1
|
Farinelli V, Palmisano C, Dosi C, Pedrinelli I, Pagliano E, Esposti R, Cavallari P. Spine kinematics during gait in paediatric Hereditary Spastic Paraparesis. Gait Posture 2025; 120:143-149. [PMID: 40239322 DOI: 10.1016/j.gaitpost.2025.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/30/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Many studies already addressed specific gait abnormalities in children affected by Hereditary Spastic Paraparesis (HSP). Some authors investigated the contribution of the upper body to walking pattern, but simplifying trunk and pelvis as two hinged rigid bodies. Recently, we developed a method to detail spinal kinematics in terms of anatomic curvatures and length; we were thus interested in applying such protocol to HSP. RESEARCH QUESTION how HSP influences spinal kinematics during gait? METHODS we enrolled ten HSP patients (5-17 years, 8 males) and twelve Healthy Children (HC, 8-16 years, 4 males). Kinematic data were recorded with an optoelectronic system using the LAMB full body marker set, which included three physical markers placed on the spine, supplemented with a virtual one reconstructed on the coccix. Calculations included the spinal length (linear distance from C7 to coccix), the kyphosis and lordosis angles, the trunk tilt and obliquity, the pelvis and the shoulder-pelvis angles, as well as the joint angles of the lower limbs. For each variable, the average value and the range of motion (ROM) were extracted and compared between groups. RESULTS the ROM of spinal length, the average value and ROM of kyphosis angle and the average value of trunk tilt significantly increased in HSP vs HC. A pathologic "double bump" pattern characterized the pelvic tilt traces, the lordosis angles and, with opposite sign, the kyphosis. Both the average value and ROM of pelvic tilt significantly increased in HSP, while ROM of lower limb angles was reduced. CONCLUSION spine kinematics were altered in HSP, who also showed an anterior trunk tilt. Therefore, the trunk should be considered an articulated system and not simplified to a rigid body, a perspective that could be also used in treating gait abnormalities.
Collapse
Affiliation(s)
- V Farinelli
- Human Physiology Section of the DePT, Università degli Studi di Milano, Milano, Italy
| | - C Palmisano
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - C Dosi
- Developmental Neurology Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - I Pedrinelli
- Developmental Neurology Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - E Pagliano
- Developmental Neurology Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - R Esposti
- Human Physiology Section of the DePT, Università degli Studi di Milano, Milano, Italy
| | - P Cavallari
- Human Physiology Section of the DePT, Università degli Studi di Milano, Milano, Italy; Laboratorio Sperimentale di Fisiopatologia Neuromotoria, IRCCS Istituto Auxologico Italiano, Meda, Italy.
| |
Collapse
|
2
|
Vijayaraghavan M, Murali SP, Thakur G, Li XJ. Role of glial cells in motor neuron degeneration in hereditary spastic paraplegias. Front Cell Neurosci 2025; 19:1553658. [PMID: 40302786 PMCID: PMC12037628 DOI: 10.3389/fncel.2025.1553658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
This review provides a comprehensive overview of hereditary spastic paraplegias (HSPs) and summarizes the recent progress on the role of glial cells in the pathogenesis of HSPs. HSPs are a heterogeneous group of neurogenetic diseases characterized by axonal degeneration of cortical motor neurons, leading to muscle weakness and atrophy. Though the contribution of glial cells, especially astrocytes, to the progression of other motor neuron diseases like amyotrophic lateral sclerosis (ALS) is well documented, the role of glial cells and the interaction between neurons and astrocytes in HSP remained unknown until recently. Using human pluripotent stem cell-based models of HSPs, a study reported impaired lipid metabolisms and reduced size of lipid droplets in HSP astrocytes. Moreover, targeting lipid dysfunction in astrocytes rescues axonal degeneration of HSP cortical neurons, demonstrating a non-cell-autonomous mechanism in axonal deficits of HSP neurons. In addition to astrocytes, recent studies revealed dysfunctions in HSP patient pluripotent stem cell-derived microglial cells. Increased microgliosis and pro-inflammation factors were also observed in HSP patients' samples, pointing to an exciting role of innate immunity and microglia in HSP. Building upon these recent studies, further investigation of the detailed molecular mechanism and the interplay between glial cell dysfunction and neuronal degeneration in HSP by combining human stem cell models, animal models, and patient samples will open avenues for identifying new therapeutic targets and strategies for HSP.
Collapse
Affiliation(s)
- Manaswini Vijayaraghavan
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Sarvika Periyapalayam Murali
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Gitika Thakur
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Garg V, Möbius W, Heinrich R, Ruhwedel T, Perera RP, Scholz P, Ischebeck T, Salinas G, Dullin C, Göpfert MC, Engelmann J, Dosch R, Geurten BRH. Patient-specific mutation of contact site protein Tomm70 causes neurodegeneration. Dis Model Mech 2025; 18:dmm052029. [PMID: 40151845 PMCID: PMC12067081 DOI: 10.1242/dmm.052029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
TOMM70 is a receptor at the contact site between mitochondria and the endoplasmic reticulum, and TOMM70 has been identified as a risk gene for hereditary spastic paraplegia. Furthermore, de novo missense variants of TOMM70 have been identified to cause neurological impairments in two unrelated patients. Here, we show that mutant zebrafish ruehreip25ca also harbour a missense mutation in tomm70, affecting the same conserved isoleucine residue as in one of the human patients. Using this model, we demonstrate how loss of Tomm70 function leads to impairment. At the molecular level, the mutation affected the interaction of Tomm70 with the endoplasmic reticulum protein Lam6, a known sterol transporter. At the neuronal level, the mutation impaired mitochondrial transport to the axons and dendrites, leading to demyelination of large calibre axons in the spinal cord. These neurodegenerative defects in zebrafish were associated with reduced endurance and swimming efficiency, and alterations in the C-start escape response, which correlated with decreased spiking in giant Mauthner neurons. Thus, in zebrafish, a mutation in the endoplasmic reticulum-mitochondria contact site protein Tomm70 recreates some of the neurodegenerative phenotypes characteristic of hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | | | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Gottingen Center for Molecular Biosciences (GZMB) Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Gottingen Center for Molecular Biosciences (GZMB) Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Gabriela Salinas
- Institute of Human Genetics, University Medical Center, Göttingen Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Christian Dullin
- Department of Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University33615 Bielefeld, Germany
| | - Roland Dosch
- Institute of Human Genetics, University Medical Center, Göttingen Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
- Department of Zoology, University of Otago39054 Dunedin, New Zealand
| |
Collapse
|
4
|
Quiñones-Frías MC, Ocken DM, Rodal A. Disruption of Synaptic Endoplasmic Reticulum Luminal Protein Containment in Drosophila Atlastin Mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.01.555994. [PMID: 37693578 PMCID: PMC10491308 DOI: 10.1101/2023.09.01.555994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The endoplasmic reticulum (ER) extends throughout neurons and regulates many neuronal functions, including neurite outgrowth, neurotransmission, and synaptic plasticity. Mutations in proteins that control ER shape are linked to the neurodegenerative disorder Hereditary Spastic Paraplegia (HSP), yet the ultrastructure and dynamics of neuronal ER remain largely unexplored, especially at presynaptic terminals. Using super-resolution and live imaging in D. melanogaster larval motor neurons, we investigated ER structure at presynaptic terminals of wild-type animals and null mutants of the ER shaping protein and HSP-linked gene, Atlastin. Previous studies using an ER luminal marker reported diffuse localization at Atlastin mutant presynaptic terminals, which was attributed to ER fragmentation. However, using an ER membrane marker, we discovered that Atlastin mutant ER forms robust networks with only mild defects in structural dynamics, indicating the primary defect is functional rather than architectural. We demonstrate that Atlastin mutants progressively displace overexpressed luminal ER proteins to the cytosol during larval development, specifically at synapses, while these proteins remain correctly localized in cell bodies, axons, and muscles. This synaptic-specific displacement phenotype, previously unreported in non-neuronal cells, emphasizes the importance of studying neurons to understand HSP pathogenesis.
Collapse
Affiliation(s)
| | - Dina M. Ocken
- Department of Biology, Brandeis University, Waltham, MA
| | - Avital Rodal
- Department of Biology, Brandeis University, Waltham, MA
| |
Collapse
|
5
|
García-Castro P, Giambó-Falian I, Carvacho I, Fuentes R. Phenogenetics of cortical granule dynamics during zebrafish oocyte-to-embryo transition. Front Cell Dev Biol 2025; 13:1514461. [PMID: 39949602 PMCID: PMC11821946 DOI: 10.3389/fcell.2025.1514461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Fertilization is a critical process in sexual reproduction that involves the fusion of a capacitated sperm with a mature oocyte to form a zygote. Polyspermy, the fertilization of an oocyte by multiple sperm, leads to polyploidy and embryo lethality. Mammalian and non-mammalian oocytes have evolved mechanisms to prevent polyspermy, including fast and slow blocks. The fast block comprises membrane depolarization post-sperm fusion, temporarily preventing additional sperm fusion. The slow block, triggered by cortical granule (CG) exocytosis, involves the release of proteins that modify the zona pellucida to form a permanent barrier, avoiding the fertilization by additional sperm. The evidence shows that immature oocytes often fail to prevent polyspermy due to ineffective CG exocytosis, attributed to impaired intracellular calcium increases, lower content of this ion, and incomplete CG migration. The study of how genetic variations lead to observable phenotypes (phenogenetics) during the oocyte-to-embryo transition, have identified several maternal-effect genes in zebrafish involved in CG behavior. These genes regulate various stages of CG biology, including biosynthesis, maturation, and exocytosis. Mutations in these genes disrupt these processes, highlighting the maternal genetic control over CG properties. Zebrafish has emerged as a pivotal model for understanding the evolving genetic regulation and molecular mechanisms underlying CG biology, providing valuable insights into fertility and early embryonic development.
Collapse
Affiliation(s)
- Priscila García-Castro
- Laboratorio de Fenómica y Embriogénesis Temprana (LAFET), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Isabella Giambó-Falian
- Laboratorio de Fenómica y Embriogénesis Temprana (LAFET), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Carvacho
- Laboratorio de Canales Iónicos y Reproducción (CIR), Departamento de Medicina Translacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Ricardo Fuentes
- Laboratorio de Fenómica y Embriogénesis Temprana (LAFET), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
6
|
Bhopatkar SB, Huang J. Novel SPAST Deletion Mutation in an American Family With Hereditary Spastic Paraplegia: A Case Report. J Investig Med High Impact Case Rep 2025; 13:23247096251323173. [PMID: 40019011 PMCID: PMC11869264 DOI: 10.1177/23247096251323173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 03/01/2025] Open
Abstract
The diverse group of neurodegenerative disorders known as hereditary spastic paraplegia (HSP) is characterized by spasticity and weakness of the bilateral lower extremity due to degeneration of the corticospinal tract. The pathogenesis of HSP is broad, with autosomal dominant, autosomal recessive, X-linked recessive, mitochondrial inheritance, and de novo mutations reported, along with remarkable heterogeneity of mutations and clinical presentation. Of these, the most common subtype of HSP is HSP type 4 (HSP-SPG4), a result of mutations in the SPAST gene (chromosome 2p22.3) that leads to impaired activity of the microtubule-severing protein spastin. Typically presenting as an uncomplicated, autosomal dominant form of the disease, HSP-SPG4 has been documented worldwide with vast genomic variance across the SPAST gene. Despite common features in clinical phenotypes, a clear link between SPAST gene variants and disease presentation remains vague. Here, we report a novel 26.1 kb deletion in the SPAST gene (del exons 4-7) in a US family with previously undiagnosed HSP-SPG4.
