1
|
Cao B, Zhou J, Xia B, Li X, Wang R, Xu Y, Li C. Therapeutic potential of a choline-zinc-vitamin E nutraceutical complex in ameliorating thioacetamide-induced nonalcoholic fatty liver pathology in zebrafish. PLoS One 2025; 20:e0324164. [PMID: 40392901 PMCID: PMC12091810 DOI: 10.1371/journal.pone.0324164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/21/2025] [Indexed: 05/22/2025] Open
Abstract
Choline has been proven to be effective in maintaining liver function. However, the effect of choline, in combination with other nutrients, on the improvement of non-alcoholic fatty liver disease (NAFLD) remains unclear. This study aimed to investigate the potential effect of the nutraceutical complex containing choline bitartrate, zinc citrate, and dl-α-Tocopheryl acetate on NAFLD in the zebrafish model. The NAFLD model was induced in zebrafish by administering thioacetamide. Experimental groups were established, including a normal control group, the model control group, the positive control group, the nutraceutical complex intervention group, and the choline bitartrate alone intervention group. The intervention was administered to the zebrafish in a water-soluble form, while the positive control group received polyene phosphatidylcholine at a concentration of 50.0 μg/mL. Notably, the protective effect of the nutraceutical complex against NAFLD is more pronounced than that observed with choline bitartrate supplementation alone. The results of transcriptomics and quantitative real-time PCR showed that the potential mechanisms underlying the effects of the nutraceutical complex might involve the upregulation of acacia, acsl1a, fbp2 gene expression, and the downregulation of tbc1d1 gene expression. These results were further validated by western blotting and overexpression experiments. Our findings indicated that choline bitartrate, zinc citrate, and dl-α-Tocopheryl acetate can help improve NAFLD. The results of this study provide evidence for the application of the nutraceutical complex in the improvement of NAFLD.
Collapse
Affiliation(s)
- Bingbing Cao
- Hunter Biotechnology, Inc., Hangzhou, Zhejiang, The People’s Republic of China
| | - Jiali Zhou
- Hunter Biotechnology, Inc., Hangzhou, Zhejiang, The People’s Republic of China
| | - Bo Xia
- Hunter Biotechnology, Inc., Hangzhou, Zhejiang, The People’s Republic of China
| | - Xiaoqing Li
- Opella, Shanghai, The People’s Republic of China
| | - Rui Wang
- Opella, Shanghai, The People’s Republic of China
| | - Yiqiao Xu
- Hunter Biotechnology, Inc., Hangzhou, Zhejiang, The People’s Republic of China
| | - Chunqi Li
- Hunter Biotechnology, Inc., Hangzhou, Zhejiang, The People’s Republic of China
| |
Collapse
|
2
|
Nakahara H, Ono A, Hayes CN, Shirane Y, Miura R, Fujii Y, Tamura Y, Uchikawa S, Fujino H, Nakahara T, Murakami E, Yamauchi M, Kawaoka T, Miki D, Tsuge M, Kobayashi T, Ohdan H, Arihiro K, Oka S. Multiomics Analysis of Liver Molecular Dysregulation Leading to Nonviral-Related Hepatocellular Carcinoma Development. J Proteome Res 2025; 24:1102-1117. [PMID: 39982271 PMCID: PMC11894656 DOI: 10.1021/acs.jproteome.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/26/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Chronic liver diseases exhibit diverse backgrounds, and it is believed that numerous factors contribute to progression to cancer. To achieve effective prevention of nonviral hepatocellular carcinoma, it is imperative to identify fundamental molecular abnormalities at the patient level. Utilizing cancer-adjacent liver tissues obtained from hepatocellular carcinoma patients (chronic liver disease), we conducted RNA-Seq and metabolome analyses. In the chronic liver disease cohort, upregulation of inflammation-associated signals was observed, concomitant with accumulation of acylcarnitine and fatty acid and depletion of NADP+, gamma-tocopherol, and dehydroisoandrosterone-3-sulfate-1 (DHEAS). To minimize heterogeneity, we performed multiomics clustering, successfully categorizing the chronic liver disease cases into two distinct subtypes. Subtype 1 demonstrated elevated inflammatory levels, whereas Subtype 2 included a disproportionately high proportion of elderly cases. Furthermore, RNA-Seq analysis revealed upregulation of inflammatory signals in Subtype 1, while both subtypes exhibited downregulation of fatty acid metabolism. Metabolome analysis indicated a tendency of increased acylcarnitine levels in Subtype 1 and augmented fatty acid accumulation in Subtype 2. Validation of differentially expressed genes using the Gene Expression Omnibus (GEO) data set revealed the potential for amelioration through supplementation with antioxidants such as epigallocatechin gallate (EGCG).
Collapse
Affiliation(s)
- Hikaru Nakahara
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
- Department
of Clinical and Molecular Genetics, Hiroshima
University, Hiroshima 734-8551, Japan
| | - Atsushi Ono
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - C. Nelson Hayes
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yuki Shirane
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Ryoichi Miura
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yasutoshi Fujii
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
- Department
of Clinical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yosuke Tamura
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shinsuke Uchikawa
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hatsue Fujino
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takashi Nakahara
- Hiroshima
Prefectural Hospital Gastroenterology & Hepatology, Hiroshima 734-8530, Japan
| | - Eisuke Murakami
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Masami Yamauchi
- Department
of Clinical Oncology, Hiroshima Prefectural
Hospital, Hiroshima 734-8530, Japan
| | - Tomokazu Kawaoka
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Daiki Miki
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Masataka Tsuge
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
- Liver center, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Tsuyoshi Kobayashi
- Department
of Gastroenterological and Transplant Surgery, Graduate School of
Biomedical and Health Sciences, Hiroshima
University, Hiroshima 734-8551, Japan
| | - Hideki Ohdan
- Department
of Gastroenterological and Transplant Surgery, Graduate School of
Biomedical and Health Sciences, Hiroshima
University, Hiroshima 734-8551, Japan
| | - Koji Arihiro
- Department
of Anatomical Pathology, Hiroshima University
Hospital, Hiroshima 734-8551, Japan
| | - Shiro Oka
- Department
of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
3
|
Es-Sai B, Wahnou H, Benayad S, Rabbaa S, Laaziouez Y, El Kebbaj R, Limami Y, Duval RE. Gamma-Tocopherol: A Comprehensive Review of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Molecules 2025; 30:653. [PMID: 39942758 PMCID: PMC11821177 DOI: 10.3390/molecules30030653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Gamma-tocopherol (γ-tocopherol), a major isoform of vitamin E, exhibits potent antioxidant, anti-inflammatory, and anticancer properties, making it a promising therapeutic candidate for treating oxidative stress-related diseases. Unlike other tocopherol isoforms, γ-tocopherol effectively neutralizes reactive oxygen species (ROS) and reactive nitrogen species (RNS), providing robust cellular protection against oxidative damage and lipid peroxidation. Its anti-inflammatory effects are mediated through the modulation of pathways involving cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha (TNF-α), reducing chronic inflammation and its associated risks. In cancer therapy, γ-tocopherol demonstrates multifaceted activity, including the inhibition of tumor growth, induction of apoptosis, and suppression of angiogenesis, with significant efficacy observed in cancers such as prostate, lung, and colon. Preclinical and clinical studies support its efficacy in mitigating oxidative stress, inflammation, and cancer progression, with excellent tolerance at physiological levels. However, high doses necessitate careful evaluation to minimize adverse effects. This review consolidates current knowledge on γ-tocopherol's biological activities and clinical implications, underscoring its importance as a natural compound for managing inflammation, oxidative stress, and cancer. As a perspective, advancements in nanoformulation technology could enhance γ-tocopherol's bioavailability, stability, and targeted delivery, offering the potential to optimize its therapeutic application in the future.
Collapse
Affiliation(s)
- Basma Es-Sai
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco;
| | - Salma Benayad
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Soufiane Rabbaa
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Yassir Laaziouez
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Riad El Kebbaj
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Youness Limami
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | | |
Collapse
|
4
|
Mese-Tayfur S, Demirel-Yalcıner T, Migni A, Bartolini D, Galli F, Ozer NK, Sozen E. Modulation of inflammatory signaling by vitamin E metabolites and its therapeutic implications. Free Radic Res 2025; 59:86-101. [PMID: 39764767 DOI: 10.1080/10715762.2024.2449457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2 R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation. However, hepatic metabolism of these compounds via cytochrome P450-initiated side chain ω-oxidation involves the production of long-chain metabolites (LCMs) followed by intermediate (ICMs) and short-chain metabolites (SCMs), respectively. Despite the initial studies indicating these metabolites as catabolic-end products, recent findings identify their importance in providing biological functions. In this scope, LCMs, especially 13'-carboxychromanols (13'-COOHs), have been reported to hold stronger anti-inflammatory capacity than their unmetabolized precursors due to their ability to inhibit 5-lipoxygenase and cyclooxygenase-catalyzed eicosanoid formation, as well as their modulation of the pro-inflammatory transcriptional protein nuclear factor κB (NF-κB). Also, these LCMs have been reported to enhance detoxification and lipid metabolism pathways associated with cellular inflammation by modulating the nuclear receptors peroxisome proliferator-activated receptor-γ (PPARγ) and pregnane x receptor (PXR). These properties of LCMs will be described in this narrative review article focusing on recent information regarding their bioavailability, anti-inflammatory effects, and mechanisms of action in acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Seher Mese-Tayfur
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Tugce Demirel-Yalcıner
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Claria B, Espinosa A, Rodríguez A, Dovale-Rosabal G, Bucarey JL, Pando ME, Romero N, Reinoso F, Sánchez C, Valenzuela R, Ribeiro CH, Aubourg SP. Cold-Pressed Aristotelia chilensis (Mol.) Stuntz Seed Oil Prevents Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) in a High-Fat-Diet-Induced Obesity Murine Model. Antioxidants (Basel) 2024; 13:1384. [PMID: 39594526 PMCID: PMC11590904 DOI: 10.3390/antiox13111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
This study evaluated the effects of cold-pressed maqui (Aristotelia chilensis (Mol.) Stuntz) seed oil (MO) on liver metabolism and biochemical markers in a high-fat diet (HFD) murine model. In it, the fatty acid profile, tocopherol and tocotrienol contents, and antioxidant capacity of MO were analyzed. Male C57BL/6 mice were divided into four groups (i.e., a, b, c, and d groups) and supplemented for 12 weeks according to the following distribution: (a) control diet (CD)-sunflower oil (SO), (b) CD+MO, (c) HFD+SO, and (d) HFD+MO. Total body and organ weights, serum markers, and liver fat infiltration were assessed. MO contained 32.31% oleic acid, 46.41% linoleic acid, and 10.83% α-linolenic acid; additionally, α- and γ-tocopherol levels were 339.09 ± 5.15 and 135.52 ± 38.03 mg/kg, respectively, while β-, δ-tocopherol, and α-tocotrienol were present in trace amounts and the antioxidant capacity measured was 6.66 ± 0.19 μmol Trolox equivalent/g. MO supplementation significantly reduced the visceral fat (0.76 ± 0.06 g vs. 1.32 ± 0.04 g) and GPT (glutamate pyruvate transaminase) levels (71.8 ± 5.0 vs. 35.2 ± 2.6 U/L), and the liver fat infiltration score (6 vs. 3) in the HFD+MO group compared to HFD+SO. It is suggested that MO may effectively prevent fatty liver disease, warranting further research on its potential benefits for human health.
