1
|
Lan X, Ao WL, Li J. Preimplantation genetic testing as a preventive strategy for the transmission of mitochondrial DNA disorders. Syst Biol Reprod Med 2024; 70:38-51. [PMID: 38323618 DOI: 10.1080/19396368.2024.2306389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial diseases are distinct types of metabolic and/or neurologic abnormalities that occur as a consequence of dysfunction in oxidative phosphorylation, affecting several systems in the body. There is no effective treatment modality for mitochondrial disorders so far, emphasizing the clinical significance of preventing the inheritance of these disorders. Various reproductive options are available to reduce the probability of inheriting mitochondrial disorders, including in vitro fertilization (IVF) using donated oocytes, preimplantation genetic testing (PGT), and prenatal diagnosis (PND), among which PGT not only makes it possible for families to have genetically-owned children but also PGT has the advantage that couples do not have to decide to terminate the pregnancy if a mutation is detected in the fetus. PGT for mitochondrial diseases originating from nuclear DNA includes analyzing the nuclear genome for the presence or absence of corresponding mutations. However, PGT for mitochondrial disorders arising from mutations in mitochondrial DNA (mtDNA) is more intricate, due to the specific characteristics of mtDNA such as multicopy nature, heteroplasmy phenomenon, and exclusive maternal inheritance. Therefore, the present review aims to discuss the utility and challenges of PGT as a preventive approach to inherited mitochondrial diseases caused by mtDNA mutations.
Collapse
Affiliation(s)
- Xinpeng Lan
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wu Liji Ao
- College of Mongolian Medicine and Pharmacy, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Ji Li
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Record CJ, Pipis M, Skorupinska M, Blake J, Poh R, Polke JM, Eggleton K, Nanji T, Zuchner S, Cortese A, Houlden H, Rossor AM, Laura M, Reilly MM. Whole genome sequencing increases the diagnostic rate in Charcot-Marie-Tooth disease. Brain 2024; 147:3144-3156. [PMID: 38481354 PMCID: PMC11370804 DOI: 10.1093/brain/awae064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/04/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common and genetically heterogeneous inherited neurological diseases, with more than 130 disease-causing genes. Whole genome sequencing (WGS) has improved diagnosis across genetic diseases, but the diagnostic impact in CMT is yet to be fully reported. We present the diagnostic results from a single specialist inherited neuropathy centre, including the impact of WGS diagnostic testing. Patients were assessed at our specialist inherited neuropathy centre from 2009 to 2023. Genetic testing was performed using single gene testing, next-generation sequencing targeted panels, research whole exome sequencing and WGS and, latterly, WGS through the UK National Health Service. Variants were assessed using the American College of Medical Genetics and Genomics and Association for Clinical Genomic Science criteria. Excluding patients with hereditary ATTR amyloidosis, 1515 patients with a clinical diagnosis of CMT and related disorders were recruited. In summary, 621 patients had CMT1 (41.0%), 294 CMT2 (19.4%), 205 intermediate CMT (CMTi, 13.5%), 139 hereditary motor neuropathy (HMN, 9.2%), 93 hereditary sensory neuropathy (HSN, 6.1%), 38 sensory ataxic neuropathy (2.5%), 72 hereditary neuropathy with liability to pressure palsies (HNPP, 4.8%) and 53 'complex' neuropathy (3.5%). Overall, a genetic diagnosis was reached in 76.9% (1165/1515). A diagnosis was most likely in CMT1 (96.8%, 601/621), followed by CMTi (81.0%, 166/205) and then HSN (69.9%, 65/93). Diagnostic rates remained less than 50% in CMT2, HMN and complex neuropathies. The most common genetic diagnosis was PMP22 duplication (CMT1A; 505/1165, 43.3%), then GJB1 (CMTX1; 151/1165, 13.0%), PMP22 deletion (HNPP; 72/1165, 6.2%) and MFN2 (CMT2A; 46/1165, 3.9%). We recruited 233 cases to the UK 100 000 Genomes Project (100KGP), of which 74 (31.8%) achieved a diagnosis; 28 had been otherwise diagnosed since recruitment, leaving a true diagnostic rate of WGS through the 100KGP of 19.7% (46/233). However, almost half of the solved cases (35/74) received a negative report from the study, and the diagnosis was made through our research access to the WGS data. The overall diagnostic uplift of WGS for the entire cohort was 3.5%. Our diagnostic rate is the highest reported from a single centre and has benefitted from the use of WGS, particularly access to the raw data. However, almost one-quarter of all cases remain unsolved, and a new reference genome and novel technologies will be important to narrow the 'diagnostic gap'.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Menelaos Pipis
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Julian Blake
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Kelly Eggleton
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Tina Nanji
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
3
|
Armirola-Ricaurte C, Morant L, Adant I, Hamed SA, Pipis M, Efthymiou S, Amor-Barris S, Atkinson D, Van de Vondel L, Tomic A, de Vriendt E, Zuchner S, Ghesquiere B, Hanna M, Houlden H, Lunn MP, Reilly MM, Rasic VM, Jordanova A. Biallelic variants in COX18 cause a mitochondrial disorder primarily manifesting as peripheral neuropathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.03.24309787. [PMID: 39006432 PMCID: PMC11245062 DOI: 10.1101/2024.07.03.24309787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Defects in mitochondrial dynamics are a common cause of Charcot-Marie-Tooth disease (CMT), while primary deficiencies in the mitochondrial respiratory chain (MRC) are rare and atypical for this etiology. This study aims to report COX18 as a novel CMT-causing gene. This gene encodes an assembly factor of mitochondrial Complex IV (CIV) that translocates the C-terminal tail of MTCO2 across the mitochondrial inner membrane. Exome sequencing was performed in four affected individuals. The patients and available family members underwent thorough neurological and electrophysiological assessment. The impact of one of the identified variants on splicing, protein levels, and mitochondrial bioenergetics was investigated in patient-derived lymphoblasts. The functionality of the mutant protein was assessed using a Proteinase K protection assay and immunoblotting. Neuronal relevance of COX18 was assessed in a Drosophila melanogaster knockdown model. Exome sequencing coupled with homozygosity mapping revealed a homozygous splice variant c.435-6A>G in COX18 in two siblings with early-onset progressive axonal sensory-motor peripheral neuropathy. By querying external databases, we identified two additional families with rare deleterious biallelic variants in COX18 . All affected individuals presented with axonal CMT and some patients also exhibited central nervous system symptoms, such as dystonia and spasticity. Functional characterization of the c.435-6A>G variant demonstrated that it leads to the expression of an alternative transcript that lacks exon 2, resulting in a stable but defective COX18 isoform. The mutant protein impairs CIV assembly and activity, leading to a reduction in mitochondrial membrane potential. Downregulation of the COX18 homolog in Drosophila melanogaster displayed signs of neurodegeneration, including locomotor deficit and progressive axonal degeneration of sensory neurons. Our study presents genetic and functional evidence that supports COX18 as a newly identified gene candidate for autosomal recessive axonal CMT with or without central nervous system involvement. These findings emphasize the significance of peripheral neuropathy within the spectrum of primary mitochondrial disorders and the role of mitochondrial CIV in the development of CMT. Our research has important implications for the diagnostic workup of CMT patients.
Collapse
|
4
|
Armirola-Ricaurte C, Zonnekein N, Koutsis G, Amor-Barris S, Pelayo-Negro AL, Atkinson D, Efthymiou S, Turchetti V, Dinopoulos A, Garcia A, Karakaya M, Moris G, Polat AI, Yiş U, Espinos C, Van de Vondel L, De Vriendt E, Karadima G, Wirth B, Hanna M, Houlden H, Berciano J, Jordanova A. Alternative splicing expands the clinical spectrum of NDUFS6-related mitochondrial disorders. Genet Med 2024; 26:101117. [PMID: 38459834 PMCID: PMC11180951 DOI: 10.1016/j.gim.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
PURPOSE We describe 3 families with Charcot-Marie-Tooth neuropathy (CMT), harboring a homozygous NDUFS6 NM_004553.6:c.309+5G>A variant previously linked to fatal Leigh syndrome. We aimed to characterize clinically and molecularly the newly identified patients and understand the mechanism underlying their milder phenotype. METHODS The patients underwent extensive clinical examinations. Exome sequencing was done in 4 affected individuals. The functional effect of the c.309+5G>A variant was investigated in patient-derived EBV-transformed lymphoblasts at the complementary DNA, protein, and mitochondrial level. Alternative splicing was evaluated using complementary DNA long-read sequencing. RESULTS All patients presented with early-onset, slowly progressive axonal CMT, and nystagmus; some exhibited additional central nervous system symptoms. The c.309+5G>A substitution caused the expression of aberrantly spliced transcripts and negligible levels of the canonical transcript. Immunoblotting showed reduced levels of mutant isoforms. No detectable defects in mitochondrial complex stability or bioenergetics were found. CONCLUSION We expand the clinical spectrum of NDUFS6-related mitochondrial disorders to include axonal CMT, emphasizing the clinical and pathophysiologic overlap between these 2 clinical entities. This work demonstrates the critical role that alternative splicing may play in modulating the severity of a genetic disorder, emphasizing the need for careful consideration when interpreting splice variants and their implications on disease prognosis.