Collapse
Affiliation(s)
- Sydney B. Bhopatkar
- Class of 2026, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Juebin Huang
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
7
|
Kavishwar M, Bisen P, Baheti S, Wade P. Identification of a novel MAG gene mutation with 22q11.21 microduplication linked to hereditary spastic paraplegia. BMJ Case Rep 2024; 17:e260342. [PMID: 39689926 DOI: 10.1136/bcr-2024-260342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Diagnosing hereditary spastic paraplegia (HSP) in paediatric patients can be challenging, especially when there is no positive family history. Children are often initially misdiagnosed with cerebral palsy due to the gradual progression of the disease and non-specific neuroimaging findings, despite the absence of perinatal insult. This misdiagnosis can prevent timely prenatal diagnosis, limiting the ability to make informed decisions about the pregnancy and to plan early interventions. Homozygous variants in the MAG gene, encoding myelin-associated glycoprotein (MAG), have been associated with complicated forms of HSP. In this study, we identified a novel mutation suggestive of an apparently homozygous variant of the MAG gene with deletion in exon 5 (c.451del (p.Ala151GlnfsTer22)) that is predicted to result in a frameshift and premature truncation of the protein 22 amino acids downstream to codon 151. This variant was of pathological significance in our patient who presented with cerebellar ataxia, nystagmus and hypotonia, gradually progressing to spastic paraplegia. Therefore, identifying these variants helps in understanding the underlying genetic factors contributing to HSP, aiding in correct diagnosis.
Collapse
Affiliation(s)
- Madhura Kavishwar
- Paediatrics, Topiwala National Medical College & B. Y. L. Nair Charitable Hospital, Mumbai, Maharashtra, India
| | - Pratima Bisen
- Paediatrics, Topiwala National Medical College & B. Y. L. Nair Charitable Hospital, Mumbai, Maharashtra, India
| | - Sumeet Baheti
- Paediatrics, Topiwala National Medical College & B. Y. L. Nair Charitable Hospital, Mumbai, Maharashtra, India
| | - Poonam Wade
- Paediatrics, Topiwala National Medical College & B. Y. L. Nair Charitable Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Wiseman JP, Scarrott JM, Alves-Cruzeiro J, Saffari A, Böger C, Karyka E, Dawes E, Davies AK, Marchi PM, Graves E, Fernandes F, Yang ZL, Coldicott I, Hirst J, Webster CP, Highley JR, Hackett N, Angyal A, Silva TD, Higginbottom A, Shaw PJ, Ferraiuolo L, Ebrahimi-Fakhari D, Azzouz M. Pre-clinical development of AP4B1 gene replacement therapy for hereditary spastic paraplegia type 47. EMBO Mol Med 2024; 16:2882-2917. [PMID: 39358605 PMCID: PMC11554807 DOI: 10.1038/s44321-024-00148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Spastic paraplegia 47 (SPG47) is a neurological disorder caused by mutations in the adaptor protein complex 4 β1 subunit (AP4B1) gene leading to AP-4 complex deficiency. SPG47 is characterised by progressive spastic paraplegia, global developmental delay, intellectual disability and epilepsy. Gene therapy aimed at restoring functional AP4B1 protein levels is a rational therapeutic strategy to ameliorate the disease phenotype. Here we report that a single delivery of adeno-associated virus serotype 9 expressing hAP4B1 (AAV9/hAP4B1) into the cisterna magna leads to widespread gene transfer and restoration of various hallmarks of disease, including AP-4 cargo (ATG9A) mislocalisation, calbindin-positive spheroids in the deep cerebellar nuclei, anatomical brain defects and motor dysfunction, in an SPG47 mouse model. Furthermore, AAV9/hAP4B1-based gene therapy demonstrated a restoration of plasma neurofilament light (NfL) levels of treated mice. Encouraged by these preclinical proof-of-concept data, we conducted IND-enabling studies, including immunogenicity and GLP non-human primate (NHP) toxicology studies. Importantly, NHP safety and biodistribution study revealed no significant adverse events associated with the therapeutic intervention. These findings provide evidence of both therapeutic efficacy and safety, establishing a robust basis for the pursuit of an IND application for clinical trials targeting SPG47 patients.
Collapse
Affiliation(s)
- Jessica P Wiseman
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Joseph M Scarrott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation & Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - João Alves-Cruzeiro
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Afshin Saffari
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Cedric Böger
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation & Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily Dawes
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Alexandra K Davies
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Paolo M Marchi
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily Graves
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Fiona Fernandes
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Adrienn Angyal
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Thushan de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
- Sheffield NIHR Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK.
- Gene Therapy Innovation & Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
9
|
Garg V, André S, Heyer L, Kracht G, Ruhwedel T, Scholz P, Ischebeck T, Werner HB, Dullin C, Engelmann J, Möbius W, Göpfert MC, Dosch R, Geurten BRH. Axon demyelination and degeneration in a zebrafish spastizin model of hereditary spastic paraplegia. Open Biol 2024; 14:240100. [PMID: 39503232 PMCID: PMC11539067 DOI: 10.1098/rsob.240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse set of neurological disorders characterized by progressive spasticity and weakness in the lower limbs caused by damage to the axons of the corticospinal tract. More than 88 genetic mutations have been associated with HSP, yet the mechanisms underlying these disorders are not well understood. We replicated the pathophysiology of one form of HSP known as spastic paraplegia 15 (SPG15) in zebrafish. This disorder is caused in humans by mutations in the ZFYVE26 gene, which codes for a protein called SPASTIZIN. We show that, in zebrafish, the significant reduction of Spastizin caused degeneration of large motor neurons. Motor neuron degeneration is associated with axon demyelination in the spinal cord and impaired locomotion in the spastizin mutants. Our findings reveal that the reduction in Spastizin compromises axonal integrity and affects the myelin sheath, ultimately recapitulating the pathophysiology of HSPs.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Selina André
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luisa Heyer
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Gudrun Kracht
- Department of Developmental Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Roland Dosch
- Institute for Humangenetics, University Medical Center, Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Zoology, University of Otago Dunedin, Dunedin, New Zealand
| |
Collapse
|
10
|
Hamamie-Chaar A, Renaud M, Gençpinar P, Bruel AL, Philippe C, Maraval J, Racine C, Hadouiri N, Lambert L, Schmitt E, Banneau G, Hocquel A, Thauvin-Robinet C, Faivre L, Thomas Q. Patients with complex and very-early-onset ATL1-related spastic paraplegia offer insights on genotype/phenotype correlations and support for autosomal recessive forms of SPG3A. J Neurol 2024; 271:6343-6348. [PMID: 39003427 PMCID: PMC11377504 DOI: 10.1007/s00415-024-12565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Spastic paraplegia type 3A (SPG3A) is the second most common form of hereditary spastic paraplegia (HSP). This autosomal-dominant-inherited motor disorder is caused by heterozygous variants in the ATL1 gene which usually presents as a pure childhood-onset spastic paraplegia. Affected individuals present muscle weakness and spasticity in the lower limbs, with symptom onset in the first decade of life. Individuals with SPG3A typically present a slow progression and remain ambulatory throughout their life. Here we report three unrelated individuals presenting with very-early-onset (before 7 months) complex, and severe HSP phenotypes (axial hypotonia, spastic quadriplegia, dystonia, seizures and intellectual disability). For 2 of the 3 patients, these phenotypes led to the initial diagnosis of cerebral palsy (CP). These individuals carried novel ATL1 pathogenic variants (a de novo ATL1 missense p.(Lys406Glu), a homozygous frameshift p.(Arg403Glufs*3) and a homozygous missense variant (p.Tyr367His)). The parents carrying the heterozygous frameshift and missense variants were asymptomatic. Through these observations, we increase the knowledge on genotype-phenotype correlations in SPG3A and offer additional proof for possible autosomal recessive forms of SPG3A, while raising awareness on these exceptional phenotypes. Their ability to mimic CP also implies that genetic testing should be considered for patients with atypical forms of CP, given the implications for genetic counseling.
Collapse
Affiliation(s)
| | - Mathilde Renaud
- Department of Clinical Genetics, CHRU Nancy, Nancy, France
- INSERM-U1256 NGERE, Université de Lorraine, Nancy, France
| | - Pinar Gençpinar
- Department of Pediatric Neurology, İzmir Katip Çelebi University, Izmir, Turkey
| | - Ange-Line Bruel
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, Dijon, France
| | - Christophe Philippe
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, Dijon, France
| | - Julien Maraval
- Department of Clinical Genetics, Dijon University Hospital, Dijon, France
| | - Caroline Racine
- Department of Clinical Genetics, Dijon University Hospital, Dijon, France
| | - Nawale Hadouiri
- Department of Clinical Genetics, Dijon University Hospital, Dijon, France
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, Dijon, France
| | - Laetitia Lambert
- Department of Clinical Genetics, CHRU Nancy, Nancy, France
- INSERM-U1256 NGERE, Université de Lorraine, Nancy, France
| | | | - Guillaume Banneau
- Department of Clinical Genetics, CHU Toulouse, Toulouse, France
- Pitié-Salpêtrière, Department of Genetics, Sorbonne Université, AP-HP, Paris, France
| | - Armand Hocquel
- Department of Clinical Genetics, CHRU Nancy, Nancy, France
| | - Christel Thauvin-Robinet
- Department of Clinical Genetics, Dijon University Hospital, Dijon, France
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, Dijon, France
| | - Laurence Faivre
- Department of Clinical Genetics, Dijon University Hospital, Dijon, France
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, Dijon, France
| | - Quentin Thomas
- Department of Clinical Genetics, Dijon University Hospital, Dijon, France.
