1
|
Romero Del Rincón C, Pérez JB, Barbosa Del Olmo A, Bautista Hernandez A, Sánchez-Rodriguez C, Quintas S. A new case of HTLV1 with rapidly progressive longitudinally extensive transverse myelitis: the importance of early diagnosis in therapeutic response. Acta Neurol Belg 2024; 124:1683-1684. [PMID: 37237164 DOI: 10.1007/s13760-023-02289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Celia Romero Del Rincón
- Neurology Department, La Princesa University Hospital, Calle Diego de León, 62, Secretaría de Neurología, 28006, Madrid, Spain
| | - Javier B Pérez
- Internal Medicine Department, La Princesa University Hospital, Madrid, Spain
| | | | | | - Carmen Sánchez-Rodriguez
- Neurology Department, La Princesa University Hospital, Calle Diego de León, 62, Secretaría de Neurología, 28006, Madrid, Spain
| | - Sonia Quintas
- Neurology Department, La Princesa University Hospital, Calle Diego de León, 62, Secretaría de Neurología, 28006, Madrid, Spain.
| |
Collapse
|
2
|
Ahmadi Ghezeldasht S, Mosavat A, Rezaee SA. Novel insights into human T-lymphotropic virus type-1 (HTLV-1) pathogenesis-host interactions in the manifestation of HTLV-1-associated myelopathy/tropical spastic paraparesis. Rev Med Virol 2024; 34:e2567. [PMID: 38937135 DOI: 10.1002/rmv.2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) was the first discovered human oncogenic retrovirus, the etiological agent of two serious diseases have been identified as adult T-cell leukaemia/lymphoma malignancy and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a debilitating chronic neuro-myelopathy. Despite more than 40 years of molecular, histopathological and immunological studies on HTLV-1-associated diseases, the virulence and pathogenicity of this virus are yet to be clarified. The reason why the majority of HTLV-1-infected individuals (∼95%) remain asymptomatic carriers is still unclear. The deterioration of the immune system towards oncogenicity and autoimmunity makes HTLV-1 a natural probe for the study of malignancy and neuro-inflammatory diseases. Additionally, its slow worldwide spreading has prompted public health authorities and researchers, as urged by the WHO, to focus on eradicating HTLV-1. In contrast, neither an effective therapy nor a protective vaccine has been introduced. This comprehensive review focused on the most relevant studies of the neuro-inflammatory propensity of HTLV-1-induced HAM/TSP. Such an emphasis on the virus-host interactions in the HAM/TSP pathogenesis will be critically discussed epigenetically. The findings may shed light on future research venues in designing and developing proper HTLV-1 therapeutics.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Saab L, DiCapua D, Zubair AS. HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP): Case based discussion of risk factors, clinical, and therapeutic considerations. J Neurol Sci 2024; 459:122973. [PMID: 38520941 DOI: 10.1016/j.jns.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
HTLV-1 is a retrovirus virus that infects CD4+ T cells. Most people with HTLV-1 infection remain asymptomatic but some may develop conditions such as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T-cell leukemia/lymphoma. HAM/TSP is characterized by progressive spasticity and weakness of the lower extremities, as well as loss of bladder control and sensory disturbances. The risk of developing HAM/TSP is associated with the duration of infection and the proviral load. There is currently no cure for the disease but medications can help manage symptoms and slow the progression of the disease. This is the case of a 66-year-old female who presented with nonspecific symptoms of weakness and spasticity in a hospital in Connecticut and was subsequently diagnosed with HAM/TSP. The patient's diagnosis highlights the importance of considering diseases previously confined to specific endemic regions in a globalized world where increased emigration and population mixing can occur. Early identification and management of such cases is essential for optimizing patient outcomes and quality of life.
Collapse
Affiliation(s)
- Lea Saab
- Department of Neurology, Yale University School of Medicine, 20 York Street, New Haven, CT, 06510, USA
| | - Daniel DiCapua
- Department of Neurology, Yale University School of Medicine, 20 York Street, New Haven, CT, 06510, USA
| | - Adeel S Zubair
- Department of Neurology, Yale University School of Medicine, 20 York Street, New Haven, CT, 06510, USA.
| |
Collapse
|
4
|
Tamaki K, Ouma S, Takahashi N, Fujioka S, Tsuboi Y. Association between Brain White Matter Lesions and Disease Activity in HAM/TSP Patients. Neurol Int 2024; 16:202-209. [PMID: 38392954 PMCID: PMC10892124 DOI: 10.3390/neurolint16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Human T-cell leukemia virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients may have brain white matter (WM) lesions, but the association of these lesions with disease activity is poorly understood. We retrospectively evaluated the brain WM lesions of 22 HAM/TSP patients (male 4: female 18) including 5 rapid progressors, 16 slow progressors, and 1 very slow progressor. The severity of WM brain lesions on axial Fluid Attenuated Inversion Recovery images was evaluated utilizing the Fazekas scale, cerebrospinal fluid biomarkers, and proviral load in peripheral blood mononuclear cells. Imaging and biological data were compared at the first visit and a subsequent visit more than 4 years later. Patients with comorbidities including adult T-cell leukemia-lymphoma and cerebrovascular disease were excluded. The results revealed that brain WM lesions in the rapid progressors group were more pronounced than those in slow progressors. In patients with HAM/TSP, severe and persistent inflammation of the spinal cord may cause brain WM lesions.
Collapse
Affiliation(s)
| | | | | | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; (K.T.); (S.O.); (N.T.); (S.F.)
| |
Collapse
|
5
|
Mohanty S, Harhaj EW. Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion. Pathogens 2023; 12:735. [PMID: 37242405 PMCID: PMC10221045 DOI: 10.3390/pathogens12050735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10-20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections. The HTLV-1 replication cycle provides ligands, mainly nucleic acids (RNA, RNA/DNA intermediates, ssDNA intermediates, and dsDNA), that are sensed by different pattern recognition receptors (PRRs) to trigger immune responses. However, the mechanisms of innate immune detection and immune responses to HTLV-1 infection are not well understood. In this review, we highlight the functional roles of different immune sensors in recognizing HTLV-1 infection in multiple cell types and the antiviral roles of host restriction factors in limiting persistent infection of HTLV-1. We also provide a comprehensive overview of intricate strategies employed by HTLV-1 to subvert the host innate immune response that may contribute to the development of HTLV-1-associated diseases. A more detailed understanding of HTLV-1-host pathogen interactions may inform novel strategies for HTLV-1 antivirals, vaccines, and treatments for ATLL or HAM/TSP.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | | |
Collapse
|
6
|
Matsuura E, Nozuma S, Dozono M, Kodama D, Tanaka M, Kubota R, Takashima H. Iliopsoas Muscle Weakness as a Key Diagnostic Marker in HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). Pathogens 2023; 12:pathogens12040592. [PMID: 37111478 PMCID: PMC10143214 DOI: 10.3390/pathogens12040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Human T-cell leukemia virus-1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a slowly progressive neurological disease that arises from HTLV-1 infection. Pathologically, the condition is characterized by diffuse myelitis, which is most evident in the thoracic spinal cord. Clinical manifestations of the infectious disease, HAM/TSP, are empirically known to include weakness of the proximal muscles of the lower extremities and atrophy of the paraspinal muscles, which is characteristic of the distribution of disturbed muscles usually seen in muscular diseases, except that the upper extremities are almost normal. This unique clinical presentation is useful information for physicians and physical therapists involved in diagnosing and rehabilitating patients with HAM/TSP, as well as critical information for understanding the pathogenesis of HAM/TSP. However, the precise pattern of muscle involvement in this condition has yet to be reported. The purpose of this study was to identify the muscles affected by HAM/TSP in order to understand the pathogenesis of HAM/TSP as well as to aid in the diagnosis and rehabilitation of HAM/TSP. A retrospective review of medical records was conducted on 101 consecutively admitted patients with HAM/TSP at Kagoshima University Hospital. Among 101 patients with HAM/TSP, all but three had muscle weakness in the lower extremities. Specifically, the hamstrings and iliopsoas muscle were the most frequently affected in over 90% of the patients. Manual muscle testing (MMT) revealed that the iliopsoas was the weakest of the muscles assessed, a consistent feature from the early to advanced stages of the disease. Our findings demonstrate a unique distribution of muscle weakness in HAM/TSP, with the proximal muscles of the lower extremities, particularly the iliopsoas muscle, being the most frequently and severely affected.
