1
|
He J, Wong LY, Chen S, Zhang SJ, Chen W, Bai JX, Wang L, Wang XQ, Li SMA, Li Q, Fu XQ, Yu ZL. Inhibition of the PI3K/AKT signaling pathway contributes to the anti-renal cell carcinoma effects of deoxyelephantopin. Biomed Pharmacother 2025; 187:118136. [PMID: 40344699 DOI: 10.1016/j.biopha.2025.118136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
Renal cell carcinoma (RCC) is the most common kidney cancer. Despite advances in treatment, current therapeutic strategies are often limited by side effects, drug resistance, and low response rates, necessitating alternatives for RCC treatment. Deoxyelephantopin (DEO), a sesquiterpene lactone from Elephantopi Herba, has demonstrated anticancer properties in multiple cancer models; however, its effects on RCC remain unknown. This study aimed to investigate the anti-RCC effects of DEO and its underlying molecular mechanisms. Human RCC cell lines (786-O, Caki-1, A498) and a murine RCC cell line (RENCA) were used for in vitro assays. Results revealed that DEO dose-dependently inhibited cell viability and colony formation in 786-O, Caki-1, A498, and RENCA cells, while also inducing apoptosis in 786-O and Caki-1 cells. A RENCA allograft mouse model was used for in vivo assays. DEO significantly suppressed tumor growth without causing notable changes in body weight, organ coefficients, or serum biochemical markers (ALT, AST, BUN, Cr). Network pharmacology analysis predicted the PI3K/AKT signaling pathway as a key mediator of DEO's anti-RCC effects. Western blotting showed that DEO downregulated the expression of EGFR, p-EGFR (Tyr1068), PI3K p110α, p-Akt (Ser473), mTOR, p-mTOR (Ser2448), p-p70S6K (Thr389), 4E-BP1, p-4E-BP1 (Thr37/46), HIF-1α, and Bcl-2. Overactivation of AKT attenuated DEO's inhibitory effects on cell viability in 786-O cells. In conclusion, this study is the first to demonstrate that DEO exerts anti-RCC effects in both cellular and animal models, primarily through inhibition of the PI3K/AKT pathway. These findings suggest that DEO holds promise as a lead compound for RCC management.
Collapse
Affiliation(s)
- Jinjin He
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Lut Yi Wong
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Si Chen
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shi-Jia Zhang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wei Chen
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jing-Xuan Bai
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Li Wang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xiao-Qi Wang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Sze-Man Amy Li
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Qinglin Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiu-Qiong Fu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Zhi-Ling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
2
|
Zhao R, Wang M, Wu Z, Zhao P, Dong H, Su Y, Zhao C, Qi M, Ling S, Jiang X. DET induces apoptosis and suppresses tumor invasion in glioma cells via PI3K/AKT pathway. Front Oncol 2025; 14:1528454. [PMID: 39850823 PMCID: PMC11755766 DOI: 10.3389/fonc.2024.1528454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Gliomas, particularly glioblastomas (GBM), are highly aggressive with a poor prognosis and low survival rate. Currently, deoxyelephantopin (DET) has shown promising anti-inflammatory and anti-tumor effects. Using clinical prognostic analysis, molecular docking, and network pharmacology, this study aims to explore the primary targets and signaling pathways to identify novel GBM treatment approaches. Methods Using PharmMapper, the chemical structure of DET was examined for possible targets after being acquired from PubChem. GBM-related targets were obtained through multi-omics approaches. A protein-protein interaction (PPI) network was constructed using Cytoscape and STRING, and target binding was evaluated through molecular docking. Enrichment analysis was conducted using Metascape. The effects of DET on GBM cell invasion, apoptosis, and proliferation were assessed through in vitro assays, including Transwell, EDU, CCK8, and flow cytometry. Western blot analysis was performed to examine the components of the PI3K/AKT signaling pathway. Results Among the sixty-four shared targets identified, JUN and CCND1 were the most frequently observed. Enrichment analysis demonstrated that DET influenced the MAPK and PI3K/AKT signaling pathways. In Transwell assays, DET significantly inhibited the invasive behavior of glioma cells. Western blot analysis further confirmed the downregulation of EGFR, JUN, and PI3K/AKT. Conclusion DET inhibits GBM cell invasion, proliferation, and apoptosis via modulating the PI3K/AKT signaling pathway, highlighting its potential as a novel therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Rui Zhao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Mengran Wang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Zeyu Wu
