesity and T2D. HFD-induced obesity and T2D parallel neuroinflammation, deposition of Amyloid β (Aβ), and ultimately cognitive impairment. The review also provides a new perspective of the impact of diet on brain-gut and microbiota-gut-brain communication in terms of transcription factors as a commonly spoken language that may facilitates the interaction between gut and brain of obese diabetic patients who are at a higher risk of developing cognitive impairment and AD. Other commonality such as tyrosine kinase expression and functions maintaining intestinal integrity on one hand and the phagocytic clarence by migratory microglial functions in brain are also discussed. Lastly, the characterization of the key players future research that might shed lights on novel potential pharmacological target to impede AD progression are also discussed.
Collapse
Affiliation(s)
| | | | - Narendra Kumar
- Department of Pharmaceutical Sciences, ILR College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| |
Collapse
|
34
|
Xu X, Liu R, Li Y, Zhang C, Guo C, Zhu J, Dong J, Ouyang L, Momeni MR. Spinal Cord Injury: From MicroRNAs to Exosomal MicroRNAs. Mol Neurobiol 2024; 61:5974-5991. [PMID: 38261255 DOI: 10.1007/s12035-024-03954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Spinal cord injury (SCI) is an unfortunate experience that may generate extensive sensory and motor disabilities due to the destruction and passing of nerve cells. MicroRNAs are small RNA molecules that do not code for proteins but instead serve to regulate protein synthesis by targeting messenger RNA's expression. After SCI, secondary damage like apoptosis, oxidative stress, inflammation, and autophagy occurs, and differentially expressed microRNAs show a function in these procedures. Almost all animal and plant cells release exosomes, which are sophisticated formations of lipid membranes. These exosomes have the capacity to deliver significant materials, such as proteins, RNAs and lipids, to cells in need, regulating their functions and serving as a way of communication. This new method offers a fresh approach to treating spinal cord injury. Obviously, the exosome has the benefit of conveying the transported material across performing regulatory activities and the blood-brain barrier. Among the exosome cargoes, microRNAs, which modulate their mRNA targets, show considerable promise in the pathogenic diagnosis, process, and therapy of SCI. Herein, we describe the roles of microRNAs in SCI. Furthermore, we emphasize the importance of exosomal microRNAs in this disease.
Collapse
Affiliation(s)
- Xiangyang Xu
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Ruyin Liu
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Yunpeng Li
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Cheng Zhang
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Chuanghao Guo
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Jiong Zhu
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Jiaan Dong
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Liyun Ouyang
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11700, Malaysia.
| | | |
Collapse
|
35
|
Lian W, Yang X, Duan Q, Li J, Zhao Y, Yu C, He T, Sun T, Zhao Y, Wang W. The Biological Activity of Ganoderma lucidum on Neurodegenerative Diseases: The Interplay between Different Active Compounds and the Pathological Hallmarks. Molecules 2024; 29:2516. [PMID: 38893392 PMCID: PMC11173733 DOI: 10.3390/molecules29112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative diseases represent a cluster of conditions characterized by the progressive degeneration of the structure and function of the nervous system. Despite significant advancements in understanding these diseases, therapeutic options remain limited. The medicinal mushroom Ganoderma lucidum has been recognized for its comprehensive array of bioactive compounds with anti-inflammatory and antioxidative effects, which possess potential neuroprotective properties. This literature review collates and examines the existing research on the bioactivity of active compounds and extracts from Ganoderma lucidum in modulating the pathological hallmarks of neurodegenerative diseases. The structural information and preparation processes of specific components, such as individual ganoderic acids and unique fractions of polysaccharides, are presented in detail to facilitate structure-activity relationship research and scale up the investigation of in vivo pharmacology. The mechanisms of these components against neurodegenerative diseases are discussed on multiple levels and elaborately categorized in different patterns. It is clearly presented from the patterns that most polysaccharides of Ganoderma lucidum possess neurotrophic effects, while ganoderic acids preferentially target specific pathogenic proteins as well as regulating autophagy. Further clinical trials are necessary to assess the translational potential of these components in the development of novel multi-target drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenhui Lian
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Xu Yang
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Qidong Duan
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Jie Li
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Yuting Zhao
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Chunhui Yu
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Tianzhu He
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Tianxia Sun
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Weinan Wang
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
36
|
Xu W, Wang X, Hou X, Yang Y, Ma R, Lv R, Yin Q. The role of microglia in the pathogenesis of diabetic-associated cognitive dysfunction. Front Endocrinol (Lausanne) 2024; 14:1246979. [PMID: 38274227 PMCID: PMC10808430 DOI: 10.3389/fendo.2023.1246979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Affiliation(s)
- Wenwen Xu
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Wang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xunyao Hou
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Yang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rongrong Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renjun Lv
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingqing Yin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|