Collapse
Affiliation(s)
- Benjamín Claria
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
- Center of Interdisciplinary Biomedical and Engineering Research for Health, Universidad de Valparaíso, San Felipe 2172972, Chile
| | - Alicia Rodríguez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
| | - Gretel Dovale-Rosabal
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
| | - José Luis Bucarey
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
| | - María Elsa Pando
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.E.P.); (R.V.)
| | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
| | - Francisca Reinoso
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
| | - Camila Sánchez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.E.P.); (R.V.)
| | - Carolina H. Ribeiro
- Immunology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Santiago P. Aubourg
- Department of Food Technology, Marine Research Institute (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
6
|
Seese MH, Steelman AJ, Erdman JW. The Impact of LPS on Inflammatory Responses in Alpha-Tocopherol Deficient Mice. Curr Dev Nutr 2024; 8:104416. [PMID: 39185446 PMCID: PMC11342875 DOI: 10.1016/j.cdnut.2024.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Background To facilitate the evaluation of vitamin E (α-tocopherol, αT) status on health outcomes, the αT transfer protein knockout (Ttpa -/- ) mouse model has proved to be an effective tool for lowering αT body stores. Our previous study showed a further reduction in grip strength in LPS-treated Ttpa -/- compared with wild-type (WT) mice during a 9-wk αT-deficient diet feeding period but did not find a difference in LPS-induced inflammatory response markers. Further optimization of this mouse model is warranted to determine the appropriate depletion period and biomarkers endpoints. Objectives The objective was to examine whether 12 wk of an αT-deficient diet altered the inflammatory response 4 and/or 24 h after LPS injection in WT and Ttpa -/- mice. Methods WT and Ttpa -/- weanling littermates were fed an αT-deficient diet ad libitum for 12 wk. Mice were then injected with LPS (10 μg/mouse) or saline (control) intraperitoneally and killed 4 (Study 1) or 24 h (Study 2) later. Concentrations of αT in tissues were measured via HPLC. Grip strength and burrowing were evaluated to assess sickness behaviors before/after LPS injection. Expression of genes related to inflammatory responses was examined via RT-PCR. Results αT concentrations in the brain, liver, and serum of Ttpa -/- mice were notably lower or undetectable compared with WT mice in both studies. Hepatic αT concentrations were further decreased 24 h after LPS injection. Grip strength was reduced at 4 h post-injection but partially recovered to baseline values 24 h after LPS injection. The expression of genes related to inflammatory responses were altered by LPS. However, neither measure of sickness behavior nor gene expression markers differed between genotypes. Conclusions A 4-h LPS challenge reduced grip strength and resulted in an inflammatory response. At 24 h post-dosing, there was a partial, transitory recovery response in both Ttpa -/- and WT mice.
Collapse
Affiliation(s)
- Megumi H Seese
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- USDA-ARS Children's Nutrition Research Center, Houston, TX, United States
| | - Andrew J Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
Clay R, Siddiqi S, Siddiqi SA. α-Tocopherol reduces VLDL secretion through modulation of intracellular ER-to-Golgi transport of VLDL. Can J Physiol Pharmacol 2023; 101:554-564. [PMID: 37683292 PMCID: PMC11418172 DOI: 10.1139/cjpp-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Avoiding hepatic steatosis is crucial for preventing liver dysfunction, and one mechanism by which this is accomplished is through synchronization of the rate of very low density lipoprotein (VLDL) synthesis with its secretion. Endoplasmic reticulum (ER)-to-Golgi transport of nascent VLDL is the rate-limiting step in its secretion and is mediated by the VLDL transport vesicle (VTV). Recent in vivo studies have indicated that α-tocopherol (α-T) supplementation can reverse steatosis in nonalcoholic fatty liver disease, but its effects on hepatic lipoprotein metabolism are poorly understood. Here, we investigated the impact of α-T on hepatic VLDL synthesis, secretion, and intracellular ER-to-Golgi VLDL trafficking using an in vitro model. Pulse-chase assays using [3H]-oleic acid and 100 µmol/L α-T demonstrated a disruption of early VLDL synthesis, resulting in enhanced apolipoprotein B-100 expression, decreased expression in markers for VTV budding, ER-to-Golgi VLDL transport, and reduced VLDL secretion. Additionally, an in vitro VTV budding assay indicated a significant decrease in VTV production and VTV-Golgi fusion. Confocal imaging of lipid droplet (LD) localization revealed a decrease in overall LD retention, diminished presence of ER-associated LDs, and an increase in Golgi-level LD retention. We conclude that α-T disrupts ER-to-Golgi VLDL transport by modulating the expression of specific proteins and thus reduces VLDL secretion.
Collapse
Affiliation(s)
- Ryan Clay
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shaila Siddiqi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shadab A Siddiqi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
8
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hashida M, Ranard KM, Steelman AJ, Erdman JW. α-Tocopherol Transfer Protein-Null Mice with Very Low α-Tocopherol Status Do Not Have an Enhanced Lipopolysaccharide-Induced Acute Inflammatory Response. Curr Dev Nutr 2023; 7:100017. [PMID: 37181122 PMCID: PMC10100938 DOI: 10.1016/j.cdnut.2022.100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 01/15/2023] Open
Abstract
Background The α-tocopherol transfer protein-null (Ttpa-/-) mouse model is a valuable tool for studying the molecular and functional consequences of vitamin E (α-tocopherol, αT) deficiency. Because αT has been associated with reduced oxidative stress and improved immune function, we hypothesized that depleted αT concentration would exacerbate LPS-induced acute inflammatory response in the brain and heart of Ttpa-/- mice fed a vitamin E deficient (VED) diet. Objectives The objective was to investigate how extremely low αT status, followed by exposure to LPS, altered the acute inflammatory response to LPS in Ttpa-/- and wild-type (Ttpa+/+) mice. Methods Three-week-old male Ttpa+/+ and Ttpa-/- littermates (n = 36/genotype) ingested a VED diet ad libitum for 4 wk. At week 7, mice received an intraperitoneal LPS (1 or 10 μg/mouse) or saline (control) injection and were killed 4 h postinjection. Brain and heart IL-6 protein concentrations and tissue and serum αT concentrations were measured via ELISA and HPLC with photodiode array detection, respectively. Hippocampal Il-6, Tnf, and Gpx1 gene expression were measured via reverse transcriptase-quantitative polymerase chain reaction, and blood immune cell profiles were measured via a hematology analyzer. Results αT accumulation in analyzed tissues and serum of Ttpa-/- mice was substantially lower than Ttpa+/+ mice. Circulating white blood cell concentration, particularly lymphocytes, were lower in all LPS groups compared with controls (P < 0.01). The 10 μg LPS groups had elevated IL-6 in the cerebellum and heart compared with controls, confirming an acute inflammatory response (P < 0.01). Hippocampal and heart Il-6 gene expression in the LPS-treated Ttpa-/- mice was upregulated in a dose-dependent manner (P < 0.05). Conclusions The 10 μg LPS dose enhanced inflammatory markers in the brain, heart, and serum in each genotype but the lower αT status in Ttpa-/- mice did not further impact the acute immune responses.
Collapse
Affiliation(s)
- Megumi Hashida
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katherine M. Ranard
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Andrew J. Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John W. Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Ma Y, Lee G, Heo SY, Roh YS. Oxidative Stress Is a Key Modulator in the Development of Nonalcoholic Fatty Liver Disease. Antioxidants (Basel) 2021; 11:antiox11010091. [PMID: 35052595 PMCID: PMC8772974 DOI: 10.3390/antiox11010091] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and scientific studies consistently report that NAFLD development can be accelerated by oxidative stress. Oxidative stress can induce the progression of NAFLD to NASH by stimulating Kupffer cells, hepatic stellate cells, and hepatocytes. Therefore, studies are underway to identify the role of antioxidants in the treatment of NAFLD. In this review, we have summarized the origins of reactive oxygen species (ROS) in cells, the relationship between ROS and NAFLD, and have discussed the use of antioxidants as therapeutic agents for NAFLD.
Collapse
Affiliation(s)
- Yuanqiang Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (Y.M.); (G.L.)
| | - Gyurim Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (Y.M.); (G.L.)
| | - Su-Young Heo
- College of Veterinary Medicine, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (S.-Y.H.); (Y.-S.R.)
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (Y.M.); (G.L.)