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Panpan Zhao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Huiling Dong
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Yue Su
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Chenghui Zhao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Min Qi
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, Higher Education Park, Wuhu, Anhui, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, Higher Education Park, Wuhu, Anhui, China
| |
Collapse
|
3
|
Rao QR, Rao JB, Zhao M. The specialized sesquiterpenoids produced by the genus Elephantopus L.: Chemistry, biological activities and structure-activity relationship exploration. PHYTOCHEMISTRY 2024; 221:114041. [PMID: 38442848 DOI: 10.1016/j.phytochem.2024.114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The genus Elephantopus L. is a valuable resource rich in sesquiterpenoids with structural diversity and various bioactivities, showing great potential for applications in medicinal field and biological industry. Up to now, over 129 sesquiterpenoids have been isolated and identified from this plant genus, including 114 germacrane-type, 7 guaianolide-type, 5 eudesmane-type, 1 elemanolide-type, and 2 bis-sesquiterpenoids. These sesquiterpenoids were reported to show a diverse range of pharmacological properties, including cytotoxic, anti-tumor, anti-inflammatory, antimicrobial, and antiprotozoal. Consequently, some of them were identified as active scaffolds in the design and development of drugs. Considering that there is currently no overview available that covers the sesquiterpenoids and their biological activities in the Elephantopus genus, this article aims to comprehensively review the chemical structures, biosynthetic pathways, pharmacological properties, and structure-activity relationship of sesquiterpenoids found in the Elephantopus genus, which will establish a theoretical framework that can guide further research and exploration of sesquiterpenoids from Elephantopus plants as promising therapeutic agents.
Collapse
Affiliation(s)
- Qian-Ru Rao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China; Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jian-Bo Rao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Min Zhao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
4
|
Kim SK, Lee NH, Son CG. A Review of Herbal Resources Inducing Anti-Liver Metastasis Effects in Gastrointestinal Tumors via Modulation of Tumor Microenvironments in Animal Models. Cancers (Basel) 2023; 15:3415. [PMID: 37444525 PMCID: PMC10340630 DOI: 10.3390/cancers15133415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Liver metastases remain a major obstacle for the management of all types of tumors arising from digestive organs, and the tumor microenvironment has been regarded as an important factor in metastasis. To discover herbal candidates inhibiting the liver metastasis of tumors originating from the digestive system via the modulation of the tumor microenvironment and liver environment, we searched three representative public databases and conducted a systematic review. A total of 21 studies that employed experimental models for pancreatic (9), colon (8), and stomach cancers (4) were selected. The herbal agents included single-herb extracts (5), single compounds (12), and multiherbal decoctions (4). Curcuma longa Linn was most frequently studied for its anti-colon-liver metastatic effects, and its possible mechanisms involved the modulation of tumor microenvironment components such as vascular endothelial cells and immunity in both tumor tissues and circulating cells. The list of herbal agents and their mechanisms produced in this study is helpful for the development of anti-liver metastasis drugs in the future.
Collapse
Affiliation(s)
- Sul-Ki Kim
- Liver and Immunology Research Center, Collage of Korean Medicine, Daejeon University, Daejeon 35235, Republic of Korea;
| | - Nam-Hun Lee
- East-West Cancer Center, Cheonan Korean Medicine Hospital, Daejeon University, Cheonan 31099, Republic of Korea;
| | - Chang-Gue Son
- Liver and Immunology Research Center, Collage of Korean Medicine, Daejeon University, Daejeon 35235, Republic of Korea;