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, Dijon, France.
| |
Collapse
|
11
|
Finsterer J. Amyotrophic Lateral Sclerosis due to ALS2 Pathogenic Variant Masquerading as Cerebral Palsy: Correspondence. Indian J Pediatr 2024; 91:988. [PMID: 38514515 DOI: 10.1007/s12098-024-05106-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Affiliation(s)
- Josef Finsterer
- Neurology & Neurophysiology Center, Postfach 20, 1180, Vienna, Austria.
| |
Collapse
|
12
|
Cioffi E, Gioiosa V, Tessa A, Petrucci A, Trovato R, Santorelli FM, Casali C. Hereditary spastic paraparesis type 18 (SPG18): new ERLIN2 variants in a series of Italian patients, shedding light upon genetic and phenotypic variability. Neurol Sci 2024; 45:3845-3852. [PMID: 38427163 PMCID: PMC11255072 DOI: 10.1007/s10072-024-07423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG18 is a rare, early-onset, complicated HSP, first reported as linked to biallelic ERLIN2 mutations. Recent cases of late-onset, pure HSP with monoallelic ERLIN2 variants prompt inquiries into the zygosity of such genetic conditions. The observed relationship between phenotype and mode of inheritance suggests a potential dominant negative effect of mutated ERLIN2 protein, potentially resulting in a milder phenotype. This speculation suggests that a wider range of HSP genes could be linked to various inheritance patterns. PURPOSE AND BACKGROUND With documented cases of HSP loci exhibiting both dominant and recessive patterns, this study emphasizes that the concept of zygosity is no longer a limiting factor in the establishment of molecular diagnoses for HSP. Recent cases have demonstrated phenoconversion in SPG18, from HSP to an amyotrophic lateral sclerosis (ALS)-like syndrome. METHODS AND RESULTS This report highlights two cases out of five exhibiting HSP-ALS phenoconversion, discussing an observed prevalence in autosomal dominant SPG18. Additionally, the study emphasizes the relatively high incidence of the c.502G>A variant in monoallelic SPG18 cases. This mutation appears to be particularly common in cases of HSPALS phenoconversion, indicating its potential role as a hotspot for a distinctive SPG18 phenotype with an ALS-like syndrome. CONCLUSIONS Clinicians need to be aware that patients with HSP may show ALS signs and symptoms. On the other hand, HSP panels must be included in genetic testing methods for instances of familial ALS.
Collapse
Affiliation(s)
- Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
| | - Valeria Gioiosa
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Antonio Petrucci
- Department of Neurology and Neurophysiopathology, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense, 87, 00152, Rome, Italy
| | - Rosanna Trovato
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| |
Collapse
|
13
|
Garg V, Geurten BRH. Diving deep: zebrafish models in motor neuron degeneration research. Front Neurosci 2024; 18:1424025. [PMID: 38966756 PMCID: PMC11222423 DOI: 10.3389/fnins.2024.1424025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
14
|
Hjartarson HT, Skott H, Granberg T, Paucar M. Phenotypic variability in a large kindred with spastic paraplegia associated with a novel REEP1 variant. eNeurologicalSci 2024; 35:100497. [PMID: 38525447 PMCID: PMC10957410 DOI: 10.1016/j.ensci.2024.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Background and objectives The aim of this study is to provide a comprehensive characterization of a large Estonian family spanning five generations with seventeen individuals affected by spastic paraplegia associated with a novel variant in the receptor expression-enhancing protein-1 (REEP1) gene. Methods Comprehensive clinical evaluation, neuroimaging, and neurophysiological studies were performed on six patients who provided oral and written consent. Whole-exome sequencing was performed on the index case. Targeted carrier testing was done in all other available affected and at-risk relatives. Results Four individuals presented with pure spastic paraplegia, with onset from early childhood to adult age. None had bladder or bowel dysfunction. Two subjectively asymptomatic mutation carriers displayed pyramidal signs on examination. Imaging of the neuroaxis was normal in three patients, three had MRI findings interpreted as unrelated. Motor evoked potential (MEP) was abnormal in five; the patient with the longest disease duration had additional somatosensory evoked potential (SSEP) abnormalities. The novel splice-site variant, c.32 + 1G > C in the REEP1 gene, found in the index case, co-segregates with disease in the family. Expressivity in this family is variable. Conclusion Our findings are in keeping with previous descriptions of the SPG31 spectrum. The phenotype associated with splice variants is not necessarily more severe than other conventional REEP1 variants. As for other forms of familial spastic paraplegias, the factors modulating variable expressivity in SPG31 are still unknown.
Collapse
Affiliation(s)
- Helgi Thor Hjartarson
- Department of Pediatric Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Humberto Skott
- Department of Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Paucar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Cao Y, Zheng H, Zhu Z, Yao L, Tian W, Cao L. Clinical and Genetic Spectrum in a Large Cohort of Hereditary Spastic Paraplegia. Mov Disord 2024; 39:651-662. [PMID: 38291924 DOI: 10.1002/mds.29728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Next-generation sequencing-based molecular assessment has benefited the diagnosis of hereditary spastic paraplegia (HSP) subtypes. However, the clinical and genetic spectrum of HSP due to large fragment deletions/duplications has yet to be fully defined. OBJECTIVE We aim to better characterize the clinical phenotypes and genetic features of HSP and to provide new thoughts on diagnosis. METHODS Whole-exome sequencing (WES) was performed in patients with clinically suspected HSP, followed by multiple ligation-dependent probe amplification (MLPA) sequentially carried out for those with negative findings in known causative genes. Genotype-phenotype correlation analyses were conducted under specific genotypes. RESULTS We made a genetic diagnosis in 60% (162/270) of patients, of whom 48.9% (132/270) had 24 various subtypes due to point mutations (SPG4/SPG11/SPG35/SPG7/SPG10/SPG5/SPG3A/SPG2/SPG76/SPG30/SPG6/SPG9A/SPG12/SPG15/SPG17/SPG18/SPG26/SPG49/SPG55/SPG56/SPG57/SPG62/SPG78/SPG80). Thirty patients were found to have causative rearrangements by MLPA (11.1%), among which SPG4 was the most prevalent (73.3%), followed by SPG3A (16.7%), SPG6 (3.3%), SPG7 (3.3%), and SPG11 (3.3%). Clinical analysis showed that some symptoms were often related to specific subtypes, and rearrangement-related SPG3A patients seemingly had later onset. We observed a presumptive anticipation among SPG4 and SPG3A families due to rearrangement. CONCLUSIONS Based on the largest known Asian HSP cohort, including the largest subgroup of rearrangement-related pedigrees, we gain a comprehensive understanding of the clinical and genetic spectrum of HSP. We propose a diagnostic flowchart to sequentially detect the causative genes in practice. Large fragment mutations account for a considerable proportion of HSP, and thus, MLPA screening acts as a beneficial supplement to routine WES. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuwen Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Haoran Zheng
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Zeyu Zhu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Suzhou Hospital of Anhui Medical University, Suzhou Municipal Hospital of Anhui Province, Suzhou, China
| | - Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
16
|
Cioffi E, Coppola G, Musumeci O, Gallone S, Silvestri G, Rossi S, Piemonte F, D'Amico J, Tessa A, Santorelli FM, Casali C. Hereditary spastic paraparesis type 46 (SPG46): new GBA2 variants in a large Italian case series and review of the literature. Neurogenetics 2024; 25:51-67. [PMID: 38334933 PMCID: PMC11076336 DOI: 10.1007/s10048-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.
Collapse
Affiliation(s)
- Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Olimpia Musumeci
- Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy
| | - Salvatore Gallone
- Department of Neuroscience and Mental Health, Neurologia 1, A.O.U. Città Della Salute E Della Scienza, 10126, Turin, Italy
| | - Gabriella Silvestri
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Neuroscienze, Organi Di Senso E Torace, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Rossi
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Jessica D'Amico
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| |
Collapse
|
17
|
Kilic MA, Yildiz EP, Deniz A, Coskun O, Kurekci F, Avci R, Genc HM, Yesil G, Akbas S, Yesilyurt A, Kara B. A Retrospective Review of 18 Patients With Childhood-Onset Hereditary Spastic Paraplegia, Nine With Novel Variants. Pediatr Neurol 2024; 152:189-195. [PMID: 38301322 DOI: 10.1016/j.pediatrneurol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative disorders. Our objective was to determine the clinical and molecular characteristics of patients with genetically confirmed childhood-onset HSPs and to expand the genetic spectrum for some rare subtypes of HSP. METHODS We reviewed the charts of subjects with genetically confirmed childhood-onset HSP. The age at the disease onset was defined as the point at which the delayed motor milestones were observed. Delayed motor milestones were defined as being unable to hold the head up by four months, sitting unassisted by nine months, and walking independently by 17 months. If there were no delayed motor milestones, age at disease onset was determined by leg stiffness, frequent falls, or unsteady gait. Genetic testing was performed based on delayed motor milestones, progressive leg spasticity, and gait difficulty. The variant classification was determined based on the American College of Medical Genetics standard guidelines for variant interpretation. Variants of uncertain significance (VUS) were considered disease-associated when clinical findings were consistent with the previously described disease phenotypes for pathogenic variants. In addition, in the absence of another pathogenic, likely pathogenic, or VUS variant that could explain the phenotype of our cases, we concluded that the disease is associated with VUS in the HSP-causing gene. Segregation analysis was also performed on the parents of some patients to demonstrate the inheritance model. RESULTS There were a total of 18 patients from 17 families. The median age of symptom onset was 18 months (2 to 84 months). The mean delay between symptom onset and genetic diagnosis was 5.8 years (5 months to 17 years). All patients had gait difficulty caused by progressive leg spasticity and weakness. Independent walking was not achieved at 17 months for 67% of patients (n = 12). In our cohort, there were two subjects each with SPG11, SPG46, and SPG 50 followed by single subject each with SPG3A, SPG4, SPG7, SPG8, SPG30, SPG35, SPG43, SPG44, SPG57, SPG62, infantile-onset ascending spastic paralysis (IAHSP), and spastic paraplegia and psychomotor retardation with or without seizures (SPPRS). Eight novel variants in nine patients were described. Two affected siblings had a novel variant in the GBA2 gene (SPG46), and one subject each had a novel variant in WASHC5 (SPG8), SPG11 (SPG11), KIF1A (SPG30), GJC2 (SPG44), ERLIN1 (SPG62), ALS2 (IAHSP), and HACE1 (SPPRS). Among the novel variants, the variant in the SPG11 was pathogenic and the variants in the KIF1A, GJC2, and HACE1 were likely pathogenic. The variants in the GBA2, ALS2, ERLIN1, and WASHC5 were classified as VUS. CONCLUSIONS There was a significant delay between symptom onset and genetic diagnosis of HSP. An early diagnosis may be possible by examining patients with delayed motor milestones, progressive spasticity, gait difficulties, and neuromuscular weakness in the context of HSP. Eight novel variants in nine patients were described, clinically similar to the previously described disease phenotype associated with pathogenic variants. This study contributes to expanding the genetic spectrum of some rare subtypes of HSP.