- Correspondence: (S.-Y.H.); (Y.-S.R.)
| |
Collapse
|
11
|
Sumida Y, Yoneda M, Seko Y, Takahashi H, Hara N, Fujii H, Itoh Y, Yoneda M, Nakajima A, Okanoue T. Role of vitamin E in the treatment of non-alcoholic steatohepatitis. Free Radic Biol Med 2021; 177:391-403. [PMID: 34715296 DOI: 10.1016/j.freeradbiomed.2021.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH), a severe form of non-alcoholic fatty liver disease (NAFLD), can progress to cirrhosis, hepatocellular carcinoma (HCC), and hepatic failure/liver transplantation. Indeed, NASH will soon be the leading cause of HCC and liver transplantation. Lifestyle intervention represents the cornerstone of NASH treatment, but it is difficult to sustain. However, no pharmacotherapies for NASH have been approved. Oxidative stress has been implicated as one of the key factors in the pathogenesis of NASH. Systematic reviews with meta-analyses have confirmed that vitamin E reduces transaminase activities and may resolve NASH histopathology without improving hepatic fibrosis. However, vitamin E is not recommended for the treatment of NASH in diabetes, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis. Nevertheless, vitamin E supplementation may improve clinical outcomes in patients with NASH and bridging fibrosis or cirrhosis. Further studies are warranted to confirm such effects of vitamin E and that it would reduce overall mortality/morbidity without increasing the incidence of cardiovascular events. Future clinical trials of the use of vitamin E in combination with other anti-fibrotic agents may demonstrate an additive or synergistic therapeutic effect. Vitamin E is the first-line pharmacotherapy for NASH, according to the consensus of global academic societies.
Collapse
Affiliation(s)
- Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | - Nagisa Hara
- Liver Center, Saga University Hospital, Saga, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | | | | |
Collapse
|
12
|
Shi S, Wang L, van der Laan LJW, Pan Q, Verstegen MMA. Mitochondrial Dysfunction and Oxidative Stress in Liver Transplantation and Underlying Diseases: New Insights and Therapeutics. Transplantation 2021; 105:2362-2373. [PMID: 33577251 PMCID: PMC9005104 DOI: 10.1097/tp.0000000000003691] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/06/2022]
Abstract
Mitochondria are essential organelles for cellular energy and metabolism. Like with any organ, the liver highly depends on the function of these cellular powerhouses. Hepatotoxic insults often lead to an impairment of mitochondrial activity and an increase in oxidative stress, thereby compromising the metabolic and synthetic functions. Mitochondria play a critical role in ATP synthesis and the production or scavenging of free radicals. Mitochondria orchestrate many cellular signaling pathways involved in the regulation of cell death, metabolism, cell division, and progenitor cell differentiation. Mitochondrial dysfunction and oxidative stress are closely associated with ischemia-reperfusion injury during organ transplantation and with different liver diseases, including cholestasis, steatosis, viral hepatitis, and drug-induced liver injury. To develop novel mitochondria-targeting therapies or interventions, a better understanding of mitochondrial dysfunction and oxidative stress in hepatic pathogenesis is very much needed. Therapies targeting mitochondria impairment and oxidative imbalance in liver diseases have been extensively studied in preclinical and clinical research. In this review, we provide an overview of how oxidative stress and mitochondrial dysfunction affect liver diseases and liver transplantation. Furthermore, we summarize recent developments of antioxidant and mitochondria-targeted interventions.
Collapse
Affiliation(s)
- Shaojun Shi
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Ling Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Hernandez LP, Dunn JL, Wenninghoff J, Hesse A, Levesque CL. Mint Oil, ɤ-Tocopherol, and Whole Yeast Cell in Sow Diets Enhance Offspring Performance in the Postweaning Period. Front Vet Sci 2021; 8:658956. [PMID: 34322530 PMCID: PMC8311125 DOI: 10.3389/fvets.2021.658956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Times of high metabolic activity in gestation and lactation, as well as periods of stress at weaning, can lead to greater incidences of oxidative stress in the dam and offspring during the suckling and postweaning period. Oxidative stress is an imbalance between prooxidant molecules and the antioxidant defense system that can negatively impact growth and/or reproductive performance. The objective of this research was to evaluate the effectiveness of whole yeast cell, peppermint oil, and ɤ-tocopherol in gestation and lactation on maternal oxidative status and offspring growth from birth to market. In study 1, 45 sows and gilts were assigned to one of four diets [control diet (CON), control + whole yeast cell (YC), control + mint oil top dress (MO), and control + yeast cell and mint oil top dress (YCMO)] provided from d110 of gestation through to weaning. A total of 481 weaned offspring were randomly allotted to pens balanced by weight and litter within maternal treatment and received the same dietary treatment as the sow for 35 days postwean in a four-phase feeding regimen. In study 2, 53 sows and gilts were allotted to four diet regimens similar to study 1 [CON, YC, MO, and control + ɤ-tocopherol (GT)] from d5 postbreeding to weaning. At weaning, 605 piglets were randomly allotted to pens, balanced by weight and litter within maternal treatment and fed a common diet for 126 days postwean in a nine-phase feeding regimen. Maternal dietary treatment did not impact sow body weight, piglet birth weight, and litter size in either study. In study 1, piglets from YC sows were heavier (p < 0.05) at weaning than CON animals. In the postwean period, overall daily gain was greater (p < 0.05) for CON-fed pigs than YCMO pigs, with overall feed intake greater (p < 0.05) for YCMO- than MO-fed pigs, resulting in lower (p < 0.05) Gain to Feed (G:F) in YCMO-fed pigs. In study 1, glutathione content in milk tended to be lower (p < 0.10) in MO than in YCMO sows. In study 2, piglets from GT-fed sows tended to be heavier (p < 0.10) at weaning than YC piglets. Lightweight pigs from CON sows tended to be lighter (p < 0.10) than pigs from all other treatment groups at weaning and day (d) 29 postwean. Lightweight MO and GT pigs were heavier at d42 (p < 0.05) than CON and YC pigs. At d70 postwean, GT pigs tended to be heavier than CON pigs. Lightweight MO pigs had greater gain (p < 0.05) during the finishing period than all other treatment groups. With respect to sow oxidative status in study 2, glutathione content in colostrum and d4 and 14 milk samples did not differ by maternal treatment. Superoxide dismutase activity in sow sera, colostrum, and milk did not differ between diets in either study. Whole yeast cell and ɤ-tocopherol supplementation in sow lactation diets resulted in heavier offspring. However, pre- and postnatal exposure to mint oil benefited lightweight pigs up to market weight.
Collapse
Affiliation(s)
- Lily P Hernandez
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| | - James L Dunn
- Archer Daniels Midland Animal Nutrition, Quincy, IL, United States
| | - Joel Wenninghoff
- Archer Daniels Midland Animal Nutrition, Quincy, IL, United States
| | - Amanda Hesse
- Archer Daniels Midland Animal Nutrition, Quincy, IL, United States
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
14
|
Frank J, Kisters K, Stirban OA, Obeid R, Lorkowski S, Wallert M, Egert S, Podszun MC, Eckert GP, Pettersen JA, Venturelli S, Classen HG, Golombek J. The role of biofactors in the prevention and treatment of age-related diseases. Biofactors 2021; 47:522-550. [PMID: 33772908 DOI: 10.1002/biof.1728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
The present demographic changes toward an aging society caused a rise in the number of senior citizens and the incidence and burden of age-related diseases (such as cardiovascular diseases [CVD], cancer, nonalcoholic fatty liver disease [NAFLD], diabetes mellitus, and dementia), of which nearly half is attributable to the population ≥60 years of age. Deficiencies in individual nutrients have been associated with increased risks for age-related diseases and high intakes and/or blood concentrations with risk reduction. Nutrition in general and the dietary intake of essential and nonessential biofactors is a major determinant of human health, the risk to develop age-related diseases, and ultimately of mortality in the older population. These biofactors can be a cost-effective strategy to prevent or, in some cases, even treat age-related diseases. Examples reviewed herein include omega-3 fatty acids and dietary fiber for the prevention of CVD, α-tocopherol (vitamin E) for the treatment of biopsy-proven nonalcoholic steatohepatitis, vitamin D for the prevention of neurodegenerative diseases, thiamine and α-lipoic acid for the treatment of diabetic neuropathy, and the role of folate in cancer epigenetics. This list of potentially helpful biofactors in the prevention and treatment of age-related diseases, however, is not exhaustive and many more examples exist. Furthermore, since there is currently no generally accepted definition of the term biofactors, we here propose a definition that, when adopted by scientists, will enable a harmonization and consistent use of the term in the scientific literature.
Collapse
Affiliation(s)
- Jan Frank
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Klaus Kisters
- Medical Clinic I, St. Anna-Hospital & ESH Excellence Centre, Herne, Germany
| | | | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Sarah Egert
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
| | - Maren C Podszun
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Gunter P Eckert
- Department of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Jacqueline A Pettersen
- Northern Medical Program, University of Northern British Columbia, Prince George, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Sascha Venturelli
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Hans-Georg Classen
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | | |
Collapse
|
15
|
Podszun MC, Frank J. Impact of vitamin E on redox biomarkers in non-alcoholic fatty liver disease. Redox Biol 2021; 42:101937. [PMID: 33773953 PMCID: PMC8113042 DOI: 10.1016/j.redox.2021.101937] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in Western nations and characterized by excessive accumulation of lipids in the liver. In this narrative review, we summarize the evidence from human trials that free radical-induced oxidation of macromolecules, in particular of lipids, is a characteristic feature of NAFLD and non-alcoholic steatohepatitis (NASH). We further synthesize the data in the scientific literature describing the impact of vitamin E (mainly α-tocopherol) on concentrations of redox biomarkers in liver biopsies from patients with NAFLD as well as animal experiments. In summary, the available evidence from clinical trials suggests that reactive species-mediated damage to macromolecules, predominantly lipids, occurs in NAFLD and NASH and that daily supplementation with at least 200 I.U. α-tocopherol may alleviate oxidative stress in the liver of NAFLD patients. We propose α-tocopherol as a useful model substance to identify and validate suitable redox biomarkers that may be employed in future clinical trials of new therapeutics for NAFLD.
Collapse
Affiliation(s)
- Maren C Podszun
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Germany.
