1
|
Bie X, Zhang M, Wang Q, Wang Y. An unraveled mystery: What's the role of brain sphingolipids in neurodegenerative and psychiatric disorders. Neurobiol Dis 2025; 207:106852. [PMID: 39986545 DOI: 10.1016/j.nbd.2025.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025] Open
Abstract
Sphingolipids are a class of lipids highly expressed in brain, especially in the myelin sheath of white matter. In recent years, with the development of lipidomics, the role of brain sphingolipids in neurological disorders have raised lots of interests due to their function in neuronal signal transduction and survival. Although not thoroughly investigated, some previous studies have indicated that sphingolipids homeostasis are closely linked to the etiology and development of some neurological disorders. For example, disrupted sphingolipids level have been found in clinic patients with neurological disorders, such as neurodegeneration and psychiatric disorders. Conversely, intervention of sphingolipids metabolism by modulating activity of related enzymes also could result in pathological deficits identified in neurological disorders. Moreover, the alteration of sphingolipids catabolic pathway in the brain could be partly represented in cerebrospinal fluid and blood tissues, which show diagnostic potential for neurological disorders. Therefore, our review aims to summarize and discuss the known contents of bioactive sphingolipid metabolism with their related studies in neurodegenerative and psychiatric disorders, to help understand the potential mechanism underlying sphingolipid regulation of neural function and provide possible directions for further study. The new perspectives in this promising field will open up new therapeutic options for neurological disorders.
Collapse
Affiliation(s)
- Xintian Bie
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China
| | - Maoxing Zhang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ying Wang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China.
| |
Collapse
|
2
|
Chen YK, Tian HY, Zhu QY, Zhang R, Liang DX, Wang JQ, Feng RY, Qin C, Ma MM, Jiang H, Tang BS, Ding XB, Wang XJ. Potential Disease-Modifying Effects of Ganglioside GM1 Pulse Treatment on Spinocerebellar Ataxia Type 3, a Parallel-Group, Double-Blind, Randomized, Controlled Trial. Mov Disord 2025; 40:57-66. [PMID: 39508583 DOI: 10.1002/mds.30050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant inherited neurodegenerative disorder for which there is currently no cure, nor effective treatment strategy. OBJECTIVE Our aim was to investigate the safety and efficacy of high-dose ganglioside GM1 (ganglioside-monosialic acid) pulse treatment in patients with SCA3. METHODS Patients were randomly allocated to receive either high-dose GM1 (400 mg on the first day followed by 200 mg/day), low-dose GM1 (40 mg/day), or placebo (normal saline) for 4 weeks. The primary outcome, assessed by measuring the change in the Scale for the Assessment and Rating of Ataxia (SARA) scores from baseline to 12 weeks post-treatment, is central to evaluating treatment efficacy. Secondary outcomes included changes in the International Cooperative Ataxia Rating Scale (ICARS) score, Barthel Index of Activities of Daily Living (ADL), and plasma and cerebrospinal fluid (CSF) GABA levels. Safety was assessed in all treated patients. RESULTS A total of 48 patients with SCA3 were enrolled in this study. After 12 weeks, data from 43 patients were included in the efficacy analysis (intention-to-treat analysis). The least-squares mean change in the SARA score from baseline to 12 weeks post-treatment was -3.80 (standard error [SE], 0.39; 95% confidence interval [CI], -4.58 to -3.02) in the high-dose GM1 group, 0.34 (SE, 0.40; 95% CI, -0.46 to 1.13) in the low-dose GM1 group, and 0.73 (SE, 0.40; 95% CI, -0.07 to 1.52) in the placebo group, respectively. Secondary outcomes showed improvements in the ICARS score, Barthel Index of ADL, and plasma and CSF GABA levels in the high-dose GM1 group compared to the low-dose GM1 and placebo groups. All treatments were well-tolerated and safe. CONCLUSIONS High-dose GM1 treatment significantly ameliorated ataxic symptoms in patients with SCA3. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yong-Kang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
| | - Hai-Yan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing-Yong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
| | - Dong-Xiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
| | - Jiu-Qi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ren-Yi Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming-Ming Ma
- Department of Neurology, Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hong Jiang
- The Third Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, China
| | - Xue-Bing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
| | - Xue-Jing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, China
| |
Collapse
|
3
|
Xu Z, He S, Begum MM, Han X. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Antioxid Redox Signal 2024; 41:1073-1099. [PMID: 39575748 PMCID: PMC11971557 DOI: 10.1089/ars.2024.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Significance: Lipids, which constitute the highest portion (over 50%) of brain dry mass, are crucial for brain integrity, energy homeostasis, and signaling regulation. Emerging evidence revealed that lipid profile alterations and abnormal lipid metabolism occur during normal aging and in different forms of neurodegenerative diseases. Moreover, increasing genome-wide association studies have validated new targets on lipid-associated pathways involved in disease development. Myelin, the protective sheath surrounding axons, is crucial for efficient neural signaling transduction. As the primary site enriched with lipids, impairments of myelin are increasingly recognized as playing significant and complex roles in various neurodegenerative diseases, beyond simply being secondary effects of neuronal loss. Recent Advances: With advances in the lipidomics field, myelin lipid alterations and their roles in contributing to or reflecting the progression of diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and others, have recently caught great attention. Critical Issues: This review summarizes recent findings of myelin lipid alterations in the five most common neurodegenerative diseases and discusses their implications in disease pathogenesis. Future Directions: By highlighting myelin lipid abnormalities in neurodegenerative diseases, this review aims to encourage further research focused on lipids and the development of new lipid-oriented therapeutic approaches in this area. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Mst Marium Begum
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
- Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Shi YW, Xu CC, Sun CY, Liu JX, Zhao SY, Liu D, Fan XJ, Wang CP. GM1 Ameliorates Neuronal Injury in Rats after Cerebral Ischemia and Reperfusion: Potential Contribution of Effects on SPTBN1-mediated Signaling. Neuroscience 2024; 551:103-118. [PMID: 38810691 DOI: 10.1016/j.neuroscience.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monosialoganglioside GM1 (GM1) has long been used as a therapeutic agent for neurological diseases in the clinical treatment of ischemic stroke. However, the mechanism underlying the neuroprotective function of GM1 is still obscure until now. In this study, we investigated the effects of GM1 in ischemia and reperfusion (I/R) brain injury models. Middle cerebral artery occlusion and reperfusion (MCAO/R) rats were treated with GM1 (60 mg·kg-1·d-1, tail vein injection) for 2 weeks. The results showed that GM1 substantially attenuated the MCAO/R-induced neurological dysfunction and inhibited the inflammatory responses and cell apoptosis in ischemic parietal cortex. We further revealed that GM1 inhibited the activation of NFκB/MAPK signaling pathway induced by MCAO/R injury. To explore its underlying mechanism of the neuroprotective effect, transcriptome sequencing was introduced to screen the differentially expressed genes (DEGs). By function enrichment and PPI network analyses, Sptbn1 was identified as a node gene in the network regulated by GM1 treatment. In the MCAO/R model of rats and oxygen-glucose deprivation and reperfusion (OGD/R) model of primary culture of rat cortical neurons, we first found that SPTBN1 was involved in the attenuation of I/R induced neuronal injury after GM1 administration. In SPTBN1-knockdown SH-SY5Y cells, the treatment with GM1 (20 μM) significantly increased SPTBN1 level. Moreover, OGD/R decreased SPTBN1 level in SPTBN1-overexpressed SH-SY5Y cells. These results indicated that GM1 might achieve its potent neuroprotective effects by regulating inflammatory response, cell apoptosis, and cytomembrane and cytoskeleton signals through SPTBN1. Therefore, SPTBN1 may be a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun-Wei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China; School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Chun-Cheng Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Chun-Yan Sun
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Jia-Xing Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Shu-Yong Zhao
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.
| | - Xing-Juan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| | - Cai-Ping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Giri RP, Chowdhury S, Mukhopadhyay MK, Chakrabarti A, Sanyal MK. Ganglioside GM1 Drives Hemin and Protoporphyrin Adsorption in Phospholipid Membranes: A Structural Study. J Phys Chem B 2024; 128:2745-2754. [PMID: 38447189 DOI: 10.1021/acs.jpcb.3c08239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Monosialoganglioside (GM1), a ubiquitous component of lipid rafts, and hemin, an integral part of heme proteins such as hemoglobin, are essential to the cell membranes of brain neurons and erythrocyte red blood cells for regulating cellular communication and oxygen transport. Protoporphyrin IX (PPIX) and its derivative hemin, on the contrary, show significant cytotoxic effects when in excess causing hematological diseases, such as thalassemia, anemia, malaria, and neurodegeneration. However, the in-depth molecular etiology of their interactions with the cell membrane has so far been poorly understood. Herein, the structure of the polymer cushion-supported lipid bilayer (SLB) of the binary mixture of phospholipid and GM1 in the presence of PPIX and its derivative hemin has been investigated to predict the molecular interactions in model phospholipid membranes. A high-resolution synchrotron-based X-ray scattering technique has been employed to explore the out-of-plane structure of the assembly at different compositions and concentrations. The structural changes have been complemented with the isobaric changes in the mean molecular area obtained from the Langmuir monolayer isotherm to predict the additive-induced membrane condensation and fluidization. PPIX-induced fluidization of phospholipid SLB without GM1 was witnessed, which was reversed to condensation with 2-fold higher structural changes in the presence of GM1. A hemin concentration-dependent linear condensing effect was observed in the pristine SLB. The effect was significantly reduced, and the linearity was observed to be lost in the mixed SLB containing GM1. Our study shows that GM1 alters the interaction of hemin and PPIX with the membrane, which could be explained with the aid of hydrophobic and electrostatic interactions. Our study indicates favorable and unfavorable interactions of GM1 with PPIX and hemin, respectively, in the membrane. The observed structural changes in both SLB and the underlying polymer cushion layer lead to the proposal of a molecule-specific interaction model that can benefit the pharmaceutical industries specialized for drug designing. Our study potentially enriches our fundamental biophysical understanding of neurodegenerative diseases and drug-membrane interactions.