Collapse
Affiliation(s)
- Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Mika Dozono
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Daisuke Kodama
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8520, Japan
| | - Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8520, Japan
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| |
Collapse
|
7
|
Tu JJ, Maksimova V, Ratner L, Panfil AR. The Past, Present, and Future of a Human T-Cell Leukemia Virus Type 1 Vaccine. Front Microbiol 2022; 13:897346. [PMID: 35602078 PMCID: PMC9114509 DOI: 10.3389/fmicb.2022.897346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus which causes a lifelong infection. An estimated 5-10 million persons are infected with HTLV-1 worldwide - a number which is likely higher due to lack of reliable epidemiological data. Most infected individuals remain asymptomatic; however, a portion of HTLV-1-positive individuals will develop an aggressive CD4+ T-cell malignancy called adult T-cell leukemia/lymphoma (ATL), or a progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Few treatment options exist for HAM/TSP outside of palliative care and ATL carries an especially poor prognosis given the heterogeneity of the disease and lack of effective long-term treatments. In addition, the risk of HTLV-1 disease development increases substantially if the virus is acquired early in life. Currently, there is no realistic cure for HTLV-1 infection nor any reliable measure to prevent HTLV-1-mediated disease development. The severity of HTLV-1-associated diseases (ATL, HAM/TSP) and limited treatment options highlights the need for development of a preventative vaccine or new therapeutic interventions. This review will highlight past HTLV-1 vaccine development efforts, the current molecular tools and animal models which might be useful in vaccine development, and the future possibilities of an effective HTLV-1 vaccine.
Collapse
Affiliation(s)
- Joshua J. Tu
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Victoria Maksimova
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Yaghoubi N, Youssefi M, Rafat Panah H, Jarahi L, Zahedi Avval F. Evaluation of antioxidant status and oxidative stress markers in HTLV-1 infected individuals: correlation with the severity of virus-induced complications. J Med Microbiol 2022; 71. [PMID: 35442185 DOI: 10.1099/jmm.0.001408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Human T-cell lymphotropic virus type 1 (HTLV-1), a well-known member of the retroviridae family, potentially causes serious outcomes including adult T-cell leukaemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM-TSP). Oxidative stress plays a key role in progression and clinical exacerbation of several chronic infections. We have previously shown a reduction in serum total antioxidant capacity (TAC) during HTLV-1 infection and this study was set out to investigate the reasons for TAC reduction.Hypothesis/Gap Statement. Oxidant/antioxidant imbalance during HTLV-1 infection may result from disruptions in oxidant levels or antioxidant defence system.Aim. This study aimed to analyse the key enzymes and oxidant molecules playing important roles in virus-induced oxidative stress.Methodology. We measured serum activities of the major antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) as well as serum concentrations of the main oxidant markers: nitric oxide (NO) and malondialdehyde (MDA). Totally 40 HTLV-1 infected patients and 40 healthy controls were enrolled in this study. The patient group consisted of chronic carriers and patients with HAM-TSP (N=20).Results. The current study found that serum levels of MDA and NO were significantly higher in patient groups particularly in HAM-TSP patients (P<0.05). In addition, a reductive trend was observed in the serum activities of CAT, SOD, and GPX in HTLV-1 infected patients compared with healthy controls (P<0.05).Conclusion. Reduced activities of CAT, SOD, and GPX antioxidant enzymes along with the observed elevated concentrations of oxidant molecules may contribute to oxidative stress and worse outcomes during HTLV-1 infection.
Collapse
Affiliation(s)
- Neda Yaghoubi
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooshang Rafat Panah
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lida Jarahi
- Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Liberato de Matos SNF, Ladeia-Rocha G, Neto JAC, de Oliveira CJV, Neto CA, Passos L, Oliveira-Filho J, Carvalho EM. Diffusion tensor imaging metrics in diagnosis of
HTLV‐1‐associated
myelopathy. Ann Clin Transl Neurol 2022; 9:488-496. [PMID: 35263043 PMCID: PMC8994983 DOI: 10.1002/acn3.51521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Sheila N F Liberato de Matos
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador.,UniFTC, Salvador, Bahia, Brazil
| | | | - José Abraão Carneiro Neto
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador
| | - Cassius J V de Oliveira
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador
| | | | - Lúcia Passos
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador
| | - Jamary Oliveira-Filho
- Neurology Service, Professor Edgard Santos University Hospital, Salvador, Bahia, Brazil.,Instituto de Ciências da Saúde, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Edgar M Carvalho
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador.,Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,National Institute of Science and Technology in Tropical Diseases (INCT-DT), CNPq, Brazil
| |
Collapse
|
10
|
Lin E, Panfil AR, Sandel G, Jain P. Novel perspectives on antisense transcription in HIV-1, HTLV-1, and HTLV-2. Front Microbiol 2022; 13:1042761. [PMID: 36620051 PMCID: PMC9822710 DOI: 10.3389/fmicb.2022.1042761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/24/2022] [Indexed: 12/25/2022] Open
Abstract
The genome of retroviruses contains two promoter elements (called long terminal repeat or LTR) at the 5' and 3' end of their genome. Although the expression of retroviral genes generally depends on the promoter located in the 5' LTR, the 3' LTR also has promoter activity responsible for producing antisense transcripts. These natural antisense transcripts (NATs) are a class of RNA molecules transcribed from the opposite strand of a protein-coding gene. NATs have been identified in many prokaryotic and eukaryotic systems, as well as in human retroviruses such as human immunodeficiency virus type 1 (HIV-1) and HTLV-1/2 (human T-cell leukemia virus type 1/2). The antisense transcripts of HIV-1, HTLV-1, and HTLV-2 have been briefly characterized over the past several years. However, a complete appreciation of the role these transcripts play in the virus lifecycle and the cellular factors which regulate their transcription is still lacking. This review provides an overview of antisense transcription in human retroviruses with a specific focus on the MEF-2 family of transcription factors, the function(s) of the antisense protein products, and the application of antisense transcription models in therapeutics against HIV-1 and HTLV-1 in the context of co-infection.
Collapse
Affiliation(s)
- Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Amanda R. Panfil
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Pooja Jain,
| |
Collapse
|
11
|
Barski MS, Vanzo T, Zhao XZ, Smith SJ, Ballandras-Colas A, Cronin NB, Pye VE, Hughes SH, Burke TR, Cherepanov P, Maertens GN. Structural basis for the inhibition of HTLV-1 integration inferred from cryo-EM deltaretroviral intasome structures. Nat Commun 2021; 12:4996. [PMID: 34404793 PMCID: PMC8370991 DOI: 10.1038/s41467-021-25284-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Between 10 and 20 million people worldwide are infected with the human T-cell lymphotropic virus type 1 (HTLV-1). Despite causing life-threatening pathologies there is no therapeutic regimen for this deltaretrovirus. Here, we screened a library of integrase strand transfer inhibitor (INSTI) candidates built around several chemical scaffolds to determine their effectiveness in limiting HTLV-1 infection. Naphthyridines with substituents in position 6 emerged as the most potent compounds against HTLV-1, with XZ450 having highest efficacy in vitro. Using single-particle cryo-electron microscopy we visualised XZ450 as well as the clinical HIV-1 INSTIs raltegravir and bictegravir bound to the active site of the deltaretroviral intasome. The structures reveal subtle differences in the coordination environment of the Mg2+ ion pair involved in the interaction with the INSTIs. Our results elucidate the binding of INSTIs to the HTLV-1 intasome and support their use for pre-exposure prophylaxis and possibly future treatment of HTLV-1 infection.