Collapse
Affiliation(s)
- Camila Armirola-Ricaurte
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Noortje Zonnekein
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Silvia Amor-Barris
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ana Lara Pelayo-Negro
- University Hospital Marqués de Valdecilla (IFIMAV), University of Cantabria, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Derek Atkinson
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Argyris Dinopoulos
- 3rd Department of Pediatrics, Attiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonio Garcia
- Service of Clinical Neurophysiology, University Hospital Marqués de Valdecilla, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - German Moris
- Service of Neurology, University Hospital Central de Asturias, University of Oviedo, Oviedo, Spain
| | - Ayşe Ipek Polat
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Uluç Yiş
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Carmen Espinos
- Rare Neurodegenerative Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), CIBER on Rare Diseases (CIBERER), Valencia, Spain
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Els De Vriendt
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Michael Hanna
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Jose Berciano
- University Hospital Marqués de Valdecilla (IFIMAV), University of Cantabria, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Albena Jordanova
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
5
|
Pi S, Li Q, Li J, Long H, Xiao B. Clinical Reasoning: A 14-Year-Old Girl With Reversible Peripheral Neuropathy and Encephalopathy. Neurology 2023; 101:e665-e671. [PMID: 37076303 PMCID: PMC10424836 DOI: 10.1212/wnl.0000000000207270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/22/2023] [Indexed: 04/21/2023] Open
Abstract
A 14-year-old girl presented with acute ascending, symmetric numbness, and flaccid paralysis 3 weeks after a suspected gastrointestinal infection. She had experienced anorexia since this gastrointestinal episode. EMG showed a sensorimotor axonal polyneuropathy. Routine CSF analysis and serum-specific antibodies (antiganglioside and node of Ranvier-associated antibodies) were all negative. Laboratory investigations for possible etiologies revealed only mild metabolic perturbations. During her hospitalization, she developed mild cognitive deficits. Brain MRI showed bilateral symmetric basal ganglia lesions with hyperintensity on T2 fluid-attenuated inversion recovery, diffusion-weighted imaging hyperintensity, and corresponding apparent diffusion coefficient hypointensity, but without contrast enhancement. A more thorough and detailed history indicated exercise intolerance, and specific examinations subsequently revealed an underlying etiology. This case presentation discusses specific etiology of an acute-onset diffuse and symmetric neuropathy after an acquired injury in a teenager, emphasizing the need of a broad differential diagnosis in this condition.
Collapse
Affiliation(s)
- Shanyu Pi
- From the Department of Neurology (S.P., Q.L., J.L., H.L., B.X.), and National Clinical Research Center for Geriatric Disorders (S.P., Q.L., J.L., H.L., B.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuxiang Li
- From the Department of Neurology (S.P., Q.L., J.L., H.L., B.X.), and National Clinical Research Center for Geriatric Disorders (S.P., Q.L., J.L., H.L., B.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Li
- From the Department of Neurology (S.P., Q.L., J.L., H.L., B.X.), and National Clinical Research Center for Geriatric Disorders (S.P., Q.L., J.L., H.L., B.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongyu Long
- From the Department of Neurology (S.P., Q.L., J.L., H.L., B.X.), and National Clinical Research Center for Geriatric Disorders (S.P., Q.L., J.L., H.L., B.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Bo Xiao
- From the Department of Neurology (S.P., Q.L., J.L., H.L., B.X.), and National Clinical Research Center for Geriatric Disorders (S.P., Q.L., J.L., H.L., B.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Magy L, Duchesne M, Frachet S, Vallat JM. Neuropatie periferiche. Neurologia 2023. [DOI: 10.1016/s1634-7072(22)47358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
7
|
Jauregui AM, Cubero Cortés ZM, Meehan SD, Bhattacharya SK. Isolation of Mitochondrial Lipids and Mass Spectrometric Analysis. Methods Mol Biol 2023; 2625:1-6. [PMID: 36653628 DOI: 10.1007/978-1-0716-2966-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mitochondria participate in many important metabolic processes in the body. The lipid profile of mitochondria is especially important in membrane regulation and pathway signaling. The isolation and study of these lipids can provide unparalleled information about the mechanisms behind these cellular processes. In this chapter, we describe a protocol to isolate mitochondrial lipids from homogenized murine optic nerves. The lipid extraction was performed using butanol-methanol (BUME) and subsequently analyzed using liquid chromatography-mass spectrometry. Further analysis of the raw data was conducted using LipidSearch™ and MetaboAnalyst 4.0.
Collapse
Affiliation(s)
- Alexa M Jauregui
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Sean D Meehan
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, USA.
- Miami Integrative Metabolomics Research Center, Miami, FL, USA.
- University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
8
|
Masingue M, Fernández-Eulate G, Debs R, Tard C, Labeyrie C, Leonard-Louis S, Dhaenens CM, Masson MA, Latour P, Stojkovic T. Strategy for genetic analysis in hereditary neuropathy. Rev Neurol (Paris) 2023; 179:10-29. [PMID: 36566124 DOI: 10.1016/j.neurol.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.
Collapse
Affiliation(s)
- M Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - G Fernández-Eulate
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - R Debs
- Service de neurophysiologie, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Tard
- CHU de Lille, clinique neurologique, centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, 59037 Lille cedex, France
| | - C Labeyrie
- Service de neurologie, hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - S Leonard-Louis
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C-M Dhaenens
- Université de Lille, Inserm, CHU de Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - M A Masson
- Inserm U1127, Paris Brain Institute, ICM, Sorbonne Université, CNRS UMR 7225, hôpital Pitié-Salpêtrière, Paris, France
| | - P Latour
- Service de biochimie biologie moléculaire, CHU de Lyon, centre de biologie et pathologie Est, 69677 Bron cedex, France
| | - T Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
9
|
Kakkar C, Gupta S, Kakkar S, Gupta K, Saggar K. Spectrum of magnetic resonance abnormalities in leigh syndrome with emphasis on correlation of diffusion-weighted imaging findings with clinical presentation. Ann Afr Med 2022; 21:426-431. [PMID: 36412346 PMCID: PMC9850896 DOI: 10.4103/aam.aam_160_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Leigh syndrome (LS) is a progressive neurodegenerative disorder of infancy/early childhood secondary to mitochondrial dysfunction. Imaging plays a pivotal role in the diagnosis of LS with certain typical magnetic resonance imaging (MRI) findings considered as a part of diagnostic criteria. We appraised various MRI findings on conventional MRI sequences and also assessed potential correlation between diffusion abnormalities and patient's clinical presentation. Aims Our aim was to describe various patterns of central nervous system involvement in LS and to assess the correlation of diffusion-weighted imaging abnormalities with clinical presentation. Settings and Design The design of the study was retrospective comprising 8 children with LS who had MRI between years 2014 and 2019. Subjects and Methods Eight children between the age group of 4 months 8 years with LS based on clinical presentation, elevated lactate levels in CSF/Blood, and typical MRI findings were included in the study. Results and Conclusions Brainstem was involved all (100%) patients while basal ganglia was affected in 5 (62.5%) children. Cerebral white matter involvement was present in 3 (37.5%) children, cerebellar in 2 (25%) children while spinal, corpus callosum, and thalamic involvement were observed in one (12.5%) patient each. Diffusion restriction was observed in 6 children, all of them presented with altered sensorium. Conventional MRI serves as an excellent tool for the diagnosis of LS in children with clinical suspicion. Acute encephalopathy frequently presents with diffusion restriction corresponding to active lesions. Hence, diffusion restriction on MRI predicts the activity of lesions in patients with LS.