Collapse
Affiliation(s)
- Rajendra P Giri
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
- Department of Physics, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Subhadip Chowdhury
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
| | - Mrinmay K Mukhopadhyay
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
| | - Abhijit Chakrabarti
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur, Kolkata 700103, India
| | - Milan K Sanyal
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
| |
Collapse
|
6
|
Wedekind H, Beimdiek J, Rossdam C, Kats E, Wittek V, Schumann L, Sörensen-Zender I, Fenske A, Weinhold B, Schmitt R, Tiede A, Büttner FFR, Münster-Kühnel A, Abeln M. The monosialoganglioside GM1a protects against complement attack. Cell Death Discov 2023; 9:395. [PMID: 37880236 PMCID: PMC10600102 DOI: 10.1038/s41420-023-01686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
The complement system is a part of the innate immune system in the fluid phase and efficiently eliminates pathogens. However, its activation requires tight regulation on the host cell surface in order not to compromise cellular viability. Previously, we showed that loss of placental cell surface sialylation in mice in vivo leads to a maternal complement attack at the fetal-maternal interface, ultimately resulting in loss of pregnancy. To gain insight into the regulatory function of sialylation in complement activation, we here generated trophoblast stem cells (TSC) devoid of sialylation, which also revealed complement sensitivity and cell death in vitro. Glycolipid-analysis by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection (xCGE-LIF) allowed us to identify the monosialoganglioside GM1a as a key element of cell surface complement regulation. Exogenously administered GM1a integrated into the plasma membrane of trophoblasts, substantially increased binding of complement factor H (FH) and was sufficient to protect the cells from complement attack and cell death. GM1a treatment also rescued human endothelial cells and erythrocytes from complement attack in a concentration dependent manner. Furthermore, GM1a significantly reduced complement mediated hemolysis of erythrocytes from a patient with Paroxysmal nocturnal hemoglobinuria (PNH). This study demonstrates the complement regulatory potential of exogenously administered gangliosides and paves the way for sialoglycotherapeutics as a novel substance class for membrane-targeted complement regulators.
Collapse
Affiliation(s)
- Henri Wedekind
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Julia Beimdiek
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Charlotte Rossdam
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Elina Kats
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Vanessa Wittek
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lisa Schumann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Inga Sörensen-Zender
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Arno Fenske
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Birgit Weinhold
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Falk F R Büttner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Anja Münster-Kühnel
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Markus Abeln
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
7
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
8
|
Fantini J. Lipid rafts and human diseases: why we need to target gangliosides. FEBS Open Bio 2023; 13:1636-1650. [PMID: 37052878 PMCID: PMC10476576 DOI: 10.1002/2211-5463.13612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Gangliosides are functional components of membrane lipid rafts that control critical functions in cell communication. Many pathologies involve raft gangliosides, which therefore represent an approach of choice for developing innovative therapeutic strategies. Beginning with a discussion of what a disease is (and is not), this review lists the major human pathologies that involve gangliosides, which includes cancer, diabetes, and infectious and neurodegenerative diseases. In most cases, the problem is due to a protein whose binding to gangliosides either creates a pathological condition or impairs a physiological function. Then, I draw up an inventory of the different molecular mechanisms of protein-ganglioside interactions. I propose to classify the ganglioside-binding domains of proteins into four categories, which I name GBD-1, GBD-2, GBD-3, and GBD-4. This structural and functional classification could help to rationalize the design of innovative molecules capable of disrupting the binding of selected proteins to gangliosides without generating undesirable effects. The biochemical specificities of gangliosides expressed in the human brain must also be taken into account to improve the reliability of animal models (or any animal-free alternative) of Alzheimer's and Parkinson's diseases.
Collapse
|
9
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Wang R, Tong S, Wang M, Zou J, Wang N, Sun F, Zhou X, Chen J, Wang H. CREB5 hypermethylation involved in the ganglioside GM1 therapy of Parkinson's disease. Front Aging Neurosci 2023; 15:1122647. [PMID: 37323142 PMCID: PMC10264581 DOI: 10.3389/fnagi.2023.1122647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The treatment with monosialotetrahexosylganglioside (GM1) improves the symptoms of Parkinson's disease (PD). The alteration of DNA methylation in the blood was examined to investigate epigenetic modification by GM1 treatment. Methods After a 28-day continuous intravenous infusion of GM1 (100mg), the motor and non-motor symptoms were evaluated by UPDRS III, Mini-mental state examination (MMSE) scores, FS-14, SCOPA-AUT, and PDQ-8. Moreover, blood samples were collected and PBMC was isolated. Genome-wide DNA methylation was performed by an 850K BeadChip. RNA levels and apoptosis were examined by RT-PCR and flow cytometry in rotenone-based cell models. The CREB5 plasmid was transfected by electroporation into SH-SY5Y cells. We also identified 235 methylation variable positions achieving genome-wide significance in 717558 differentially methylated positions (DMPs) (P = 0.0003) in comparison of pre-treatment with post-treatment measurements (statistical analysis paired-samples t-test). Results By searching the Gene Expression Omnibus (GEO) dataset and GWAS, 23 methylation variable positions were screened. Moreover, there are 7 hypomethylated methylation variable positions correlated with the scores of motor symptoms (UPDRS III scale). According to KEGG pathways enrichment analysis, the methylated genes CACNA1B (hypomethylated), CREB5 (hypermethylated), GNB4 (hypomethylated), and PPP2R5A (hypomethylated) were enriched in the dopaminergic synapse pathway. Pretreated with GM1 (80 μM) for 1 h, cell apoptosis and impaired neurite outgrowth were inhibited in rotenone-induced PD cell models. The RNA expression of CREB5 was increased in rotenone-treated SH-SY5Y cells. GM1 treatment decreased rotenone-induced CREB5 gene expression. The enhancement of CREB5 gene expression suppressed the protective role of GM1 in rotenone-induced cell apoptosis. Discussion The application of GM1 improves the motor and non-motor symptoms of PD associated with the decreased CREB5 expression and the hypermethylation of CREB5. Clinical trial registration https://www.chictr.org.cn/showproj.html?proj=120582t, identifier ChiCTR2100042537.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shanshan Tong
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Mengdi Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Junjie Zou
- Department of Neurology, Penglai People’s Hospital, Yantai, China
| | - Nan Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaosheng Zhou
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hongcai Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
11
|
Schneider JS. GM1 Ganglioside as a Disease-Modifying Therapeutic for Parkinson's Disease: A Multi-Functional Glycosphingolipid That Targets Multiple Parkinson's Disease-Relevant Pathogenic Mechanisms. Int J Mol Sci 2023; 24:9183. [PMID: 37298133 PMCID: PMC10252733 DOI: 10.3390/ijms24119183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting millions of patients worldwide. Many therapeutics are available for treating PD symptoms but there is no disease-modifying therapeutic that has been unequivocally shown to slow or stop the progression of the disease. There are several factors contributing to the failure of many putative disease-modifying agents in clinical trials and these include the choice of patients and clinical trial designs for disease modification trials. Perhaps more important, however, is the choice of therapeutic, which for the most part, has not taken into account the multiple and complex pathogenic mechanisms and processes involved in PD. This paper discusses some of the factors contributing to the lack of success in PD disease-modification trials, which have mostly investigated therapeutics with a singular mechanism of action directed at one of the many PD pathogenic processes, and suggests that an alternative strategy for success may be to employ multi-functional therapeutics that target multiple PD-relevant pathogenic mechanisms. Evidence is presented that the multi-functional glycosphingolipid GM1 ganglioside may be just such a therapeutic.