| |
Collapse
|
5
|
Wang S, Chen Y. Deoxyelephantopin alleviates lipopolysaccharide-induced septic lung injury through inhibiting NF-ĸB/STAT3 axis. Allergol Immunopathol (Madr) 2022; 50:39-46. [PMID: 36086962 DOI: 10.15586/aei.v50i5.626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023]
Abstract
Sepsis induces multiple organ dysfunction syndromes, such as acute kidney, liver, or lung injury. Septic lung injury is associated with excessive apoptosis and inflammatory responses in hepatocytes. Deoxyelephantopin is a sesquiterpene lactone found in Elephantopus scaber L, and has immunomodulatory, antibacterial, anti-inflammatory, and antifungal properties. The role of deoxyelephantopin in sepsis-associated lung injury was investigated. First, human bronchial epithelial cells (BEAS-2B) and human pulmonary artery endothelial cells (HPAEC) were treated with lipopolysaccharide to induce cytotoxicity. Treatment with lipopolysaccharide reduced cell viability of BEAS-2B and HPAEC, and promoted cell apoptosis through down-regulation of poly (ADP-ribose) polymerase (PARP) and B-cell lymphoma 2 (Bcl-2), and up-regulation of cleaved PARP and B-cell lymphoma-associated X protein (Bax). Second, lipopolysaccharide-treated BEAS-2B and HPAEC were incubated with increasing concentrations of deoxyelephantopin, that is, 1, 5, or 10 μM. Deoxyelephantopin enhanced cell viability and reduced cell apoptosis of lipopolysaccharide-treated BEAS-2B and HPAEC. Third, deoxyelephantopin attenuated lipopolysaccharide-induced decrease of superoxide dismutase and glutathione, and increase of malondialdehyde and myeloperoxidase in BEAS-2B and HPAEC. Moreover, deoxyelephantopin also weakened lipopolysaccharide-induced increase of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Finally, deoxyelephantopin decreased protein expression of p-p65 and p-signal transducer and activator of transcription 3 (STAT3) in lipopolysaccharide-treated BEAS-2B and HPAEC. In conclusion, deoxyelephantopin exhibited anti-oxidative and anti-inflammatory effects against lipopolysaccharide-treated BEAS-2B and HPAEC through inactivation of nuclear factor kappa B/STAT3 signaling.
Collapse
Affiliation(s)
- Shu Wang
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Yuefeng Chen
- Emergency Room, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, P.R. China
| |
Collapse
|
6
|
Potential Active Constituents from Opophytum forsskalii (Hochst. ex Boiss.) N.E.Br against Experimental Gastric Lesions in Rats. Pharmaceuticals (Basel) 2022; 15:ph15091089. [PMID: 36145310 PMCID: PMC9502456 DOI: 10.3390/ph15091089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Opophytum forsskalii (O. forsskalii) is a desert plant that belongs to the Aizoaceae family. Although it is a natural food source for Bedouin tribes in northern Saudi Arabia, there is little information on its active metabolites. Therefore, the secondary metabolites of the hydroalcoholic extract from the leaves of this species were analyzed by liquid chromatography-mass chromatography (LC-MS). LC-MS identified a total of 30 secondary metabolites. These compounds represented two main categories among sixteen classes. Among them, flavonoids represented the largest proportion with eleven metabolites while fatty acids provided seven compounds. In addition, the extract was evaluated for its gastroprotective effect against gastric lesions induced by different models, such as indomethacin, stress, and necrotizing agents (80% ethanol, 0.2 mol/L NaOH, and 25% NaCl), in rats. For each method, group 1 was used as the control group while groups 2 and 3 received the leaf extract at doses of 200 and 400 mg/kg, respectively. The ulcer index (UI) and intraluminal bleeding score (IBS) were measured for each method. In addition, gastric tissue from the ethanol method was used for the analysis of nonprotein sulfhydrates (NP-SH), malondialdehyde (MDA), total protein (TP), and histopathologic evaluation. Pretreatment with O. forsskalii significantly decreased UI (p < 0.01) and IBS (p < 0.01) at 400 mg/kg. Pretreatment with O. forsskalii significantly improved total protein levels (p < 0.01) and NP-SH (p < 0.001) compared to the ethanol ulcer groups. MDA levels increased from 0.5 to 5.8 nmol/g in the normal groups compared to the ethanol groups and decreased to 2.34 nmol/g in the O. forsskalii pretreatment. In addition to the gastroprotective markers, histopathological examination of gastric tissue confirmed the gastroprotective potential of O. forsskalii extract against ethanol.