Collapse
Affiliation(s)
- Chandan Kakkar
- Department of Radiodiagnosis, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Seema Gupta
- Department of Anatomy, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Shruti Kakkar
- Department of Pediatrics, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Kamini Gupta
- Department of Radiodiagnosis, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Kavita Saggar
- Department of Radiodiagnosis, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| |
Collapse
|
10
|
Lang-Orsini M, Gonzalez-Perez P. Neuropathic Pain as Main Manifestation of POLG-Related Disease: A Case Report. Front Neurol 2022; 13:846110. [PMID: 35350396 PMCID: PMC8957867 DOI: 10.3389/fneur.2022.846110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
Mutations in nuclear-encoded genes that are involved in mitochondrial DNA replication and maintenance (e.g., POLG) have been associated with chronic progressive external ophthalmoplegia (CPEO) phenotype. These nuclear genome mutations may lead to multiple mitochondrial DNA deletions or mitochondrial DNA depletion. On the other hand, primary genetic defects of mitochondrial DNA (such as single large-scale deletion or point mutations) have also been associated with the CPEO phenotype. Chronic progressive external ophthalmoplegia (CPEO) may be a manifestation of specific syndromes that, when clinically recognized, prompt clinicians to investigate specific genetic defects. Thus, CPEO, as part of Kearns Sayre syndrome, suggests the presence of a large-scale deletion of mitochondrial DNA. However, in pure CPEO or CPEO plus phenotypes, it is more difficult to know whether causative genetic defects affect the nuclear or mitochondrial DNA. Here, we present a patient with a long-standing history of CPEO plus phenotype, in whom the sequencing of mitochondrial DNA from skeletal muscle was normal, and no other genetic defect was suspected at first. At the time of our evaluation, the presence of polyneuropathy and neuropathic pain prompted us to investigate nuclear genetic defects and, specifically, mutations in the POLG gene. Thus, the sequencing of the POLG gene revealed p.Thr251Ile and p.Pro587Leu mutations in one allele, and p.Ala467Thr mutation in another allele. Although one would expect that mutations in POLG lead to multiple mitochondrial DNA deletions or depletion (loss of copies), the absence of mitochondrial DNA abnormalities in tissue may be explained by heteroplasmy, a lack or no significant involvement of biopsied tissue, or a sampling bias. So, the absence of secondary mitochondrial DNA alterations should not discourage clinicians from further investigating mutations in nuclear-encoded genes. Lastly, mitochondrial point mutations and single mitochondrial DNA deletions very rarely cause CPEO associated with polyneuropathy and neuropathic pain, and POLG-related disease should be considered in this scenario, instead.
Collapse
Affiliation(s)
- Melanie Lang-Orsini
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paloma Gonzalez-Perez
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Paloma Gonzalez-Perez
| |
Collapse
|
11
|
Rinwa P, Calvo-Enrique L, Zhang MD, Nyengaard JR, Karlsson P, Ernfors P. Demise of nociceptive Schwann cells causes nerve retraction and pain hyperalgesia. Pain 2021; 162:1816-1827. [PMID: 33979318 PMCID: PMC8120683 DOI: 10.1097/j.pain.0000000000002169] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
ABSTRACT Recent findings indicate that nociceptive nerves are not "free", but similar to touch and pressure sensitive nerves, terminate in an end-organ in mice. This sensory structure consists of the nociceptive nerves and specialized nociceptive Schwann cells forming a mesh-like organ in subepidermis with pain transduction initiated at both these cellular constituents. The intimate relation of nociceptive nerves with nociceptive Schwann cells in mice raises the question whether defects in nociceptive Schwann cells can by itself contribute to pain hyperalgesia, nerve retraction, and peripheral neuropathy. We therefore examined the existence of nociceptive Schwann cells in human skin and their possible contribution to neuropathy and pain hyperalgesia in mouse models. Similar to mouse, human skin contains SOX10+/S100B+/AQP1+ Schwann cells in the subepidermal border that have extensive processes, which are intimately associated with nociceptive nerves projecting into epidermis. The ablation of nociceptive Schwann cells in mice resulted in nerve retraction and mechanical, cold, and heat hyperalgesia. Conversely, ablating the nociceptive nerves led to a retraction of epidermal Schwann cell processes, changes in nociceptive Schwann cell soma morphology, heat analgesia, and mechanical hyperalgesia. Our results provide evidence for a nociceptive sensory end-organ in the human skin and using animal models highlight the interdependence of the nerve and the nociceptive Schwann cell. Finally, we show that demise of nociceptive Schwann cells is sufficient to cause neuropathic-like pain in the mouse.
Collapse
Affiliation(s)
- Puneet Rinwa
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Calvo-Enrique
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jens Randel Nyengaard
- Department of Clinical Medicine—Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus, Denmark
| | - Páll Karlsson
- Department of Clinical Medicine—Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Bruhn H, Samuelsson K, Schober FA, Engvall M, Lesko N, Wibom R, Nennesmo I, Calvo-Garrido J, Press R, Stranneheim H, Freyer C, Wedell A, Wredenberg A. Novel Mutation m.10372A>G in MT-ND3 Causing Sensorimotor Axonal Polyneuropathy. Neurol Genet 2021; 7:e566. [PMID: 33732874 PMCID: PMC7962437 DOI: 10.1212/nxg.0000000000000566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/12/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the pathogenicity of a novel MT-ND3 mutation identified in a patient with adult-onset sensorimotor axonal polyneuropathy and report the clinical, morphologic, and biochemical findings. METHODS Clinical assessments and morphologic and biochemical investigations of skeletal muscle and cultured myoblasts from the patient were performed. Whole-genome sequencing (WGS) of DNA from skeletal muscle and Sanger sequencing of mitochondrial DNA (mtDNA) from both skeletal muscle and cultured myoblasts were performed. Heteroplasmic levels of mutated mtDNA in different tissues were quantified by last-cycle hot PCR. RESULTS Muscle showed ragged red fibers, paracrystalline inclusions, a significant reduction in complex I (CI) respiratory chain (RC) activity, and decreased adenosine triphosphate (ATP) production for all substrates used by CI. Sanger sequencing of DNA from skeletal muscle detected a unique previously unreported heteroplasmic mutation in mtDNA encoded MT-ND3, coding for a subunit in CI. WGS confirmed the mtDNA mutation but did not detect any other mutation explaining the disease. Cultured myoblasts, however, did not carry the mutation, and RC activity measurements in myoblasts were normal. CONCLUSIONS We report a case with adult-onset sensorimotor axonal polyneuropathy caused by a novel mtDNA mutation in MT-ND3. Loss of heteroplasmy in blood, cultured fibroblasts and myoblasts from the patient, and normal measurement of RC activity of the myoblasts support pathogenicity of the mutation. These findings highlight the importance of mitochondrial investigations in patients presenting with seemingly idiopathic polyneuropathy, especially if muscle also is affected.
Collapse
Affiliation(s)
- Helene Bruhn
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | - Kristin Samuelsson
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | - Florian A. Schober
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | - Nicole Lesko
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | - Inger Nennesmo
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | - Javier Calvo-Garrido
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | - Rayomand Press
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | - Henrik Stranneheim
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | - Christoph Freyer
- From the Department of Medical Biochemistry and Biophysics (H.B., R.W., C.F., A. Wredenberg), Karolinska Institutet; Centre for Inherited Metabolic Diseases (H.B., R.W., C.F., M.E., N.L., H.S., A. Wedell, A. Wredenberg), Karolinska University Hospital; Department of Clinical Neuroscience (K.S., R.P.), Karolinska Institutet; Department of Neurology (K.S., R.P.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (F.A.S., M.E., N.L., J.C.-G., H.S., A. Wedell), Karolinska Institutet; Department of Pathology (I.N.), Karolinska University Hospital; and Science for Life Laboratory (H.S.), Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
13
|
Lu JQ, Tarnopolsky MA. Mitochondrial neuropathy and neurogenic features in mitochondrial myopathy. Mitochondrion 2020; 56:52-61. [PMID: 33220502 DOI: 10.1016/j.mito.2020.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/25/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023]
Abstract
Mitochondrial diseases (MIDs) involve multiple organs including peripheral nerves and skeletal muscle. Mitochondrial neuropathy (MN) and mitochondrial myopathy (MM) are commonly associated and linked at the neuromuscular junction (NMJ). Herein we review MN in connection with neurogenic features of MM, and pathological evidence for the involvement of the peripheral nerve and NMJ in MID patients traditionally assumed to have predominantly MM. MN is not uncommon, but still likely under-reported, and muscle biopsies of MM commonly exhibit neurogenic features. Pathological examination remains the gold standard to assess the nerve and muscle changes in patients with MIDs. Ultrastructural studies by electron microscopy are often necessary to fully characterize the pathology of mitochondrial cytopathy in MN and MM.