Collapse
Affiliation(s)
- Jay S Schneider
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
13
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
14
|
Fuchigami T, Itokazu Y, Morgan JC, Yu RK. Restoration of Adult Neurogenesis by Intranasal Administration of Gangliosides GD3 and GM1 in The Olfactory Bulb of A53T Alpha-Synuclein-Expressing Parkinson's-Disease Model Mice. Mol Neurobiol 2023; 60:3329-3344. [PMID: 36849668 PMCID: PMC10140382 DOI: 10.1007/s12035-023-03282-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the body and mind of millions of people in the world. As PD progresses, bradykinesia, rigidity, and tremor worsen. These motor symptoms are associated with the neurodegeneration of dopaminergic neurons in the substantia nigra. PD is also associated with non-motor symptoms, including loss of smell (hyposmia), sleep disturbances, depression, anxiety, and cognitive impairment. This broad spectrum of non-motor symptoms is in part due to olfactory and hippocampal dysfunctions. These non-motor functions are suggested to be linked with adult neurogenesis. We have reported that ganglioside GD3 is required to maintain the neural stem cell (NSC) pool in the subventricular zone (SVZ) of the lateral ventricles and the subgranular layer of the dentate gyrus (DG) in the hippocampus. In this study, we used nasal infusion of GD3 to restore impaired neurogenesis in A53T alpha-synuclein-expressing mice (A53T mice). Intriguingly, intranasal GD3 administration rescued the number of bromodeoxyuridine + (BrdU +)/Sox2 + NSCs in the SVZ. Furthermore, the administration of gangliosides GD3 and GM1 increases doublecortin (DCX)-expressing immature neurons in the olfactory bulb, and nasal ganglioside administration recovered the neuronal populations in the periglomerular layer of A53T mice. Given the relevance of decreased ganglioside on olfactory impairment, we discovered that GD3 has an essential role in olfactory functions. Our results demonstrated that intranasal GD3 infusion restored the self-renewal ability of the NSCs, and intranasal GM1 infusion promoted neurogenesis in the adult brain. Using a combination of GD3 and GM1 has the potential to slow down disease progression and rescue dysfunctional neurons in neurodegenerative brains.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
15
|
McQuaid C, Solorzano A, Dickerson I, Deane R. Uptake of severe acute respiratory syndrome coronavirus 2 spike protein mediated by angiotensin converting enzyme 2 and ganglioside in human cerebrovascular cells. Front Neurosci 2023; 17:1117845. [PMID: 36875642 PMCID: PMC9980911 DOI: 10.3389/fnins.2023.1117845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction There is clinical evidence of neurological manifestations in coronavirus disease-19 (COVID-19). However, it is unclear whether differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/spike protein (SP) uptake by cells of the cerebrovasculature contribute to significant viral uptake to cause these symptoms. Methods Since the initial step in viral invasion is binding/uptake, we used fluorescently labeled wild type and mutant SARS-CoV-2/SP to study this process. Three cerebrovascular cell types were used (endothelial cells, pericytes, and vascular smooth muscle cells), in vitro. Results There was differential SARS-CoV-2/SP uptake by these cell types. Endothelial cells had the least uptake, which may limit SARS-CoV-2 uptake into brain from blood. Uptake was time and concentration dependent, and mediated by angiotensin converting enzyme 2 receptor (ACE2), and ganglioside (mono-sialotetrahexasylganglioside, GM1) that is predominantly expressed in the central nervous system and the cerebrovasculature. SARS-CoV-2/SPs with mutation sites, N501Y, E484K, and D614G, as seen in variants of interest, were also differentially taken up by these cell types. There was greater uptake compared to that of the wild type SARS-CoV-2/SP, but neutralization with anti-ACE2 or anti-GM1 antibodies was less effective. Conclusion The data suggested that in addition to ACE2, gangliosides are also an important entry point of SARS-CoV-2/SP into these cells. Since SARS-CoV-2/SP binding/uptake is the initial step in the viral penetration into cells, a longer exposure and higher titer are required for significant uptake into the normal brain. Gangliosides, including GM1, could be an additional potential SARS-CoV-2 and therapeutic target at the cerebrovasculature.
Collapse
Affiliation(s)
| | | | | | - Rashid Deane
- Department of Neuroscience, Del Monte Institute Neuroscience, University of Rochester, University of Rochester Medical Center (URMC), Rochester, NY, United States
| |
Collapse
|
16
|
Chowdhury S, Wu G, Lu ZH, Kumar R, Ledeen R. Age-Related Decline in Gangliosides GM1 and GD1a in Non-CNS Tissues of Normal Mice: Implications for Peripheral Symptoms of Parkinson's Disease. Biomedicines 2023; 11:biomedicines11010209. [PMID: 36672717 PMCID: PMC9855670 DOI: 10.3390/biomedicines11010209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study was to determine whether the age-related decline in a-series gangliosides (especially GM1), shown to be a factor in the brain-related etiology of Parkinson's disease (PD), also pertains to the peripheral nervous system (PNS) and aspects of PD unrelated to the central nervous system (CNS). Following Svennerholm's demonstration of the age-dependent decline in a-series gangliosides (both GM1 and GD1a) in the human brain, we previously demonstrated a similar decline in the normal mouse brain. The present study seeks to determine whether a similar a-series decline occurs in the periphery of normal mice as a possible prelude to the non-CNS symptoms of PD. We used mice of increasing age to measure a-series gangliosides in three peripheral tissues closely associated with PD pathology. Employing high-performance thin-layer chromatography (HPTLC), we found a substantial decrease in both GM1 and GD1a in all three tissues from 191 days of age. Motor and cognitive dysfunction were also shown to worsen, as expected, in synchrony with the decrease in GM1. Based on the previously demonstrated parallel between mice and humans concerning age-related a-series ganglioside decline in the brain, we propose the present findings to suggest a similar a-series decline in human peripheral tissues as the primary contributor to non-CNS pathologies of PD. An onset of sporadic PD would thus be seen as occurring simultaneously throughout the brain and body, albeit at varying rates, in association with the decline in a-series gangliosides. This would obviate the need to postulate the transfer of aggregated α-synuclein between brain and body or to debate brain vs. body as the origin of PD.
Collapse
|
17
|
Gangliosides in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2023; 29:391-418. [DOI: 10.1007/978-3-031-12390-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Podbielska M, Ariga T, Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. Int J Mol Sci 2022; 23:ijms23105330. [PMID: 35628142 PMCID: PMC9140914 DOI: 10.3390/ijms23105330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background. The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular vesicles to the disease etiology is also discussed. These findings may have diagnostic implications, with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and neuroprotective effects, which have not been yet addressed by the available treatment strategies. Overall, all these concepts are promising and encourage the further development of SL-based studies in the field of MS.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-99-12
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | | |
Collapse
|
19
|
Brodsky VY. Gangliosides in Orchestration of Intercellular Communication, Development, Neuronal Pathology and Carcinogenesis. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ledeen R, Chowdhury S, Lu ZH, Chakraborty M, Wu G. Systemic deficiency of GM1 ganglioside in Parkinson's disease tissues and its relation to the disease etiology. Glycoconj J 2022; 39:75-82. [PMID: 34973149 PMCID: PMC8979856 DOI: 10.1007/s10719-021-10025-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
Following our initial reports on subnormal levels of GM1 in the substantia nigra and occipital cortex of Parkinson's disease (PD) patients, we have examined additional tissues from such patients and found these are also deficient in the ganglioside. These include innervated tissues intimately involved in PD pathology such as colon, heart and others, somewhat less intimately involved, such as skin and fibroblasts. Finally, we have analyzed GM1 in peripheral blood mononuclear cells, a type of tissue apparently with no direct innervation, and found those too to be deficient in GM1. Those patients were all afflicted with the sporadic form of PD (sPD), and we therefore conclude that systemic deficiency of GM1 is a characteristic of this major type of PD. Age is one factor in GM1 decline but is not sufficient; additional GM1 suppressive factors are involved in producing sPD. We discuss these and why GM1 replacement offers promise as a disease-altering therapy.
Collapse
Affiliation(s)
- Robert Ledeen
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA.
| | - Suman Chowdhury
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA
| | - Zi-Hua Lu
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA
| | - Monami Chakraborty
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA
| | - Gusheng Wu
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA
| |
Collapse
|
21
|
Novel insights on GM1 and Parkinson's disease: A critical review. Glycoconj J 2022; 39:27-38. [PMID: 35064857 PMCID: PMC8979868 DOI: 10.1007/s10719-021-10019-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022]
Abstract
GM1 is a crucial component of neuronal membrane residing both in the soma and nerve terminals. As reported in Parkinson’s disease patients, the reduction of GM1 determines the failure of fundamental functional processes leading to cumulative cell distress up to neuron death. This review reports on the role of GM1 in the pathogenesis of the disease, illustrating the current data available but also hypotheses on the additional mechanisms in which GM1 could be involved and which require further study. In the manuscript we discuss these points trying to explain the role of diminished content of brain GM1, particularly in the nigro-striatal system, in Parkinson’s disease etiology and progression.
Collapse
|
22
|
Chowdhury S, Ledeen R. The Key Role of GM1 Ganglioside in Parkinson’s Disease. Biomolecules 2022; 12:biom12020173. [PMID: 35204675 PMCID: PMC8961665 DOI: 10.3390/biom12020173] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
We have endeavored in this review to summarize our findings, which point to a systemic deficiency of ganglioside GM1 in Parkinson’s disease (PD) tissues. These include neuronal tissues well known to be involved in PD, such as substantia nigra of the brain and those of the peripheral nervous system, such as the colon and heart. Moreover, we included skin and fibroblasts in the study as well as peripheral blood mononuclear cells; these are tissues not directly involved in neuronal signaling. We show similar findings for ganglioside GD1a, which is the metabolic precursor to GM1. We discuss the likely causes of these GM1 deficiencies and the resultant biochemical mechanisms underlying loss of neuronal viability and normal functioning. Strong support for this hypothesis is provided by a mouse PD model involving partial GM1 deficiency based on mono-allelic disruption of the B4galnt1 gene. We point out that progressive loss of GM1/GD1a occurs in the periphery as well as the brain, thus obviating the need to speculate PD symptom transfer between these tissues. Finally, we discuss how these findings point to a potential disease-altering therapy for PD:GM1 replacement, as is strongly implicated in animal studies and clinical trials.