Collapse
|
7
|
Ji H, Zhang K, Pan G, Li C, Li C, Hu X, Yang L, Cui H. Deoxyelephantopin Induces Apoptosis and Enhances Chemosensitivity of Colon Cancer via miR-205/Bcl2 Axis. Int J Mol Sci 2022; 23:5051. [PMID: 35563442 PMCID: PMC9099879 DOI: 10.3390/ijms23095051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer (CC) is one of the major causes of cancer death in humans. Despite recent advances in the management of CC, the prognosis is still poor and a new strategy for effective therapy is imperative. Deoxyelephantopin (DET), extracted from an important medicinal plant, Elephantopus scaber L., has been reported to exhibit excellent anti-inflammatory and -cancer activities, while the detailed anti-cancer mechanism remains unclear. Herein, we found that DET showed a significant CC inhibiting effect in vitro and in vivo without obvious organ toxicity. Mechanistically, DET inhibited CC cells and tumor growth by inducing G2/M phase arrest and subsequent apoptosis. DET-mediated cell cycle arrest was caused by severe DNA damage, and DET decreased the Bcl2 expression level in a dose-dependent manner to promote CC cell apoptosis, whereas restoring Bcl2 expression reduced apoptosis to a certain extent. Moreover, we identified a microRNA complementary to the 3'-UTR of Bcl2, miR-205, that responded to the DET treatment. An inhibitor of miR-205 could recover Bcl2 expression and promoted the survival of CC cells upon DET treatment. To further examine the potential value of the drug, we evaluated the combinative effects of DET and 5-Fluorouracil (5FU) through Jin's formula and revealed that DET acted synergistically with 5FU, resulting in enhancing the chemotherapeutic sensitivity of CC to 5FU. Our results consolidate DET as a potent drug for the treatment of CC when it is used alone or combined with 5FU, and elucidate the importance of the miR-205-Bcl2 axis in DET treatment.
Collapse
Affiliation(s)
- Haoyan Ji
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Changhong Li
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xin Hu
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| |
Collapse
|
8
|
Deoxyelephantopin and Its Isomer Isodeoxyelephantopin: Anti-Cancer Natural Products with Multiple Modes of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072086. [PMID: 35408483 PMCID: PMC9000713 DOI: 10.3390/molecules27072086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/05/2023]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of cancer involves aberrations in multiple pathways, representing promising targets for anti-cancer drug discovery. Natural products are regarded as a rich source for developing anti-cancer therapies due to their unique structures and favorable pharmacology and toxicology profiles. Deoxyelephantopin and isodeoxyelephantopin, sesquiterpene lactone compounds, are major components of Elephantopus scaber and Elephantopus carolinianus, which have long been used as traditional medicines to treat multiple ailments, including liver diseases, diabetes, bronchitis, fever, diarrhea, dysentery, cancer, renal disorders, and inflammation-associated diseases. Recently, deoxyelephantopin and isodeoxyelephantopin have been extensively explored for their anti-cancer activities. This review summarizes and discusses the anti-cancer activities of deoxyelephantopin and isodeoxyelephantopin, with an emphasis on their modes of action and molecular targets. Both compounds disrupt several processes involved in cancer progression by targeting multiple signaling pathways deregulated in cancers, including cell cycle and proliferation, cell survival, autophagy, and invasion pathways. Future directions of research on these two compounds towards anti-cancer drug development are discussed.
Collapse
|
9
|
Morsy BM, Hamed MA, Abd-Alla HI, Aziz WM, Kamel SN. Downregulation of fibrosis and inflammatory signalling pathways in rats liver via Pulicaria crispa aerial parts ethanol extract. Biomarkers 2021; 26:665-673. [PMID: 34409912 DOI: 10.1080/1354750x.2021.1970810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Liver is a vital organ for the detoxification of toxic substances in the body, where fibrosis is the major cause of liver damage. Pulicaria crispa processes many therapeutic applications such as antioxidant, antimicrobial, anticancer and anti-ulcerative agent. OBJECTIVE This study aimed to modulate the fibrosis and inflammatory signalling pathways in carbon tetrachloride (CCl4)-induced liver damage in rats via treatment with Pulicaria crispa aerial parts ethanol extract (PCEE). MATERIALS AND METHODS CCl4 was intraperitoneally injected at a dose of 0.5 mL/kg b.wt./twice a week/six consecutive weeks, PCEE was orally allocated at a dose of 250 mg/kg b.wt./day/six weeks and silymarin was orally administrated at a dose of 100 mg/kg, b.wt/day/six weeks. The plant extract evaluation was done through measuring aspartate and alanine aminotransferases (AST& ALT), alkaline phosphatase (ALP), total lipids (TP), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low level glycoprotein-cholesterol (LDL-C), alpha fetoprotein (AFP), reduced glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO), tumour necrosis factor-α (TNF-α) and interleukin 6 (IL-6). The liver architectures were also estimated. RESULT The phytochemical analysis of the extract showed the presence of sterols and/or triterpenoids. Treatments with plant extract suppressed significantly (p < 0.0001) the levels of AST, ALT, ALP, TP, TG, TC, LDH-C, MDA, NO, AFP, TNF-α and IL-6, while increased (p < 0.0001) the levels of HDL-C, GSH and SOD. The histopathological features confirmed the therapeutic role of the plant extract. CONCLUSION PCEE succeeded to exert anti-fibrotic, anti-inflammatory and anti- oxidants effects in CCl4-induced liver fibrosis.