Collapse
Affiliation(s)
- Jian-Qiang Lu
- Department of Pathology and Molecular Medicine/Neuropathology, McMaster University, Hamilton, Ontario, Canada.
| | - Mark A Tarnopolsky
- Department of Medicine/Neurology, McMaster University, Hamilton, Ontario, Canada; Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Michaud M, Stojkovic T, Maisonobe T, Behin A, Rucheton B, Léonard-Louis S, Eymard B, Laforêt P. Ganglionopathies Associated with MERRF Syndrome: An Original Report. J Neuromuscul Dis 2020; 7:419-423. [DOI: 10.3233/jnd-200513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuropathies in Myoclonic Epilepsy with Ragged Red Fibers (MERRF) syndrome are frequent but ganglionopathies have never been reported. We retrospectively identified 24 patients with MERRF mutations in the neuromuscular center Nord/Est/Ile de France (Pitié-Salpêtrière, Paris, France). Seventeen nerve conduction studies (NCS) were available. Five patients had MERRF syndrome and ganglionopathy, a pure sensory neuropathy. All of them displayed ataxia and mild clinical sensory abnormalities. Ganglionopathies have been reported in mitochondrial diseases but never in MERRF syndrome. We suggest that patients presenting with ganglionopathy, especially if associated with myopathy, lipomatosis or epilepsy, should be screened for MERRF mutations.
Collapse
Affiliation(s)
- Maud Michaud
- Department of Neurology, Central Hospital, Neuromuscular Reference Center Nord/Est/Ile de France, Nancy, France
| | - Tanya Stojkovic
- Institute of Myology, Neuromuscular Reference Center Nord/Est/Ile de France, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Thierry Maisonobe
- Department of Neurophysiology and Neuropathology, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Anthony Behin
- Institute of Myology, Neuromuscular Reference Center Nord/Est/Ile de France, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Benoit Rucheton
- Department of Metabolic Biochemistry, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Sarah Léonard-Louis
- Institute of Myology, Neuromuscular Reference Center Nord/Est/Ile de France, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Bruno Eymard
- Institute of Myology, Neuromuscular Reference Center Nord/Est/Ile de France, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Pascal Laforêt
- Department of Neurology, Neuromuscular Reference Center Nord/Est/Ile de France, Raymond-Poincaré Teaching Hospital, AP-HP, Garches, Paris Saclay University, France
- INSERM U1179, END-ICAP Versailles Saint-Quentin-en-Yvelines University
| |
Collapse
|
15
|
Mathis S, Duval F, Soulages A, Solé G, Le Masson G. The ataxic neuropathies. J Neurol 2020; 268:3675-3689. [DOI: 10.1007/s00415-020-09994-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
|
16
|
Ge M, Bai X, Liu A, Liu L, Tian J, Lu T. An eIF3a gene mutation dysregulates myocardium growth with left ventricular noncompaction via the p-ERK1/2 pathway. Genes Dis 2020; 8:545-554. [PMID: 34179316 PMCID: PMC8209309 DOI: 10.1016/j.gendis.2020.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
Left ventricular noncompaction (LVNC) is a heterogeneous disorder with unclear genetic causes and an unknown mechanism. eIF3a, an important member of the Eukaryotic translation initiation factor 3 (eIF3) family, is involved in multiple biological processes, including cell proliferation and migration during myocardial development, suggesting it could play a role in LVNC development. To investigate the association between a novel variant (c.1145 A- > G) in eIF3a and LVNC, and explore potential mechanisms that could lead to the development of LVNC. A novel eIF3a variant, c.1145 A- > G, was identified by whole-exome sequencing in a familial pedigree with LVNC. Adenovirus vectors containing wild-type eIF3a and the mutated version were constructed and co-infected into H9C2 cells. Cell proliferation, apoptosis, cell migration, and differentiation, as well as phosphorylation of ERK1/2 were studied and were measured by proliferation assays, flow cytometry, real-time PCR and Western blot, respectively. The eIF3a mutation inhibited the proliferation of H9C2 cells, induced apoptosis, promoted cell migration, and inhibited the differentiation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The effect of the eIF3a mutation may be attributed to a decrease in expression of p-ERK1/2. A novel eIF3a gene mutation disrupted the p-ERK1/2 pathway and caused decreased myocardium proliferation, differentiation, accelerated migration.This finding may provide some insight into the mechanism involved in LVNC development.
Collapse
Affiliation(s)
- Mei Ge
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Xuehan Bai
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Aoyi Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Lingjuan Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Jie Tian
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Tiewei Lu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| |
Collapse
|
17
|
Finsterer J. POLG1-related phenotypes are heterogeneous and progressive due to secondary mtDNA maintenance defects. Int J Neurosci 2020; 130:1282-1283. [PMID: 32065548 DOI: 10.1080/00207454.2020.1731506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| |
Collapse
|
18
|
Auditory and Vestibular Dysfunction in M.3243A>G Carriers. Otol Neurotol 2019; 40:1260. [PMID: 31469803 DOI: 10.1097/mao.0000000000002411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Guo H, Li S, Dai L, Huang X, Yu T, Yin Z, Bai Y. Genetic analysis in a cohort of patients with hereditary optic neuropathies in Southwest of China. Mitochondrion 2018; 46:327-333. [PMID: 30201499 DOI: 10.1016/j.mito.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/25/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022]
Abstract
We report the results of molecular screening in 121 patients with suspected hereditary optic neuropathies. The 34 primary and 9 secondary LHON mutations were screened in all the patients. In the familial cases, OPA1 was also tested when negative finding for the mtDNA mutations screening. Molecular defects were identified in 35 patients (28.9% of screened patients). Among these, 33 patients (94.3%) had an mtDNA mutation, including m.11778G > A (69.7%), m.14484 T > C, m.3460G > A, m.3635G > A, m.14502 T > C and three secondary mutations m.3316G > A, m.3394 T > C, m.3497C > T. Two novel OPA1 mutations, c.1301 T > G (p.Leu434Arg) and c.985-1G > A (IVS9-1G > A), were also detected in families with the evidence of father-to-son transmission. In conclusion, we reported the results of the molecular screening of 121 patients with hereditary optic neuropathies from southwest of China. Our results highlight the importance of investigating LHON-causing mtDNA mutations and OPA1 mutations in cases of suspected hereditary optic neuropathy.
Collapse
Affiliation(s)
- Hong Guo
- Department of Medical Genetics, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing 400038, PR China
| | - Shiying Li
- Southwest Eye Hospital, Southwest Hospital, Army Medical University, 30#, Gaotanyan St., Shapingba District 400038, Chongqing, PR China
| | - Limeng Dai
- Department of Medical Genetics, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing 400038, PR China
| | - Xiaoyong Huang
- Southwest Eye Hospital, Southwest Hospital, Army Medical University, 30#, Gaotanyan St., Shapingba District 400038, Chongqing, PR China
| | - Tao Yu
- Southwest Eye Hospital, Southwest Hospital, Army Medical University, 30#, Gaotanyan St., Shapingba District 400038, Chongqing, PR China
| | - Zhengqin Yin
- Southwest Eye Hospital, Southwest Hospital, Army Medical University, 30#, Gaotanyan St., Shapingba District 400038, Chongqing, PR China.
| | - Yun Bai
- Department of Medical Genetics, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing 400038, PR China.