Collapse
|
23
|
Hart HS, Valentin MA, Peters ST, Holler SW, Wang H, Harmon AF, Holler LD. The cytoprotective role of GM1 ganglioside in Huntington disease cells. Mol Biol Rep 2022; 49:12253-12258. [PMID: 36180805 PMCID: PMC9712292 DOI: 10.1007/s11033-022-07830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Huntington disease (HD) is a neurodegenerative disease where a genetic mutation leads to excessive polyglutamine (Q) repeats in the huntingtin protein. The polyglutamine repeats create toxic plaques when the protein is cleaved, leading to neuron death. The glycolipid GM1 ganglioside (GM1) has been shown to be neuroprotective in HD models, as it prevents the cleavage of the mutant huntingtin protein by phosphorylation of serine 13 and 16. Previous studies have tested GM1 in both adult-onset and juvenile-onset HD models, but this study set out to investigate whether GM1 mediated cytoprotection is influenced by the length of polyglutamine repeats. METHOD AND RESULT This study utilized cell culture to analyze the effect of GM1 on cell viability, directly comparing the response between cells with adult-onset HD and juvenile-onset HD. HEK293 cells expressing either wild-type huntingtin (Htt) (19Q) exon 1, adult-onset HD mutant Htt exon 1 (55Q), or Juvenile HD mutant Htt exon 1 (94Q) were assessed for cell viability using the WST-1 assay. Our results suggested moderate doses of GM1 increased cell viability for all cell lines when compared to untreated cells. When comparing HEK293 55Q and 94Q cells, there was no difference in cell viability within each dose of GM1. CONCLUSION These data suggest cellular responses to GM1 are independent of polyglutamine repeats in HD cells and provide insight on GM1's application as a therapeutic agent for HD and other diseases.
Collapse
Affiliation(s)
| | - Madeline A. Valentin
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD USA
| | | | | | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD USA
| | - Aaron F. Harmon
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD USA
| | | |
Collapse
|
24
|
Hertz E, Saarinen M, Svenningsson P. GM1 Is Cytoprotective in GPR37-Expressing Cells and Downregulates Signaling. Int J Mol Sci 2021; 22:ijms222312859. [PMID: 34884663 PMCID: PMC8657933 DOI: 10.3390/ijms222312859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are commonly pharmacologically modulated due to their ability to translate extracellular events to intracellular changes. Previously, studies have mostly focused on protein–protein interactions, but the focus has now expanded also to protein–lipid connections. GM1, a brain-expressed ganglioside known for neuroprotective effects, and GPR37, an orphan GPCR often reported as a potential drug target for diseases in the central nervous system, have been shown to form a complex. In this study, we looked into the functional effects. Endogenous GM1 was downregulated when stably overexpressing GPR37 in N2a cells (N2aGPR37-eGFP). However, exogenous GM1 specifically rescued N2aGPR37-eGFP from toxicity induced by the neurotoxin MPP+. The treatment did not alter transcription levels of GPR37 or the enzyme responsible for GM1 production, both potential mechanisms for the effect. However, GM1 treatment inhibited cAMP-dependent signaling from GPR37, here reported as potentially consecutively active, possibly contributing to the protective effects. We propose an interplay between GPR37 and GM1 as one of the many cytoprotective effects reported for GM1.
Collapse
Affiliation(s)
- Ellen Hertz
- Correspondence: (E.H.); (P.S.); Tel.: +46-8517-74-614 (E.H.)
| | | | | |
Collapse
|
25
|
Glycosphingolipid metabolism and its role in ageing and Parkinson's disease. Glycoconj J 2021; 39:39-53. [PMID: 34757540 PMCID: PMC8979855 DOI: 10.1007/s10719-021-10023-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
It is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.
Collapse
|
26
|
Zhou L, Liu R, Huang D, Li H, Ning T, Zhang L, Ge S, Bai M, Wang X, Yang Y, Wang X, Chen X, Gao Z, Luo L, Yang Y, Wu X, Deng T, Ba Y. Monosialotetrahexosylganglioside in the treatment of chronic oxaliplatin-induced peripheral neurotoxicity: TJMUCH-GI-001, a randomised controlled trial. EClinicalMedicine 2021; 41:101157. [PMID: 34765950 PMCID: PMC8569480 DOI: 10.1016/j.eclinm.2021.101157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic oxaliplatin-induced peripheral neurotoxicity (OIPN) is the most troublesome and dose-limiting side effect of oxaliplatin. There is no effective treatment for chronic OIPN. We conducted a randomised controlled trial to investigate the efficacy of monosialotetrahexosylganglioside (GM1) in treating chronic OIPN. METHODS In this single-centre, double-blind, phase Ⅲ trial, gastrointestinal cancer patients with persistent chronic OIPN were randomised in 1:1 ratio to receive either GM1 or placebo at Tianjin Medical University Cancer Institute and Hospital, China. GM1 was dosed at 60 mg daily for every 3 weeks or 40 mg daily for every 2 weeks. Seven- and fourteen- day infusions were administered to concurrent oxaliplatin users and oxaliplatin discontinuation patients, respectively. The primary endpoint was the relief of neurotoxicity (≥30% improvement), measured by a newly developed patient reported outcome measure (MCIPN) based on prior questionnaires including the European Organization for Research and Treatment of Cancer Quality of Life Chemotherapy Induced Peripheral Neuropathy Questionnaire twenty-item scale. Visual analogue score (VAS) was used as another instrument for patients to evaluate the total Chronic OIPN treatment effect. VAS responders (≥30% improvement), double responders (≥30% improvement in both MCIPN and VAS), and high responders (≥50% improvement in the MCIPN total score) were also calculated. The secondary endpoints were safety and quality of life. The additional endpoints are progression-free survival (PFS), disease-free survival (DFS), overall survival (OS), and tumour response. (Trial registration number: NCT02486198 at ClinicalTrials.gov). FINDINGS Between May 2015 to December 2017, 145 patients were randomly assigned to receive either GM1 (n=73) and placebo (n=72). Majority of the patients in both arms (90% in GM1 and 83% in placebo) continued receiving oxaliplatin on the trial. More patients responded in the GM1 group than in the placebo group (MCIPN responders: 53% vs 14%, VAS responders: 49% vs 22%, double responders: 41% vs 7%, and high responders: 32% vs 13%, all P < ·01). Analyses were also performed in concurrent oxaliplatin users. The results were consistent with those of the whole group. No deleterious effects of GM1 on survival or tumour response were found. There were no ≥G3 GM1-related adverse events. INTERPRETATION In patients with chronic OIPN, the use of GM1 reduces the severity of chronic OIPN compared with placebo. FUNDING This work was supported by clinical trial development fund of Tianjin Medical University Cancer Institute and Hospital (No.C1706).
Collapse
Affiliation(s)
- Likun Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Le Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Xia Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Yuchong Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - XinYi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Xingyun Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Zhiying Gao
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Laizhi Luo
- Guangzhou Medical University, Guangzhou Chest Hospital, Guangzhou, China
| | - Yuanquan Yang
- Division of medical oncology, the Ohio state university, Columbus, Ohio
| | - Xi Wu
- Cancer hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University, Tianjin, China
- Corresponding author. Yi Ba, Huanhuxi Road 22#, hexi district, Tianjin city, China. Tel.: 8602223340123-1051
| |
Collapse
|
27
|
Alselehdar SK, Chakraborty M, Chowdhury S, Alcalay RN, Surface M, Ledeen R. Subnormal GM1 in PBMCs: Promise for Early Diagnosis of Parkinson's Disease? Int J Mol Sci 2021; 22:11522. [PMID: 34768952 PMCID: PMC8583888 DOI: 10.3390/ijms222111522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
The fact that Parkinson's disease (PD) pathologies are well advanced in most PD patients by the time of clinical elucidation attests to the importance of early diagnosis. Our attempt to achieve this has capitalized on our previous finding that GM1 ganglioside is expressed at subnormal levels in virtually all tissues of sporadic PD (sPD) patients including blood cells. GM1 is present in most vertebrate cells, is especially abundant in neurons where it was shown essential for their effective functioning and long term viability. We have utilized peripheral blood mononuclear cells (PBMCs) which, despite their low GM1, we found to be significantly lower in sPD patients compared to age-matched healthy controls. To quantify GM1 (and GD1a) we used high performance thin-layer chromatography combined with cholera toxin B linked to horseradish peroxidase, followed by densitometric quantification. GM1 was also deficient in PBMCs from PD patients with mutations in the glucocerebrosidase gene (PD-GBA), apparently even lower than in sPD. Reasons are given why we believe these results obtained with patients manifesting fully developed PD will apply as well to PD patients in preclinical stages-a topic for future study. We also suggest that these findings point to a potential disease altering therapy for PD once the early diagnosis is established.
Collapse
Affiliation(s)
- Samar K. Alselehdar
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of NJ, Newark, NJ 07103, USA; (S.K.A.); (M.C.); (S.C.)
| | - Monami Chakraborty
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of NJ, Newark, NJ 07103, USA; (S.K.A.); (M.C.); (S.C.)
| | - Suman Chowdhury
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of NJ, Newark, NJ 07103, USA; (S.K.A.); (M.C.); (S.C.)