Collapse
Affiliation(s)
- Basant M Morsy
- Biochemistry Division, Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, Giza, Egypt
| | - Wessam M Aziz
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Sally N Kamel
- Aaman Laboratory, Ismail Al-dorry, St., Faiyum, Egypt
| |
Collapse
|
10
|
Matos MS, Anastácio JD, Nunes dos Santos C. Sesquiterpene Lactones: Promising Natural Compounds to Fight Inflammation. Pharmaceutics 2021; 13:pharmaceutics13070991. [PMID: 34208907 PMCID: PMC8309091 DOI: 10.3390/pharmaceutics13070991] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a crucial and complex process that reestablishes the physiological state after a noxious stimulus. In pathological conditions the inflammatory state may persist, leading to chronic inflammation and causing tissue damage. Sesquiterpene lactones (SLs) are composed of a large and diverse group of highly bioactive plant secondary metabolites, characterized by a 15-carbon backbone structure. In recent years, the interest in SLs has risen due to their vast array of biological activities beneficial for human health. The anti-inflammatory potential of these compounds results from their ability to target and inhibit various key pro-inflammatory molecules enrolled in diverse inflammatory pathways, and prevent or reduce the inflammatory damage on tissues. Research on the anti-inflammatory mechanisms of SLs has thrived over the last years, and numerous compounds from diverse plants have been studied, using in silico, in vitro, and in vivo assays. Besides their anti-inflammatory potential, their cytotoxicity, structure–activity relationships, and pharmacokinetics have been investigated. This review aims to gather the most relevant results and insights concerning the anti-inflammatory potential of SL-rich extracts and pure SLs, focusing on their effects in different inflammatory pathways and on different molecular players.
Collapse
Affiliation(s)
- Melanie S. Matos
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal; (M.S.M.); (J.D.A.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - José D. Anastácio
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal; (M.S.M.); (J.D.A.)
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Cláudia Nunes dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal; (M.S.M.); (J.D.A.)
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
11
|
Sesquiterpene Lactone Deoxyelephantopin Isolated from Elephantopus scaber and Its Derivative DETD-35 Suppress BRAF V600E Mutant Melanoma Lung Metastasis in Mice. Int J Mol Sci 2021; 22:ijms22063226. [PMID: 33810045 PMCID: PMC8004649 DOI: 10.3390/ijms22063226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Melanoma is a highly metastatic disease with an increasing rate of incidence worldwide. It is treatment refractory and has poor clinical prognosis; therefore, the development of new therapeutic agents for metastatic melanoma are urgently required. In this study, we created a lung-seeking A375LM5IF4g/Luc BRAFV600E mutant melanoma cell clone and investigated the bioefficacy of a plant sesquiterpene lactone deoxyelephantopin (DET) and its novel semi-synthetic derivative, DETD-35, in suppressing metastatic A375LM5IF4g/Luc melanoma growth in vitro and in a xenograft mouse model. DET and DETD-35 treatment inhibited A375LM5IF4g/Luc cell proliferation, and induced G2/M cell-cycle arrest and apoptosis. Furthermore, A375LM5IF4g/Luc exhibited clonogenic, metastatic and invasive abilities, and several A375LM5IF4g/Luc metastasis markers, N-cadherin, MMP2, vimentin and integrin α4 were significantly suppressed by treatment with either compound. Interestingly, DET- and DETD-35-induced Reactive Oxygen Species (ROS) generation and glutathione (GSH) depletion were found to be upstream events important for the in vitro activities, because exogenous GSH supplementation blunted DET and DETD-35 effects on A375LM5IF4g/Luc cells. DET and DETD-35 also induced mitochondrial DNA mutation, superoxide production, mitochondrial bioenergetics dysfunction, and mitochondrial protein deregulation. Most importantly, DET and DETD-35 inhibited lung metastasis of A375LM5IF4g/Luc in NOD/SCID mice through inhibiting pulmonary vascular permeability and melanoma cell (Mel-A+) proliferation, angiogenesis (VEGF+, CD31+) and EMT (N-cadherin) in the tumor microenvironment in the lungs. These findings indicate that DET and DETD-35 may be useful in the intervention of lung metastatic BRAFV600E mutant melanoma.