| |
Collapse
|
20
|
Finsterer J, Zarrouk-Mahjoub S. Phenotypic spectrum of SLC25A4 mutations. Biomed Rep 2018; 9:119-122. [PMID: 30013777 DOI: 10.3892/br.2018.1115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/15/2018] [Indexed: 01/22/2023] Open
Abstract
There is no comprehensive overview concerning the phenotypic variability in patients carrying SLC25A4 mutations available. Therefore, the aim of the present review was to summarise and discuss recent findings concerning the clinical presentation and phenotypic heterogeneity of SLC25A4 mutations. The study was conducted by systematically reviewing the literature using the search terms 'mitochondrial', "myopathy', 'nuclear DNA', 'mitochondrial DNA', in combination with 'SLC25A4' or 'AAC1'. The results indicated that the phenotypic heterogeneity in patients carrying a SLC25A4 mutation is broader than so far anticipated. Patients carrying a SLC25A4 mutation not only manifest as encephalo-myo-cardiomyopathy but also with scoliosis, cataract, depression, headache, hydrocephalus or arterial hypertension. SLC25A4 mutations may result in mtDNA depletion or multiple mitochondrial (mt)DNA deletions. SLC25A4-associated mtDNA depletion presents with the more severe phenotype and the worse outcome than patients with multiple mtDNA deletions. Depletion syndrome due to SLC25A4 mutations is associated with congenital respiratory insufficiency requiring mechanical ventilation with poor prognosis in the majority of the cases. Mutations in the SLC25A4 gene manifest phenotypically with multiorgan abnormalities in addition to encephalo-myo-cardiomyopathy. SLC25A4 mutations, causing mtDNA depletion, present with a more severe phenotype, including respiratory insufficiency and more widespread cerebral disease than mutations causing multiple mtDNA deletions.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Municipal Hospital Rudolfstiftung, A-1180 Vienna, Austria
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunis 1068, Tunisia
| |
Collapse
|
21
|
Luigetti M, Primiano G, Cuccagna C, Bernardo D, Sauchelli D, Vollono C, Servidei S. Small fibre neuropathy in mitochondrial diseases explored with sudoscan. Clin Neurophysiol 2018; 129:1618-1623. [DOI: 10.1016/j.clinph.2018.04.755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/30/2018] [Accepted: 04/29/2018] [Indexed: 01/16/2023]
|
22
|
Renal artery aneurysm associated with Leber hereditary optic neuropathy. JOURNAL OF VASCULAR SURGERY CASES INNOVATIONS AND TECHNIQUES 2018; 4:5-7. [PMID: 29725659 PMCID: PMC5928001 DOI: 10.1016/j.jvscit.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/09/2017] [Indexed: 11/23/2022]
Abstract
Leber hereditary optic neuropathy is an inherited, rare, mitochondrial metabolic disease that leads to progressive vision loss due to the accumulation of reactive oxygen species. The disorder has been associated with microangiopathy and macroangiopathy. We present a novel case of saccular left renal artery aneurysm in a 27-year-old man with known Leber hereditary optic neuropathy. The lesion was asymptomatic and grew from 1.8 to 2.0 cm during the course of 1 year. We successfully performed an endovascular left renal artery aneurysm repair.
Collapse
|
23
|
Ciron J, Baron C, Boissonnot M, Neau JP, Magdelaine C, Vallat JM, Mathis S. Peripheral nervous system involvement in Leber's hereditary optic neuropathy. J Neurol Sci 2018; 388:94-96. [DOI: 10.1016/j.jns.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 03/01/2018] [Indexed: 11/17/2022]
|
24
|
Samuelsson K, Mariosa D, Fang F, Press R. Comorbidity of mitochondrial disease and dementia in patients with idiopathic polyneuropathy. Eur J Neurol 2018; 25:882-887. [DOI: 10.1111/ene.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
Affiliation(s)
- K. Samuelsson
- Department of Clinical Neuroscience; Karolinska Institutet; Stockholm
- Department of Neurology; Karolinska University Hospital; Stockholm
| | - D. Mariosa
- Department of Medical Epidemiology and Biostatistics; Karolinska Institutet; Stockholm Sweden
| | - F. Fang
- Department of Medical Epidemiology and Biostatistics; Karolinska Institutet; Stockholm Sweden
| | - R. Press
- Department of Clinical Neuroscience; Karolinska Institutet; Stockholm
- Department of Neurology; Karolinska University Hospital; Stockholm
| |
Collapse
|
25
|
Towbin JA, Jefferies JL. Cardiomyopathies Due to Left Ventricular Noncompaction, Mitochondrial and Storage Diseases, and Inborn Errors of Metabolism. Circ Res 2017; 121:838-854. [PMID: 28912186 DOI: 10.1161/circresaha.117.310987] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The normal function of the human myocardium requires the proper generation and utilization of energy and relies on a series of complex metabolic processes to achieve this normal function. When metabolic processes fail to work properly or effectively, heart muscle dysfunction can occur with or without accompanying functional abnormalities of other organ systems, particularly skeletal muscle. These metabolic derangements can result in structural, functional, and infiltrative deficiencies of the heart muscle. Mitochondrial and enzyme defects predominate as disease-related etiologies. In this review, left ventricular noncompaction cardiomyopathy, which is often caused by mutations in sarcomere and cytoskeletal proteins and is also associated with metabolic abnormalities, is discussed. In addition, cardiomyopathies resulting from mitochondrial dysfunction, metabolic abnormalities, storage diseases, and inborn errors of metabolism are described.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- From the Le Bonheur Children's Hospital, St Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis; and Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH.
| | - John Lynn Jefferies
- From the Le Bonheur Children's Hospital, St Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis; and Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH
| |
Collapse
|
26
|
Finsterer J, Zarrouk-Mahjoub S. Mitochondrial neuropathy affects peripheral and cranial nerves and is primary or secondary or both. Neuromuscul Disord 2016; 26:548-9. [DOI: 10.1016/j.nmd.2016.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Shawn, the Drosophila Homolog of SLC25A39/40, Is a Mitochondrial Carrier That Promotes Neuronal Survival. J Neurosci 2016; 36:1914-29. [PMID: 26865615 DOI: 10.1523/jneurosci.3432-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Mitochondria play an important role in the regulation of neurotransmission, and mitochondrial impairment is a key event in neurodegeneration. Cells rely on mitochondrial carrier proteins of the SLC25 family to shuttle ions, cofactors, and metabolites necessary for enzymatic reactions. Mutations in these carriers often result in rare but severe pathologies in the brain, and some of the genes, including SLC25A39 and SLC25A40, reside in susceptibility loci of severe forms of epilepsy. However, the role of most of these carriers has not been investigated in neurons in vivo. We identified shawn, the Drosophila homolog of SLC25A39 and SLC25A40, in a genetic screen to identify genes involved in neuronal function. Shawn localizes to mitochondria, and missense mutations result in an accumulation of reactive oxygen species, mitochondrial dysfunction, and neurodegeneration. Shawn regulates metal homeostasis, and we found in shawn mutants increased levels of manganese, calcium, and mitochondrial free iron. Mitochondrial mutants often cannot maintain synaptic transmission under demanding conditions, but shawn mutants do, and they also do not display endocytic defects. In contrast, shawn mutants harbor a significant increase in neurotransmitter release. Our work provides the first functional annotation of these essential mitochondrial carriers in the nervous system, and the results suggest that metal imbalances and mitochondrial dysfunction may contribute to defects in synaptic transmission and neuronal survival. SIGNIFICANCE STATEMENT We describe for the first time the role of the mitochondrial carrier Shawn/SLC25A39/SLC25A40 in the nervous system. In humans, these genes reside in susceptibility loci for epilepsy, and, in flies, we observe neuronal defects related to mitochondrial dysfunction and metal homeostasis defects. Interestingly, shawn mutants also harbor increased neurotransmitter release and neurodegeneration. Our data suggest a connection between maintaining a correct metal balance and mitochondrial function to regulate neuronal survival and neurotransmitter release.