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.N.A.); (M.S.)
| | - Matthew Surface
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.N.A.); (M.S.)
| | - Robert Ledeen
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of NJ, Newark, NJ 07103, USA; (S.K.A.); (M.C.); (S.C.)
| |
Collapse
|
28
|
Ali AH, Wei W, Wang X. A review of milk gangliosides: Occurrence, biosynthesis, identification, and nutritional and functional significance. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science Faculty of Agriculture Zagazig University Zagazig 44511 Egypt
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Wei
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
29
|
Itokazu Y, Fuchigami T, Morgan JC, Yu RK. Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Mol Ther 2021; 29:3059-3071. [PMID: 34111562 DOI: 10.1016/j.ymthe.2021.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is characterized by Lewy bodies (composed predominantly of alpha-synuclein [aSyn]) and loss of pigmented midbrain dopaminergic neurons comprising the nigrostriatal pathway. Most PD patients show significant deficiency of gangliosides, including GM1, in the brain, and GM1 ganglioside appears to keep dopaminergic neurons functioning properly. Thus, supplementation of GM1 could potentially provide some rescuing effects. In this study, we demonstrate that intranasal infusion of GD3 and GM1 gangliosides reduces intracellular aSyn levels. GM1 also significantly enhances expression of tyrosine hydroxylase (TH) in the substantia nigra pars compacta of the A53T aSyn overexpressing mouse, following restored nuclear expression of nuclear receptor related 1 (Nurr1, also known as NR4A2), an essential transcription factor for differentiation, maturation, and maintenance of midbrain dopaminergic neurons. GM1 induces epigenetic activation of the TH gene, including augmentation of acetylated histones and recruitment of Nurr1 to the TH promoter region. Our data indicate that intranasal administration of gangliosides could reduce neurotoxic proteins and restore functional neurons via modulating chromatin status by nuclear gangliosides.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
30
|
Zhang Z, Liu W, Shen M, Ma X, Li R, Jin X, Bai H, Gao L. Protective Effect of GM1 Attenuates Hippocampus and Cortex Apoptosis After Ketamine Exposure in Neonatal Rat via PI3K/AKT/GSK3β Pathway. Mol Neurobiol 2021; 58:3471-3483. [PMID: 33733293 DOI: 10.1007/s12035-021-02346-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Ketamine is a widely used analgesic and anesthetic in obstetrics and pediatrics. Ketamine is known to promote neuronal death and cognitive dysfunction in the brains of humans and animals during development. Monosialotetrahexosyl ganglioside (GM1), a promoter of brain development, exerts neuroprotective effects in many neurological disease models. Here, we investigated the neuroprotective effect of GM1 and its potential underlying mechanism against ketamine-induced apoptosis of rats. Seven-day-old Sprague Dawley (SD) rats were randomly divided into the following four groups: (1) group C (control group: normal saline was injected intraperitoneally); (2) group K (ketamine); (3) group GM1 (GM1 was given before normal saline injection); and (4) GM1+K group (received GM1 30 min before continuous exposure to ketamine). Each group contained 15 rats, received six doses of ketamine (20 mg/kg), and was injected with saline every 90 min. The Morris water maze (MWM) test, the number of cortical and hippocampal cells, apoptosis, and AKT/GSK3β pathway were analyzed. To determine whether GM1 exerted its effect via the PI3K/AKT/GSK3β pathway, PC12 cells were incubated with LY294002, a PI3K inhibitor. We found that GM1 protected against ketamine-induced apoptosis in the hippocampus and cortex by reducing the expression of Bcl-2 and Caspase-3, and by increasing the expression of Bax. GM1 treatment increased the expression of p-AKT and p-GSK3β. However, the anti-apoptotic effect of GM1 was eliminated after inhibiting the phosphorylation of AKT. We showed that GM1 lessens ketamine-induced apoptosis in the hippocampus and cortex of young rats by regulating the PI3K/AKT/GSK3β pathway. Taken together, GM1 may be a potential preventive treatment for the neurotoxicity caused by continuous exposure to ketamine.
Collapse
Affiliation(s)
- Zhiheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China
| | - Wenhan Liu
- School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Meilun Shen
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China
| | - Xiangying Ma
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China
| | - Rouqian Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China
| | - Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China
| | - Hui Bai
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China.
| |
Collapse
|
31
|
Schneider JS. A critical role for GM1 ganglioside in the pathophysiology and potential treatment of Parkinson's disease. Glycoconj J 2021; 39:13-26. [PMID: 34037912 DOI: 10.1007/s10719-021-10002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is slowly progressing neurodegenerative disorder that affects millions of patients worldwide. While effective symptomatic therapies for PD exist, there is no currently available disease modifying agent to slow or stop the progression of the disease. Many years of research from various laboratories around the world have provided evidence in favor of the potential ability of GM1 ganglioside to be a disease modifying agent for PD. In this paper, information supporting the use of GM1 as a disease modifying therapeutic for PD is reviewed along with information concerning the role that deficiencies in GM1 ganglioside (and potentially other important brain gangliosides) may play in the pathogenesis of PD.
Collapse
Affiliation(s)
- J S Schneider
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, JAH 521, Philadelphia, PA, 19107, USA.
| |
Collapse
|
32
|
Liang N, Nečasová L, Zhao YY, Curtis JM. Advances in the separation of gangliosides by counter-current chromatography (CCC). J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122701. [PMID: 33957356 DOI: 10.1016/j.jchromb.2021.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Gangliosides play critical roles in the development of many progressive diseases. Due to their structural diversity, efficient methods are needed to separate individual gangliosides for studies of their functions, and for use as standards in the analysis of ganglioside mixtures. This proof-of-concept study reports a useful analytical-semi-preparative scale counter-current chromatography (CCC) enrichment of multiple ganglioside homologues of various species and classes at the milligram level. Since few individual ganglioside standards were available, this research aimed to achieve analytical-semi-preparative scale separation of gangliosides by differences in saccharide monomer compositions (classes), their arrangements (species), or ceramide compositions (homologues), using CCC. The solvent system composition, addition of solvent modifiers, and elution modes were all adjusted to separate porcine gangliosides, mainly GM1 (d36:1), GD1a (d36:1), GD1b (d36:1) and their (d38:1) homologues as a demonstration. The eluted compounds were analyzed by flow-injection analysis (FIA)-MS and LC-MS/MS. A two-phase solvent system, consisting of butanol/methyl t-butyl ether/acetonitrile/water at a ratio of 2:4:3:8 (v/v/v/v) with 0.5% (v/v) acetic acid added to the lower phase, was used to separate mg-levels of porcine gangliosides under dual-mode elution. The relative abundances of the above 6 gangliosides increased from 10 to 21% in the ganglioside extract to 55-73% in the collected fractions through the purification.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Lucie Nečasová
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Yuan-Yuan Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
33
|
Guo YL, Duan WJ, Lu DH, Ma XH, Li XX, Li Z, Bi W, Kurihara H, Liu HZ, Li YF, He RR. Autophagy-dependent removal of α-synuclein: a novel mechanism of GM1 ganglioside neuroprotection against Parkinson's disease. Acta Pharmacol Sin 2021; 42:518-528. [PMID: 32724177 PMCID: PMC8115090 DOI: 10.1038/s41401-020-0454-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022]
Abstract
GM1 ganglioside is particularly abundant in the mammalian central nervous system and has shown beneficial effects on neurodegenerative diseases. In this study, we investigated the therapeutic effect of GM1 ganglioside in experimental models of Parkinson's disease (PD) in vivo and in vitro. Mice were injected with MPTP (30 mg·kg-1·d-1, i.p.) for 5 days, resulting in a subacute model of PD. PD mice were treated with GM1 ganglioside (25, 50 mg·kg-1·d-1, i.p.) for 2 weeks. We showed that GM1 ganglioside administration substantially improved the MPTP-induced behavioral disturbance and increased the levels of dopamine and its metabolites in the striatal tissues. In the MPP+-treated SH-SY5Y cells and α-synuclein (α-Syn) A53T-overexpressing PC12 (PC12α-Syn A53T) cells, treatment with GM1 ganglioside (40 μM) significantly decreased α-Syn accumulation and alleviated mitochondrial dysfunction and oxidative stress. We further revealed that treatment with GM1 ganglioside promoted autophagy, evidenced by the autophagosomes that appeared in the substantia nigra of PD mice as well as the changes of autophagy-related proteins (LC3-II and p62) in the MPP+-treated SH-SY5Y cells. Cotreatment with the autophagy inhibitor 3-MA or bafilomycin A1 abrogated the in vivo and in vitro neuroprotective effects of GM1 ganglioside. Using GM1 ganglioside labeled with FITC fluorescent, we observed apparent colocalization of GM1-FITC and α-Syn as well as GM1-FITC and LC3 in PC12α-Syn A53T cells. GM1 ganglioside significantly increased the phosphorylation of autophagy regulatory proteins ATG13 and ULK1 in doxycycline-treated PC12α-Syn A53T cells and the MPP+-treated SH-SY5Y cells, which was inhibited by 3-MA. Taken together, this study demonstrates that the anti-PD role of GM1 ganglioside resulted from activation of autophagy-dependent α-Syn clearance.
Collapse
Affiliation(s)
- Yu-Lin Guo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dan-Hua Lu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Xiao Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhao Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei Bi
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hai-Zhi Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Integrated Chinese and Western Medicine Department, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconj J 2021; 38:101-117. [PMID: 33620588 PMCID: PMC7917043 DOI: 10.1007/s10719-021-09974-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
It is well over a century that glycosphingolipids are matter of interest in different fields of research. The hydrophilic oligosaccharide and the lipid moiety, the ceramide, both or separately have been considered in different moments as the crucial portion of the molecule, responsible for the role played by the glycosphingolipids associated to the plasma-membranes or to any other subcellular fraction. Glycosphingolipids are a family of compounds characterized by thousands of structures differing in both the oligosaccharide and the ceramide moieties, but among them, the nervous system monosialylated glycosphingolipid GM1, belonging to the group of gangliosides, has gained particular attention by a multitude of Scientists. In recent years, a series of studies have been conducted on the functional roles played by the hydrophilic part of GM1, its oligosaccharide, that we have named “OligoGM1”. These studies allowed to shed new light on the mechanisms underlying the properties of GM1 defining the role of the OligoGM1 in determining precise interactions with membrane proteins instrumental for the neuronal functions, leaving to the ceramide the role of correctly positioning the GM1 in the membrane crucial for the oligosaccharide-protein interactions. In this review we aim to report the recent studies on the cascade of events modulated by OligoGM1, as the bioactive portion of GM1, to support neuronal differentiation and trophism together with preclinical studies on its potential to modify the progression of Parkinson’s disease.