Collapse
|
12
|
Jiang XY, Huang B, Huang DP, Wei CS, Zhong WC, Peng DT, Huang FR, Tong GD. Long-term follow-up of cumulative incidence of hepatocellular carcinoma in hepatitis B virus patients without antiviral therapy. World J Gastroenterol 2021; 27:1101-1116. [PMID: 33776376 PMCID: PMC7985729 DOI: 10.3748/wjg.v27.i11.1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND China has a high prevalence of hepatitis B virus (HBV), but most chronic hepatitis B (CHB) patients do not receive standardized antiviral therapy. There are few relevant reports addressing the outcomes of the large number of CHB patients who do not receive antiviral therapy. AIM To observe the outcomes of long-term follow-up of patients with CHB without antiviral treatment. METHODS This study included 362 patients with CHB and 96 with hepatitis B cirrhosis without antiviral treatment and with only liver protection and anti-inflammatory treatment from 1993 to 1998. The median follow-up times were 10 and 7 years, respectively. A total of 203 CHB and 129 hepatitis B cirrhosis patients receiving antiviral therapy were selected as the control groups. The median follow-up times were 8 and 7 years, respectively. Kaplan-Meier curves were used to analyze the cumulative incidence of hepatocellular carcinoma (HCC), and the Cox regression model was used to analyze the risk factors for HCC. RESULTS Among the patients in the non-antiviral group, 16.9% had spontaneous decreases in HBV DNA to undetectable levels, and 32.8% showed hepatitis B e antigen (HBeAg) seroconversion. In the antiviral group, 87.2% of patients had undetectable HBV DNA, and 52% showed HBeAg seroconversion. Among CHB and hepatitis B cirrhosis patients, the cumulative incidence rates of HCC were 14.9% and 53.1%, respectively, in the non-antiviral group and were 10.7% and 31.9%, respectively, in the antiviral group. There was no difference between the two groups regarding the CHB patients (P = 0.842), but there was a difference between the groups regarding the hepatitis B cirrhosis patients (P = 0.026). The cumulative incidence rates of HCC were 1.6% and 22.3% (P = 0.022) in the groups with and without spontaneous HBeAg seroconversion, respectively. The incidence rates of HCC among patients with and without spontaneous declines in HBV DNA to undetectable levels were 1.6% and 19.1%, respectively (P = 0.051). There was no difference in the cumulative incidence of HCC between the two groups regarding the patients with drug-resistant CHB (P = 0.119), but there was a significant difference between the two groups regarding the patients with cirrhosis (P = 0.004). The Cox regression model was used for regression of the corrected REACH-B score, which showed that alanine aminotransferase > 400 U/L, history of diabetes, and family history of liver cancer were risk factors for HCC among men aged > 40 years (P < 0.05). Multifactorial analysis showed that a family history of HCC among men was a risk factor for HCC. CONCLUSION Antiviral therapy and non-antiviral therapy with liver protection and anti-inflammatory therapy can reduce the risk of HCC. Antiviral therapy may mask the spontaneous serological response of some patients during CHB. Therefore, the effect of early antiviral therapy on reducing the incidence of HCC cannot be overestimated.