Collapse
Affiliation(s)
- Michal S Barski
- Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK
- International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Teresa Vanzo
- Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK
- Department CIBIO, University of Trento, Povo-Trento, Italy
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Steven J Smith
- Retroviral Replication Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | - Nora B Cronin
- LonCEM Facility, The Francis Crick Institute, London, UK
| | - Valerie E Pye
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Stephen H Hughes
- Retroviral Replication Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Peter Cherepanov
- Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Goedele N Maertens
- Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK.
| |
Collapse
|
12
|
Yoder KE, Rabe AJ, Fishel R, Larue RC. Strategies for Targeting Retroviral Integration for Safer Gene Therapy: Advances and Challenges. Front Mol Biosci 2021; 8:662331. [PMID: 34055882 PMCID: PMC8149907 DOI: 10.3389/fmolb.2021.662331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retroviruses are obligate intracellular parasites that must integrate a copy of the viral genome into the host DNA. The integration reaction is performed by the viral enzyme integrase in complex with the two ends of the viral cDNA genome and yields an integrated provirus. Retroviral vector particles are attractive gene therapy delivery tools due to their stable integration. However, some retroviral integration events may dysregulate host oncogenes leading to cancer in gene therapy patients. Multiple strategies to target retroviral integration, particularly to genetic safe harbors, have been tested with limited success. Attempts to target integration may be limited by the multimerization of integrase or the presence of host co-factors for integration. Several retroviral integration complexes have evolved a mechanism of tethering to chromatin via a host protein. Integration host co-factors bind chromatin, anchoring the complex and allowing integration. The tethering factor allows for both close proximity to the target DNA and specificity of targeting. Each retrovirus appears to have distinct preferences for DNA sequence and chromatin features at the integration site. Tethering factors determine the preference for chromatin features, but do not affect the subtle sequence preference at the integration site. The sequence preference is likely intrinsic to the integrase protein. New developments may uncouple the requirement for a tethering factor and increase the ability to redirect retroviral integration.
Collapse
Affiliation(s)
- Kristine E Yoder
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anthony J Rabe
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Richard Fishel
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ross C Larue
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Anti-Human T-Cell Leukemia Virus Type 1 (HTLV-1) Antibody Assays in Cerebrospinal Fluid for the Diagnosis of HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis. J Clin Microbiol 2021; 59:JCM.03230-20. [PMID: 33658267 PMCID: PMC8091837 DOI: 10.1128/jcm.03230-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/25/2021] [Indexed: 11/20/2022] Open
Abstract
The anti-human T-cell leukemia virus type 1 (HTLV-1) antibody assay in common use has changed from the particle agglutination (PA) method to chemiluminescent immunoassay (CLIA) and chemiluminescent enzyme immunoassay (CLEIA). These assays were validated in serum but not in cerebrospinal fluid (CSF). However, anti-HTLV-1 antibody positivity in CSF is a requisite for diagnosing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). We qualitatively compared the assays in CSF from 47 HAM/TSP patients diagnosed using PA, 15 HTLV-1 carriers (HCs), and 18 negative controls. In determining the positivity or negativity of CSF anti-HTLV-1 antibodies, we used serum cutoff points for CLIA and CLEIA because CSF cutoff points had not been decided. Truth table analysis revealed that the performance of CLIA was closer to that of PA and that CLEIA had low sensitivity. CSF antibodies from HAM/TSP patients were all positive by PA and CLIA but 83.0% positive by CLEIA. CSF antibodies from HCs were positive in 73.3%, 80.0%, and 6.7% by PA, CLIA, and CLEIA, respectively. Receiver operator characteristic curve analysis for CSF revealed that with the default cutoff point used for serum, CLIA and PA had comparable performances and CLEIA was less sensitive. The best performances of CLIA and CLEIA with adjusted cutoff points were 94.8% sensitivity and 95.5% specificity and 89.7% sensitivity and 95.5% specificity, respectively. We conclude that low-sensitivity CLEIA can underdiagnose HAM/TSP and that CLIA is a better alternative to PA in anti-HTLV-1 antibody assay for CSF with the current cutoff points.
Collapse
|
14
|
A significant association between CXCL10 -1447 A > G and IL18 -607 C > A gene polymorphism with human T-cell lymphotropic virus type 1 associated myelopathy/tropical spastic paraparesis (HAM-TSP), a case-control report from city of Mashhad, Iran. J Neurovirol 2021; 27:249-259. [PMID: 33651323 DOI: 10.1007/s13365-021-00946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the first isolated retrovirus from humans, and 2-3% of infected individuals suffer from HTLV-1 associated myelopathy tropical spastic paraparesis (HAM-TSP). Previous studies indicated that the risk of HAM-TSP could be correlated with the individuals' genetic alterations. Mashhad is one of the areas infected with HTLV-1 in Iran. This study designed to examine the association between several important gene polymorphisms and HAM-TSP. Genotypes of 232 samples from controls, HTLV-1 carriers, and HAM-TSP patients were examined for FAS-670 (A > G), CXCL10-1447 (A > G), Foxp3-3279 (C > A), IL-18 -137 (C > G), and IL-18 -607 (C > A) gene polymorphisms by different polymerase chain reaction (PCR) techniques. A non-significant association was observed between FAS-670 A > G, Foxp3-3279 C > A, and IL-18 -137 C > G gene polymorphisms and HAM-TSP. Nevertheless, a significant (P < 0.001) association between CXCL10-1447 A > G and IL-18 -607 C > A gene polymorphisms with HAM-TSP was observed in our study population. As previous studies revealed that the CXCL10 level in the cerebrospinal fluid of HAM-TSP patients was associated with the disease progression, and as we noticed, a direct association was observed between CXCL10-1447 A > G polymorphism and HAM-TSP. These polymorphisms might be recommended as a valuable prediction criterion for the severity of the disease. The contradiction between our findings and other studies regarding IL-18 -607 C > A gene polymorphism might be associated with various factors such as genotypes frequency in diverse races and population heterogeneity in the city of Mashhad.
Collapse
|
15
|
Gordon CA, Shield JM, Bradbury RS, Muhi S, Page W, Judd JA, Lee R, Biggs BA, Ross K, Kurscheid J, Gray DJ, McManus DP. HTLV-I and Strongyloides in Australia: The worm lurking beneath. ADVANCES IN PARASITOLOGY 2021; 111:119-201. [PMID: 33482974 DOI: 10.1016/bs.apar.2020.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strongyloidiasis and HTLV-I (human T-lymphotropic virus-1) are important infections that are endemic in many countries around the world with an estimated 370 million infected with Strongyloides stercoralis alone, and 5-10 million with HTVL-I. Co-infections with these pathogens are associated with significant morbidity and can be fatal. HTLV-I infects T-cells thus causing dysregulation of the immune system which has been linked to dissemination and hyperinfection of S. stercoralis leading to bacterial sepsis which can result in death. Both of these pathogens are endemic in Australia primarily in remote communities in Queensland, the Northern Territory, and Western Australia. Other cases in Australia have occurred in immigrants and refugees, returned travellers, and Australian Defence Force personnel. HTLV-I infection is lifelong with no known cure. Strongyloidiasis is a long-term chronic disease that can remain latent for decades, as shown by infections diagnosed in prisoners of war from World War II and the Vietnam War testing positive decades after they returned from these conflicts. This review aims to shed light on concomitant infections of HTLV-I with S. stercoralis primarily in Australia but in the global context as well.
Collapse
Affiliation(s)
- Catherine A Gordon
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Jennifer M Shield
- Department of Pharmacy and Biomedical Sciences, La Trobe University, Bendigo, VIC, Australia; Department of Medicine, The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Richard S Bradbury
- School of Health and Life Sciences, Federation University, Berwick, VIC, Australia
| | - Stephen Muhi
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Wendy Page
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Jenni A Judd
- School of Health Medical and Applied Sciences, Central Queensland University, Bundaberg, QLD, Australia; Centre for Indigenous Health Equity Research, Central Queensland University, Bundaberg, QLD, Australia
| | - Rogan Lee
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| | - Beverley-Ann Biggs
- Department of Medicine, The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Kirstin Ross
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Johanna Kurscheid
- Department of Global Health, Research School of Population Health, Australian National University, Acton, ACT, Australia
| | - Darren J Gray
- Department of Global Health, Research School of Population Health, Australian National University, Acton, ACT, Australia
| | - Donald P McManus
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Panfil AR, Green PL, Yoder KE. CRISPR Genome Editing Applied to the Pathogenic Retrovirus HTLV-1. Front Cell Infect Microbiol 2020; 10:580371. [PMID: 33425776 PMCID: PMC7785941 DOI: 10.3389/fcimb.2020.580371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
CRISPR editing of retroviral proviruses has been limited to HIV-1. We propose human T-cell leukemia virus type 1 (HTLV-1) as an excellent model to advance CRISPR/Cas9 genome editing technologies against actively expressing and latent retroviral proviruses. HTLV-1 is a tumorigenic human retrovirus responsible for the development of both leukemia/lymphoma (ATL) and a neurological disease (HAM/TSP). The virus immortalizes and persists in CD4+ T lymphocytes that survive for the lifetime of the host. The most important drivers of HTLV-1-mediated transformation and proliferation are the tax and hbz viral genes. Tax, transcribed from the plus-sense or genome strand, is essential for de novo infection and cellular immortalization. Hbz, transcribed from the minus-strand, supports proliferation and survival of infected cells in both its protein and mRNA forms. Abrogating the function or expression of tax and/or hbz by genome editing and mutagenic double-strand break repair may disable HTLV-1-infected cell growth/survival and prevent immune modulatory effects and ultimately HTLV-1-associated disease. In addition, the HTLV-1 viral genome is highly conserved with remarkable sequence homogeneity, both within the same host and even among different HTLV isolates. This offers more focused guide RNA targeting. In addition, there are several well-established animal models for studying HTLV-1 infection in vivo as well as cell immortalization in vitro. Therefore, studies with HTLV-1 may provide a better basis to assess and advance in vivo genome editing against retroviral infections.