Collapse
Affiliation(s)
- Mehmet Akif Kilic
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye.
| | - Edibe Pembegul Yildiz
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Adnan Deniz
- Department of Pediatric Neurology, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| | - Orhan Coskun
- Department of Pediatric Neurology, Gaziosmanpasa Training and Research Hospital, Istanbul, Turkiye
| | - Fulya Kurekci
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Ridvan Avci
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Hulya Maras Genc
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Gozde Yesil
- Department of Medical Genetics, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Sinan Akbas
- Department of Medical Genetics, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Ahmet Yesilyurt
- Acibadem Labgen Genetic Diagnosis Centre, Acibadem Health Group, Istanbul, Turkiye
| | - Bulent Kara
- Department of Pediatric Neurology, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| |
Collapse
|
18
|
Diarra S, Coulibaly T, Dembélé K, Ngouth N, Cissé L, Diallo SH, Ouologuem M, Diallo S, Coulibaly O, Bagayoko K, Coulibaly D, Simaga A, Sango HA, Traoré M, Jacobson S, Fischbeck KH, Landouré G, Guinto CO. Hereditary spastic paraplegia in Mali: epidemiological and clinical features. Acta Neurol Belg 2023; 123:2155-2165. [PMID: 36396882 DOI: 10.1007/s13760-022-02113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND PURPOSE Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases divided into pure and complex forms, with spasticity in lower limbs only, or associated with other neurologic and non-neurologic manifestations, respectively. Although widely reported in other populations, very little data exist in sub-Saharan Africa. METHODS Patients with neurodegenerative features were evaluated over a 19-month period at the Department of Neurology, Teaching Hospital of Point "G", Bamako, Mali. The diagnosis of HSP was considered based on family history and the absence of other known non-genetic causes. Genetic analysis including candidate gene and whole exome sequencing was performed and variant pathogenicity was tested using prediction tools and ACMG guidelines. RESULTS Of the 170 families with hereditary neurological disorders enrolled, 16 had features consistent with HSP, a frequency of 9%. The average age of onset was 14.7 years with 46% starting before age 6. The male/female ratio was 2.6:1. Complex forms were seen in 75% of cases, and pure forms in 25%. Pyramidal findings were present in all patients. Associated features included mental retardation, peripheral neuropathy, epilepsy, oculomotor impairment and urinary urgency. Most patients were treated with a muscle relaxant and physical therapy, and restorative surgery was done in one. Genetic testing identified novel variants in three families (19%). CONCLUSION This study confirms the clinical variability of HSPs and adds African data to the current literature.
Collapse
Affiliation(s)
- Salimata Diarra
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, USA
| | - Thomas Coulibaly
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, CHU du Point "G", Bamako, Mali
| | | | - Nyater Ngouth
- Neuroimmunology Division, NINDS, NIH, Bethesda, MD, USA
| | - Lassana Cissé
- Service de Neurologie, CHU du Point "G", Bamako, Mali
| | - Seybou H Diallo
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, CHU de Gabriel Touré, Bamako, Mali
| | | | | | - Oumar Coulibaly
- Service de Chirugie Pédiatrique, CHU de Gabriel Touré, Bamako, Mali
| | - Koumba Bagayoko
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | | | - Assiatou Simaga
- Institut d'Ophtalmologie Tropicale de l'Afrique (IOTA), Bamako, Mali
| | - Hammadoun A Sango
- DER de Santé Publique, Faculté de Médecine et d'Odontostomatologie, Bamako, Mali
| | - Mahamadou Traoré
- Service de Cytogénétique et de la Réproduction Biologique, INSP, Bamako, Mali
| | | | | | - Guida Landouré
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali.
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, USA.
- Service de Neurologie, CHU du Point "G", Bamako, Mali.
| | - Cheick O Guinto
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, CHU du Point "G", Bamako, Mali
| |
Collapse
|
19
|
Agarwal A, Garg D, Garg A, Srivastava AK. RNASEH2B Pathogenic Mutation Presenting with Pure, Apparently Non-Progressive Hereditary Spastic Paraparesis. Ann Indian Acad Neurol 2023; 26:1013-1014. [PMID: 38229641 PMCID: PMC10789435 DOI: 10.4103/aian.aian_707_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 01/18/2024] Open
Affiliation(s)
| | - Divyani Garg
- Department of Neurology, AIIMS, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, AIIMS, New Delhi, India
| | | |
Collapse
|
20
|
Chai E, Chen Z, Mou Y, Thakur G, Zhan W, Li XJ. Liver-X-receptor agonists rescue axonal degeneration in SPG11-deficient neurons via regulating cholesterol trafficking. Neurobiol Dis 2023; 187:106293. [PMID: 37709208 PMCID: PMC10655618 DOI: 10.1016/j.nbd.2023.106293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Spastic paraplegia type 11 (SPG11) is a common autosomal recessive form of hereditary spastic paraplegia (HSP) characterized by the degeneration of cortical motor neuron axons, leading to muscle spasticity and weakness. Impaired lipid trafficking is an emerging pathology in neurodegenerative diseases including SPG11, though its role in axonal degeneration of human SPG11 neurons remains unknown. Here, we established a pluripotent stem cell-based SPG11 model by knocking down the SPG11 gene in human embryonic stem cells (hESCs). These stem cells were then differentiated into cortical projection neurons (PNs), the cell types affected in HSP patients, to examine axonal defects and cholesterol distributions. Our data revealed that SPG11 deficiency led to reduced axonal outgrowth, impaired axonal transport, and accumulated swellings, recapitulating disease-specific phenotypes. In SPG11-knockdown neurons, cholesterol was accumulated in lysosome and reduced in plasma membrane, revealing impairments in cholesterol trafficking. Strikingly, the liver-X-receptor (LXR) agonists restored cholesterol homeostasis, leading to the rescue of subsequent axonal defects in SPG11-deficient cortical PNs. To further determine the implication of impaired cholesterol homeostasis in SPG11, we examined the cholesterol distribution in cortical PNs generated from SPG11 disease-mutation knock-in hESCs, and observed a similar cholesterol trafficking impairment. Moreover, LXR agonists rescued the aberrant cholesterol distribution and mitigated the degeneration of SPG11 disease-mutated neurons. Taken together, our data demonstrate impaired cholesterol trafficking underlying axonal degeneration of SPG11 human neurons, and highlight the therapeutic potential of LXR agonists for SPG11 through restoring cholesterol homeostasis.
Collapse
Affiliation(s)
- Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gitika Thakur
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Weihai Zhan
- Office of Research, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA..
| |
Collapse
|
21
|
Finsterer J, Scorza FA, Scorza CA, de Almeida ACG. Pure and complex genetic epilepsies with tonic-clonic seizures can be complicated by sudden unexpected death in epilepsy. Seizure 2023; 111:225-226. [PMID: 37558569 DOI: 10.1016/j.seizure.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
| | - Fulvio A Scorza
- Disciplina de Neurociência, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Antonio-Carlos G de Almeida
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina/Universidade Federal de São Paulo(EPM/UNIFESP), São Paulo, Brazil
| |
Collapse
|
22
|
Chen X, Li X, Tan Y, Yang D, Lu L, Deng Y, Xu R. Identification of c.1495C > T mutation in SPAST gene in a family of Han Chinese with hereditary spastic paraplegia. Neurosci Lett 2023; 812:137399. [PMID: 37473796 DOI: 10.1016/j.neulet.2023.137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Hereditary spastic paraplegia 4 (SPG4) caused by spastin (SPAST) gene mutations accounts for 40-45% of hereditary spastic paraplegia (HSP) cases. To search for more genetic evidences for the pathogenesis of HSP, the SPAST genotype and clinical phenotype of a Chinese Han SPG4 family were analysed in this study. METHODS The clinical data of the proband and his family members were collected. Whole genomic DNA was extracted from peripheral blood, and the gene detection and pathogenicity analysis of mutations were conducted using whole-exome sequencing technology. Suspected pathogenic mutations were identified. Verification within this family was conducted by Sanger sequencing. RESULTS Eight (4 males and 4 females) of 20 members in 4 generations had SPG4. All patients presented with the high feet arches (pes cavus), the abnormal gait, the active tendon reflexes of the upper limbs, the hyperreflexia of the lower limbs, and the positive ankle clonus and Babinski's signs bilaterally. In the proband, we found a heterozygous mutation c.1495C > T in SPAST gene, which was associated with the autosomal dominant SPG4. Both the daughters and granddaughters of the proband in this family were verified to carry this mutation. The clinical characteristics of the SPG4 patients in this family are in line with the simple type of HSP. Heterozygous c.1495C > T is a pathogenic mutation in this family. CONCLUSION In this study, we identified a c.1495C > T mutation in the SPAST gene in a Han Chinese family, enriching the mutation spectrum of SPG4.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China
| | - Xinming Li
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China
| | - Yu Tan
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China
| | - Dejiang Yang
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China
| | - Lijun Lu
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China
| | - Youqing Deng
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China.
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The Clinical College of Nanchang College, The First Affiliated Hospital of Nanchang College, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
23
|
Lai ZH, Liu XY, Song YY, Zhou HY, Zeng LL. Case report: Hereditary spastic paraplegia with a novel homozygous mutation in ZFYVE26. Front Neurol 2023; 14:1160110. [PMID: 37681008 PMCID: PMC10482258 DOI: 10.3389/fneur.2023.1160110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/16/2023] [Indexed: 09/09/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with genetic and clinical heterogeneity characterized by spasticity and weakness of the lower limbs. It includes four genetic inheritance forms: autosomal dominant inheritance (AD), autosomal recessive inheritance (AR), X-linked inheritance, and mitochondrial inheritance. To date, more than 82 gene loci have been found to cause HSP, and SPG15 (ZFYVE26) is one of the most common autosomal recessive hereditary spastic paraplegias (ARHSPs) with a thin corpus callosum (TCC), presents with early cognitive impairment and slowly progressive leg weakness. Here, we reported a homozygous pathogenic variant in ZFYVE26. A 19-year-old Chinese girl was admitted to our hospital presenting with a 2-year progressive bilateral leg spasticity and weakness; early cognitive impairment; corpus callosum dysplasia; chronic neurogenic injury of the medulla oblongata supplied muscles; and bilateral upper and lower limbs on electromyogram (EMG). Based on these clinical and electrophysiological features, HSP was suspected. Exome sequencing of the family was performed by high-throughput sequencing, and an analysis of the patient showed a ZFYVE26 NM_015346: c.7111dupA p.(M2371Nfs*51) homozygous mutation. This case reported a new ZFYVE26 pathogenic variant, which was different from the SPG15 gene mutation reported earlier.
Collapse
Affiliation(s)
- Ze-hua Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-ying Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-yue Song
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-yan Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-li Zeng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
García-Carmona JA, Amores-Iniesta J, Soler-Usero J, Cerdán-Sánchez M, Navarro-Zaragoza J, López-López M, Soria-Torrecillas JJ, Ballesteros-Arenas A, Pérez-Vicente JA, Almela P. Upregulation of Heat-Shock Protein (hsp)-27 in a Patient with Heterozygous SPG11 c.1951C>T and SYNJ1 c.2614G>T Mutations Causing Clinical Spastic Paraplegia. Genes (Basel) 2023; 14:1320. [PMID: 37510225 PMCID: PMC10379220 DOI: 10.3390/genes14071320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
We report a 49-year-old patient suffering from spastic paraplegia with a novel heterozygous mutation and analyzed the levels of heat shock proteins (hsp)-27, dopamine (DA), and its metabolites in their cerebrospinal fluid (CSF). The hsp27 protein concentration in the patient's CSF was assayed by an ELISA kit, while DA levels and its metabolites in the CSF, 3,4-dihydroxyphenylacetic acid (DOPAC), Cys-DA, and Cys-DOPA were measured by HPLC. Whole exome sequencing demonstrated SPG-11 c.1951C>T and novel SYNJ1 c.2614G>T mutations, both heterozygous recessive. The patient's DA and DOPAC levels in their CSF were significantly decreased (53.0 ± 6.92 and 473.3 ± 72.19, p < 0.05, respectively) while no differences were found in their Cys-DA. Nonetheless, Cys-DA/DOPAC ratio (0.213 ± 0.024, p < 0.05) and hsp27 levels (1073.0 ± 136.4, p < 0.05) were significantly higher. To the best of our knowledge, the c.2614G>T SYNJ1 mutation has not been previously reported. Our patient does not produce fully functional spatacsin and synaptojanin-1 proteins. In this line, our results showed decreased DA and DOPAC levels in the patient's CSF, indicating loss of DAergic neurons. Many factors have been described as being responsible for the increased cys-DA/DOPAC ratio, such as MAO inhibition and decreased antioxidant activity in DAergic neurons which would increase catecholquinones and consequently cysteinyl-catechols. In conclusion, haploinsufficiency of spatacsin and synaptojanin-1 proteins might be the underlying cause of neurodegeneration produced by protein trafficking defects, DA vesicle trafficking/recycling processes, autophagy dysfunction, and cell death leading to hsp27 upregulation as a cellular mechanism of protection and/or to balance impaired protein trafficking.