Collapse
|
35
|
Abstract
Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.
Collapse
|
36
|
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 2020; 14:572965. [PMID: 33117120 PMCID: PMC7574889 DOI: 10.3389/fnins.2020.572965] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Gangliosides are glycosphingolipids highly abundant in the nervous system, and carry most of the sialic acid residues in the brain. Gangliosides are enriched in cell membrane microdomains ("lipid rafts") and play important roles in the modulation of membrane proteins and ion channels, in cell signaling and in the communication among cells. The importance of gangliosides in the brain is highlighted by the fact that loss of function mutations in ganglioside biosynthetic enzymes result in severe neurodegenerative disorders, often characterized by very early or childhood onset. In addition, changes in the ganglioside profile (i.e., in the relative abundance of specific gangliosides) were reported in healthy aging and in common neurological conditions, including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), stroke, multiple sclerosis and epilepsy. At least in HD, PD and in some forms of epilepsy, experimental evidence strongly suggests a potential role of gangliosides in disease pathogenesis and potential treatment. In this review, we will summarize ganglioside functions that are crucial to maintain brain health, we will review changes in ganglioside levels that occur in major neurological conditions and we will discuss their contribution to cellular dysfunctions and disease pathogenesis. Finally, we will review evidence of the beneficial roles exerted by gangliosides, GM1 in particular, in disease models and in clinical trials.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Pharmacology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
37
|
Su Y, Huang J, Wang S, Unger JM, Arias-Fuenzalida J, Shi Y, Li J, Gao Y, Shi W, Wang X, Peng R, Xu F, An X, Xue C, Xia W, Hong R, Zhong Y, Lin Y, Huang H, Zhang A, Zhang L, Cai L, Zhang J, Yuan Z. The Effects of Ganglioside-Monosialic Acid in Taxane-Induced Peripheral Neurotoxicity in Patients with Breast Cancer: A Randomized Trial. J Natl Cancer Inst 2020; 112:55-62. [PMID: 31093677 DOI: 10.1093/jnci/djz086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/28/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Taxane-induced peripheral neuropathy (TIPN) is a dose-limiting adverse effect. Ganglioside-monosialic acid (GM1) functions as a neuroprotective factor. We assessed the effects of GM1 on the prevention of TIPN in breast cancer patients. METHODS We conducted a randomized, double-blind, placebo-controlled trial including 206 patients with early-stage breast cancer planning to receive taxane-based adjuvant chemotherapy with a follow-up of more than 1 year. Subjects were randomly assigned to receive GM1 (80 mg, day -1 to day 2) or placebo. The primary endpoint was the Functional Assessment of Cancer Treatment Neurotoxicity subscale score after four cycles of chemotherapy. Secondary endpoints included neurotoxicity evaluated by National Cancer Institute Common Terminology Criteria for Adverse Events Version 4.0 and the Eastern Cooperative Oncology Group neuropathy scale. All statistical tests were two-sided. RESULTS In 183 evaluable patients, the GM1 group reported better mean Functional Assessment of Cancer Treatment Neurotoxicity subscale scores than patients in the placebo group after four cycles of chemotherapy (43.27, 95% confidence interval [CI] = 43.05 to 43.49 vs 34.34, 95% CI = 33.78 to 34.89; mean difference = 8.96, 95% CI = 8.38 to 9.54, P < .001). Grade 1 or higher peripheral neurotoxicity in Common Terminology Criteria for Adverse Events v4.0 scale was statistically significantly lower in the GM1 group (14.3% vs 100.0%, P < .001). Additionally, the GM1 group had a statistically significantly lower incidence of grade 1 or higher neurotoxicity assessed by Eastern Cooperative Oncology Group neuropathy scale sensory neuropathy (26.4% vs 97.8%, P < .001) and motor neuropathy subscales (20.9% vs 81.5%, P < .001). CONCLUSIONS The treatment with GM1 resulted in a reduction in the severity and incidence of TIPN after four cycles of taxane-containing chemotherapy in patients with breast cancer.
Collapse
Affiliation(s)
- Yanhong Su
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jiajia Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Shusen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Joseph M Unger
- Department of Health Services Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Yanxia Shi
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jibin Li
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongxiang Gao
- Department of Medical Statistics and Epidemiology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Shi
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xinyue Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Roujun Peng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Fei Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xin An
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Cong Xue
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Wen Xia
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Ruoxi Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yongyi Zhong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Ying Lin
- Department of Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heng Huang
- Department of Breast Surgery, Lianjiang People's Hospital, Lianjiang, Guangdong, China
| | - Anqin Zhang
- Breast Disease Center, Guangdong Women and Children's Hospital, Guangzhou, Guangdong, China
| | - Lehong Zhang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jinxin Zhang
- Department of Medical Statistics and Epidemiology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
GM1 Oligosaccharide Crosses the Human Blood-Brain Barrier In Vitro by a Paracellular Route. Int J Mol Sci 2020; 21:ijms21082858. [PMID: 32325905 PMCID: PMC7215935 DOI: 10.3390/ijms21082858] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
Ganglioside GM1 (GM1) has been reported to functionally recover degenerated nervous system in vitro and in vivo, but the possibility to translate GM1′s potential in clinical settings is counteracted by its low ability to overcome the blood–brain barrier (BBB) due to its amphiphilic nature. Interestingly, the soluble and hydrophilic GM1-oligosaccharide (OligoGM1) is able to punctually replace GM1 neurotrophic functions alone, both in vitro and in vivo. In order to take advantage of OligoGM1 properties, which overcome GM1′s pharmacological limitations, here we characterize the OligoGM1 brain transport by using a human in vitro BBB model. OligoGM1 showed a 20-fold higher crossing rate than GM1 and time–concentration-dependent transport. Additionally, OligoGM1 crossed the barrier at 4 °C and in inverse transport experiments, allowing consideration of the passive paracellular route. This was confirmed by the exclusion of a direct interaction with the active ATP-binding cassette (ABC) transporters using the “pump out” system. Finally, after barrier crossing, OligoGM1 remained intact and able to induce Neuro2a cell neuritogenesis by activating the TrkA pathway. Importantly, these in vitro data demonstrated that OligoGM1, lacking the hydrophobic ceramide, can advantageously cross the BBB in comparison with GM1, while maintaining its neuroproperties. This study has improved the knowledge about OligoGM1′s pharmacological potential, offering a tangible therapeutic strategy.
Collapse
|
39
|
Neurotrophic effects of G M1 ganglioside, NGF, and FGF2 on canine dorsal root ganglia neurons in vitro. Sci Rep 2020; 10:5380. [PMID: 32214122 PMCID: PMC7096396 DOI: 10.1038/s41598-020-61852-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/04/2020] [Indexed: 01/26/2023] Open
Abstract
Dogs share many chronic morbidities with humans and thus represent a powerful model for translational research. In comparison to rodents, the canine ganglioside metabolism more closely resembles the human one. Gangliosides are components of the cell plasma membrane playing a role in neuronal development, intercellular communication and cellular differentiation. The present in vitro study aimed to characterize structural and functional changes induced by GM1 ganglioside (GM1) in canine dorsal root ganglia (DRG) neurons and interactions of GM1 with nerve growth factor (NGF) and fibroblast growth factor (FGF2) using immunofluorescence for several cellular proteins including neurofilaments, synaptophysin, and cleaved caspase 3, transmission electron microscopy, and electrophysiology. GM1 supplementation resulted in increased neurite outgrowth and neuronal survival. This was also observed in DRG neurons challenged with hypoxia mimicking neurodegenerative conditions due to disruptions of energy homeostasis. Immunofluorescence indicated an impact of GM1 on neurofilament phosphorylation, axonal transport, and synaptogenesis. An increased number of multivesicular bodies in GM1 treated neurons suggested metabolic changes. Electrophysiological changes induced by GM1 indicated an increased neuronal excitability. Summarized, GM1 has neurotrophic and neuroprotective effects on canine DRG neurons and induces functional changes. However, further studies are needed to clarify the therapeutic value of gangliosides in neurodegenerative diseases.
Collapse
|
40
|
Wu G, Lu ZH, Seo JH, Alselehdar SK, DeFrees S, Ledeen RW. Mice deficient in GM1 manifest both motor and non-motor symptoms of Parkinson's disease; successful treatment with synthetic GM1 ganglioside. Exp Neurol 2020; 329:113284. [PMID: 32165255 DOI: 10.1016/j.expneurol.2020.113284] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/11/2020] [Accepted: 03/08/2020] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disorder characterized by a variety of non-motor symptoms in addition to the well-recognized motor dysfunctions that have commanded primary interest. We previously described a new PD mouse model based on heterozygous disruption of the B4galnt1 gene leading to partial deficiency of the GM1 family of gangliosides that manifested several nigrostriatal neuropathological features of PD as well as movement impairment. We now show this mouse also suffers three non-motor symptoms characteristic of PD involving the gastrointestinal, sympathetic cardiac, and cerebral cognitive systems. Treatment of these animals with a synthetic form of GM1 ganglioside, produced by transfected E. coli, proved ameliorative of these symptoms as well as the motor defect. These findings further suggest subnormal GM1 to be a systemic defect constituting a major risk factor in sporadic PD and indicate the B4galnt1(+/-) (HT) mouse to be a true neuropathological model that recapitulates both motor and non-motor lesions of this condition.