Collapse
Affiliation(s)
- Amanda R Panfil
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Patrick L Green
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Kristine E Yoder
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States.,Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Al Sharif S, Pinto DO, Mensah GA, Dehbandi F, Khatkar P, Kim Y, Branscome H, Kashanchi F. Extracellular Vesicles in HTLV-1 Communication: The Story of an Invisible Messenger. Viruses 2020; 12:E1422. [PMID: 33322043 PMCID: PMC7763366 DOI: 10.3390/v12121422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) infects 5-10 million people worldwide and is the causative agent of adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) as well as other inflammatory diseases. A major concern is that the most majority of individuals with HTLV-1 are asymptomatic carriers and that there is limited global attention by health care officials, setting up potential conditions for increased viral spread. HTLV-1 transmission occurs primarily through sexual intercourse, blood transfusion, intravenous drug usage, and breast feeding. Currently, there is no cure for HTLV-1 infection and only limited treatment options exist, such as class I interferons (IFN) and Zidovudine (AZT), with poor prognosis. Recently, small membrane-bound structures, known as extracellular vesicles (EVs), have received increased attention due to their potential to carry viral cargo (RNA and proteins) in multiple pathogenic infections (i.e., human immunodeficiency virus type I (HIV-1), Zika virus, and HTLV-1). In the case of HTLV-1, EVs isolated from the peripheral blood and cerebral spinal fluid (CSF) of HAM/TSP patients contained the viral transactivator protein Tax. Additionally, EVs derived from HTLV-1-infected cells (HTLV-1 EVs) promote functional effects such as cell aggregation which enhance viral spread. In this review, we present current knowledge surrounding EVs and their potential role as immune-modulating agents in cancer and other infectious diseases such as HTLV-1 and HIV-1. We discuss various features of EVs that make them prime targets for possible vehicles of future diagnostics and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (S.A.S.); (D.O.P.); (G.A.M.); (F.D.); (P.K.); (Y.K.); (H.B.)
| |
Collapse
|
18
|
Barski MS, Minnell JJ, Hodakova Z, Pye VE, Nans A, Cherepanov P, Maertens GN. Cryo-EM structure of the deltaretroviral intasome in complex with the PP2A regulatory subunit B56γ. Nat Commun 2020; 11:5043. [PMID: 33028863 PMCID: PMC7542444 DOI: 10.1038/s41467-020-18874-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is a deltaretrovirus and the most oncogenic pathogen. Many of the ~20 million HTLV-1 infected people will develop severe leukaemia or an ALS-like motor disease, unless a therapy becomes available. A key step in the establishment of infection is the integration of viral genetic material into the host genome, catalysed by the retroviral integrase (IN) enzyme. Here, we use X-ray crystallography and single-particle cryo-electron microscopy to determine the structure of the functional deltaretroviral IN assembled on viral DNA ends and bound to the B56γ subunit of its human host factor, protein phosphatase 2 A. The structure reveals a tetrameric IN assembly bound to two molecules of the phosphatase via a conserved short linear motif. Insight into the deltaretroviral intasome and its interaction with the host will be crucial for understanding the pattern of integration events in infected individuals and therefore bears important clinical implications.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Cloning, Molecular
- Cryoelectron Microscopy
- Crystallography, X-Ray
- DNA, Viral/metabolism
- DNA, Viral/ultrastructure
- Human T-lymphotropic virus 1/enzymology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/pathogenicity
- Humans
- Integrases/genetics
- Integrases/metabolism
- Integrases/ultrastructure
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/virology
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Protein Multimerization
- Protein Phosphatase 2/genetics
- Protein Phosphatase 2/metabolism
- Protein Phosphatase 2/ultrastructure
- Protein Structure, Quaternary
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/ultrastructure
- Sequence Homology, Amino Acid
- Simian T-lymphotropic virus 1/enzymology
- Simian T-lymphotropic virus 1/genetics
- Single Molecule Imaging
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Viral Proteins/ultrastructure
- Virus Integration
Collapse
Affiliation(s)
- Michał S Barski
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Jordan J Minnell
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Zuzana Hodakova
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Peter Cherepanov
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Goedele N Maertens
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
19
|
Spasticity distribution and severity in individuals with HTLV-1-associated myelopathy/tropical spastic paraparesis. J Neurovirol 2020; 27:857-863. [PMID: 33021698 DOI: 10.1007/s13365-020-00911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
In individuals with HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), spasticity is one of the main symptoms. The neurological signs of the disease are well defined, but details of how spasticity appears in these individuals have not been well explored. To describe spasticity location and severity of HAM/TSP individuals. Cross-sectional study with individuals older than 18 years, diagnosed with HAM/TSP and with lower limb spasticity. Pregnant women, individuals with other associated neurological diseases, and those using antispastic drugs were not included. Spasticity was assessed by the Modified Ashworth Scale (MAS), applied to the abductor, adductor, flexor, and extensor muscles of the hips, flexors, and extensors of the knees, dorsiflexors, plantiflexors, evertors, and inverters of the foot. Thirty participants were included. The plantiflexor muscles (90%), knee extensors (80%), knee flexors (63,3%), and adductors (50%) were most frequently affected by spasticity. Twenty-three (76.7%) individuals had mixed spasticity, 5 (16.7%) with distal spasticity and 2 (6.7%) with proximal spasticity. MAS was similar between the lower limbs in at least 6 of the 10 muscle groups of each individual. Spasticity was mostly mixed in the lower limbs, with more frequently mild severity. The individuals were partially symmetrical between the lower limbs. The most affected muscle groups were the plantiflexors, knee extensors and flexors and the hip adductors, consecutively, being predominantly symmetrical.
Collapse
|
20
|
Julca-Copello P, Schwalb A, Cachay R, Tipismana M, Alvarez C, Mejía F, González-Lagos E, Gotuzzo E. Impact of fractures and orthopedic surgeries in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis. Rev Soc Bras Med Trop 2020; 53:e20200101. [PMID: 32935782 PMCID: PMC7491556 DOI: 10.1590/0037-8682-0101-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION In patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) gait disturbance is a predominant feature that leads to falls and fractures, which can further aggravate disability. We sought to evaluate the impact of fractures and orthopedic surgeries in patients with HAM/TSP. METHODS We retrieved the medical records of HAM/TSP patients enrolled in our study center's HTLV-1 clinical cohort between 1989-2018. The selection criteria included: (1) diagnosis of HTLV-1 infection using two enzyme-linked immunosorbent assays and/or a confirmatory test, (2) clinical diagnosis of HAM/TSP by neurological assessment, and (3) fractures associated with HAM/TSP. RESULTS We identified 24 cases of fractures, 70% of which were females. The median age at the time of fracture was 60 years (IQR=24). Six cases reported fractures in patients under 45 years old. Ten patients (42%) had hip/coccyx fractures, seven (29%) were in the lower extremities, and four (17%) in the upper extremities. Half of these patients reported the use of wheelchairs. Five patients who had previously used canes required the use of wheelchairs after the reported fracture. Eight patients underwent corrective orthopedic surgery as a result of the fracture. CONCLUSIONS For HAM/TSP patients, fractures are a complication that can exacerbate their severe impairment.