Collapse
Affiliation(s)
- Juan Antonio García-Carmona
- Department of Neurology, Santa Lucia University Hospital, 30202 Cartagena, Spain
- Group of Clinical & Experimental Pharmacology, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
| | - Joaquín Amores-Iniesta
- Department of Animal Health, University of Murcia, 30100 Murcia, Spain
- Group of Mycoplasmosis, Epidemiology and Pathogen-Host Interaction, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
| | - José Soler-Usero
- Department of Biology and Biochemistry, University of Castilla-León, 09001 Burgos, Spain
| | - María Cerdán-Sánchez
- Department of Neurology, Santa Lucia University Hospital, 30202 Cartagena, Spain
| | - Javier Navarro-Zaragoza
- Group of Clinical & Experimental Pharmacology, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
- Department of Pharmacology, University of Murcia, 30100 Murcia, Spain
| | - María López-López
- Department of Neurology, Santa Lucia University Hospital, 30202 Cartagena, Spain
| | | | | | | | - Pilar Almela
- Group of Clinical & Experimental Pharmacology, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
- Department of Pharmacology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
25
|
Sager G, Türkyilmaz A, Günbey HP, Taş İ, Ozhelvaci F, Akin Y. Pyrroline-5-carboxylate reductase 2 (PYCR2) deficiency causes hereditary spastic paraplaegia in late childhood. Eur J Paediatr Neurol 2023; 44:51-56. [PMID: 37141741 DOI: 10.1016/j.ejpn.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/16/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES PYCR2 gene variants are extremely rare condition which is associated with hypomyelinating leukodystrophy type 10 with microcephaly (HLD10). The aim of the present study is to report the clinical findings of patients having novel PYCR2 gene variant that manifest Hereditary Spastic Paraplegia (HSP) is the only symptom without hypomyelinating leukodystrophy. This is the first study that report the PYCR2 gene variants as a cause of HSP in late childhood. We believe it can contribute to expanding the spectrum of the phenotypes associated with PYCR2. METHODS It is a retrospective study. Of the patients with similar clinical features from two related families, "patient 1" was designated as the index case, and was analyzed using Whole Exome Squence analysis (WES). The detected variation was investigated in the index case's parents, relatives, and sibling with a similar phenotype. Clinical, brain magnetic resonance (MR) images and MR spectroscopic findings of the patients were reported. RESULTS A novel homozygous missense (NM_013328: c.383T > C, p.V128A) variant in the PYCR2 gene is detected in 5 patient from 2 related families. All the patients were male, their ages ranges from 6 to 26 years (15.58 ± 8,33 yrs). Developmantal milestones were normal without dysmorphic features. 4 (%80) patients exhibit mild intention tremor started at the age of approximately 6 years of age. 4 (%80) patients had gait difficulty and progressive lower limb spasticity started at the age of 8-12 years. White matter myelination was normal in all patients. Glycine peakes were detected on the MR spectroscopy in all patients. CONCLUSION Some variants of PYCR2 gene are responsible for causing clinical features of HSP without hypomyelinating leukodystrophy in the pediatric patients.
Collapse
Affiliation(s)
- Gunes Sager
- Department of Pediatric Neurology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkiye.
| | - Ayberk Türkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkiye
| | - Hediye Pınar Günbey
- Department of Radiology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkiye
| | - İbrahim Taş
- Department of Pediatric Metabolism, Umraniye Training and Research Hospital, Istanbul, Turkiye
| | - Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Yasemin Akin
- Department of Pediatrics, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkiye
| |
Collapse
|
26
|
Agarwal A, Oinam R, Goel V, Sharma P, Faruq M, Garg A, Srivastava AK. "Ear of the Lynx" Sign in Hereditary Spastic Paraparesis (HSP) 76. Mov Disord Clin Pract 2023; 10:120-123. [PMID: 36704071 PMCID: PMC9847285 DOI: 10.1002/mdc3.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Background Hereditary Spastic Paraparesis (HSP) are a group of genetically inherited disorders, clinically and genetically heterogenous and characterized by degeneration of corticospinal tracts, manifesting with progressive spasticity and lower limbs weakness. Most HSPs have an autosomal dominant inheritance. "Ear of the Lynx" sign describes the characteristic abnormality in the forceps minor region of the corpus callosum (CC) on MRI brain. These bear a striking resemblance to the ears of a lynx. This finding has previously been described with hereditary spastic paraparesis 11 and 15, both of which are autosomal recessive HSPs. Cases We describe this finding in two siblings with novel mutations causing HSP76, an extremely rare autosomal recessive HSP (less than 50 cases described worldwide), which has not been reported previously. Conclusion This sign suggests the presence of pathogenic genetic mutations and is likely indicative of autosomal recessive HSPs.
Collapse
Affiliation(s)
- Ayush Agarwal
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Rahul Oinam
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Vinay Goel
- Department of NeuroradiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Pooja Sharma
- Department of Genomics and Molecular MedicineCSIR Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Mohd. Faruq
- Department of Genomics and Molecular MedicineCSIR Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Ajay Garg
- Department of NeuroradiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Achal K. Srivastava
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|
27
|
Duan JQ, Liu H, Wu JQ. Case report: Novel mutations in the SPG11 gene in a case of autosomal recessive hereditary spastic paraplegia with a thin corpus callosum. Front Integr Neurosci 2023; 17:1117617. [PMID: 37035454 PMCID: PMC10079982 DOI: 10.3389/fnint.2023.1117617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
A 24-year-old man presented with insidious onset progressive gait disturbance and was finally diagnosed with autosomal recessive hereditary spastic paraplegia. Two novel mutations, including a frameshift mutation (c.5687_5691del) and a non-sense mutation (c.751C>T), were identified in the SPG11 gene of the patient through whole genome sequencing. The frameshift mutation of c.5687_5691del leads to a change in amino acid synthesis beginning with amino acid No. 1896 arginine and terminating at the 8th amino acid after the change (p. Arg1896MetfsTer8). The non-sense mutation (c.751C>T) causes the conversion of codon 251st encoding the amino acid Gln into a stop codon (p. Gln251Ter), resulting in premature termination of peptide synthesis. Although confirmation of compound-heterozygosity could not be performed, our findings enriched the phenotypic spectrum of SPG11 mutations related to hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Ji-Qing Duan
- Department of Intensive Care Unit, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hui Liu
- Department of Intensive Care Unit, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Jia-Qiao Wu
- Department of Anesthesia, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- *Correspondence: Jia-Qiao Wu
| |
Collapse
|
28
|
Incecık F, Herguner O, Bozdogan S. Hereditary Spastic Paraplegia Type 26 with a Novel Mutation in B4GALNT1 Gene and Literature Review of the Clinical Features. J Pediatr Neurosci 2023. [DOI: 10.4103/jpn.jpn_83_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
29
|
Jacinto-Scudeiro LA, Rothe-Neves R, Dos Santos VB, Machado GD, Burguêz D, Padovani MMP, Ayres A, Rech RS, González-Salazar C, Junior MCF, Saute JAM, Olchik MR. Dysarthria in hereditary spastic paraplegia type 4. Clinics (Sao Paulo) 2023; 78:100128. [PMID: 36473366 PMCID: PMC9723923 DOI: 10.1016/j.clinsp.2022.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To describe the speech pattern of patients with hereditary Spastic Paraplegia type 4 (SPG4) and correlated it with their clinical data. METHODS Cross-sectional study was carried out in two university hospitals in Brazil. Two groups participated in the study: the case group (n = 28) with a confirmed genetic diagnosis for SPG4 and a control group (n = 17) matched for sex and age. The speech assessment of both groups included: speech task recording, acoustic analysis, and auditory-perceptual analysis. In addition, disease severity was assessed with the Spastic Paraplegia Rating Scale (SPRS). RESULTS In the auditory-perceptual analysis, 53.5% (n = 15) of individuals with SPG4 were dysarthric, with mild to moderate changes in the subsystems of phonation and articulation. On acoustic analysis, SPG4 subjects' performances were worse in measurements related to breathing (maximum phonation time) and articulation (speech rate, articulation rate). The articulation variables (speech rate, articulation rate) are related to the age of onset of the first motor symptom. CONCLUSION Dysarthria in SPG4 is frequent and mild, and it did not evolve in conjunction with more advanced motor diseases. This data suggest that diagnosed patients should be screened and referred for speech therapy evaluation and those pathophysiological mechanisms of speech involvement may differ from the length-dependent degeneration of the corticospinal tract.
Collapse
Affiliation(s)
- Lais Alves Jacinto-Scudeiro
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rui Rothe-Neves
- Phonetics Laboratory of the Faculty of Letters, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Gustavo Dariva Machado
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daniela Burguêz
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Annelise Ayres
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafaela Soares Rech
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carelis González-Salazar
- Postgraduate Program in Medical Pathophysiology, Universidade Estadual de Campinas, São Paulo, SP, Brazil
| | | | - Jonas Alex Morales Saute
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Internal Medicine Department, Faculdade de Medicina Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maira Rozenfeld Olchik
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Surgery and Orthopedics, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Nan H, Chu M, Liu L, Xie K, Wu L. A novel truncating variant of SPAST associated with hereditary spastic paraplegia indicates a haploinsufficiency pathogenic mechanism. Front Neurol 2022; 13:1005544. [DOI: 10.3389/fneur.2022.1005544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
IntroductionHereditary spastic paraplegias (HSPs) are genetic neurodegenerative diseases. The most common form of pure HSP that is inherited in an autosomal dominant manner is spastic paraplegia type 4 (SPG4), which is caused by mutations in the SPAST gene. Different theories have been proposed as the mechanism underlying SPAST-HSP for different types of genetic mutations, including gain- and loss-of-function mechanisms. To better understand the mutation mechanisms, we performed genetic analysis and investigated a truncating SPAST variant that segregated with disease in one family.Objectives and methodsWe described a pure HSP pedigree with family members across four generations. We performed genetic analysis and investigated a novel frameshift pathogenic variant (c.862_863dupAC, p. H289Lfs*27) in this family. We performed reverse transcription-polymerase chain reaction (RT-PCR), Sanger sequencing, and quantitative RT-PCR using total RNA from an Epstein-Barr virus-induced lymphoblastoid cell line produced from the proband. We also performed Western blotting on cell lysates to investigate if the protein expression of spastin is affected by this variant.ResultsThis variant (c.862_863dupAC, p. H289Lfs*27) co-segregated with pure HSP in this family and is not registered in any public database. Measurement of SPAST transcripts in lymphoblasts from the proband demonstrated a reduction of SPAST transcript levels through likely nonsense-mediated mRNA decay. Immunoblot analyses demonstrated a reduction of spastin protein expression levels in lymphoblasts.ConclusionWe report an SPG4 family with a novel heterozygous frameshift variant p.H289Lfs*27 in SPAST. Our study implies haploinsufficiency as the pathogenic mechanism for this variant and expands the known mutation spectrum of SPAST.