Collapse
Affiliation(s)
- Gusheng Wu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Zi-Hua Lu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Joon Ho Seo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Samar K Alselehdar
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | | | - Robert W Ledeen
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
41
|
Harris A, Roseborough A, Mor R, Yeung KKC, Whitehead SN. Ganglioside Detection from Formalin-Fixed Human Brain Tissue Utilizing MALDI Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:479-487. [PMID: 31971797 DOI: 10.1021/jasms.9b00110] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is used to perform mass spectrometric analysis directly on biological samples providing visual and anatomical spatial information on molecules within tissues. A current obscuration of MALDI-IMS is that it is largely performed on fresh frozen tissue, whereas clinical tissue samples stored long-term are fixed in formalin, and the fixation process is thought to cause signal suppression for lipid molecules. Studies have shown that fresh frozen tissue sections applied with an ammonium formate (AF) wash prior to matrix application in the MALDI-IMS procedure display an increase in observed signal intensity and sensitivity for lipid molecules detected within the brain while maintaining the spatial distribution of molecules throughout the tissue. In this work, we investigate the viability of formalin-fixed tissue imaging in a clinical setting by comparing MALDI data of fresh frozen and postfixed rat brain samples, along with postfixed human brain samples washed with AF to assess the capabilities of ganglioside analysis in MALDI imaging of formalin-fixed tissue. Results herein demonstrate that MALDI-IMS spectra for gangliosides, including GM1, were significantly enhanced in fresh frozen rat brain, formalin-fixed rat brain, and formalin-fixed human brain samples through the use of an AF wash. Improvements in MALDI-IMS image quality were demonstrated, and the spatial distribution of molecules was retained. Results indicate that this method will allow for the analysis of gangliosides from formalin-fixed clinical samples, which can open additional avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Aaron Harris
- Department of Chemistry, University of Western Ontario, London, ON, Canada N6A 5B7
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada N6A 5C1
| | - A Roseborough
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Rahul Mor
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Ken K-C Yeung
- Department of Chemistry, University of Western Ontario, London, ON, Canada N6A 5B7
- Department of Biochemistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Shawn N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada N6A 5C1
| |
Collapse
|
42
|
Chiricozzi E, Lunghi G, Di Biase E, Fazzari M, Sonnino S, Mauri L. GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration. Int J Mol Sci 2020; 21:E868. [PMID: 32013258 PMCID: PMC7037093 DOI: 10.3390/ijms21030868] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Many species of ganglioside GM1, differing for the sialic acid and ceramide content, have been characterized and their physico-chemical properties have been studied in detail since 1963. Scientists were immediately attracted to the GM1 molecule and have carried on an ever-increasing number of studies to understand its binding properties and its neurotrophic and neuroprotective role. GM1 displays a well balanced amphiphilic behavior that allows to establish strong both hydrophobic and hydrophilic interactions. The peculiar structure of GM1 reduces the fluidity of the plasma membrane which implies a retention and enrichment of the ganglioside in specific membrane domains called lipid rafts. The dynamism of the GM1 oligosaccharide head allows it to assume different conformations and, in this way, to interact through hydrogen or ionic bonds with a wide range of membrane receptors as well as with extracellular ligands. After more than 60 years of studies, it is a milestone that GM1 is one of the main actors in determining the neuronal functions that allows humans to have an intellectual life. The progressive reduction of its biosynthesis along the lifespan is being considered as one of the causes underlying neuronal loss in aged people and severe neuronal decline in neurodegenerative diseases. In this review, we report on the main knowledge on ganglioside GM1, with an emphasis on the recent discoveries about its bioactive component.
Collapse
Affiliation(s)
| | | | | | | | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Milano, Italy; (E.C.)
| | | |
Collapse
|
43
|
van Kruining D, Luo Q, van Echten-Deckert G, Mielke MM, Bowman A, Ellis S, Oliveira TG, Martinez-Martinez P. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv Drug Deliv Rev 2020; 159:232-244. [PMID: 32360155 PMCID: PMC7665829 DOI: 10.1016/j.addr.2020.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in neurodegeneration, neuroinflammation, and psychiatric disorders and an imbalance in sphingolipid levels is associated with disease. Although early diagnosis and intervention of these disorders would clearly have favorable long-term outcomes, no diagnostic tests currently exist that can accurately identify people at risk. Reliable prognostic biomarkers that are easily accessible would be beneficial to determine therapy and treatment response in clinical trials. Recent advances in lipidomic investigation methods have greatly progressed the knowledge of sphingolipids in neurodegenerative and psychiatric disorders over the past decades although more longitudinal studies are needed to understand its exact role in these disorders to be used as potential tools in the clinic. In this review, we give an overview of the current knowledge of sphingolipids in neurodegenerative and psychiatric disorders and explore recent advances in investigation methods. Finally, the potential of sphingolipid metabolism products and signaling molecules as potential biomarkers for diagnosis, prognostic, or surrogate markers of treatment response is discussed.
Collapse
Affiliation(s)
- Daan van Kruining
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Qian Luo
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gerhild van Echten-Deckert
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, Bonn, Germany
| | - Michelle M Mielke
- Department of Health Sciences Research and Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Andrew Bowman
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Shane Ellis
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), ICVS/3B's, School of Medicine, University of Minho, Braga, Portugal
| | - Pilar Martinez-Martinez
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
44
|
Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson O, Hallett PJ, Platt FM. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. Mol Neurodegener 2019; 14:40. [PMID: 31703585 PMCID: PMC6842240 DOI: 10.1186/s13024-019-0339-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Haploinsufficiency in the Gaucher disease GBA gene, which encodes the lysosomal glucocerebrosidase GBA, and ageing represent major risk factors for developing Parkinson’s disease (PD). Recently, more than fifty other lysosomal storage disorder gene variants have been identified in PD, implicating lysosomal dysfunction more broadly as a key risk factor for PD. Despite the evidence of multiple lysosomal genetic risks, it remains unclear how sphingolipid hydrolase activities, other than GBA, are altered with ageing or in PD. Moreover, it is not fully known if levels of glycosphingolipid substrates for these enzymes change in vulnerable brain regions of PD. Finally, little is known about the levels of complex gangliosides in substantia nigra which may play a significant role in ageing and PD. Methods To study sphingolipid hydrolase activities and glycosphingolipid expression in ageing and in PD, two independent cohorts of human substantia nigra tissues were obtained. Fluorescent 4-methylumbelliferone assays were used to determine multiple enzyme activities. The lysosomal GBA and non-lysosomal GBA2 activities were distinguished using the inhibitor NB-DGJ. Sensitive and quantitative normal-phase HPLC was performed to study glycosphingolipid levels. In addition, glycosphingolipid levels in cerebrospinal fluid and serum were analysed as possible biomarkers for PD. Results The present study demonstrates, in two independent cohorts of human post-mortem substantia nigra, that sporadic PD is associated with deficiencies in multiple lysosomal hydrolases (e.g. α-galactosidase and β-hexosaminidase), in addition to reduced GBA and GBA2 activities and concomitant glycosphingolipid substrate accumulation. Furthermore, the data show significant reductions in levels of complex gangliosides (e.g. GM1a) in substantia nigra, CSF and serum in ageing, PD, and REM sleep behaviour disorder, which is a strong predictor of PD. Conclusions These findings conclusively demonstrate reductions in GBA activity in the parkinsonian midbrain, and for the first time, reductions in the activity of several other sphingolipid hydrolases. Furthermore, significant reductions were seen in complex gangliosides in PD and ageing. The diminished activities of these lysosomal hydrolases, the glycosphingolipid substrate accumulation, and the reduced levels of complex gangliosides are likely major contributors to the primary development of the pathology seen in PD and related disorders with age.
Collapse
Affiliation(s)
- Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Elizabeth B Moloney
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA
| | - Aarnoud C van der Spoel
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
45
|
Magistretti PJ, Geisler FH, Schneider JS, Li PA, Fiumelli H, Sipione S. Gangliosides: Treatment Avenues in Neurodegenerative Disease. Front Neurol 2019; 10:859. [PMID: 31447771 PMCID: PMC6691137 DOI: 10.3389/fneur.2019.00859] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023] Open
Abstract
Gangliosides are cell membrane components, most abundantly in the central nervous system (CNS) where they exert among others neuro-protective and -restorative functions. Clinical development of ganglioside replacement therapy for several neurodegenerative diseases was impeded by the BSE crisis in Europe during the 1990s. Nowadays, gangliosides are produced bovine-free and new pre-clinical and clinical data justify a reevaluation of their therapeutic potential in neurodegenerative diseases. Clinical experience is greatest with monosialo-tetrahexosyl-ganglioside (GM1) in the treatment of stroke. Fourteen randomized controlled trials (RCTs) in overall >2,000 patients revealed no difference in survival, but consistently superior neurological outcomes vs. placebo. GM1 was shown to attenuate ischemic neuronal injuries in diabetes patients by suppression of ERK1/2 phosphorylation and reduction of stress to the endoplasmic reticulum. There is level-I evidence from 5 RCTs of a significantly faster recovery with GM1 vs. placebo in patients with acute and chronic spinal cord injury (SCI), disturbance of consciousness after subarachnoid hemorrhage, or craniocerebral injuries due to closed head trauma. In Parkinson's disease (PD), two RCTs provided evidence of GM1 to be superior to placebo in improving motor symptoms and long-term to result in a slower than expected symptom progression, suggesting disease-modifying potential. In Alzheimer's disease (AD), the role of gangliosides has been controversial, with some studies suggesting a "seeding" role for GM1 in amyloid β polymerization into toxic forms, and others more recently suggesting a rather protective role in vivo. In Huntington's disease (HD), no clinical trials have been conducted yet. However, low GM1 levels observed in HD cells were shown to increase cell susceptibility to apoptosis. Accordingly, treatment with GM1 increased survival of HD cells in vitro and consistently ameliorated pathological phenotypes in several murine HD models, with effects seen at molecular, cellular, and behavioral level. Given that in none of the clinical trials using GM1 any clinically relevant safety issues have occurred to date, current data supports expanding GM1 clinical research, particularly to conditions with high, unmet medical need.