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Germany
| |
Collapse
|
16
|
Juretić N, Sepúlveda R, D'Espessailles A, Vera DB, Cadagan C, de Miguel M, González-Mañán D, Tapia G. Dietary alpha- and gamma-tocopherol (1:5 ratio) supplementation attenuates adipose tissue expansion, hepatic steatosis, and expression of inflammatory markers in a high-fat-diet-fed murine model. Nutrition 2021; 85:111139. [PMID: 33549947 DOI: 10.1016/j.nut.2021.111139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of the dietary supplementation of an alpha- and gamma-tocopherol mixture (1:5 ratio) in the adipose tissue expansion, hepatic steatosis, and expression of inflammatory markers induced by consumption of a high-fat diet (HFD) in mice. METHODS Male C57BL/6 J mice were fed for 12 wk and divided into the following: 1) control diet (CD; 10% fat, 20% protein, 70% carbohydrates); 2) CD + TF (CD plus alpha-tocopherol: 0.7 mg/kg/d, gamma-tocopherol: 3.5 mg/kg/d); 3) HFD (60% fat, 20% protein, 20% carbohydrates); and 4) HFD + TF (HFD plus alpha-tocopherol: 0.7 mg/kg/d, gamma-tocopherol: 3.5 mg/kg/d). General parameters, adipocyte size, liver steatosis, adipose and hepatic tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β) expression, hepatic nuclear factor kappa B (NF-κB), and peroxisome proliferator-activated receptor α (PPAR-α) levels were evaluated. RESULTS Tocopherol supplementation in HFD-fed mice showed a significant decrease in the body weight (19%) and adipose tissue weight (52%), adipose tissue/body weight ratio (36%), and serum triacylglycerols (56%); a 42% decrease (P < 0.05) of adipocyte size compared to HFD; attenuation of liver steatosis by decreasing (P < 0.05) lipid vesicles presence (90%) and total lipid content (75%); and downregulation of inflammatory markers (TNF-α and IL-1β), along with an upregulation of hepatic PPAR-α expression and its downstream-regulated genes (ACOX and CAT-1), and an inhibition of hepatic NF-κB activation. CONCLUSION The present study suggests that alpha- and gamma-tocopherol (1:5 ratio) supplementation attenuates the adipocyte enlargement, hepatic steatosis, and metabolic inflammation induced by HFD in association with PPAR-α/NF-κB modulation.
Collapse
Affiliation(s)
- Nevenka Juretić
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Ruth Sepúlveda
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | | | - Daniela B Vera
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Cynthia Cadagan
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Manuel de Miguel
- Department of Normal and Pathological Cytology and Histology, University of Seville, Seville, Spain
| | - Daniel González-Mañán
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Gladys Tapia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
17
|
Ma C, Liu Y, He S, Zeng J, Li P, Ma C, Ping F, Zhang H, Xu L, Li W, Li Y. Negative association between antioxidant vitamin intake and non-alcoholic fatty liver disease in Chinese non-diabetic adults: mediation models involving superoxide dismutase. Free Radic Res 2020; 54:670-677. [PMID: 32985285 DOI: 10.1080/10715762.2020.1825705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We aimed to explore the association between antioxidant vitamin intake, oxidative stress related markers and non-alcoholic fatty liver disease (NAFLD) by a cross-sectional analysis. A total of 241 non-diabetic participants from a Chinese rural cohort were included. NAFLD was diagnosed by abdominal ultrasound (NAFLD, n = 71; Non-NAFLD, n = 171). Dietary intake was assessed by a 24-h food recall. Plasma oxidative stress related markers superoxide dismutase (SOD), glutathione reductase (GR) and 8-oxo-2'-deoxyguanosine(8-oxo-dG) were measured. The association between dietary antioxidant vitamin intake, oxidative stress related markers and NAFLD were analysed by Spearman correlation analysis and multiple logistic regression analysis. Mediation models were established to examine whether SOD mediated the association between dietary vitamin A or α-tocopherol intake and NAFLD. Spearman correlation analysis indicated that dietary vitamin A and α-tocopherol intake were positively correlated with SOD (p < .05). Multiple logistic regression analysis found plasma SOD, dietary vitamin A and α-tocopherol intake were inversely associated with NAFLD (all p < .05). Mediation analysis indicated that SOD significantly mediated the indirect effect of dietary α-tocopherol (mediated effect = 13.21% total effect) or vitamin A (mediated effect = 3.12% total effect) intake on NAFLD. Our study indicated that dietary vitamin A and α-tocopherol intake may contribute to protect from NAFLD in Chinese non-diabetics, and the associations were partly mediated by SOD. However, SOD only accounted for a minor percentage of the association between vitamin A intake and NAFLD. Thus, other mechanisms underlying antioxidant vitamin' protective effect on NAFLD need further exploration.
Collapse
Affiliation(s)
- Chifa Ma
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiwen Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuli He
- Department of Nutrition, Peking Union Medical College Hospital, Beijing, China
| | - Jingbo Zeng
- Department of Endocrinology, Fuxing Hospital, the Eighth Clinical Medical College, Capital Medical University, Beijing, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Chunxiao Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huabing Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingling Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Podszun MC, Alawad AS, Lingala S, Morris N, Huang WCA, Yang S, Schoenfeld M, Rolt A, Ouwerkerk R, Valdez K, Umarova R, Ma Y, Fatima SZ, Lin DD, Mahajan LS, Samala N, Violet PC, Levine M, Shamburek R, Gharib AM, Kleiner DE, Garraffo HM, Cai H, Walter PJ, Rotman Y. Vitamin E treatment in NAFLD patients demonstrates that oxidative stress drives steatosis through upregulation of de-novo lipogenesis. Redox Biol 2020; 37:101710. [PMID: 32920226 PMCID: PMC7494510 DOI: 10.1016/j.redox.2020.101710] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS) in non-alcoholic fatty liver disease (NAFLD) promotes liver injury and inflammation. Treatment with vitamin E (α-tocopherol, αT), a lipid-soluble antioxidant, improves liver injury but also decreases steatosis, thought to be upstream of OS, through an unknown mechanism. To elucidate the mechanism, we combined a mechanistic human trial interrogating pathways of intrahepatic triglyceride (IHTG) accumulation and in vitro experiments. 50% of NAFLD patients (n = 20) treated with αT (200-800 IU/d) for 24 weeks had a ≥ 25% relative decrease in IHTG by magnetic resonance spectroscopy. Paired liver biopsies at baseline and week 4 of treatment revealed a decrease in markers of hepatic de novo lipogenesis (DNL) that strongly predicted week 24 response. In vitro, using HepG2 cells and primary human hepatocytes, αT inhibited glucose-induced DNL by decreasing SREBP-1 processing and lipogenic gene expression. This mechanism is dependent on the antioxidant capacity of αT, as redox-silenced methoxy-αT is unable to inhibit DNL in vitro. OS by itself was sufficient to increase S2P expression in vitro, and S2P is upregulated in NAFLD livers. In summary, we utilized αT to demonstrate a vicious cycle in which NAFLD generates OS, which feeds back to augment DNL and increases steatosis. Clinicaltrials.gov: NCT01792115.
Collapse
Affiliation(s)
- Maren C Podszun
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ahmad S Alawad
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shilpa Lingala
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nevitt Morris
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wen-Chun A Huang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanna Yang
- Nutrition Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Megan Schoenfeld
- Nutrition Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Adam Rolt
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Ouwerkerk
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristin Valdez
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Regina Umarova
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yanling Ma
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Syeda Zaheen Fatima
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dennis D Lin
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lakshmi S Mahajan
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niharika Samala
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert Shamburek
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ahmed M Gharib
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - H Martin Garraffo
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Walter
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Barros S, D. Ribeiro AP, Offenbacher S, Loewy ZG. Anti-Inflammatory Effects of Vitamin E in Response to Candida albicans. Microorganisms 2020; 8:microorganisms8060804. [PMID: 32466609 PMCID: PMC7356105 DOI: 10.3390/microorganisms8060804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 01/12/2023] Open
Abstract
Oral mucositis, inflammation, and ulceration that occur in the oral cavity can manifest in significant pain. A formulation was designed to investigate the potential of vitamin E to ameliorate inflammation resulting from Candida albicans in cell-based systems. Human gingival fibroblasts and THP1 cells were stimulated with heat killed C. albicans and Porphyromonas gingivalis LPS (agonists). Unstimulated cells were included as controls. Cells were also simultaneously treated with a novel denture adhesive formulation that contains vitamin E (antagonist). The experimental conditions included cells exposed to the experimental formulation or the vehicle for 2 h for mRNA extraction and analysis, and cells left for 24 h under those experimental conditions for analysis of protein expression by ELISA. ssAffymetrix expression microarray pathway analyses demonstrated that the tested formulation exhibited a statistically significant (p < 0.05) inhibition of the following key inflammatory pathways: TLR 6, IL-1 signaling (IRAK, A20), NF-kappaB, IL-6 signaling (gp130, JK2 and GRB2), TNF signaling (TNF receptor) and Arachidonic acid metabolism (PLA2). Quantitative PCR array analysis confirmed the downregulation of key inflammatory genes when cells under adhesive treatment were challenged with heat killed C. albicans. PGE2 secretion was inhibited by the tested formulation only on THP1 cells after 24 h stimulation with C. albicans. These results suggest that the active formulation containing vitamin E acetate can modulate inflammatory responses, through anti-inflammatory actions as indicated by in vitro experimental conditions.
Collapse
Affiliation(s)
- Silvana Barros
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA; (S.B.); (S.O.)
| | - Ana Paula D. Ribeiro
- Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Steven Offenbacher
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA; (S.B.); (S.O.)
| | - Zvi G. Loewy
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Correspondence:
| |
Collapse
|
20
|
Hasenour CM, Kennedy AJ, Bednarski T, Trenary IA, Eudy BJ, da Silva RP, Boyd KL, Young JD. Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice. J Lipid Res 2020; 61:707-721. [PMID: 32086244 DOI: 10.1194/jlr.ra119000183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R-/-) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction.
Collapse
Affiliation(s)
- Clinton M Hasenour
- Departments of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Arion J Kennedy
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Tomasz Bednarski
- Departments of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Irina A Trenary
- Departments of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL
| | - Robin P da Silva
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL
| | - Kelli L Boyd
- Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
| | - Jamey D Young
- Departments of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN; Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN; Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN. mailto:
| |
Collapse
|
21
|
Abstract
Nonalcoholic steatohepatitis (NASH) is the second leading cause of liver transplantation in the US with a high risk of liver-related morbidities and mortality. Given the global burden of NASH, development of appropriate therapeutic strategies is an important clinical need. Where applicable, lifestyle modification remains the primary recommendation for the treatment of NASH, even though such changes are difficult to sustain and even insufficient to cure NASH. Bariatric surgery resolves NASH in such patients where lifestyle modifications have failed, and is recommended for morbidly obese patients with NASH. Thus, pharmacotherapies are of high value for NASH treatment. Though no drug has been approved by the US Food and Drug Administration for treatment of NASH, substantial progress in pharmacological development has been made in the last few years. Agents such as vitamin E and pioglitazone are recommended in patients with NASH, and yet concerns about their side effects remain. Many agents targeting various vital molecules and pathways, including those impacting metabolic perturbations, inflammatory cascades, and oxidative stress, are in clinical trials for the treatment of NASH. Some agents have shown promising results in phase II or III clinical trials, but more studies are required to assess their long-term effects. Herein, we review the potential strategies and challenges in therapeutic approaches to treating NASH.