Collapse
|
28
|
Demers-Lamarche J, Guillebaud G, Tlili M, Todkar K, Bélanger N, Grondin M, Nguyen AP, Michel J, Germain M. Loss of Mitochondrial Function Impairs Lysosomes. J Biol Chem 2016; 291:10263-76. [PMID: 26987902 PMCID: PMC4858975 DOI: 10.1074/jbc.m115.695825] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/04/2016] [Indexed: 02/04/2023] Open
Abstract
Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Demers-Lamarche
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| | - Gérald Guillebaud
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| | - Mouna Tlili
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Kiran Todkar
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| | - Noémie Bélanger
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Martine Grondin
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Angela P Nguyen
- the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Jennifer Michel
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Marc Germain
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| |
Collapse
|
29
|
Chou SJ, Tseng WL, Chen CT, Lai YF, Chien CS, Chang YL, Lee HC, Wei YH, Chiou SH. Impaired ROS Scavenging System in Human Induced Pluripotent Stem Cells Generated from Patients with MERRF Syndrome. Sci Rep 2016; 6:23661. [PMID: 27025901 PMCID: PMC4812254 DOI: 10.1038/srep23661] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/11/2016] [Indexed: 01/19/2023] Open
Abstract
Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a mitochondrial disorder characterized by myoclonus epilepsy, generalized seizures, ataxia and myopathy. MERRF syndrome is primarily due to an A to G mutation at mtDNA 8344 that disrupts the mitochondrial gene for tRNA(Lys). However, the detailed mechanism by which this tRNA(Lys) mutation causes mitochondrial dysfunction in cardiomyocytes or neurons remains unclear. In this study, we generated human induced pluripotent stem cells (hiPSCs) that carry the A8344G genetic mutation from patients with MERRF syndrome. Compared with mutation-free isogenic hiPSCs, MERRF-specific hiPSCs (MERRF-hiPSCs) exhibited reduced oxygen consumption, elevated reactive oxygen species (ROS) production, reduced growth, and fragmented mitochondrial morphology. We sought to investigate the induction ability and mitochondrial function of cardiomyocyte-like cells differentiated from MERRF-hiPSCs. Our data demonstrate that that cardiomyocyte-like cells (MERRF-CMs) or neural progenitor cells (MERRF-NPCs) differentiated from MERRF-iPSCs also exhibited increased ROS levels and altered antioxidant gene expression. Furthermore, MERRF-CMs or -NPCs contained fragmented mitochondria, as evidenced by MitoTracker Red staining and transmission electron microscopy. Taken together, these findings showed that MERRF-hiPSCs and MERRF-CM or -NPC harboring the A8344G genetic mutation displayed contained mitochondria with an abnormal ultrastructure, produced increased ROS levels, and expressed upregulated antioxidant genes.
Collapse
Affiliation(s)
| | - Wei-Lien Tseng
- Institute of Pharmacology, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Tsun Chen
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yu-Fen Lai
- Institute of Clinical Medicine, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chian-Shiu Chien
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuh-Lih Chang
- Institute of Pharmacology, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Chen Lee
- Institute of Pharmacology, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, Taipei, Taiwan
- Institute of Clinical Medicine, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
30
|
Purity matters: A workflow for the valid high-resolution lipid profiling of mitochondria from cell culture samples. Sci Rep 2016; 6:21107. [PMID: 26892142 PMCID: PMC4759577 DOI: 10.1038/srep21107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/15/2016] [Indexed: 11/09/2022] Open
Abstract
Subcellular lipidomics is a novel field of research that requires the careful combination of several pre-analytical and analytical steps. To define a reliable strategy for mitochondrial lipid profiling, we performed a systematic comparison of different mitochondria isolation procedures by western blot analyses and comprehensive high-resolution lipidomics. Using liver-derived HepG2 cells, we compared three common mitochondria isolation methods, differential centrifugation (DC), ultracentrifugation (UC) and a magnetic bead-assisted method (MACS). In total, 397 lipid species, including 32 cardiolipins, could be quantified in only 100 μg (by protein) of purified mitochondria. Mitochondria isolated by UC showed the highest enrichment in the mitochondria-specific cardiolipins as well as their precursors, phosphatidylglycerols. Mitochondrial fractions obtained by the commonly used DC and the more recent MACS method contained substantial contaminations by other organelles. Employing these isolation methods when performing lipidomics analyses from cell culture mitochondria may lead to inaccurate results. To conclude, we present a protocol how to obtain reliable mitochondria-specific lipid profiles from cell culture samples and show that quality controls are indispensable when performing mitochondria lipidomics.
Collapse
|
31
|
Luigetti M, Sauchelli D, Primiano G, Cuccagna C, Bernardo D, Lo Monaco M, Servidei S. Peripheral neuropathy is a common manifestation of mitochondrial diseases: a single-centre experience. Eur J Neurol 2016; 23:1020-7. [DOI: 10.1111/ene.12954] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022]
Affiliation(s)
- M. Luigetti
- Department of Geriatrics; Neurosciences and Orthopedics; Institute of Neurology; Catholic University of the Sacred Heart; Rome Italy
| | - D. Sauchelli
- Department of Geriatrics; Neurosciences and Orthopedics; Institute of Neurology; Catholic University of the Sacred Heart; Rome Italy
| | - G. Primiano
- Department of Geriatrics; Neurosciences and Orthopedics; Institute of Neurology; Catholic University of the Sacred Heart; Rome Italy
| | - C. Cuccagna
- Department of Geriatrics; Neurosciences and Orthopedics; Institute of Neurology; Catholic University of the Sacred Heart; Rome Italy
| | - D. Bernardo
- Department of Geriatrics; Neurosciences and Orthopedics; Institute of Neurology; Catholic University of the Sacred Heart; Rome Italy
| | - M. Lo Monaco
- Department of Geriatrics; Neurosciences and Orthopedics; Institute of Neurology; Catholic University of the Sacred Heart; Rome Italy
| | - S. Servidei
- Department of Geriatrics; Neurosciences and Orthopedics; Institute of Neurology; Catholic University of the Sacred Heart; Rome Italy
| |
Collapse
|
32
|
Selected case from the Arkadi M. Rywlin International Pathology Slide Series: Mitochondrial myopathy presenting with chronic progressive external ophthalmoplegia (CPEO): a case report. Adv Anat Pathol 2014; 21:461-8. [PMID: 25299315 DOI: 10.1097/pap.0000000000000045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A 43-year-old female patient diagnosed with chronic progressive external ophthalmoplegia (CPEO) because of mitochondrial myopathy documented by muscle biopsy is presented. The chief complaints were represented by blepharoptosis and ophthalmoplegia. The muscle biopsy was evaluated by histology, using the appropriate histochemical and histoenzimological stains. Ragged red fibers with Gomori trichrome stain were seen, which showed cytochrome c oxydase deficiency and abnormal succinate dehydrogenase staining in around 20% of muscle fibres. Electron microscopy was also performed which demonstrated abnormal, hyperplastic, pleomorphic, and hypertrophic mitochondria, characterized by paracrystalline inclusions arranged in parallel rows ("parking-lot" inclusions), consisting of rectangular arrays of mitochondrial membranes in a linear or grid-like pattern. In conclusion, mitochondrial myopathy was definitely diagnosed. Although molecular analysis, which was subsequently carried out, failed to reveal mutations in the mitochondrial DNA or in selected nuclear genes, the pathologic diagnosis was not changed. The differential diagnosis of CPEO with other forms of ocular myopathies as well as the possible association of CPEO with systemic syndromes is discussed. Ophtalmologists and medical internists should always suspect CPEO when dealing with patients affected by ocular myopathy, either in its pure form or in association with other myopathic or systemic signs.
Collapse
|
33
|
Jin T, Shen H, Zhao Z, Hu J. Clinical, pathological, and neuroimaging analyses of two cases of Leigh syndrome in a Chinese family. J Child Neurol 2014; 29:NP143-8. [PMID: 24413359 DOI: 10.1177/0883073813512524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, the authors examined the clinical manifestations, skeletal muscle pathological characteristics, and neuroimaging results of 2 cases of Leigh syndrome in a Chinese family. The 2 patients presented with general weakness, and 1 of them presented with an impairment of vision. Skeletal muscle biopsies showed a deficiency in cytochrome c oxidase levels. Brain magnetic resonance imaging showed increased T1 and T2 signal intensities in the centrum ovale and dentate nucleus. Diffusion-weighted imaging showed a high-intensity signal. Magnetic resonance spectroscopy showed elevated levels of lactic acid in lesions. The examination of 1 patient at disease onset and during disease remission showed that the lesions detected by magnetic resonance imaging and diffusion-weighted imaging, and the peak for lactic acid detected by magnetic resonance spectroscopy, decreased during remission. These data suggest that changes in the imaging results of patients with Leigh syndrome correlate with disease course and pathogenetic condition.