Collapse
Affiliation(s)
| | - Alvaro Schwalb
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Perú
| | - Rodrigo Cachay
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Perú
| | - Martín Tipismana
- Universidad Peruana Cayetano Heredia, School of Medicine, Lima, Perú.,Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Perú.,Hospital Cayetano Heredia, Neurology Department, Lima, Perú
| | - Carolina Alvarez
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Perú
| | - Fernando Mejía
- Universidad Peruana Cayetano Heredia, School of Medicine, Lima, Perú.,Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Perú
| | - Elsa González-Lagos
- Universidad Peruana Cayetano Heredia, School of Medicine, Lima, Perú.,Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Perú
| | - Eduardo Gotuzzo
- Universidad Peruana Cayetano Heredia, School of Medicine, Lima, Perú.,Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Perú
| |
Collapse
|
21
|
Benencio P, Fraile Gonzalez SA, Ducasa N, Page K, Berini CA, Biglione MM. HLA-B*35 as a new marker for susceptibility to human T-cell lymphotropic virus type 1 (HTLV-1) Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) in patients living in Argentina. Retrovirology 2020; 17:29. [PMID: 32883310 PMCID: PMC7469403 DOI: 10.1186/s12977-020-00536-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
Background Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of HTLV associated myelopathy/ Tropical Spastic Paraparesis (HAM/TSP) and Adult T cell leukemia/lymphoma (ATLL), in around 2–5% of the infected individuals. Host genetic background might play a role in disease progression. Several previous studies across many countries report HLA haplotype to be one such factor. Here, we sequenced HLA-A, -B and -C of 66 individuals by Sequence-Based Typing (SBT), and compared the frequency of different alleles among ATLL patients, HAM/TSP patients, asymptomatic carriers and non-infected individuals living in Argentina. Results The frequency of HLA-A, -B and -C alleles largely matched that of the general population in Argentina. We identified HLA-A*02, HLA-B*35 and HLA-C*07 as associated to protection from ATLL (p = 0.031), susceptibility to HAM/TSP (p < 0.001) and susceptibility to ATLL (p = 0.017), respectively. We also found a strong correlation between high proviral load (PVL) and disease (p = 0.008), but were unable to identify any particular allele associated with high or low PVL. Conclusions We have found HLA-A*02, HLA-B*35 and HLA-C*07 to be associated to protection from ATLL (HLA-A*02) and susceptibility to HAM/TSP (HLA-B*35) or to ATLL (HLA-C*07), respectively. Whereas HLA-A*02 protection from ATLL has already been extensively described in other regions of the world, this is the first report that links HLA-B*35 and an increased susceptibility to HAM/TSP. As for HLA-C*07 it has previously been associated to susceptibility to HAM/TSP in other countries but in our population it has been linked to ATLL.
Collapse
Affiliation(s)
- Paula Benencio
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sindy A Fraile Gonzalez
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nicolás Ducasa
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| | - Kimberly Page
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.,The University of New Mexico, Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Carolina A Berini
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mirna M Biglione
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
22
|
Yamauchi J, Araya N, Yagishita N, Sato T, Yamano Y. An update on human T-cell leukemia virus type I (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) focusing on clinical and laboratory biomarkers. Pharmacol Ther 2020; 218:107669. [PMID: 32835825 DOI: 10.1016/j.pharmthera.2020.107669] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a rare inflammatory disease causing unremitting and progressive neurological disorders, such as spastic paraparesis, neurogenic bladder, and sensory disturbance of the lower extremities. Although there is no cure, immune-modulating agents such as corticosteroids are most widely used to slow disease progression. Biomarkers for the clinical assessment of HAM/TSP should be identified because the prediction of functional prognosis and the assessment of treatment efficacy are challenging due to the slowly progressive nature of the disease. The lack of surrogate biomarkers also hampers clinical trials of new drugs. This review summarizes biomarker candidates for the clinical assessment of patients with HAM/TSP. Most of the reported biomarker candidates are associated with viral components or inflammatory mediators because immune dysregulation provoked by HTLV-1 infection is thought to cause chronic inflammation and damage the spinal cord of patients with HAM/TSP. Although information on the diagnostic accuracy of most of the reported biomarkers is insufficient, several molecules, including inflammatory mediators such as CXCL10 and neopterin in the cerebrospinal fluid, have been suggested as potential biomarkers of functional prognosis and treatment response. Several clinical trials for HAM/TSP are currently underway, and we expect that these studies will provide not only evidence pertaining to treatment, but also novel findings regarding the utility of biomarkers in this disease. The establishment of clinical biomarkers will improve patient care and promote the development of therapies for HAM/TSP.
Collapse
Affiliation(s)
- Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan; Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
23
|
Bhatt V, Shi K, Salamango DJ, Moeller NH, Pandey KK, Bera S, Bohl HO, Kurniawan F, Orellana K, Zhang W, Grandgenett DP, Harris RS, Sundborger-Lunna AC, Aihara H. Structural basis of host protein hijacking in human T-cell leukemia virus integration. Nat Commun 2020; 11:3121. [PMID: 32561747 PMCID: PMC7305164 DOI: 10.1038/s41467-020-16963-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Integration of the reverse-transcribed viral DNA into host chromosomes is a critical step in the life-cycle of retroviruses, including an oncogenic delta(δ)-retrovirus human T-cell leukemia virus type-1 (HTLV-1). Retroviral integrase forms a higher order nucleoprotein assembly (intasome) to catalyze the integration reaction, in which the roles of host factors remain poorly understood. Here, we use cryo-electron microscopy to visualize the HTLV-1 intasome at 3.7-Å resolution. The structure together with functional analyses reveal that the B56γ (B'γ) subunit of an essential host enzyme, protein phosphatase 2 A (PP2A), is repurposed as an integral component of the intasome to mediate HTLV-1 integration. Our studies reveal a key host-virus interaction underlying the replication of an important human pathogen and highlight divergent integration strategies of retroviruses.
Collapse
Affiliation(s)
- Veer Bhatt
- The Hormel Institute, University of Minnesota, 801 16th Avenue N.E., Austin, MN, 55912, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Ke Shi
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street S.E., Minneapolis, MN, 55455, USA
| | - Daniel J Salamango
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street S.E., Minneapolis, MN, 55455, USA
| | - Nicholas H Moeller
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street S.E., Minneapolis, MN, 55455, USA
| | - Krishan K Pandey
- Department of Molecular Microbiology and Immunology, Saint Louis University, 1100 S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Sibes Bera
- Department of Molecular Microbiology and Immunology, Saint Louis University, 1100 S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Heather O Bohl
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street S.E., Minneapolis, MN, 55455, USA
| | - Fredy Kurniawan
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street S.E., Minneapolis, MN, 55455, USA
| | - Kayo Orellana
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street S.E., Minneapolis, MN, 55455, USA
| | - Wei Zhang
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street S.E., Minneapolis, MN, 55455, USA
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street S.E., Minneapolis, MN, 55455, USA
- Characterization Facility, College of Science and Engineering, University of Minnesota, 100 Union Street S.E., Minneapolis, MN, 55455, USA
| | - Duane P Grandgenett
- Department of Molecular Microbiology and Immunology, Saint Louis University, 1100 S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Reuben S Harris
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street S.E., Minneapolis, MN, 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Anna C Sundborger-Lunna
- The Hormel Institute, University of Minnesota, 801 16th Avenue N.E., Austin, MN, 55912, USA.
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA.
| | - Hideki Aihara
- Masonic Cancer Center, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA.
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|
24
|
Acupuncture in the treatment of HTLV-I-associated myelopathy / tropical spastic Paraparesis. J Neurovirol 2020; 26:415-421. [PMID: 32350814 DOI: 10.1007/s13365-019-00805-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/26/2019] [Accepted: 09/16/2019] [Indexed: 10/24/2022]
Abstract
We investigate the possible effects of acupuncture on the improvement of neurological problems in HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP)disease. Twenty patients with HAM/TSP were studied in this pre and post-test clinical trial. Urinary incontinence, global motor disability, spasticity, and pain severity were evaluated before, one month, and three-month after the intervention. Analyses demonstrated a significant reduction of urinary symptoms one month after acupuncture (P = 0.023). A significant improvement was observed in patients' pain and the spasticity at the upper extremity joints, one and three-month after the intervention (P < 0.05). This study suggests that body acupuncture can be used as a complementary treatment to improve HAM/TSP neurological symptoms.