Collapse
Affiliation(s)
- Ming-Ming Chen
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Jing-Jing Cai
- †Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yao Yu
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
| | - Zhi-Gang She
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Basic Medical School, Wuhan University, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| | - Hongliang Li
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Basic Medical School, Wuhan University, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
22
|
Dornas W, Lagente V. Intestinally derived bacterial products stimulate development of nonalcoholic steatohepatitis. Pharmacol Res 2019; 141:418-428. [PMID: 30658094 DOI: 10.1016/j.phrs.2019.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Fatty livers are susceptible to factors that cause inflammation and fibrosis, but fat deposition and the inflammatory response can be dissociated. While nonalcoholic fatty liver disease (NAFLD), caused by pathologic fat accumulation inside the liver, can remain stable for several years, in other cases NAFLD progresses to nonalcoholic steatohepatitis (NASH), which is characterized by fat accumulation and inflammation and is not a benign condition. In this review, we discuss the NASH host cells and microbial mechanisms that stimulate inflammation and predispose the liver to hepatocyte injury and fibrotic stages via increased lipid deposition. We highlight the interactions between intestine-derived bacterial products, such as lipopolysaccharide, and nutritional models of NAFLD and/or obese individuals. The results of modulating enteric microbiota suggest that gut-derived endotoxins may be essential determinants of fibrotic progression and regression in NASH.
Collapse
Affiliation(s)
- Waleska Dornas
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| |
Collapse
|
23
|
Nagashimada M, Ota T. Role of vitamin E in nonalcoholic fatty liver disease. IUBMB Life 2018; 71:516-522. [PMID: 30592129 DOI: 10.1002/iub.1991] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/17/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. NAFLD manifests as hepatic lipid accumulation, insulin resistance, and inflammation, and can progress to nonalcoholic steatohepatitis (NASH) and cirrhosis. However, the underlying mechanisms of NAFLD, including those that drive its progression, are unclear. Both liver-resident (Kupffer cells) and recruited macrophages play a crucial role in the development of insulin resistance and NASH. Therefore, NALFD could potentially be ameliorated by modifying the polarization of macrophages/Kupffer cells. Reactive oxygen species induce oxidative stress, which is implicated in the progression of NASH. Micronutrients, including vitamins, are potent antioxidants that exert anti-inflammatory effects, and are used in the treatment of NAFLD. We review here the molecular mechanisms of the pathogenesis of NAFLD and the potential utility of vitamin E in its prevention and/or treatment. © 2018 IUBMB Life, 71(4):516-522, 2019.
Collapse
Affiliation(s)
- Mayumi Nagashimada
- Division of Health Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tsuguhito Ota
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
24
|
Vitamin E alleviates non-alcoholic fatty liver disease in phosphatidylethanolamine N-methyltransferase deficient mice. Biochim Biophys Acta Mol Basis Dis 2018; 1865:14-25. [PMID: 30300671 DOI: 10.1016/j.bbadis.2018.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC), mainly in the liver. Pemt-/- mice are protected from high-fat diet (HFD)-induced obesity and insulin resistance, but develop severe non-alcoholic fatty liver disease (NAFLD) when fed a HFD, mostly due to impaired VLDL secretion. Oxidative stress is thought to be an essential factor in the progression from simple steatosis to steatohepatitis. Vitamin E is an antioxidant that has been clinically used to improve NAFLD pathology. Our aim was to determine whether supplementation of the diet with vitamin E could attenuate HFD-induced hepatic steatosis and its progression to NASH in Pemt-/- mice. Treatment with vitamin E (0.5 g/kg) for 3 weeks improved VLDL-TG secretion and normalized cholesterol metabolism, but failed to reduce hepatic TG content. Moreover, vitamin E treatment was able to reduce hepatic oxidative stress, inflammation and fibrosis. We also observed abnormal ceramide metabolism in Pemt-/- mice fed a HFD, with elevation of ceramides and other sphingolipids and higher expression of mRNAs for acid ceramidase (Asah1) and ceramide kinase (Cerk). Interestingly, vitamin E supplementation restored Asah1 and Cerk mRNA and sphingolipid levels. Together this study shows that vitamin E treatment efficiently prevented the progression from simple steatosis to steatohepatitis in mice lacking PEMT.
Collapse
|
25
|
Tapia G, Silva D, Romero N, Pettinelli P, Dossi CG, de Miguel M, González-Mañán D. Role of dietary α- and γ-tocopherol from Rosa mosqueta oil in the prevention of alterations induced by high-fat diet in a murine model. Nutrition 2018; 53:1-8. [DOI: 10.1016/j.nut.2018.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 01/04/2023]
|
26
|
Pickett-Blakely O, Young K, Carr RM. Micronutrients in Nonalcoholic Fatty Liver Disease Pathogenesis. Cell Mol Gastroenterol Hepatol 2018; 6:451-462. [PMID: 30294653 PMCID: PMC6170520 DOI: 10.1016/j.jcmgh.2018.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023]
Abstract
Micronutrients include electrolytes, minerals, vitamins, and carotenoids, and are required in microgram or milligram quantities for cellular metabolism. The liver plays an important role in micronutrient metabolism and this metabolism often is altered in chronic liver diseases. Here, we review how the liver contributes to micronutrient metabolism; how impaired micronutrient metabolism may be involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a systemic disorder of energy, glucose, and lipid homeostasis; and how insights gained from micronutrient biology have informed NAFLD therapeutics. Finally, we highlight some of the challenges and opportunities that remain with investigating the contribution of micronutrients to NAFLD pathology and suggest strategies to incorporate our understanding into the care of NAFLD patients.
Collapse
Affiliation(s)
| | | | - Rotonya M. Carr
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Luo WJ, Cheng TY, Wong KI, Fang WH, Liao KM, Hsieh YT, Su KY. Novel therapeutic drug identification and gene correlation for fatty liver disease using high-content screening: Proof of concept. Eur J Pharm Sci 2018; 121:106-117. [PMID: 29800612 DOI: 10.1016/j.ejps.2018.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a problem in obese people caused by increasing intake of high-calorie food such as fructose implicated in the elevated prevalence. It is necessary to identify novel drugs to develop effective therapies. In this study, we combined LOPAC® (The Library of Pharmacologically Active Compounds) and High-Content screening to identify compounds that significantly reduced intracellular lipid droplets (LD) after high fat medium (HFM) treatment. Among 1280 compounds, we identified 239 compounds that reduced LD by >50%. Of these, 17 maintained cell viability. Nine of them were selected for validation using normal primary hepatocytes, of which five compounds showed dose-dependent efficacy. Whole genome transcriptomic network analysis was performed to construct the underlying regulatory network. There were 831 (711 up-regulated and 120 down-regulated genes) and 3480 (2009 up-regulated and 1471 down-regulated genes) genes that showed a significant change (>2-fold; p < 0.05) after 12 and 24 h HFM treatment, respectively. Gene enrichment and pathway analysis showed several immune responses mediated by MIF, IL-17, TLR, and IL-6. These compounds modulate lipogenesis via GSK3β and CREB1, which is followed by an alteration in the expression of several downstream genes related to hepatocellular carcinoma and hepatitis. CREB1 is a core transcription factor and may be a potential therapeutic target for liver disease. In conclusion, this proof of concept provides a strategy for identifying novel drugs for treatment of fatty liver disease as well as elucidates their underlying mechanisms. This research provides opportunity for developing future pharmaceutical therapeutics.
Collapse
Affiliation(s)
- Wei-Jia Luo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Cheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Keng-Ieng Wong
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Keng-Mao Liao
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yun-Ting Hsieh
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
28
|
El Hadi H, Vettor R, Rossato M. Vitamin E as a Treatment for Nonalcoholic Fatty Liver Disease: Reality or Myth? Antioxidants (Basel) 2018; 7:antiox7010012. [PMID: 29337849 PMCID: PMC5789322 DOI: 10.3390/antiox7010012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
Obesity is one of the major epidemics of this millennium, and its incidence is growing worldwide. Following the epidemics of obesity, nonalcoholic fatty liver disease (NAFLD) has become a disease of increasing prevalence and a leading cause of morbidity and mortality closely related to cardiovascular disease, malignancies, and cirrhosis. It is believed that oxidative stress is a main player in the development and progression of NAFLD. Currently, a pharmacological approach has become necessary in NAFLD because of a failure to modify lifestyle and dietary habits in most patients. Vitamin E is a potent antioxidant that has been shown to reduce oxidative stress in NAFLD. This review summarizes the biological activities of vitamin E, with a primary focus on its therapeutic efficacy in NAFLD.