Collapse
Affiliation(s)
- Taoran Jin
- Departments of Cadre Ward, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongrui Shen
- Departments of Neuromuscular Disease, Key Laboratory of Orthopedic Biomechanics of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhe Zhao
- Departments of Neuromuscular Disease, Key Laboratory of Orthopedic Biomechanics of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Hu
- Departments of Neuromuscular Disease, Key Laboratory of Orthopedic Biomechanics of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
Samuelsson K, Kostulas K, Vrethem M, Rolfs A, Press R. Idiopathic small fiber neuropathy: phenotype, etiologies, and the search for fabry disease. J Clin Neurol 2014; 10:108-18. [PMID: 24829596 PMCID: PMC4017013 DOI: 10.3988/jcn.2014.10.2.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose The etiology of small fiber neuropathy (SFN) often remains unclear. Since SFN may be the only symptom of late-onset Fabry disease, it may be underdiagnosed in patients with idiopathic polyneuropathy. We aimed to uncover the etiological causes of seemingly idiopathic SFN by applying a focused investigatory procedure, to describe the clinical phenotype of true idiopathic SFN, and to elucidate the possible prevalence of late-onset Fabry disease in these patients. Methods Forty-seven adults younger than 60 years with seemingly idiopathic pure or predominantly small fiber sensory neuropathy underwent a standardized focused etiological and clinical investigation. The patients deemed to have true idiopathic SFN underwent genetic analysis of the alpha-galactosidase A gene (GLA) that encodes the enzyme alpha-galactosidase A (Fabry disease). Results The following etiologies were identified in 12 patients: impaired glucose tolerance (58.3%), diabetes mellitus (16.6%), alcohol abuse (8.3%), mitochondrial disease (8.3%), and hereditary neuropathy (8.3%). Genetic alterations of unknown clinical significance in GLA were detected in 6 of the 29 patients with true idiopathic SFN, but this rate did not differ significantly from that in healthy controls (n=203). None of the patients with genetic alterations in GLA had significant biochemical abnormalities simultaneously in blood, urine, and skin tissue. Conclusions A focused investigation may aid in uncovering further etiological factors in patients with seemingly idiopathic SFN, such as impaired glucose tolerance. However, idiopathic SFN in young to middle-aged Swedish patients does not seem to be due to late-onset Fabry disease.
Collapse
Affiliation(s)
- Kristin Samuelsson
- Department of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Konstantinos Kostulas
- Department of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Vrethem
- Division of Neurology and Clinical Neurophysiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Arndt Rolfs
- Albrecht-Kossel Institute for Neuroregeneration, University of Rostock, Rostock, Germany
| | - Rayomand Press
- Department of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
35
|
Kornmann B. Quality control in mitochondria: use it, break it, fix it, trash it. F1000PRIME REPORTS 2014; 6:15. [PMID: 24669296 PMCID: PMC3944741 DOI: 10.12703/p6-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Repairing or disposing of a malfunctioning object is an everyday dilemma. Replacing an item may be quicker than repairing it, but may also be more costly. Cells are faced with the same options when their organelles are challenged. Ensuring the health of the mitochondrial network is of utmost importance for cellular health and, not surprisingly, mitochondrial quality control can take both the repair and disposal routes. Spectacular advances have been made in recent years and a picture is starting to emerge of what drives a cell to take one or the other path. Interestingly, mitochondrial quality control seems to be deficient in various medically relevant conditions, such as neurodegeneration and aging.
Collapse
|
36
|
Kabala AM, Lasserre JP, Ackerman SH, di Rago JP, Kucharczyk R. Defining the impact on yeast ATP synthase of two pathogenic human mitochondrial DNA mutations, T9185C and T9191C. Biochimie 2013; 100:200-6. [PMID: 24316278 DOI: 10.1016/j.biochi.2013.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/25/2013] [Indexed: 12/18/2022]
Abstract
Mutations in the human mitochondrial ATP6 gene encoding ATP synthase subunit a/6 (referred to as Atp6p in yeast) are at the base of neurodegenerative disorders like Neurogenic Ataxia and Retinitis Pigmentosa (NARP), Leigh syndrome (LS), Charcot-Marie-Tooth (CMT), and ataxia telangiectasia. In previous studies, using the yeast Saccharomyces cerevisiae as a model we were able to better define how several of these mutations impact the ATP synthase. Here we report the construction of yeast models of two other ATP6 pathogenic mutations, T9185C and T9191C. The first one was reported as conferring a mild, sometimes reversible, CMT clinical phenotype; the second one has been described in a patient presenting with severe LS. We found that an equivalent of the T9185C mutation partially impaired the functioning of yeast ATP synthase, with only a 30% deficit in mitochondrial ATP production. An equivalent of the mutation T9191C had much more severe effects, with a nearly complete block in yeast Atp6p assembly and an >95% drop in the rate of ATP synthesis. These findings provide a molecular basis for the relative severities of the diseases induced by T9185C and T9191C.
Collapse
Affiliation(s)
- Anna Magdalena Kabala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Jean-Paul Lasserre
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Sharon H Ackerman
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
37
|
Pareyson D, Piscosquito G, Moroni I, Salsano E, Zeviani M. Peripheral neuropathy in mitochondrial disorders. Lancet Neurol 2013; 12:1011-24. [PMID: 24050734 DOI: 10.1016/s1474-4422(13)70158-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Why is peripheral neuropathy common but mild in many mitochondrial disorders, and why is it, in some cases, the predominant or only manifestation? Although this question remains largely unanswered, recent advances in cellular and molecular biology have begun to clarify the importance of mitochondrial functioning and distribution in the peripheral nerve. Mutations in proteins involved in mitochondrial dynamics (ie, fusion and fission) frequently result in a Charcot-Marie-Tooth phenotype. Peripheral neuropathies with different phenotypic presentations occur in mitochondrial diseases associated with abnormalities in mitochondrial DNA replication and maintenance, or associated with defects in mitochondrial respiratory chain complex V. Our knowledge of mitochondrial disorders is rapidly growing as new nuclear genes are identified and new phenotypes described. Early diagnosis of mitochondrial disorders, essential to provide appropriate genetic counselling, has become crucial in a few treatable conditions. Recognising and diagnosing an underlying mitochondrial defect in patients presenting with peripheral neuropathy is therefore of paramount importance.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, Milan, Italy.
| | | | | | | | | |
Collapse
|
38
|
Echaniz-Laguna A, Ghezzi D, Chassagne M, Mayençon M, Padet S, Melchionda L, Rouvet I, Lannes B, Bozon D, Latour P, Zeviani M, Mousson de Camaret B. SURF1 deficiency causes demyelinating Charcot-Marie-Tooth disease. Neurology 2013; 81:1523-30. [PMID: 24027061 DOI: 10.1212/wnl.0b013e3182a4a518] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate whether mutations in the SURF1 gene are a cause of Charcot-Marie-Tooth (CMT) disease. METHODS We describe 2 patients from a consanguineous family with demyelinating autosomal recessive CMT disease (CMT4) associated with the homozygous splice site mutation c.107-2A>G in the SURF1 gene, encoding an assembly factor of the mitochondrial respiratory chain complex IV. This observation led us to hypothesize that mutations in SURF1 might be an unrecognized cause of CMT4, and we investigated SURF1 in a total of 40 unrelated patients with CMT4 after exclusion of mutations in known CMT4 genes. The functional impact of c.107-2A>G on splicing, amount of SURF1 protein, and on complex IV activity and assembly was analyzed. RESULTS Another patient with CMT4 was found to harbor 2 additional SURF1 mutations. All 3 patients with SURF1-associated CMT4 presented with severe childhood-onset neuropathy, motor nerve conduction velocities <25 m/s, and lactic acidosis. Two patients had brain MRI abnormalities, including putaminal and periaqueductal lesions, and developed cerebellar ataxia years after polyneuropathy. The c.107-2A>G mutation produced no normally spliced transcript, leading to SURF1 absence. However, complex IV remained partially functional in muscle and fibroblasts. CONCLUSIONS We found SURF1 mutations in 5% of families (2/41) presenting with CMT4. SURF1 should be systematically screened in patients with childhood-onset severe demyelinating neuropathy and additional features such as lactic acidosis, brain MRI abnormalities, and cerebellar ataxia developing years after polyneuropathy.