Collapse
|
25
|
Matteucci C, Marino-Merlo F, Minutolo A, Balestrieri E, Valletta E, Macchi B, Mastino A, Grelli S. Inhibition of IκBα phosphorylation potentiates regulated cell death induced by azidothymidine in HTLV-1 infected cells. Cell Death Discov 2020; 6:9. [PMID: 32123585 PMCID: PMC7028944 DOI: 10.1038/s41420-020-0243-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 01/30/2023] Open
Abstract
Adult T cell leukemia/lymphoma (ATL) can be susceptible, at least transiently, to treatments with azidothymidine (AZT) plus IFNα and/or arsenic trioxide. However, the real role of AZT in this effect is still unclear. In fact, while reverse transcriptase (RT) inhibition could explain reduction of clonal expansion and of renewal of HTLV-1 infected cells during ATL progression, this effect alone seems insufficient to justify the evident and prompt decrease of the pro-viral load in treated patients. We have previously demonstrated that AZT is endowed with an intrinsic pro-apoptotic potential towards both peripheral blood mononuclear cells from healthy donors or some tumor cell lines, but this cytotoxic potential cannot be fully achieved unless IκBα phosphorylation is inhibited. Since the constitutive activation of NF-kappa B (NF-κB) appears a common biological basis of HTLV-1-infected cells, a pharmacological inhibition of IκBα phosphorylation seems a potential strategy for treating and preventing HTLV-1 related pathologies. In this study, we have demonstrated that a combination treatment with the IκBα phosphorylation inhibitor Bay 11-7085 and AZT induced increased levels of regulated cell death (RCD) by apoptosis compared to the single treatments in HTLV-1 infected cells of different origin. Importantly, levels of RCD were considerably higher in infected cells in comparison with the uninfected ones. Inhibition of NF-κB activation following the combined treatment was confirmed by analysis of both gel-shift and functional activity of the NF-κB complex proteins, p65/p52. Moreover, a transcriptional analysis revealed that the addition of Bay 11-7085 to AZT treatment in HTLV-1-infected cells modified their transcriptional profile, by inducing the upregulation of some pro-apoptotic genes together with the downregulation of some anti-apoptotic genes. Our data suggest that addition of adequate concentrations of IκBα phosphorylation inhibitor to therapeutic regimens including AZT could be a promising strategy in ATL.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Elena Valletta
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Beatrice Macchi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonio Mastino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
- The Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
26
|
Moles R, Sarkis S, Galli V, Omsland M, Purcell DFJ, Yurick D, Khoury G, Pise-Masison CA, Franchini G. p30 protein: a critical regulator of HTLV-1 viral latency and host immunity. Retrovirology 2019; 16:42. [PMID: 31852501 PMCID: PMC6921414 DOI: 10.1186/s12977-019-0501-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
The extraordinarily high prevalence of HTLV-1 subtype C (HTLV-1C) in some isolated indigenous communities in Oceania and the severity of the health conditions associated with the virus impress the great need for basic and translational research to prevent and treat HTLV-1 infection. The genome of the virus’s most common subtype, HTLV-1A, encodes structural, enzymatic, and regulatory proteins that contribute to viral persistence and pathogenesis. Among these is the p30 protein encoded by the doubly spliced Tax-orf II mRNA, a nuclear/nucleolar protein with both transcriptional and post-transcriptional activity. The p30 protein inhibits the productive replication cycle via nuclear retention of the mRNA that encodes for both the viral transcriptional trans-activator Tax, and the Rex proteins that regulate the transport of incompletely spliced viral mRNA to the cytoplasm. In myeloid cells, p30 inhibits the PU-1 transcription factor that regulates interferon expression and is a critical mediator of innate and adaptive immunity. Furthermore, p30 alters gene expression, cell cycle progression, and DNA damage responses in T-cells, raising the hypothesis that p30 may directly contribute to T cell transformation. By fine-tuning viral expression while also inhibiting host innate responses, p30 is likely essential for viral infection and persistence. This concept is supported by the finding that macaques, a natural host for the closely genetically related simian T-cell leukemia virus 1 (STLV-1), exposed to an HTLV-1 knockout for p30 expression by a single point mutation do not became infected unless reversion and selection of the wild type HTLV-1 genotype occurs. All together, these data suggest that inhibition of p30 may help to curb and eventually eradicate viral infection by exposing infected cells to an effective host immune response.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - David Yurick
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Cynthia A Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Bangham CRM, Miura M, Kulkarni A, Matsuoka M. Regulation of Latency in the Human T Cell Leukemia Virus, HTLV-1. Annu Rev Virol 2019; 6:365-385. [PMID: 31283437 DOI: 10.1146/annurev-virology-092818-015501] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human T cell leukemia virus persists in vivo in 103 to 106 clones of T lymphocytes that appear to survive for the lifetime of the host. The plus strand of the provirus is typically transcriptionally silent in freshly isolated lymphocytes, but the strong, persistently activated cytotoxic T lymphocyte (CTL) response to the viral antigens indicates that the virus is not constantly latent in vivo. There is now evidence that the plus strand is transcribed in intense intermittent bursts that are triggered by cellular stress, modulated by hypoxia and glycolysis, and inhibited by polycomb repressive complex 1 (PRC1). The minus-strand gene hbz is transcribed at a lower, more constant level but is silent in a proportion of infected cells at a given time. Viral genes in the sense and antisense strands of the provirus play different respective roles in latency and de novo infection: Expression of the plus-strand gene tax is essential for de novo infection, whereas hbz appears to facilitate survival of the infected T cell clone in vivo.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1PG, United Kingdom;
| | - Michi Miura
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1PG, United Kingdom;
| | - Anurag Kulkarni
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1PG, United Kingdom;
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan;
| |
Collapse
|
28
|
Tamaki K, Sato T, Tsugawa J, Fujioka S, Yagishita N, Araya N, Yamauchi J, Coler-Reilly ALG, Nagasaka M, Hasegawa Y, Yamano Y, Tsuboi Y. Cerebrospinal Fluid CXCL10 as a Candidate Surrogate Marker for HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2019; 10:2110. [PMID: 31572323 PMCID: PMC6749079 DOI: 10.3389/fmicb.2019.02110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/27/2019] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a debilitating, progressive disease without effective treatment; therefore, development of disease modifying therapy that improves long-term functional outcomes is an unmet need for patients. However, it is virtually impossible to consider this as a primary endpoint in clinical trials owing to the prolonged disease course. Therefore, development of surrogate markers that help predict the effectiveness of new interventions is essential. Currently, several candidate surrogate markers have been identified for HAM/TSP. Cerebrospinal fluid (CSF) C-X-C motif chemokine 10 (CXCL10) is involved in the pathogenesis of HAM/TSP and was shown to correlate with disease progression. However, it remains unclear whether changes in CSF CXCL10 levels are observed in response to treatment and whether these correlate with prognosis. Here we investigated several markers, including CSF CXCL10, in this respect. Data pertaining to patient characteristics and results of motor function evaluation and CSF examination of 13 HAM/TSP patients who received steroid treatment were retrospectively analyzed. Osame motor disability scores (OMDS), 10 m walking time, and CSF levels of CXCL10, neopterin, total protein, cell counts, and anti-HTLV-1 antibody titer were compared before and after steroid therapy. Levels of all CSF markers, with the exception of cell count, were significantly decreased after treatment. Nine of the 13 patients (69.2%) showed improvement in OMDS and were considered responders. Pre-treatment CSF levels of CXCL10 and anti-HTLV-1 antibody titer in responders were higher than those in non-responders (p = 0.020 and p = 0.045, respectively). Patients who continued low-dose oral prednisolone maintenance therapy after methylprednisolone pulse therapy showed sustained improvement in OMDS and CSF CXCL10 and neopterin levels lasting for 2 years. In contrast, OMDS and the CSF marker levels in patients who discontinued treatment returned to pre-treatment levels. This rebound phenomenon was also observed in patients who discontinued oral prednisolone therapy independently of pulse therapy. Our findings suggest that CSF CXCL10 may serve as a therapy-response and therapy-predictive marker for HAM/TSP. In addition, since decrease in CSF CXCL10 level was associated with good functional prognosis, CSF CXCL10 is a potential surrogate marker for treatment of HAM/TSP.