Collapse
|
31
|
Khidiyatova IM, Saifullina EV, Karunas AS, Akhmetgaleyeva AF, Kutlubaeva RF, Smakova LA, Lobov SL, Polyakov AV, Shchagina OA, Kadnikova VA, Ryzhkova OP, Magzhanov RV, Khusnutdinova EK. Analysis of ATL1 Gene Mutations and Clinical Features of the Disease Course in Patients with Hereditary Spastic Paraplegia. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Ehsani E, Khamirani HJ, Abbasi Z, Kamal N, Zoghi S, Mohammadi S, Dianatpour M, Tabei SMB, Mohamadjani O, Dastgheib SA. Genotypic and phenotypic spectrum of Myofibrillar Myopathy 7 as a result of Kyphoscoliosis Peptidase deficiency: The first description of a missense mutation in KY and literature review. Eur J Med Genet 2022; 65:104552. [PMID: 35752288 DOI: 10.1016/j.ejmg.2022.104552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/25/2022] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
KY is located on chromosome 3 and encodes a transglutaminase-like protein in the skeletal muscles, namely Kyphoscoliosis Peptidase. KY is primarily involved in the formation and stabilization of neuromuscular intersections making it essential for the development of the musculoskeletal system. Mutations in KY cause Myofibrillar Myopathy-7 (MFM-7) and Hereditary Spastic Paraplegia (HSP). MFM-7 is an early onset muscle disorder with an autosomal recessive inheritance marked by progressive muscle weakness and joint contractures. Herein, we describe an Iranian family with MFM-7 caused by a homozygous novel variant in KY. We identified a homozygous variant (NM_178554.6:c.1247T > A, p. Ile416Asn) in KY in two patients born to consanguineous parents and the same heterozygous mutation in their parent by Whole-Exome Sequencing. The patients manifest muscle weakness, muscle atrophy, mobility restriction, and hyporeflexia. Lastly, we reviewed the phenotype and corresponding genotype of the previously reported cases with pathogenic variants in KY.
Collapse
Affiliation(s)
- Elham Ehsani
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Jafari Khamirani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Abbasi
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Kamal
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Zoghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Mohammadi
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Mohamadjani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
33
|
Shi Y, Wang A, Chen B, Wang X, Niu S, Li W, Li S, Zhang Z. Clinical Features and Genetic Spectrum of Patients With Clinically Suspected Hereditary Progressive Spastic Paraplegia. Front Neurol 2022; 13:872927. [PMID: 35572931 PMCID: PMC9097539 DOI: 10.3389/fneur.2022.872927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Background and Purpose A variety of hereditary diseases overlap with neurological phenotypes or even share genes with hereditary spastic paraplegia (HSP). The aim of this study was to determine the clinical features and genetic spectrum of patients with clinically suspected HSPs. Methods A total of 52 patients with clinically suspected HSPs were enrolled in this study. All the patients underwent next-generation sequencing (NGS) and triplet repeat primed PCR to screen for the dynamic mutations typical of spinocerebellar ataxia (SCA). Multiplex ligation-dependent probe amplification (MLPA) was further conducted in patients with no causative genetic mutations detected to examine for large deletions and duplications in genes of SPAST, ATL1, REEP1, PGN, and SPG11. Clinical characteristics and findings of brain MRI were analyzed in patients with definite diagnoses. Results The mean age of the patients studied was 36.90 ± 14.57 years. 75% (39/52) of patients manifested a phenotype of complex form of HSPs. A genetic diagnosis was made in 51.9% (27/52) of patients, of whom 40.3% (21/52) of patients had mutations in HSPs genes (SPG4/SPG6/SPG8/SPG11/SPG15/SPG78/SPG5A) and 11.5% (6/52) of patients had mutations in SCAs genes (SCA3/SCA17/SCA28). SPG4 and SPG11 were the most common cause of pure form of HSPs (5/6, 83.3%) and complex form of HSPs (5/15, 33.3%), respectively. Gait disturbance was the most common initial symptom in both the patients with HSPs (15/21) and in patients with SCAs (5/6). Dysarthria and cerebellar ataxia were detected in 28.5% (6/21) and 23.8% (5/21) of patients with HSPs, respectively, and were the most common symptoms in addition to progressive weakness and spasticity of the lower limbs. Cerebellar atrophy was seen on the brain MRI of patients with SPG5A, SCA3, and SCA28. Conclusion Causative genetic mutations were identified in 51.9% of patients with clinically suspected HSPs by NGS and triplet repeat primed PCR. A final diagnosis of HSPs or SCAs was made in 40.3% and 11.5% of patients, respectively. The clinical manifestations and neuroimaging findings overlapped between patients with HSPs and patients with SCAs. Dynamic mutations should be screened in patients with clinically suspected HSPs, especially in those with phenotypes of complex form of HSPs.
Collapse
Affiliation(s)
- Yuzhi Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - An Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Monogenic Disease Research Center for Neurological Disorders & Precision Medicine Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaowu Li
- Department of Functional Neuroimaging, Beijing Neurosurgical Institute, Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Chen J, Zhao Z, Shen H, Bing Q, Li N, Guo X, Hu J. Genetic origin of patients having spastic paraplegia with or without other neurologic manifestations. BMC Neurol 2022; 22:180. [PMID: 35578252 PMCID: PMC9109329 DOI: 10.1186/s12883-022-02708-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases characterized by lower-limb spastic paraplegia with highly genetic and clinical heterogeneity. However, the clinical sign of spastic paraplegia can also be seen in a variety of hereditary neurologic diseases with bilateral corticospinal tract impairment. The purpose of this study is to identify the disease spectrum of spastic paraplegia, and to broaden the coverage of genetic testing and recognize clinical, laboratorial, electrophysiological and radiological characteristics to increase the positive rate of diagnosis. Methods Twenty-seven cases were screened out to have definite or suspected pathogenic variants from clinically suspected HSP pedigrees through HSP-associated sequencing and/or expanded genetic testing. One case was performed for enzyme detection of leukodystrophy without next-generation sequencing. In addition, detailed clinical, laboratorial, electrophysiological and radiological characteristics of the 28 patients were presented. Results A total of five types of hereditary neurological disorders were identified in 28 patients, including HSP (15/28), leukodystrophy (5/28), hereditary ataxia (2/28), methylmalonic acidemia/methylenetetrahydrofolate reductase deficiency (5/28), and Charcot-Marie-tooth atrophy (1/28). Patients in the HSP group had chronic courses, most of whom were lower limbs spasticity, mainly with axonal neuropathy, and thinning corpus callosum, white matter lesions and cerebellar atrophy in brain MRI. In the non-HSP groups, upper and lower limbs both involvement was more common. Patients with homocysteine remethylation disorders or Krabbe’s disease or autosomal recessive spastic ataxia of Charlevoix-Saguenay had diagnostic results in laboratory or imaging examination. A total of 12 new variants were obtained. Conclusions HSP had widespread clinical and genetic heterogeneity, and leukodystrophy, hereditary ataxia, Charcot-Marie-Tooth atrophy and homocysteine remethylation disorders accounted for a significant proportion of the proposed HSP. These diseases had different characteristics in clinical, laboratorial, electrophysiological, and radiological aspects, which could help differential diagnosis. Genetic analysis could ultimately provide a clear diagnosis, and broadening the scope of genetic testing could improve the positive rate of diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02708-z.
Collapse
Affiliation(s)
- Jiannan Chen
- Department of Neuromuscular Disease, The Third Affiliated Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei, 050000, PR China
| | - Zhe Zhao
- Department of Neuromuscular Disease, The Third Affiliated Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei, 050000, PR China
| | - Hongrui Shen
- Department of Neuromuscular Disease, The Third Affiliated Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei, 050000, PR China
| | - Qi Bing
- Department of Neuromuscular Disease, The Third Affiliated Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei, 050000, PR China
| | - Nan Li
- Department of Neuromuscular Disease, The Third Affiliated Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei, 050000, PR China
| | - Xuan Guo
- Department of Neuromuscular Disease, The Third Affiliated Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei, 050000, PR China
| | - Jing Hu
- Department of Neuromuscular Disease, The Third Affiliated Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei, 050000, PR China.
| |
Collapse
|
35
|
Panwala TF, Garcia-Santibanez R, Vizcarra JA, Garcia AG, Verma S. Childhood-Onset Hereditary Spastic Paraplegia (HSP): A Case Series and Review of Literature. Pediatr Neurol 2022; 130:7-13. [PMID: 35303589 DOI: 10.1016/j.pediatrneurol.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/30/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) encompasses several rare genetic disorders characterized by progressive lower extremity spasticity and weakness caused by corticospinal tract degeneration. Published literature on genetically confirmed pediatric HSP cases is limited. METHODS We conducted a retrospective review of childhood-onset HSP cases followed in the neuromuscular clinics at Children's and Emory Healthcare in Atlanta. Clinical presentation, family history, examination, electrodiagnostic data, neuroimaging, genetic test results, comorbidities, and treatment were recorded. RESULTS Sixteen patients with HSP (eight males, eight females) with a mean age 19 years ± 15.7 years were included. Ten patients (66%) presented with gait difficulty. Seven (44%) were ambulatory at the last clinic follow-up visit with an average disease duration of 7.4 years. Genetically confirmed etiologies included SPAST (3 patients), MARS (2), KIF1A (2), KIF5A (1), SACS (1), SPG7 (1), REEP1 (1), PNPT1 (1), MT-ATP6 (1), and ATL1 (1). Symptom onset to genetic confirmation on an average was 8.2 years. Sensory motor axonal polyneuropathy was found in seven patients, and two exhibited cerebellar atrophy on magnetic resonance imaging (MRI) of the brain. Neurological comorbidities included developmental delay (n = 9), autism (n = 5), epilepsy (n = 3), and attention-deficit/hyperactivity disorder (n = 2). CONCLUSIONS In our study, a significant proportion (70%) of subjects with childhood-onset HSP had comorbid neurocognitive deficits, polyneuropathy with or without neuroimaging abnormalities, and rare genetic etiology. Genetic diagnosis was established either through inherited genetic neuropathy panel or whole-exome sequencing, which supports the utility of whole-exome sequencing in aiding in HSP diagnosis.