Collapse
Affiliation(s)
- Hamza El Hadi
- Internal Medicine 3, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Roberto Vettor
- Internal Medicine 3, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Marco Rossato
- Internal Medicine 3, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
29
|
Dey P, Mah E, Li J, Jalili T, Symons JD, Bruno RS. Improved hepatic γ-tocopherol status limits oxidative and inflammatory stress-mediated liver injury in db/db mice with nonalcoholic steatohepatitis. J Funct Foods 2018; 40:670-678. [DOI: 10.1016/j.jff.2017.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Korošec T, Tomažin U, Horvat S, Keber R, Salobir J. The diverse effects of α- and γ-tocopherol on chicken liver transcriptome. Poult Sci 2017; 96:667-680. [PMID: 27587731 DOI: 10.3382/ps/pew296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023] Open
Abstract
α-Tocopherol is the form of vitamin E with the highest biological value and is almost exclusively considered as vitamin E in feed and feed supplements. Because γ-tocopherol, the predominant form of vitamin E naturally present in chicken feed, is not considered as a source of vitamin E, its re-evaluation with newer methods might be important.Despite γ-tocopherol's lower estimated biological value, it has been shown to be effective in reducing reactive nitrogen species, regulating immune and inflammatory processes, and diminishing the risk of metabolic perturbations and associated diseases. A 30-day nutritional trial in broiler chickens (Ross 308) was conducted to investigate how specific forms of vitamin E (α- and γ-tocopherol) and their combination impact liver gene expression when oxidative susceptibility of the organism is induced by high n-3 polyunsaturated fatty acids (PUFA) intake (linseed oil). Thirty-six one-day-old male broilers were fed a diet enriched with 5% linseed oil. A control group (Cont; N = 10) was used as a reference group, Tα (N = 10) was supplemented with 67 mg/kg RRR-α-tocopherol, Tγ (N = 8) with 67 mg/kg RRR-γ-tocopherol, and Tαγ (N = 8) with a combination of 33.5 mg/kg of each tocopherol. Beside oxidative stress indicators, whole chicken genome microarray analysis was performed on liver RNA and selected differentially expressed genes were confirmed by real time quantitative PCR. α-Tocopherol alone and in combination with γ-tocopherol was able to prevent lipid oxidation, which was also supported by transcriptome analysis. The effect of γ-tocopherol was evident in the expression of genes involved in inflammatory processes and immune response, while α-tocopherol affected genes involved in lipid and cholesterol metabolism. Both isomers of vitamin E influenced the transcription of genes, which are related to improved fat oxidation and enhanced glucose sparing.
Collapse
Affiliation(s)
- Tamara Korošec
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, 1230 Domžale, Slovenia
| | - Urška Tomažin
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, 1230 Domžale, Slovenia.,National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Rok Keber
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Janez Salobir
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, 1230 Domžale, Slovenia
| |
Collapse
|
31
|
Heritage M, Jaskowski L, Bridle K, Campbell C, Briskey D, Britton L, Fletcher L, Vitetta L, Subramaniam VN, Crawford D. Combination curcumin and vitamin E treatment attenuates diet-induced steatosis in Hfe-/- mice. World J Gastrointest Pathophysiol 2017; 8:67-76. [PMID: 28573069 PMCID: PMC5437504 DOI: 10.4291/wjgp.v8.i2.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/01/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the synergistic hepato-protective properties of curcumin and vitamin E in an Hfe-/- high calorie diet model of steatohepatitis.
METHODS Hfe-/- C57BL/6J mice were fed either a high calorie diet or a high calorie diet with 1 mg/g curcumin; 1.5 mg/g vitamin E; or combination of 1 mg/g curcumin + 1.5 mg/g vitamin E for 20 wk. Serum and liver tissue were collected at the completion of the experiment. Liver histology was graded by a pathologist for steatosis, inflammation and fibrosis. RNA and protein was extracted from liver tissue to examine gene and protein expression associated with fatty acid oxidation, mitochondrial biogenesis and oxidative stress pathways.
RESULTS Hfe-/- mice fed the high calorie diet developed steatohepatitis and pericentral fibrosis. Combination treatment with curcumin and vitamin E resulted in a greater reduction of percent steatosis than either vitamin E or curcumin therapy alone. Serum alanine aminotransferase and non-alcoholic fatty liver disease (NAFLD) activity score were decreased following combination therapy with curcumin and vitamin E compared with high calorie diet alone. No changes were observed in inflammatory or fibrosis markers following treatment. Epididymal fat pad weights were significantly reduced following combination therapy, however total body weight and liver weight were unchanged. Combination therapy increased the mRNA expression of AdipoR2, Ppar-α, Cpt1a, Nrf-1 and Tfb2m suggesting enhanced fatty acid oxidation and mitochondrial biogenesis. In addition, combination treatment resulted in increased catalase activity in Hfe-/- mice.
CONCLUSION Combination curcumin and vitamin E treatment decreases liver injury in this steatohepatitis model, indicating that combination therapy may be of value in NAFLD.
Collapse
|
32
|
Dossi CG, Cadagan C, San Martín M, Espinosa A, González-Mañán D, Silva D, Mancilla RA, Tapia GS. Effects of rosa mosqueta oil supplementation in lipogenic markers associated with prevention of liver steatosis. Food Funct 2017; 8:832-841. [PMID: 28128380 DOI: 10.1039/c6fo01762b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rosa mosqueta (RM) oil is rich in α-linolenic acid (ALA) - a precursor of eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), and it has a high antioxidant activity due to its abundant content of tocopherols. Additionally, it has been observed that RM oil administration prevents hepatic steatosis. Thus, the aim of this study was to demonstrate the antilipogenic mechanism related to RM oil administration in a high-fat diet (HFD) fed mice model by evaluating markers associated with the regulation of lipid droplet metabolism (PLIN2, PLIN5 and PPAR-γ), and proteins associated with lipogenesis (FAS and SREBP-1c). C57BL/6J mice were fed either a control diet or a HFD, with and without RM oil supplementation for 12 weeks. The results showed that RM oil supplementation decreases hepatic PLIN2 and PPAR-γ mRNA expression and SREBP-1c, FAS and PLIN2 protein levels, whereas we did not find changes in the level of PLIN5 among the groups. These results suggest that modulation of lipogenic markers could be one of the mechanisms, through which RM oil supplementation prevents the hepatic steatosis induced by HFD consumption in a mice model.
Collapse
Affiliation(s)
- Camila G Dossi
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Cynthia Cadagan
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Marcela San Martín
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Daniel González-Mañán
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - David Silva
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Rodrigo A Mancilla
- School of Biochemical Engineering, Faculty of Engineering, Pontifical Catholic University of Valparaiso, Valparaiso, Chile
| | - Gladys S Tapia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
33
|
Lama A, Pirozzi C, Mollica MP, Trinchese G, Di Guida F, Cavaliere G, Calignano A, Mattace Raso G, Berni Canani R, Meli R. Polyphenol-rich virgin olive oil reduces insulin resistance and liver inflammation and improves mitochondrial dysfunction in high-fat diet fed rats. Mol Nutr Food Res 2016; 61. [PMID: 27794174 DOI: 10.1002/mnfr.201600418] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 12/19/2022]
Abstract
SCOPE Virgin olive oil is an essential component of the Mediterranean diet. Its antioxidant and anti-inflammatory properties are mainly linked to phenolic contents. This study aims to evaluate the beneficial effects of a polyphenol-rich virgin olive oil (HPCOO) or olive oil without polyphenols (WPOO) in rats fed high-fat diet (HFD). METHODS AND RESULTS Male Sprague-Dawley rats were divided into four groups based on the different types of diet: (I) standard diet (STD); (II) HFD; (III) HFD containing WPOO, and (IV) HFD containing HPCOO. HPCOO and WPOO induced a significant improvement of HFD-induced impaired glucose homeostasis (by hyperglycemia, altered oral glucose tolerance, and HOMA-IR) and inflammatory status modulating pro- and anti-inflammatory cytokines (TNF-α, IL-1, and IL-10) and adipokines. Moreover, HPCOO and less extensively WPOO, limited HFD-induced liver oxidative and nitrosative stress and increased hepatic fatty acid oxidation. To study mitochondrial performance, oxidative capacity and energy efficiency were also evaluated in isolated liver mitochondria. HPCOO, but not WPOO, reduced H2 O2 release and aconitase activity by decreasing degree of coupling, which plays a major role in the control of mitochondrial reactive oxygen species emission. CONCLUSION HPCOO limits HFD-induced insulin resistance, inflammation, and hepatic oxidative stress, preventing nonalcoholic fatty liver disease progression.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Maria Pia Mollica
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Francesca Di Guida
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Gina Cavaliere
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,European Laboratory for the Investigation of Food Induced Diseases, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
34
|
Novel Action of Carotenoids on Non-Alcoholic Fatty Liver Disease: Macrophage Polarization and Liver Homeostasis. Nutrients 2016; 8:nu8070391. [PMID: 27347998 PMCID: PMC4963867 DOI: 10.3390/nu8070391] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. It is characterized by a wide spectrum of hepatic changes, which may progress to non-alcoholic steatohepatitis (NASH) and cirrhosis. NAFLD is considered a hepatic manifestation of metabolic syndrome; however, mechanisms underlying the onset and progression of NAFLD are still unclear. Resident and recruited macrophages are key players in the homeostatic function of the liver and in the progression of NAFLD to NASH. Progress has been made in understanding the molecular mechanisms underlying the polarized activation of macrophages. New NAFLD therapies will likely involve modification of macrophage polarization by restraining M1 activation or driving M2 activation. Carotenoids are potent antioxidants and anti-inflammatory micronutrients that have been used to prevent and treat NAFLD. In addition to their antioxidative action, carotenoids can regulate macrophage polarization and thereby halt the progression of NASH. In this review, we summarize the molecular mechanisms of macrophage polarization and the function of liver macrophages/Kupffer cells in NAFLD. From our review, we propose that dietary carotenoids, such as β-cryptoxanthin and astaxanthin, be used to prevent or treat NAFLD through the regulation of macrophage polarization and liver homeostasis.
Collapse
|
35
|
Jacobs A, Warda A, Verbeek J, Cassiman D, Spincemaille P. An Overview of Mouse Models of Nonalcoholic Steatohepatitis: From Past to Present. ACTA ACUST UNITED AC 2016; 6:185-200. [DOI: 10.1002/cpmo.3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ans Jacobs
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
| | - Anne‐Sophie Warda
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
| | - Jef Verbeek
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center Maastricht The Netherlands
| | - David Cassiman
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
- Metabolic Center, University Hospitals KU Leuven Leuven Belgium
| | - Pieter Spincemaille
- Department of Laboratory Medicine, University Hospitals KU Leuven Leuven Belgium
| |
Collapse
|
36
|
Nutritional therapy for nonalcoholic fatty liver disease. J Nutr Biochem 2016; 29:1-11. [DOI: 10.1016/j.jnutbio.2015.08.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
|
37
|
Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep 2015; 5:17192. [PMID: 26603489 PMCID: PMC4658633 DOI: 10.1038/srep17192] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that astaxanthin ameliorated hepatic steatosis in both genetically (ob/ob) and high-fat-diet-induced obese mice. In a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet, astaxanthin alleviated excessive hepatic lipid accumulation and peroxidation, increased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis. Moreover, astaxanthin caused an M2-dominant shift in macrophages/Kupffer cells and a subsequent reduction in CD4+ and CD8+ T cell recruitment in the liver, which contributed to improved insulin resistance and hepatic inflammation. Importantly, astaxanthin reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. Overall, astaxanthin was more effective at both preventing and treating NASH compared with vitamin E in mice. Furthermore, astaxanthin improved hepatic steatosis and tended to ameliorate the progression of NASH in biopsy-proven human subjects. These results suggest that astaxanthin might be a novel and promising treatment for NASH.