Collapse
Affiliation(s)
- Keiko Tamaki
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Jun Tsugawa
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | | | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ariella L. G. Coler-Reilly
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Misako Nagasaka
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Yasuhiro Hasegawa
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
29
|
Barski MS, Minnell JJ, Maertens GN. Inhibition of HTLV-1 Infection by HIV-1 First- and Second-Generation Integrase Strand Transfer Inhibitors. Front Microbiol 2019; 10:1877. [PMID: 31474960 PMCID: PMC6705210 DOI: 10.3389/fmicb.2019.01877] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
More than 10 million people worldwide are infected with the retrovirus human T-cell lymphotropic virus type 1 (HTLV-1). Infection phenotypes can range from asymptomatic to severe adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy. HTLV-1, like human immunodeficiency virus type 1 (HIV-1), is a blood-borne pathogen and viral infection happens in a similar fashion, with the major mode of transmission through breastfeeding. There is a strong correlation between time of infection and disease development, with a higher incidence of ATLL in patients infected during childhood. There is no successful therapeutic or preventative regimen for HTLV-1. It is therefore essential to develop therapies to inhibit transmission or block the onset/development of HTLV-1 associated diseases. Recently, we have seen the overwhelming success of integrase strand transfer inhibitors (INSTIs) in the treatment of HIV-1. Previously, raltegravir was shown to inhibit HTLV-1 infection. Here, we tested FDA-approved and two Phase II HIV-1 INSTIs in vitro and in a cell-to-cell infection model and show that they are highly active in blocking HTLV-1 infection, with bictegravir (EC50 = 0.30 ± 0.17 nM) performing best overall. INSTIs, in particular bictegravir, are more potent in blocking HTLV-1 transmission than tenofovir disproxil fumarate (TDF), an RT inhibitor. Our data suggest that HIV-1 INSTIs could present a good clinical strategy in HTLV-1 management and justifies the inclusion of INSTIs in clinical trials.
Collapse
Affiliation(s)
- Michał S Barski
- Division of Infectious Diseases, Section of Molecular Virology, Department of Medicine, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Jordan J Minnell
- Division of Infectious Diseases, Section of Molecular Virology, Department of Medicine, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Goedele N Maertens
- Division of Infectious Diseases, Section of Molecular Virology, Department of Medicine, St Mary's Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Yaghoubi N, Youssefi M, Hashemy SI, Rafat Panah H, Mashkani BA, Zahedi Avval F. Thioredoxin reductase gene expression and activity among human T-cell lymphotropic virus type 1-infected patients. J Med Virol 2018; 91:865-871. [PMID: 30489643 DOI: 10.1002/jmv.25371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/20/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND The thioredoxin (Trx) system is a reducing complex, consisting of Trx, Trx reductase (TrxR), and NADPH, that scavenges reactive oxygen species. The system is a natural protective mechanism to prevent apoptosis and progression of oxidative stress-related diseases. The present study was conducted to explore possible changes in TrxR activity and gene expression as a response to the oxidative stress during HTLV-1 infection. MATERIALS AND METHODS Blood samples were collected from 40 HTLV-1-infected patients and 40 age- and sex-matched healthy controls. The patient group consisted of chronic asymptomatic carriers and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM-TSP) patients. A commercial kit was used to measure the TrxR enzyme activity, and real-time polymerase chain reaction was performed to evaluate TrxR gene expression in extracted peripheral blood mononuclear cells (PBMCs). RESULTS A decreasing pattern of TrxR enzyme activity was observed among control, carrier, and HAM-TSP groups (mean ± SD; controls, 0.1734 ± 0.056; carriers, 0.134 ± 0.065; and HAM-TSP, 0.0928 ± 0.047 µmol/min/mL). Cellular TrxR gene expression showed the same decreasing trend. The fold differences of gene expression in carriers and HAM-TSP groups compared with healthy controls were 0.8 and 0.7 vs 1, respectively. CONCLUSION We found a reduction in TrxR expression as well as serum enzyme activity in HTLV-1-infected individuals, particularly in HAM-TSP patients. The reduced TrxR activity during HTLV-1 infection may hamper the natural protective mechanisms, thereby contributes to virus-induced complications.
Collapse
Affiliation(s)
- Neda Yaghoubi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafat Panah
- Inflamation and Inflammatory Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Barat Ali Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Liu Y, Hua T, Chi S, Wang H. Identification of key pathways and genes in endometrial cancer using bioinformatics analyses. Oncol Lett 2018; 17:897-906. [PMID: 30655845 PMCID: PMC6313012 DOI: 10.3892/ol.2018.9667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological cancer types worldwide. However, to the best of our knowledge, its underlying mechanisms remain unknown. The current study downloaded three mRNA and microRNA (miRNA) datasets of EC and normal tissue samples, GSE17025, GSE63678 and GSE35794, from the Gene Expression Omnibus to identify differentially expressed genes (DEGs) and miRNAs (DEMs) in EC tumor tissues. The DEGs and DEMs were then validated using data from The Cancer Genome Atlas and subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. STRING and Cytoscape were used to construct a protein-protein interaction network and the prognostic effects of the hub genes were analyzed. Finally, miRecords was used to predict DEM targets and an miRNA-gene network was constructed. A total of 160 DEGs were identified, of which 51 genes were highly expressed and 100 DEGs were discovered from the PPI network. Three overlapping genes between the DEGs and the DEM targets, BIRC5, CENPF and HJURP, were associated with significantly worse overall survival of patients with EC. A number of DEGs were enriched in cell cycle, human T-lymphotropic virus infection and cancer-associated pathways. A total of 20 DEMs and 29 miRNA gene pairs were identified. In conclusion, the identified DEGs, DEMs and pathways in EC may provide new insights into understanding the underlying molecular mechanisms that facilitate EC tumorigenesis and progression.
Collapse
Affiliation(s)
- Yan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Teng Hua
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuqi Chi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
32
|
Sato T, Yagishita N, Tamaki K, Inoue E, Hasegawa D, Nagasaka M, Suzuki H, Araya N, Coler-Reilly A, Hasegawa Y, Tsuboi Y, Takata A, Yamano Y. Proposal of Classification Criteria for HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis Disease Activity. Front Microbiol 2018; 9:1651. [PMID: 30090093 PMCID: PMC6068401 DOI: 10.3389/fmicb.2018.01651] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a rare chronic neuroinflammatory disease. While the disease usually progresses slowly without remission, there is a subgroup of patients with rapid progression and another subgroup with very slow progression. However, there have been no reports to date that have successfully determined the criteria to differentiate these subgroups. Therefore, we initially conducted a statistical modeling analysis to explore representative patterns of disease progression using data from our nationwide HAM/TSP patient registration system (“HAM-net”). The latent class mixed model analysis on the retrospective data (n = 205) of disease progression measured by the change in Osame Motor Disability Score from the onset of the disease to diagnosis demonstrated three representative progression patterns of HAM/TSP. Next, to test the effect of the progression rate at the initial phase of the disease on long-term prognosis, we divided 312 “HAM-net” registered patients into three groups (rapid, slow, and very slow progressors) based on the progression rate, then analyzed long-term functional prognosis of each group using the Kaplan–Meier method. Our data clearly demonstrated that the rapid progression at the early phase of the disease is an important poor prognostic factor. Moreover, to determine the biomarkers capable of discriminating the difference in disease activity, we compared the value of potential biomarkers of HAM/TSP among rapid (n = 15), slow (n = 74), very slow (n = 7), and controls (non-HAM/TSP patients, n = 18). The cerebrospinal fluid (CSF) levels of neopterin and C-X-C motif chemokine 10 (CXCL10) were the most valuable markers to discriminate among rapid, slow, and very slow progressors. To differentiate between rapid and slow progressors, the cut-off values of neopterin and CXCL10 were determined to be 44 pmol/mL and 4400 pg/mL, respectively. Furthermore, to differentiate between slow and very slow progressors, these values were determined to be 5.5 pmol/mL and 320 pg/mL, respectively. Notably, we found that CSF levels of these markers in very slow progressors were within the reference range. Thus, we propose a new classification criteria for disease activity of HAM/TSP that may contribute to improving the treatment algorithm for HAM/TSP.