Collapse
Affiliation(s)
- Tanya F Panwala
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, Florida
| | | | - Joaquin A Vizcarra
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Aixa Gonzalez Garcia
- Department of Pediatrics, Genetics Section, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Arkansas
| | - Sumit Verma
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Division of Pediatric Neurology, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
36
|
Sager G, Turkyilmaz A, Ates EA, Kutlubay B. HACE1, GLRX5, and ELP2 gene variant cause spastic paraplegies. Acta Neurol Belg 2022; 122:391-399. [PMID: 33813722 DOI: 10.1007/s13760-021-01649-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of conditions that are characterized by lower limb spasticity and weakness. Considering the clinical overlap between metabolic causes, genetic diseases, and autosomal recessive HSP, differentiation between these types can be difficult based solely on their clinical characteristics. This study aimed to investigate the genetic etiology of patients with clinically suspected HSP. The study group was composed of seven Turkish families who each had two affected children and three families who each had a single affected child (17 total patients). The 17 probands (14 males, 3 females) underwent whole exome sequencing. Five typical HSP genes (FA2H, AP4M1, AP4E1, CYP7B1, and MAG) and three genes not previously related to HSP (HACE1, GLRX5, ad ELP2) were identified in 14 probands. Eight novel variants were identified in seven families: c.653 T > C (p.Leu218Pro) in the FA2H gene, c.347G > A (p.Gly116Asp) in the GLRX5 gene, c.2581G > C (p.Ala861Pro) in the HACE1 gene, c.1580G > A (p.Arg527Gln) and c.1189-1G > A in the ELP2 gene, c.10C > T (p.Gln4*) and c.1025 + 1G > A in the AP4M1 gene, c.1291delG (p.Gly431Alafs*3) and c.3250delA (p.Ile1084*) in the AP4E1 gene, and c.475 T > G (p.Cys159Gly) in the MAG gene. The growing use of next-generation sequencing improved diagnosis but also led to the continual identification of new causal genes for neurogenetic diseases associated with lower limb spasticity. The increasing number of HSP genes identified thus far highlights the extreme genetic heterogeneity of these disorders and their clinical and functional overlap with other neurological conditions. Our findings suggest that the HACE1, GLRX5, and ELP2 genes are genetic causes of HSP.
Collapse
Affiliation(s)
- Gunes Sager
- Department of Pediatric Neurology, Kartal Dr. Lutfi Kirdar City Hospital, Semsi Denizer Avenue, Cevizli, 34890, Kartal, Istanbul, Turkey.
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Erzurum City Hospital, Erzurum, Turkey
| | - Esra Arslan Ates
- Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Busra Kutlubay
- Department of Pediatric Neurology, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
37
|
Byrne DJ, Garcia-Pardo ME, Cole NB, Batnasan B, Heneghan S, Sohail A, Blackstone C, O'Sullivan NC. Liver X receptor-agonist treatment rescues degeneration in a Drosophila model of hereditary spastic paraplegia. Acta Neuropathol Commun 2022; 10:40. [PMID: 35346366 PMCID: PMC8961908 DOI: 10.1186/s40478-022-01343-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of inherited, progressive neurodegenerative conditions characterised by prominent lower-limb spasticity and weakness, caused by a length-dependent degeneration of the longest corticospinal upper motor neurons. While more than 80 spastic paraplegia genes (SPGs) have been identified, many cases arise from mutations in genes encoding proteins which generate and maintain tubular endoplasmic reticulum (ER) membrane organisation. The ER-shaping proteins are essential for the health and survival of long motor neurons, however the mechanisms by which mutations in these genes cause the axonopathy observed in HSP have not been elucidated. To further develop our understanding of the ER-shaping proteins, this study outlines the generation of novel in vivo and in vitro models, using CRISPR/Cas9-mediated gene editing to knockout the ER-shaping protein ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1), mutations in which give rise to the HSP subtype SPG61. Loss of Arl6IP1 in Drosophila results in progressive locomotor deficits, emulating a key aspect of HSP in patients. ARL6IP1 interacts with ER-shaping proteins and is required for regulating the organisation of ER tubules, particularly within long motor neuron axons. Unexpectedly, we identified physical and functional interactions between ARL6IP1 and the phospholipid transporter oxysterol-binding protein-related protein 8 in both human and Drosophila model systems, pointing to a conserved role for ARL6IP1 in lipid homeostasis. Furthermore, loss of Arl6IP1 from Drosophila neurons results in a cell non-autonomous accumulation of lipid droplets in axonal glia. Importantly, treatment with lipid regulating liver X receptor-agonists blocked lipid droplet accumulation, restored axonal ER organisation, and improved locomotor function in Arl6IP1 knockout Drosophila. Our findings indicate that disrupted lipid homeostasis contributes to neurodegeneration in HSP, identifying a potential novel therapeutic avenue for the treatment of this disorder.
Collapse
Affiliation(s)
- Dwayne J Byrne
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - M Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Nelson B Cole
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Belguun Batnasan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sophia Heneghan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Anood Sohail
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
38
|
Chen Y, Lu X, Jin Y, Li D, Ye X, Tao C, Zhou M, Jiang H, Yu H. A Novel SACS Variant Identified in a Chinese Patient: Case Report and Review of the Literature. Front Neurol 2022; 13:845318. [PMID: 35386405 PMCID: PMC8978317 DOI: 10.3389/fneur.2022.845318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Mutations in the SACS gene have been linked to autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS). It is a clinically and genetically heterogeneous disease characterized by slow progressive ataxia, spasticity, sensorimotor neuropathy, and a combination of other manifestations, such as lack of spasticity, hearing loss, and epileptic seizures. Currently, there have been very few case reports regarding the SACS gene mutation in Chinese patients. Here, we describe a 35-year-old Chinese patient carrying a novel variant in SACS (c.11486C>T) presenting with progressive ataxia and demyelinating peripheral neuropathy. We then reviewed 22 Chinese cases carrying SACS gene mutations, including our patient. All of them had a cerebellar ataxia gait and showed cerebellar atrophy on brain magnetic resonance imaging (MRI). A total of 28 SACS mutations were identified in these patients. Our study further expands the mutation spectrum of the SACS gene and contributes to the evaluation of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Yuchao Chen
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaodong Lu
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yi Jin
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Dan Li
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaojun Ye
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Chenjuan Tao
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Menglu Zhou
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Haibo Jiang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Hao Yu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Yu
| |
Collapse
|
39
|
Pattern reversal visual evoked potentials (prVEPs) in autosomal recessive hereditary spastic paraplegia with thin corpus callosum (ARHSPTCC) patients with SPG 11 mutations in Saudi Arabia, cross section hospital base study. J Neurol Sci 2022; 434:120144. [DOI: 10.1016/j.jns.2022.120144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
|
40
|
Do JG, Kim BJ, Kim NS, Sung DH. Hereditary Spastic Paraplegia in Koreans: Clinical Characteristics and Factors Influencing the Disease Severity. J Clin Neurol 2022; 18:343-350. [PMID: 35196750 PMCID: PMC9163939 DOI: 10.3988/jcn.2022.18.3.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background and Purpose Hereditary spastic paraplegia (HSP) progresses over time and is associated with locomotive dysfunction. Understanding the factors affecting disease severity and locomotive function is important in HSP. This study investigated the factors influencing disease severity and ambulation status of HSP. Methods We consecutively enrolled 109 Korean patients (64 males, and 45 females)from 84 families with a clinical diagnosis of HSP. HSP was primarily diagnosed based on clinical criteria including clinical findings, family history, and supported by genetic studies. Epidemiological and clinical features of the patients were analyzed, and the Spastic Paraplegia Rating Scale (SPRS) score and ambulatory status were used to evaluate disease severity. Results Ninety-two (84.4%) patients had pure HSP, and 55 (50.4%) had a dominant family history. Thirty-one (28.4%) patients required a mobility aid for locomotion. A Kaplan-Meier analysis showed that HSP patients lost their independent gait ability after a median disease duration of 34 years. Those with an age at onset of ≤18 years had a longer median independent walking time. Pure HSP is characterized by predominant bilateral lower extremity weakness and spasticity, whereas complicated HSP presents more complex neurological findings such as ocular and bulbar symptoms, ataxia, and cognitive impairment. Complicated HSP was significantly correlated with the SPRS mobility score (β=3.70, 95% confidence interval=0.45–6.94). The age at onset and disease duration were significantly correlated with disease severity, and they were significant predictors of the use of a mobility aid (p<0.05). Conclusions These findings suggest that a later age at onset and longer disease duration are significant factors affecting the disease severity and ambulatory function in patients with HSP. These findings can help clinicians to identify subjects at risk of locomotive impairment.
Collapse
Affiliation(s)
- Jong Geol Do
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung Joon Kim
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nam-Soon Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Duk Hyun Sung
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
41
|
Boysen S, Elumalai V, ElSheikh RH, Aravindhan A, Veerapandiyan A. Epilepsy in hereditary spastic paraplegia associated with NIPA1 gene. J Clin Neurosci 2022; 100:212-213. [PMID: 35181192 DOI: 10.1016/j.jocn.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Sebastian Boysen
- Division of Neurology, Department of Pediatrics, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vimala Elumalai
- Division of Neurology, Department of Pediatrics, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reem H ElSheikh
- Division of Neurology, Department of Pediatrics, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Akilandeswari Aravindhan
- Division of Neurology, Department of Pediatrics, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aravindhan Veerapandiyan
- Division of Neurology, Department of Pediatrics, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
42
|
Hereditary Spastic Paraplegia: An Update. Int J Mol Sci 2022; 23:ijms23031697. [PMID: 35163618 PMCID: PMC8835766 DOI: 10.3390/ijms23031697] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disorder with the predominant clinical manifestation of spasticity in the lower extremities. HSP is categorised based on inheritance, the phenotypic characters, and the mode of molecular pathophysiology, with frequent degeneration in the axon of cervical and thoracic spinal cord’s lateral region, comprising the corticospinal routes. The prevalence ranges from 0.1 to 9.6 subjects per 100,000 reported around the globe. Though modern medical interventions help recognize and manage the disorder, the symptomatic measures remain below satisfaction. The present review assimilates the available data on HSP and lists down the chromosomes involved in its pathophysiology and the mutations observed in the respective genes on the chromosomes. It also sheds light on the treatment available along with the oral/intrathecal medications, physical therapies, and surgical interventions. Finally, we have discussed the related diagnostic techniques as well as the linked pharmacogenomics studies under future perspectives.