Collapse
|
38
|
Abstract
Lifestyle modifications and optimization of the management of cardiometabolic comorbidities are currently the mainstay of treatment for patients with nonalcoholic fatty liver disease. Pharmacotherapy to halt or reverse hepatic histological injury and prevent the development of end-stage liver disease is specifically offered to patients with nonalcoholic steatohepatitis (NASH) and those with advanced fibrosis. In this review, the authors discuss the state of the art of various pharmacological agents for NASH. The efficacy of vitamin E and pioglitazone is reasonably well established in a selected group of patients with NASH. Current data do not offer convincing evidence for efficacy of pentoxifylline, long-chain polyunsaturated fatty acids, angiotensin receptor blockers, metformin, or ursodeoxycholic acid. They also discuss the state of several emerging agents for treating NASH including the farsenoid X receptor ligand, obeticholic acid.
Collapse
Affiliation(s)
- Samer Gawrieh
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
39
|
Zong G, Scott AE, Griffiths HR, Zock PL, Dietrich T, Newson RS. Serum α-Tocopherol Has a Nonlinear Inverse Association with Periodontitis among US Adults. J Nutr 2015; 145:893-9. [PMID: 25934661 DOI: 10.3945/jn.114.203703] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/15/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous experimental models suggest that vitamin E may ameliorate periodontitis. However, epidemiologic studies show inconsistent evidence in supporting this plausible association. OBJECTIVE We investigated the association between serum α-tocopherol (αT) and γ-tocopherol (γT) and periodontitis in a large cross-sectional US population. METHODS This study included 4708 participants in the 1999-2001 NHANES. Serum tocopherols were measured by HPLC and values were adjusted by total cholesterol (TC). Periodontal status was assessed by mean clinical attachment loss (CAL) and probing pocket depth (PPD). Total periodontitis (TPD) was defined as the sum of mild, moderate, and severe periodontitis. All measurements were performed by NHANES. RESULTS Means ± SDs of serum αT:TC ratio from low to high quartiles were 4.0 ± 0.4, 4.8 ± 0.2, 5.7 ± 0.4, and 9.1 ± 2.7 μmol/mmol. In multivariate regression models, αT:TC quartiles were inversely associated with mean CAL (P-trend = 0.06), mean PPD (P-trend < 0.001), and TPD (P-trend < 0.001) overall. Adjusted mean differences (95% CIs) between the first and fourth quartile of αT:TC were 0.12 mm (0.03, 0.20; P-difference = 0.005) for mean CAL and 0.12 mm (0.06, 0.17; P-difference < 0.001) for mean PPD, whereas the corresponding OR for TPD was 1.65 (95% CI: 1.26, 2.16; P-difference = 0.001). In a dose-response analysis, a clear inverse association between αT:TC and mean CAL, mean PPD, and TPD was observed among participants with relatively low αT:TC. No differences were seen in participants with higher αT:TC ratios. Participants with γT:TC ratio in the interquartile range showed a significantly lower mean PPD than those in the highest quartile. CONCLUSIONS A nonlinear inverse association was observed between serum αT and severity of periodontitis, which was restricted to adults with normal but relatively low αT status. These findings warrant further confirmation in longitudinal or intervention studies.
Collapse
Affiliation(s)
- Geng Zong
- Unilever Research and Development, Vlaardingen, The Netherlands
| | - Ann E Scott
- Unilever Research and Development, Port Sunlight, Bebington, United Kingdom
| | - Helen R Griffiths
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom; and
| | - Peter L Zock
- Unilever Research and Development, Vlaardingen, The Netherlands
| | - Thomas Dietrich
- Department of Oral Surgery, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Rachel S Newson
- Unilever Research and Development, Vlaardingen, The Netherlands;
| |
Collapse
|
40
|
The natural history of cirrhosis from parenteral nutrition-associated liver disease after resolution of cholestasis with parenteral fish oil therapy. Ann Surg 2015; 261:172-9. [PMID: 24374535 DOI: 10.1097/sla.0000000000000445] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine the natural history of cirrhosis from parenteral nutrition-associated liver disease (PNALD) after resolution of cholestasis with fish oil (FO) therapy. BACKGROUND Historically, cirrhosis from PNALD resulted in end-stage liver disease, often requiring transplantation for survival. With FO therapy, most children now experience resolution of cholestasis and rarely progress to end-stage liver disease. However, outcomes for cirrhosis after resolution of cholestasis are unknown and patients continue to be considered for liver/multivisceral transplantation. METHODS Prospectively collected data were reviewed for children with cirrhosis because of PNALD who had resolution of cholestasis after treatment with FO from 2004 to 2012. Outcomes evaluated included need for liver/multivisceral transplantation, mortality, and the clinical progression of liver disease. RESULTS Fifty-one patients with cirrhosis from PNALD were identified, with 76% demonstrating resolution of cholestasis after FO therapy. The mean direct bilirubin decreased from 6.4 ± 4 mg/dL to 0.2 ± 0.1 mg/dL (P < 0.001) 12 months after resolution of cholestasis, with a mean time to resolution of 74 days. None of the patients required transplantation or died from end-stage liver disease. Pediatric End-Stage Liver Disease scores decreased from 16 ± 4.6 to -1.2 ± 4.6, 12 months after resolution of cholestasis (P < 0.001). In children who remained PN-dependent, the Pediatric End-Stage Liver Disease score remained normal throughout the follow-up period. CONCLUSIONS Cirrhosis from PNALD may be stable rather than progressive once cholestasis resolves with FO therapy. Furthermore, these patients may not require transplantation and show no clinical evidence of liver disease progression, even when persistently PN-dependent.
Collapse
|
41
|
Abstract
Microsomal triglyceride transfer protein (MTP) is one of the promising targets for the therapy of dyslipidemia and MTP inhibition can lead to robust plasma low-density lipoprotein cholesterol (LDL-C) reduction. Lomitapide, a small-molecule MTP inhibitor, was recently approved by the US FDA as an additional treatment for homozygous familial hypercholesterolemia (hoFH). However, liver-related side effects, including hepatic fat accumulation and transaminase elevations, are the main safety concerns associated with MTP inhibitors. Here, we review recent knowledge on the mechanisms underlying liver toxicity of MTP inhibitors. The contribution of altered levels of intracellular triglycerides, cholesteryl esters, and free cholesterols toward cellular dysfunction is specifically addressed. On this basis, therapies targeted to attenuate cellular lipid accumulation, to reduce risk factors for non-alcoholic fatty liver disease (NAFLD) (i.e., insulin resistance and oxidative stress) and to specifically inhibit intestinal MTP may be useful for ameliorating liver damage induced by MTP inhibitors. In particular, weight loss through lifestyle interventions is expected to be the most effective and safest way to minimize the undesirable side effects. Specific dietary supplementation might also have protective effects against hepatosteatosis. Despite that, to date, few clinical data support these therapeutic options in MTP inhibition-related liver damage, such proposed approaches may be further explored in the future for their use in preventing unwanted effects of MTP inhibitors.
Collapse
|
42
|
Pacana T, Sanyal AJ. Recent advances in understanding/management of non-alcoholic steatohepatitis. F1000PRIME REPORTS 2015; 7:28. [PMID: 25926979 PMCID: PMC4371374 DOI: 10.12703/p7-28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) can lead to advanced fibrosis, hepatocellular carcinoma, and end-stage liver disease requiring liver transplantation. A myriad of pathways and genetic influence contribute to NASH pathogenesis and liver disease progression. Diagnosing patients with NASH and advanced fibrosis is critical prior to treatment and prognostication. There has been ongoing interest in developing non-invasive biomarkers and tools for identifying NASH and advanced fibrosis. To date, there has been no approved therapy for NASH. Recently, the FLINT (Farnesoid X Receptor [FXR] Ligand Obeticholic Acid in NASH Treatment) trial provided promising results of the efficacy of obeticholic acid, a farnesoid X receptor agonist, in improving histological features of NASH and fibrosis. Long-term studies are needed to assess the safety of obeticholic acid and its effects on liver- and cardiovascular-related outcomes.