Collapse
Affiliation(s)
- Andoni Echaniz-Laguna
- From the Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; INSERM U692 (A.E.-L.), Université de Strasbourg, France; Unit of Molecular Neurogenetics (D.G., L.M., M.Z.), Fondazione Istituto Neurologico Carlo Besta, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; Service des Maladies Héréditaires du Métabolisme (M.C., M.M., S.P., B.M.deC.), Centre de Biotechnologie Cellulaire (I.R.), Unité de Cardiogénétique Moléculaire (D.B.), and Service de Neurobiologie (P.L.), Centre de Biologie et de Pathologie Est, CHU Lyon, Bron, France; and Département d'Anatomopathologie (B.L.), Hôpitaux Universitaires, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lovan A, Ihtsham ul Haq, Balakrishnan N. Diagnostic challenges in movement disorders: Sensory Ataxia Neuropathy Dysarthria and Ophthalmoplegia (SANDO) syndrome. BMJ Case Rep 2013; 2013:bcr2013010343. [PMID: 23997076 PMCID: PMC3761684 DOI: 10.1136/bcr-2013-010343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A woman in her early 60s presented to our Movement Disorders Centre with a 5-year history of progressive peripheral neuropathy, gait instability with falls, blurred vision, cognitive impairment and tremors. The patient was found to have profound sensory ataxia, chronic ophthalmoplegia, dementia with significant deficits in registration and construction and bilateral resting tremor of the hands. Investigations revealed an unremarkable MRI of the brain, negative cerebrospinal fluid studies, and unremarkable chemistries. Nerve conduction studies found a severe sensorimotor axonal polyneuropathy. Genetic testing revealed a compound heterozygous mutation in the POLG1 gene consistent with the diagnosis of Sensory Ataxia Neuropathy Dysarthria and Ophthalmoplegia (SANDO) syndrome.
Collapse
Affiliation(s)
- Alyson Lovan
- Department of Neurology, Wake Forest Baptist Health, Winston Salem, North Carolina, USA
| | | | | |
Collapse
|
40
|
Affiliation(s)
- Jin-Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
41
|
Yu JY, Pearl PL. Metabolic causes of epileptic encephalopathy. EPILEPSY RESEARCH AND TREATMENT 2013; 2013:124934. [PMID: 23762547 PMCID: PMC3674738 DOI: 10.1155/2013/124934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/16/2013] [Indexed: 12/31/2022]
Abstract
Epileptic encephalopathy can be induced by inborn metabolic defects that may be rare individually but in aggregate represent a substantial clinical portion of child neurology. These may present with various epilepsy phenotypes including refractory neonatal seizures, early myoclonic encephalopathy, early infantile epileptic encephalopathy, infantile spasms, and generalized epilepsies which in particular include myoclonic seizures. There are varying degrees of treatability, but the outcome if untreated can often be catastrophic. The importance of early recognition cannot be overemphasized. This paper provides an overview of inborn metabolic errors associated with persistent brain disturbances due to highly active clinical or electrographic ictal activity. Selected diseases are organized by the defective molecule or mechanism and categorized as small molecule disorders (involving amino and organic acids, fatty acids, neurotransmitters, urea cycle, vitamers and cofactors, and mitochondria) and large molecule disorders (including lysosomal storage disorders, peroxisomal disorders, glycosylation disorders, and leukodystrophies). Details including key clinical features, salient electrophysiological and neuroradiological findings, biochemical findings, and treatment options are summarized for prominent disorders in each category.
Collapse
Affiliation(s)
- Joe Yuezhou Yu
- Department of Neurology, Children's National Medical Center, 111 Michigan Avnue, Washington, DC 20010, USA
| | - Phillip L. Pearl
- Department of Neurology, Children's National Medical Center, 111 Michigan Avnue, Washington, DC 20010, USA
| |
Collapse
|
42
|
El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 2013; 10:186-98. [PMID: 23385875 PMCID: PMC3625391 DOI: 10.1007/s13311-013-0177-6] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a genetically and clinically heterogeneous group of autosomal recessive disorders that are characterized by a severe reduction in mtDNA content leading to impaired energy production in affected tissues and organs. MDS are due to defects in mtDNA maintenance caused by mutations in nuclear genes that function in either mitochondrial nucleotide synthesis (TK2, SUCLA2, SUCLG1, RRM2B, DGUOK, and TYMP) or mtDNA replication (POLG and C10orf2). MDS are phenotypically heterogeneous and usually classified as myopathic, encephalomyopathic, hepatocerebral or neurogastrointestinal. Myopathic MDS, caused by mutations in TK2, usually present before the age of 2 years with hypotonia and muscle weakness. Encephalomyopathic MDS, caused by mutations in SUCLA2, SUCLG1, or RRM2B, typically present during infancy with hypotonia and pronounced neurological features. Hepatocerebral MDS, caused by mutations in DGUOK, MPV17, POLG, or C10orf2, commonly have an early-onset liver dysfunction and neurological involvement. Finally, TYMP mutations have been associated with mitochondrial neurogastrointestinal encephalopathy (MNGIE) disease that typically presents before the age of 20 years with progressive gastrointestinal dysmotility and peripheral neuropathy. Overall, MDS are severe disorders with poor prognosis in the majority of affected individuals. No efficacious therapy is available for any of these disorders. Affected individuals should have a comprehensive evaluation to assess the degree of involvement of different systems. Treatment is directed mainly toward providing symptomatic management. Nutritional modulation and cofactor supplementation may be beneficial. Liver transplantation remains controversial. Finally, stem cell transplantation in MNGIE disease shows promising results.
Collapse
Affiliation(s)
- Ayman W. El-Hattab
- />Division of Medical Genetics, Department of Pediatrics, The Children’s Hospital, King Fahad Medical City and Faculty of Medicine, King Saud bin Abdulaziz University for Health Science, Riyadh, Kingdom of Saudi Arabia
| | - Fernando Scaglia
- />Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX 77030 USA
| |
Collapse
|
43
|
Breuer M, Koopman W, Koene S, Nooteboom M, Rodenburg R, Willems P, Smeitink J. The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis 2013; 51:27-34. [DOI: 10.1016/j.nbd.2012.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/04/2012] [Accepted: 03/01/2012] [Indexed: 12/12/2022] Open
|
44
|
Abstract
There has been considerable progress during the past 24 years in the molecular genetics of mitochondrial DNA and related nuclear DNA mutations, and more than 100 nerve biopsies from hereditary neuropathies related to mitochondrial cytopathy have been accurately examined. Neuropathies were first reported in diseases related to point mutations of mitochondrial DNA, but they proved to be a prominent feature of the phenotype in mitochondrial disorders caused by defects in nuclear DNA, particularly in 3 genes: polymerase gamma 1 (POLG1), mitofusin 2 (MFN2), and ganglioside-induced differentiation-associated protein 1 (GDAP1). Most patients have sensory-motor neuropathy, sometimes associated with ophthalmoplegia, ataxia, seizures, parkinsonism, myopathy, or visceral disorders. Some cases are caused by consanguinity, but most are sporadic with various phenotypes mimicking a wide range of other etiologies. Histochemistry on muscle biopsy, as well as identification of crystalloid inclusions at electron microscopy, may provide a diagnostic clue to mitochondriopathy, but nerve biopsy is often less informative. Nevertheless, enlarged mitochondria containing distorted or amputated cristae are highly suggestive, particularly when located in the Schwann cell cytoplasm. Also noticeable are clusters of regenerating myelinated fibers surrounded by concentric Schwann cell processes, and such onion bulb-like formations are frequently observed in neuropathies caused by GDAP1 mutations.
Collapse
|
45
|
Abstract
Mitochondrial diseases in children are often associated with a peripheral neuropathy but the presence of the neuropathy is under-recognized because of the overwhelming involvement of the central nervous system (CNS). These mitochondrial neuropathies are heterogeneous in their clinical, neurophysiological, and histopathological characteristics. In this article, we provide a comprehensive review of childhood mitochondrial neuropathy. Early recognition of neuropathy may help with the identification of the mitochondrial syndrome. While it is not definite that the characteristics of the neuropathy would help in directing genetic testing without the requirement for invasive skin, muscle or liver biopsies, there appears to be some evidence for this hypothesis in Leigh syndrome, in which nuclear SURF1 mutations cause a demyelinating neuropathy and mitochondrial DNA MTATP6 mutations cause an axonal neuropathy. POLG1 mutations, especially when associated with late-onset phenotypes, appear to cause a predominantly sensory neuropathy with prominent ataxia. The identification of the peripheral neuropathy also helps to target genetic testing in the mitochondrial optic neuropathies. Although often subclinical, the peripheral neuropathy may occasionally be symptomatic and cause significant disability. Where it is symptomatic, recognition of the neuropathy will help the early institution of rehabilitative therapy. We therefore suggest that nerve conduction studies should be a part of the early evaluation of children with suspected mitochondrial disease.
Collapse
Affiliation(s)
- Manoj P Menezes
- The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.
| | | |
Collapse
|