Collapse
|
43
|
Chen Z, Chai E, Mou Y, Roda RH, Blackstone C, Li XJ. Inhibiting mitochondrial fission rescues degeneration in hereditary spastic paraplegia neurons. Brain 2022; 145:4016-4031. [PMID: 35026838 DOI: 10.1093/brain/awab488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Hereditary spastic paraplegias (HSPs) are characterized by lower limb spasticity resulting from degeneration of long corticospinal axons. SPG11 is one of the most common autosomal recessive HSPs, and the SPG11 protein spatacsin forms a complex with the SPG15 protein spastizin and heterotetrameric AP5 adaptor protein complex, which includes the SPG48 protein AP5Z1. Using the integration-free episomal method, we established SPG11 patient-specific induced pluripotent stem cells (iPSCs) from patient fibroblasts. We differentiated SPG11 iPSCs, as well as SPG48 iPSCs previously established, into cortical projection neurons (PNs) and examined protective effects by targeting mitochondrial dynamics using P110, a peptide that selectively inhibits mitochondrial fission GTPase Drp1. P110 treatment mitigates mitochondrial fragmentation, improves mitochondrial motility, and restores mitochondrial health and ATP levels in SPG11 and SPG48 neurons. Neurofilament (NF) aggregations are increased in SPG11 and SPG48 axons, and these are also suppressed by P110. Similarly, P110 mitigates NF disruption in both SPG11 and SPG48 knockdown cortical PNs, confirming the contribution of HSP gene deficiency to subsequent NF and mitochondrial defects. Strikingly, NF aggregations in SPG11 and SPG48 deficient neurons double stain with ubiquitin and autophagy related proteins, resembling the pathological hallmark observed in SPG11 autopsy brain sections. To confirm the cause-effect relationship between the SPG11 mutations and disease phenotypes, we knocked-in SPG11 disease mutations to human embryonic stem cells (hESCs) and differentiated these stem cells into cortical PNs. Reduced ATP levels and accumulated NF aggregations along axons are observed, and both are mitigated by P110. Furthermore, rescue experiment with expression of wildtype SPG11 in cortical PNs derived from both SPG11 patient iPSCs and SPG11 disease mutation knock-in hESCs leads to rescue of mitochondrial dysfunction and NF aggregations in these SPG11 neurons. Finally, in SPG11 and SPG48 long-term cultures, increased release of phosphoNF-H, a biomarker for nerve degeneration, is significantly reduced by inhibiting mitochondrial fission pharmacologically using P110 and genetically using Drp1 shRNA. Taken together, our results demonstrate that impaired mitochondrial dynamics underlie both cytoskeletal disorganization and axonal degeneration in SPG11 and SPG48 neurons, highlighting the importance of targeting these pathologies therapeutically.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ricardo H. Roda
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, Johns Hopkins University of Medicine, Baltimore, MD 21205, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
44
|
Miceli M, Exertier C, Cavaglià M, Gugole E, Boccardo M, Casaluci RR, Ceccarelli N, De Maio A, Vallone B, Deriu MA. ALS2-Related Motor Neuron Diseases: From Symptoms to Molecules. BIOLOGY 2022; 11:77. [PMID: 35053075 PMCID: PMC8773251 DOI: 10.3390/biology11010077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022]
Abstract
Infantile-onset Ascending Hereditary Spastic Paralysis, Juvenile Primary Lateral Sclerosis and Juvenile Amyotrophic Lateral Sclerosis are all motor neuron diseases related to mutations on the ALS2 gene, encoding for a 1657 amino acids protein named Alsin. This ~185 kDa multi-domain protein is ubiquitously expressed in various human tissues, mostly in the brain and the spinal cord. Several investigations have indicated how mutations within Alsin's structured domains may be responsible for the alteration of Alsin's native oligomerization state or Alsin's propensity to interact with protein partners. In this review paper, we propose a description of differences and similarities characterizing the above-mentioned ALS2-related rare neurodegenerative disorders, pointing attention to the effects of ALS2 mutation from molecule to organ and at the system level. Known cases were collected through a literature review and rationalized to deeply elucidate the neurodegenerative clinical outcomes as consequences of ALS2 mutations.
Collapse
Affiliation(s)
- Marcello Miceli
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Cécile Exertier
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (C.E.); (E.G.); (B.V.)
| | - Marco Cavaglià
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Elena Gugole
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (C.E.); (E.G.); (B.V.)
| | - Marta Boccardo
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Rossana Rita Casaluci
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Noemi Ceccarelli
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Alessandra De Maio
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (C.E.); (E.G.); (B.V.)
| | - Marco A. Deriu
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| |
Collapse
|
45
|
Identification of novel mutations by targeted NGS in Moroccan families clinically diagnosed with a neuromuscular disorder. Clin Chim Acta 2022; 524:51-58. [PMID: 34852264 DOI: 10.1016/j.cca.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS The identification of underlying genes of genetic conditions has expanded greatly in the past decades, which has broadened the field of genes responsible for inherited neuromuscular diseases. We aimed to investigate mutations associated with neuromuscular disorders phenotypes in 2 Moroccan families. MATERIAL AND METHODS Next-generation sequencing combined with Sanger sequencing could assist with understanding the hereditary variety and underlying disease mechanisms in these disorders. RESULTS Two novel homozygous mutations were described in this study. The SIL1 mutation is the first identified in the Moroccan population, the mutation was identified as the main cause of Marinesco-Sjogren syndrome in one patient. While the second mutation identified in the fatty acid 2-hydroxylase gene (FA2H) was associated with the Spastic paraplegia 35 in another patient, both transmitted in an autosomal recessive pattern. DISCUSSION AND CONCLUSIONS These conditions are extremely rare in the North African population and may be underdiagnosed due to overlapping clinical characteristics and heterogeneity of these diseases. We have reported in this study mutations associated with the diseases found in the patients. In addition, we have narrowed the phenotypic spectrum, as well as the diagnostic orientation of patients with neuromuscular disorders, who might have very similar symptoms to other disease groups.
Collapse
|
46
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
47
|
Chen R, Du S, Yao Y, Zhang L, Luo J, Shen Y, Xu Z, Zeng X, Zhang L, Liu M, Yin C, Tang B, Tan J, Xu X, Liu JY. A Novel SPAST Mutation Results in Spastin Accumulation and Defects in Microtubule Dynamics. Mov Disord 2021; 37:598-607. [PMID: 34927746 PMCID: PMC9300132 DOI: 10.1002/mds.28885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background Haploinsufficiency is widely accepted as the pathogenic mechanism of spastic paraplegia type 4 (SPG4). However, there are some cases that cannot be explained by reduced function of the spastin protein encoded by SPAST. Objectives To identify the causative gene of autosomal dominant hereditary spastic paraplegia in three large Chinese families and explore the pathological mechanism of a spastin variant. Methods Three large Chinese hereditary spastic paraplegia families with a total of 247 individuals (67 patients) were investigated, of whom 59 members were recruited to the study. Genetic testing was performed to identify the causative gene. Western blotting and immunofluorescence were used to analyze the effects of the mutant proteins in vitro. Results In the three hereditary spastic paraplegia families, of whom three index cases were misdiagnosed as other types of neurological diseases, a novel c.985dupA (p.Met329Asnfs*3) variant in SPAST was identified and was shown to cosegregate with the phenotype in the three families. The c.985dupA mutation produced two truncated mutants (mutant M1 and M87 isoforms) that accumulated to a higher level than their wild‐type counterparts. Furthermore, the mutant M1 isoform heavily decorated the microtubules and rendered them resistant to depolymerization. In contrast, the mutant M87 isoform was diffusely localized in both the nucleus and the cytoplasm, could not decorate microtubules, and was not able to promote microtubule disassembly. Conclusions SPAST mutations leading to premature stop codons do not always act through haploinsufficiency. The truncated spastin may damage the corticospinal tracts through an isoform‐specific toxic effect.
Collapse
Affiliation(s)
- Rui Chen
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shiyue Du
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yanyi Yao
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Lu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Junyu Luo
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yinhua Shen
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhenping Xu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaomei Zeng
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Luoying Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chuang Yin
- Department of Neurology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jun Tan
- Department of Neurology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Spagnoli C, Schiavoni S, Rizzi S, Salerno GG, Frattini D, Koskenvuo J, Fusco C. SPG6 (NIPA1 variant): A report of a case with early-onset complex hereditary spastic paraplegia and brief literature review. J Clin Neurosci 2021; 94:281-285. [PMID: 34863451 DOI: 10.1016/j.jocn.2021.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022]
Abstract
SPG6, caused by NIPA1 (nonimprinted in Prader-Willi/Angelman syndrome) gene pathogenic variants, is mainly considered as a pure autosomal dominant hereditary spastic paraplegia (AD-HSP), even if descriptions of complex cases have also been reported. We detected the common c.316G > A, p.(Gly106Arg) pathogenic de novo substitution in a 10-year-old patient with HSP and drug-resistant eyelid myoclonia with absences. In order to assess the significance of this association, we reviewed the literature to find that 25/110 (23%) SPG6 cases are complex, including a heterogeneous spectrum of comorbidities, in which epilepsy is most represented (10%), but also featuring peripheral neuropathy (5.5%), amyotrophic lateral sclerosis (3.6%), memory deficits (3.6%) or cognitive impairment (2.7%), tremor (2.7%) and dystonia (0.9%). From this literature review and our single case experience, two main conclusions can be drawn. First, SPG6 is an AD-HSP with both pure and complex presentation, and frequent occurrence of epilepsy within the spectrum of genetic generalized epilepsies (absences, bilateral tonic-clonic, bilateral tonic-clonic with upper limbs myoclonic seizures and eyelid myoclonia with absences). Second, opposed to previous descriptions, seizures might not always be drug responsive.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Silvia Schiavoni
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Susanna Rizzi
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Grazia Gabriella Salerno
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Frattini
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Carlo Fusco
- Department of Pediatrics, Child Neurology Unit, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Pediatrics, Pediatric Neurophysiology Laboratory, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
49
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
50
|
Yang JO, Yoon JY, Sung DH, Yun S, Lee JJ, Jun SY, Halder D, Jeon SJ, Woo EJ, Seok JM, Cho JW, Jang JH, Choi JK, Kim BJ, Kim NS. The emerging genetic diversity of hereditary spastic paraplegia in Korean patients. Genomics 2021; 113:4136-4148. [PMID: 34715294 DOI: 10.1016/j.ygeno.2021.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/09/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023]
Abstract
Hereditary Spastic Paraplegias (HSP) are a group of rare inherited neurological disorders characterized by progressive loss of corticospinal motor-tract function. Numerous patients with HSP remain undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel genetic variations related to HSP is needed. In this study, we identified 88 genetic variants in 54 genes from whole-exome data of 82 clinically well-defined Korean HSP families. Fifty-six percent were known HSP genes, and 44% were composed of putative candidate HSP genes involved in the HSPome and originally reported neuron-related genes, not previously diagnosed in HSP patients. Their inheritance modes were 39, de novo; 33, autosomal dominant; and 10, autosomal recessive. Notably, ALDH18A1 showed the second highest frequency. Fourteen known HSP genes were firstly reported in Koreans, with some of their variants being predictive of HSP-causing protein malfunction. SPAST and REEP1 mutants with unknown function induced neurite abnormality. Further, 54 HSP-related genes were closely linked to the HSP progression-related network. Additionally, the genetic spectrum and variation of known HSP genes differed across ethnic groups. These results expand the genetic spectrum for HSP and may contribute to the accurate diagnosis and treatment for rare HSP.
Collapse
Affiliation(s)
- Jin Ok Yang
- Korea BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Yong Yoon
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Duk Hyun Sung
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sohyun Yun
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jeong-Ju Lee
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Soo Young Jun
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Debasish Halder
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Su-Jin Jeon
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Analytical Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, Republic of Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Nam-Soon Kim
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|