Collapse
|
43
|
Ni Y, Nagashimada M, Zhan L, Nagata N, Kobori M, Sugiura M, Ogawa K, Kaneko S, Ota T. Prevention and reversal of lipotoxicity-induced hepatic insulin resistance and steatohepatitis in mice by an antioxidant carotenoid, β-cryptoxanthin. Endocrinology 2015; 156:987-99. [PMID: 25562616 DOI: 10.1210/en.2014-1776] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Excessive hepatic lipid accumulation promotes macrophages/Kupffer cells activation, resulting in exacerbation of insulin resistance and progression of nonalcoholic steatohepatitis (NASH). However, few promising treatment modalities target lipotoxicity-mediated hepatic activation/polarization of macrophages for NASH. Recent epidemiological surveys showed that serum β-cryptoxanthin, an antioxidant carotenoid, was inversely associated with the risks of insulin resistance and liver dysfunction. In the present study, we first showed that β-cryptoxanthin administration ameliorated hepatic steatosis in high-fat diet-induced obese mice. Next, we investigated the preventative and therapeutic effects of β-cryptoxanthin using a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat (CL) diet. After 12 weeks of CL diet feeding, β-cryptoxanthin administration attenuated insulin resistance and excessive hepatic lipid accumulation and peroxidation, with increases in M1-type macrophages/Kupffer cells and activated stellate cells, and fibrosis in CL diet-induced NASH. Comprehensive gene expression analysis showed that β-cryptoxanthin down-regulated macrophage activation signal-related genes significantly without affecting most lipid metabolism-related genes in the liver. Importantly, flow cytometry analysis revealed that, on a CL diet, β-cryptoxanthin caused a predominance of M2 over M1 macrophage populations, in addition to reducing total hepatic macrophage and T-cell contents. In parallel, β-cryptoxanthin decreased lipopolysaccharide-induced M1 marker mRNA expression in peritoneal macrophages, whereas it augmented IL-4-induced M2 marker mRNA expression, in a dose-dependent manner. Moreover, β-cryptoxanthin reversed steatosis, inflammation, and fibrosis progression in preexisting NASH in mice. In conclusion, β-cryptoxanthin prevents and reverses insulin resistance and steatohepatitis, at least in part, through an M2-dominant shift in macrophages/Kupffer cells in a lipotoxic model of NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- Department of Cell Metabolism and Nutrition (Y.N., M.N., L.Z., N.N., T.O.), Brain/Liver Interface Medicine Research Center, Kanazawa University, and Department of Disease Control and Homeostasis (Y.N., S.K., T.O.), Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8641, Japan; National Food Research Institute (M.K.), National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan; Citrus Research Division (M.S.), National Institute of Fruit Tree Science, National Agriculture and Food Research Organization, Shizuoka, Shizuoka 424-0292, Japan; and Grape and Persimmon Research Division (K.O.), National Institute of Fruit Tree Science, National Agriculture and Food Research Organization, Higashi-hiroshima, Hiroshima 739-2494, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stojsavljević S, Gomerčić Palčić M, Virović Jukić L, Smirčić Duvnjak L, Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20:18070-18091. [PMID: 25561778 PMCID: PMC4277948 DOI: 10.3748/wjg.v20.i48.18070] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/21/2014] [Accepted: 11/18/2014] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition in which excess fat accumulates in the liver of a patient with no history of alcohol abuse or other causes for secondary hepatic steatosis. The pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) has not been fully elucidated. The "two-hit" hypothesis is probably a too simplified model to elaborate complex pathogenetic events occurring in patients with NASH. It should be better regarded as a multiple step process, with accumulation of liver fat being the first step, followed by the development of necroinflammation and fibrosis. Adipose tissue, which has emerged as an endocrine organ with a key role in energy homeostasis, is responsive to both central and peripheral metabolic signals and is itself capable of secreting a number of proteins. These adipocyte-specific or enriched proteins, termed adipokines, have been shown to have a variety of local, peripheral, and central effects. In the current review, we explore the role of adipocytokines and proinflammatory cytokines in the pathogenesis of NAFLD. We particularly focus on adiponectin, leptin and ghrelin, with a brief mention of resistin, visfatin and retinol-binding protein 4 among adipokines, and tumor necrosis factor-α, interleukin (IL)-6, IL-1, and briefly IL-18 among proinflammatory cytokines. We update their role in NAFLD, as elucidated in experimental models and clinical practice.
Collapse
|
45
|
|
46
|
Miyazaki H, Takitani K, Koh M, Yoden A, Tamai H. The α-tocopherol status and expression of α-tocopherol-related proteins in methionine-choline deficient rats treated with vitamin E. J Clin Biochem Nutr 2014; 54:190-7. [PMID: 24895482 PMCID: PMC4042150 DOI: 10.3164/jcbn.13-74] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/07/2014] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic fatty liver disease is the most common liver disorder in developed countries, and its incidence is increasing in all population groups. As an antioxidant, vitamin E is effective in the treatment of non-alcoholic fatty liver disease, although the mechanism is still unclear. Methionine-choline deficient Wistar rats (n = 5) used as an experimental model of non-alcoholic fatty liver disease were fed a vitamin E-enriched diet (500 mg/kg) for 4 weeks. The effects were assessed by measuring lipid peroxidation, α-tocopherol levels, and the expression of α-tocopherol-related proteins in the liver. In vitamin E-treated methionine-choline deficient rats, lipid peroxidation was reduced, but liver histopathological changes were not improved. Hepatic α-tocopherol levels in these rats were significantly elevated compared to normal rats treated with vitamin E. Expression of liver α-tocopherol transfer protein in vitamin E-treated methionine-choline deficient rats was significantly repressed compared to methionine-choline deficient rats. The expression of liver cytochrome P450 4F2 and ATP-binding cassette transporter protein 1, involved in metabolism and transport of α-tocopherol, respectively, was significantly repressed in vitamin E-treated methionine-choline deficient rats. In methionine-choline deficient rats, vitamin E treatment altered the hepatic α-tocopherol-related protein expression, which may affect α-tocopherol status in the liver, leading to reduced lipid peroxidation.
Collapse
Affiliation(s)
- Hiroshi Miyazaki
- Department of Pediatrics, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Kimitaka Takitani
- Department of Pediatrics, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Maki Koh
- Department of Pediatrics, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Atsushi Yoden
- Department of Pediatrics, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Hiroshi Tamai
- Department of Pediatrics, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
47
|
Ahmad A, Afroz N, Gupta UD, Ahmad R. Vitamin B 12 supplement alleviates N'-nitrosodimethylamine-induced hepatic fibrosis in rats. PHARMACEUTICAL BIOLOGY 2014; 52:516-523. [PMID: 24405044 DOI: 10.3109/13880209.2013.864682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Abstract Context: Altered vitamin B12 levels have been correlated with hepatotoxicity; however, further evidence is required to establish its protective role. Objective: To evaluate the effects of vitamin B12 supplement in protecting N'-nitrosodimethylamine (NDMA)-induced hepatic fibrosis in Wistar rats. Materials and methods: Hepatic fibrosis was induced by administering NDMA in doses of 10 mg/kg body weight thrice a week for 21 days. Another group received equal doses (10 mg/kg body weight) of vitamin B12 subsequent to NDMA treatment. Animals from either group were sacrificed weekly from the start of the treatment along with their respective controls. Progression of hepatic fibrosis, in addition to the effect of vitamin B12, was assessed biochemically for liver function biomarkers, liver glycogen, hydroxyproline (HP) and B12 reserves along with histopathologically by hematoxylin and eosin (H & E) as well immunohistochemical staining for α-SMA expression. Results and discussion: Elevation in the levels of aminotransferases, SALP, total bilirubin and HP was observed in NDMA treated rats, which was concomitant with remarkable depletion in liver glycogen and B12 reserves (p < 0.05). Liver biopsies also demonstrated disrupted lobular architecture, collagen amassing and intense fibrosis by NDMA treatment. Immunohistochemical staining showed the presence of activated stellate cells that was dramatically increased up to day 21 in fibrotic rats. Following vitamin B12 treatment, liver function biomarkers, glycogen contents and hepatic vitamin B12 reserves were restored in fibrotic rats, significantly. Vitamin B12 administration also facilitated restoration of normal liver architecture. Conclusion: These findings provide interesting new evidence in favor of protective role for vitamin B12 against NDMA-induced hepatic fibrosis in rats.
Collapse
Affiliation(s)
- Areeba Ahmad
- Biochemical and Clinical Genetics Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University , Aligarh, UP , India
| | | | | | | |
Collapse
|
48
|
Sumida Y, Niki E, Naito Y, Yoshikawa T. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic Res 2013; 47:869-80. [PMID: 24004441 DOI: 10.3109/10715762.2013.837577] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the most common liver disease affecting high proportion of the population worldwide. NAFLD encompasses a large spectrum of conditions ranging from fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and cancer. NAFLD is considered as a multifactorial disease in relation to the pathogenic mechanisms. Oxidative stress has been implicated in the pathogenesis of NAFLD and NASH and the involvement of reactive oxygen species (ROS) has been suggested. Many studies show the association between the levels of lipid oxidation products and disease state. However, often neither oxidative stress nor ROS has been characterized, despite oxidative stress is mediated by multiple active species by different mechanisms and the same lipid oxidation products are produced by different active species. Further, the effects of various antioxidants have been assessed in human and animal studies, but the effects of drugs are determined by the type of active species, suggesting the importance of characterizing the active species involved. This review article is focused on the role of free radicals and free radical-mediated lipid peroxidation in the pathogenesis of NAFLD and NASH, taking characteristic features of free radical-mediated oxidation into consideration. The detailed analysis of lipid oxidation products shows the involvement of free radicals in the pathogenesis of NAFLD and NASH. Potential beneficial effects of antioxidants such as vitamin E are discussed.
Collapse
Affiliation(s)
- Y Sumida
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine , Kyoto , Japan
| | | | | | | |
Collapse
|
49
|
In vivo regulation of gene transcription by alpha- and gamma-tocopherol in murine T lymphocytes. Arch Biochem Biophys 2013; 538:111-9. [DOI: 10.1016/j.abb.2013.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/12/2013] [Accepted: 08/17/2013] [Indexed: 12/18/2022]
|
50
|
Nandivada P, Cowan E, Carlson SJ, Chang M, Gura KM, Puder M. Mechanisms for the effects of fish oil lipid emulsions in the management of parenteral nutrition-associated liver disease. Prostaglandins Leukot Essent Fatty Acids 2013; 89:153-8. [PMID: 23602846 DOI: 10.1016/j.plefa.2013.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/04/2013] [Accepted: 02/22/2013] [Indexed: 12/12/2022]
Abstract
Parenteral nutrition (PN) can be life saving for infants unable to adequately absorb enteral nutrients due to intestinal failure from inadequate bowel length or function. However, long-term PN carries significant morbidity and mortality, with 30 to 60% of patients developing progressive liver dysfunction. The etiology of PN-associated liver disease (PNALD) is poorly understood, however the involvement of lipid emulsions in its pathogenesis has been clearly established, with new emphasis emerging on the role of omega-6 polyunsaturated fatty acids and omega-3 polyunsaturated fatty acids. Recent studies evaluating the use of parenteral fish oil lipid emulsions instead of soybean oil lipid emulsions have demonstrated marked improvements in cholestasis, morbidity, and mortality in patients with PNALD treated with fish oil. This review provides an overview of the role of lipid emulsions in the pathogenesis of PNALD and the proposed mechanisms by which parenteral fish oil lipid emulsions may be exerting their beneficial effects.
Collapse
Affiliation(s)
- P Nandivada
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|