Collapse
Affiliation(s)
- Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Keiko Tamaki
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Eisuke Inoue
- Medical Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Daisuke Hasegawa
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Misako Nagasaka
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States.,Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hiroko Suzuki
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ariella Coler-Reilly
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasuhiro Hasegawa
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Ayako Takata
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan.,Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| |
Collapse
|
33
|
Labanca L, de Morais Caporali JF, da Silva Carvalho SA, Lambertucci JR, Carneiro Proietti ABDF, Romanelli LCF, Avan P, Giraudet F, Souza BO, Florentino KR, Utsch Gonçalves D. Vestibular-evoked myogenic potential triggered by galvanic vestibular stimulation may reveal subclinical alterations in human T-cell lymphotropic virus type 1-associated myelopathy. PLoS One 2018; 13:e0200536. [PMID: 30001400 PMCID: PMC6042765 DOI: 10.1371/journal.pone.0200536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vestibular-evoked myogenic potential triggered by galvanic vestibular stimulation (galvanic-VEMP) evaluates the motor spinal cord and identifies subclinical myelopathies. We used galvanic-VEMP to compare spinal cord function in individuals infected with human T-cell lymphotropic virus type 1 (HTLV-1) from asymptomatic status to HTLV-1-associated myelopathy (HAM). METHODOLOGY/PRINCIPAL FINDINGS This cross-sectional study with 122 individuals included 26 HTLV-1-asymptomatic carriers, 26 individuals with possible HAM, 25 individuals with HAM, and 45 HTLV-1-seronegative individuals (controls). The groups were similar regarding gender, age, and height. Galvanic stimuli (duration: 400 ms; intensity: 2 mA) were applied bilaterally to the mastoid processes and VEMP was recorded from the gastrocnemius muscle. The electromyographic parameters investigated were the latency and amplitude of the short-latency (SL) and medium-latency (ML) responses. While SL and ML amplitudes were similar between groups, SL and ML latencies were delayed in the HTLV-1 groups compared to the control group (p<0.001). Using neurological examination as the gold standard, ROC curve showed an area under the curve of 0.83 (p<0.001) for SL and 0.86 (p<0.001) for ML to detect spinal cord injury. Sensibility and specificity were, respectively, 76% and 86% for SL and 79% and 85% for ML. Galvanic-VEMP disclosed alterations that were progressive in HTLV-1-neurological disease, ranging from SL delayed latency in HTLV-1-asymptomatic carriers, SL and ML delayed latency in possible HAM group, to absence of VEMP response in HAM group. CONCLUSIONS/SIGNIFICANCE The worse the galvanic-VEMP response, the more severe the myelopathy. Galvanic-VEMP alteration followed a pattern of alteration and may be a prognostic marker of progression from HTLV-1-asymptomatic carrier to HAM.
Collapse
Affiliation(s)
- Ludimila Labanca
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júlia Fonseca de Morais Caporali
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sirley Alves da Silva Carvalho
- Programa de Pós-Graduação em Ciências Fonoaudiológicas, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Roberto Lambertucci
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Paul Avan
- Laboratoire de Biophysique Neurosensorielle, Faculté de Médecine, Université Clermont Auvergne, Clermont Ferrand, Auvergne, France
| | - Fabrice Giraudet
- Laboratoire de Biophysique Neurosensorielle, Faculté de Médecine, Université Clermont Auvergne, Clermont Ferrand, Auvergne, France
| | - Bárbara Oliveira Souza
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kyonis Rodrigues Florentino
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise Utsch Gonçalves
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
34
|
Immunophenotypic characterization of CSF B cells in virus-associated neuroinflammatory diseases. PLoS Pathog 2018; 14:e1007042. [PMID: 29709026 PMCID: PMC5945224 DOI: 10.1371/journal.ppat.1007042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/10/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Intrathecal antibody synthesis is a well-documented phenomenon in infectious neurological diseases as well as in demyelinating diseases, but little is known about the role of B cells in the central nervous systems. We examined B cell and T cell immunophenotypes in CSF of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) compared to healthy normal donors and subjects with the other chronic virus infection and/or neuroinflammatory diseases including HIV infection, multiple sclerosis (MS) and progressive multifocal leukoencephalopathy. Antibody secreting B cells (ASCs) were elevated in HAM/TSP patients, which was significantly correlated with intrathecal HTLV-1-specific antibody responses. High frequency of ASCs was also detected in patients with relapsing-remitting multiple sclerosis (RRMS). While RRMS patients showed significant correlations between ASCs and memory follicular helper CD4+ T cells, CD4+CD25+ T cells were elevated in HAM/TSP patients, which were significantly correlated with ASCs and HTLV-1 proviral load. These results highlight the importance of the B cell compartment and the associated inflammatory milieu in HAM/TSP patients where virus-specific antibody production may be required to control viral persistence and/or may be associated with disease development.
Collapse
|
35
|
Azodi S, Nair G, Enose-Akahata Y, Charlip E, Vellucci A, Cortese I, Dwyer J, Billioux BJ, Thomas C, Ohayon J, Reich DS, Jacobson S. Imaging spinal cord atrophy in progressive myelopathies: HTLV-I-associated neurological disease (HAM/TSP) and multiple sclerosis (MS). Ann Neurol 2017; 82:719-728. [PMID: 29024167 DOI: 10.1002/ana.25072] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/08/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Previous work measures spinal cord thinning in chronic progressive myelopathies, including human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and multiple sclerosis (MS). Quantitative measurements of spinal cord atrophy are important in fully characterizing these and other spinal cord diseases. We aimed to investigate patterns of spinal cord atrophy and correlations with clinical markers. METHODS Spinal cord cross-sectional area was measured in individuals (24 healthy controls [HCs], 17 asymptomatic carriers of HTLV-1 (AC), 47 HAM/TSP, 74 relapsing-remitting MS [RRMS], 17 secondary progressive MS [SPMS], and 40 primary progressive MS [PPMS]) from C1 to T10. Clinical disability scores, viral markers, and immunological parameters were obtained for patients and correlated with representative spinal cord cross-sectional area regions at the C2 to C3, C4 to C5, and T4 to T9 levels. In 2 HAM/TSP patients, spinal cord cross-sectional area was measured over 3 years. RESULTS All spinal cord regions are thinner in HAM/TSP (56 mm2 [standard deviation, 10], 59 [10], 23 [5]) than in HC (76 [7], 83 [8], 38 [4]) and AC (71 [7], 78 [9], 36 [7]). SPMS (62 [9], 66 [9], 32 [6]) and PPMS (65 [11], 68 [10], 35 [7]) have thinner cervical cords than HC and RRMS (73 [9], 77 [10], 37 [6]). Clinical disability scores (Expanded Disability Status Scale [p = 0.009] and Instituto de Pesquisas de Cananeia [p = 0.03]) and CD8+ T-cell frequency (p = 0.04) correlate with T4 to T9 spinal cord cross-sectional area in HAM/TSP. Higher cerebrospinal fluid HTLV-1 proviral load (p = 0.01) was associated with thinner spinal cord cross-sectional area. Both HAM/TSP patients followed longitudinally showed thoracic thinning followed by cervical thinning. INTERPRETATION Group average spinal cord cross-sectional area in HAM/TSP and progressive MS show spinal cord atrophy. We further hypothesize in HAM/TSP that is possible that neuroglial loss from a thoracic inflammatory process results in anterograde and retrograde degeneration of axons, leading to the temporal progression of thoracic to cervical atrophy described here. Ann Neurol 2017;82:719-728.
Collapse
Affiliation(s)
- Shila Azodi
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Govind Nair
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Yoshimi Enose-Akahata
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Emily Charlip
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Ashley Vellucci
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Jenifer Dwyer
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - B Jeanne Billioux
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Chevaz Thomas
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Joan Ohayon
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
36
|
Fragoso YD. Differential diagnosis of multiple sclerosis in Latin America. Mult Scler J Exp Transl Clin 2017; 3:2055217317714279. [PMID: 28979790 PMCID: PMC5617098 DOI: 10.1177/2055217317714279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
Improvement of multiple sclerosis (MS) diagnoses leads to earlier and correct disease management. The differential diagnostic workup for MS comprises a large variety of medical conditions. There are general guidelines and criteria for diagnosing MS worldwide, but awareness of regional differences needs to be kept in mind. Latin American patients who are screened for MS diagnoses may require an approach that is not exactly the same as that used for patients in North America, western Europe or Asia. In the present review, the conditions that are important for the differential diagnoses of MS in Latin America are reviewed. They include infections, metabolic diseases, nutritional deficits and other autoimmune conditions that physicians in charge of these patients need to be familiar with.
Collapse
Affiliation(s)
- YD Fragoso
- MS Unit, Department of Neurology, Universidade Metropolitana de Santos, SP, Brazil
| |
Collapse
|