Collapse
Affiliation(s)
- Pierre J. Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Fred H. Geisler
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jay S. Schneider
- Parkinson's Disease Research Unit, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Simonetta Sipione
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
46
|
FTY720 Improves Behavior, Increases Brain Derived Neurotrophic Factor Levels and Reduces α-Synuclein Pathology in Parkinsonian GM2+/- Mice. Neuroscience 2019; 411:1-10. [PMID: 31129200 DOI: 10.1016/j.neuroscience.2019.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a progressive aging disorder that affects millions worldwide, thus, disease-modifying-therapies are urgently needed. PD pathology includes α-synuclein (aSyn) accumulation as synucleinopathy. Loss of GM1 gangliosides occurs in PD brain, which is modeled in GM2 synthase transgenic mice. GM2+/- mice have low, not absent GM1 and develop age-onset motor deficits, making them an excellent PD drug testing model. FTY720 (fingolimod) reduces synucleinopathy in A53T aSyn mice and motor dysfunction in 6-OHDA and rotenone PD models, but no one has tested FTY720 in mice that develop age-onset PD-like motor problems. We confirmed that GM2+/-mice had equivalent rotarod, hindlimb reflexes, and adhesive removal functions at 9 mo. From 11 mo, GM2+/- mice received oral FTY720 or vehicle 3x/week to 16 mo. As bladder problems occur in PD, we also assessed GM2+/- bladder function. This allowed us to demonstrate improved motor and bladder function in GM2+/- mice treated with FTY720. By immunoblot, FTY720 reduced levels of proNGF, a biomarker of bladder dysfunction. In humans with PD, arm swing becomes abnormal, and brachial plexus modulates arm swing. Ultrastructure of brachial plexus in wild type and GM2 transgenic mice confirmed abnormal myelination and axons in GM2 transgenics. FTY720 treated GM2+/- brachial plexus sustained myelin associated protein levels and reduced aggregated aSyn and PSer129 aSyn levels. FTY720 increases brain derived neurotrophic factor (BDNF) and we noted increased BDNF in GM2+/- brachial plexus and cerebellum, which contribute to rotarod performance. These findings provide further support for testing low dose FTY720 in patients with PD.
Collapse
|
47
|
Alecu I, Bennett SAL. Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson's Disease. Front Neurosci 2019; 13:328. [PMID: 31031582 PMCID: PMC6470291 DOI: 10.3389/fnins.2019.00328] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, the main pathological hallmark of which is the accumulation of α-synuclein (α-syn) and the formation of filamentous aggregates called Lewy bodies in the brainstem, limbic system, and cortical areas. Lipidomics is a newly emerging field which can provide fresh insights and new answers that will enhance our capacity for early diagnosis, tracking disease progression, predicting critical endpoints, and identifying risk in pre-symptomatic persons. In recent years, lipids have been implicated in many aspects of PD pathology. Biophysical and lipidomic studies have demonstrated that α-syn binds preferentially not only to specific lipid families but also to specific molecular species and that these lipid-protein complexes enhance its interaction with synaptic membranes, influence its oligomerization and aggregation, and interfere with the catalytic activity of cytoplasmic lipid enzymes and lysosomal lipases, thereby affecting lipid metabolism. The genetic link between aberrant lipid metabolism and PD is even more direct, with mutations in GBA and SMPD1 enhancing PD risk in humans and loss of GALC function increasing α-syn aggregation and accumulation in experimental murine models. Moreover, a number of lipidomic studies have reported PD-specific lipid alterations in both patient brains and plasma, including alterations in the lipid composition of lipid rafts in the frontal cortex. A further aspect of lipid dysregulation promoting PD pathogenesis is oxidative stress and inflammation, with proinflammatory lipid mediators such as platelet activating factors (PAFs) playing key roles in arbitrating the progressive neurodegeneration seen in PD linked to α-syn intracellular trafficking. Lastly, there are a number of genetic risk factors of PD which are involved in normal lipid metabolism and function. Genes such as PLA2G6 and SCARB2, which are involved in glycerophospholipid and sphingolipid metabolism either directly or indirectly are associated with risk of PD. This review seeks to describe these facets of metabolic lipid dysregulation as they relate to PD pathology and potential pathomechanisms involved in disease progression, while highlighting incongruous findings and gaps in knowledge that necessitate further research.
Collapse
Affiliation(s)
- Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Steffany A. L. Bennett
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
48
|
Chiricozzi E, Biase ED, Maggioni M, Lunghi G, Fazzari M, Pomè DY, Casellato R, Loberto N, Mauri L, Sonnino S. GM1 promotes TrkA-mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. J Neurochem 2019; 149:231-241. [PMID: 30776097 DOI: 10.1111/jnc.14685] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
Recently, we highlighted that the ganglioside GM1 promotes neuroblastoma cells differentiation by activating the TrkA receptor through the formation of a TrkA-GM1 oligosaccharide complex at the cell surface. To study the TrkA-GM1 interaction, we synthesized two radioactive GM1 derivatives presenting a photoactivable nitrophenylazide group at the end of lipid moiety, 1 or at position 6 of external galactose, 2; and a radioactive oligosaccharide portion of GM1 carrying the nitrophenylazide group at position 1 of glucose, 3. The three compounds were singly administered to cultured neuroblastoma Neuro2a cells under established conditions that allow cell surface interactions. After UV activation of photoactivable compounds, the proteins were analyzed by PAGE separation. The formation of cross-linked TrkA-GM1 derivatives complexes was identified by both radioimaging and immunoblotting. Results indicated that the administration of compounds 2 and 3, carrying the photoactivable group on the oligosaccharide, led to the formation of a radioactive TrkA complex, while the administration of compound 1 did not. This underlines that the TrkA-GM1 interaction directly involves the GM1 oligosaccharide, but not the ceramide. To better understand how GM1 relates to the TrkA, we isolated plasma membrane lipid rafts. As expected, GM1 was found in the rigid detergent-resistant fractions, while TrkA was found as a detergent soluble fraction component. These results suggest that TrkA and GM1 belong to separate membrane domains: probably TrkA interacts by 'flopping' down its extracellular portion onto the membrane, approaching its interplay site to the oligosaccharide portion of GM1.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Riccardo Casellato
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| |
Collapse
|
49
|
van Echten-Deckert G, Alam S. Sphingolipid metabolism - an ambiguous regulator of autophagy in the brain. Biol Chem 2019; 399:837-850. [PMID: 29908127 DOI: 10.1515/hsz-2018-0237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023]
Abstract
In mammals, the brain exhibits the highest lipid content in the body next to adipose tissue. Complex sphingolipids are characteristic compounds of neuronal membranes. Vital neural functions including information flux and transduction occur along these membranes. It is therefore not surprising that neuronal function and survival is dependent on the metabolism of these lipids. Autophagy is a critical factor for the survival of post-mitotic neurons. On the one hand, it fulfils homeostatic and waste-recycling functions and on the other hand, it constitutes an effective strategy to eliminate harmful proteins that cause neuronal death. A growing number of experimental data indicate that several sphingolipids as well as enzymes catalyzing their metabolic transformations efficiently but very differently affect neuronal autophagy and hence survival. This review attempts to elucidate the roles and mechanisms of sphingolipid metabolism with regard to the regulation of autophagy and its consequences for brain physiology and pathology.
Collapse
Affiliation(s)
- Gerhild van Echten-Deckert
- LIMES Institute, Unit Membrane Biology and Lipid Biochemistry, Kekulé-Institute of the University Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Shah Alam
- LIMES Institute, Unit Membrane Biology and Lipid Biochemistry, Kekulé-Institute of the University Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
50
|
Zhang W, Krafft PR, Wang T, Zhang JH, Li L, Tang J. Pathophysiology of Ganglioside GM1 in Ischemic Stroke: Ganglioside GM1: A Critical Review. Cell Transplant 2019; 28:657-661. [PMID: 30666888 PMCID: PMC6686431 DOI: 10.1177/0963689718822782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ganglioside GM1 is a member of the ganglioside family which has been used in many countries and is thought of as a promising alternative treatment for preventing several neurological diseases, including cerebral ischemic injury. The therapeutic effects of GM1 have been proved both in neonates and in adults following ischemic brain damage; however, its clinical efficacy in patients with ischemic stroke is still uncertain. This review examines the recent knowledge of the neuroprotective properties of GM1 in ischemic stroke, collected in the past two decades. We conclude that GM1 may have potential for stroke treatment, although we need to be cautious in respect of its complications.
Collapse
Affiliation(s)
- Wenchao Zhang
- 1 Department of Anesthesiology, Beijing Jishuitan Hospital, People's Republic of China
| | - Paul R Krafft
- 2 Department of Neurological Surgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Tianlong Wang
- 3 Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - John H Zhang
- 4 Department of Physiology & Pharmacology, Loma Linda University School of Medicine, USA.,5 Department of Anesthesiology, Loma Linda University School of Medicine, USA
| | - Li Li
- 6 Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, People's Republic of China.,Both the authors contributed equally to this work
| | - Jiping Tang
- 4 Department of Physiology & Pharmacology, Loma Linda University School of Medicine, USA.,Both the authors contributed equally to this work
| |
Collapse
|