Collapse
Affiliation(s)
- Xiao-Yan Jiang
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Bing Huang
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Dan-Ping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Chun-Shan Wei
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Wei-Chao Zhong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - De-Ti Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Fu-Rong Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Guang-Dong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
13
|
Han Y, Li X, Zhang X, Gao Y, Qi R, Cai R, Qi Y. Isodeoxyelephantopin, a sesquiterpene lactone from Elephantopus scaber Linn., inhibits pro-inflammatory mediators' production through both NF-κB and AP-1 pathways in LPS-activated macrophages. Int Immunopharmacol 2020; 84:106528. [PMID: 32335480 DOI: 10.1016/j.intimp.2020.106528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Isodeoxyelephantopin (IDET) has been identified as an anti-tumor natural constituent whose anti-tumor activity and mechanism have been widely investigated. Since the occurrence and development of cancer usually accompany with inflammation, and tumor signaling shares many components with inflammation signaling, the agents with anti-tumor activity are likely to possess anti-inflammation potential. Thus, the current study aims to demonstrate the anti-inflammatory activity along with the underlying mechanism of IDET in lipopolysaccharide (LPS)-primed macrophages. By using Griess method and ELISA, we found that in both bone marrow derived macrophages and alveolar macrophage cell line, IDET, at relatively low concentrations (0.75, 1.5 and 3 μM), could inhibit LPS-induced expression of various pro-inflammatory mediators including nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS), interleukin (IL)-6, monocyte chemotactic protein-1 (MCP-1) and IL-1β. Meanwhile, in activated MH-S cells, the inhibitory action of IDET on mRNA expression levels of these cytokines was also detected using qPCR. Mechanistically, the effects of IDET on two key inflammatory signalings, nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) pathways, were determined in LPS-activated MH-S cells by reporter gene along with western blot assays. On the one hand, IDET suppressed NF-κB signaling via down-regulating phosphorylation and degradation of inhibitor of NF-κB (IκB)-α and the subsequent p65 translocation. On the other hand, IDET dampened AP-1 signaling through attenuating phosphorylation of both c-jun N-terminal kinase 1/2 (JNK1/2) and extracellular signal regulated kinase 1/2 (ERK1/2). Our study indicates that IDET might be a promising constituent from the anti-inflammatory herb Elephantopus scaber Linn. in mitigating inflammatory conditions, especially respiratory inflammation.
Collapse
Affiliation(s)
- Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ruijuan Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Pan L, Hu L, Zhang L, Xu H, Chen Y, Bian Q, Zhu A, Wu H. Deoxyelephantopin decreases the release of inflammatory cytokines in macrophage associated with attenuation of aerobic glycolysis via modulation of PKM2. Int Immunopharmacol 2019; 79:106048. [PMID: 31863924 DOI: 10.1016/j.intimp.2019.106048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Growing evidence suggests that activated immune cells undergo metabolic reprogramming in the regulation of the innate inflammatory response. Remarkably, macrophages activated by lipopolysaccharide (LPS) induce a switch from oxidative phosphorylation to aerobic glycolysis, and consequently results in release of proinflammatory cytokines. Pyruvate Kinase M2 (PKM2) plays a vital role in the process of macrophage activation, promoting the inflammatory response in sepsis and septic shock. Deoxyelephantopin (DET), a naturally occurring sesquiterpene lactone from Elephantopus scaber, has been shown to counteracts inflammation during fulminant hepatitis progression, but the underlying mechanism remains unclear. Here, we studied the function of the DET on macrophage activation and investigated the anti-inflammatory effects of DET associated with interfering with glycolysis in macrophage. Our results first demonstrated that DET attenuates LPS-induced interleukin-1β (IL-1β) and high-mobility group box 1 (HMGB1) release in vitro and in vivo and protected mice against lethal endotoxemia. Furthermore, DET decreased the expression of pyruvate dehydrogenase kinase 1 (PDK1), glucose transporter 1(GLUT1), lactate dehydrogenase A (LDHA), and reduced lactate production dose-dependently in macrophages. Moreover, we further revealed that DET attenuates aerobic glycolysis in macrophages associated with regulating the nuclear localization of PKM2. Our results provided a novel mechanism for DET suppression of macrophages activation implicated in anti-inflammatory therapy.
Collapse
Affiliation(s)
- Lanlan Pan
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Liangyu Hu
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Lihu Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Hongtao Xu
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yuping Chen
- Jiangsu Vocational College of Medicine, Yancheng, China; Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qingya Bian
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Anhong Zhu
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China
| | - Hongyan Wu
- Jiangsu Vocational College of Medicine, Yancheng, China; Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, China.
| |
Collapse
|
15
|
Li M, Wang S, Li X, Wang Q, Liu Z, Yu T, Kou R, Xie K. Inhibitory effects of diallyl sulfide on the activation of Kupffer cell in lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
16
|
Gao K, Liu F, Chen X, Chen M, Deng Q, Zou X, Guo H. Crocetin protects against fulminant hepatic failure induced by lipopolysaccharide/D-galactosamine by decreasing apoptosis, inflammation and oxidative stress in a rat model. Exp Ther Med 2019; 18:3775-3782. [PMID: 31616509 PMCID: PMC6781807 DOI: 10.3892/etm.2019.8030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Fulminant hepatic failure (FHF) is a clinical syndrome characterized by sudden and severe liver dysfunction. Apoptosis and inflammation are essential for the pathogenesis of FHF. Crocetin, the major component present in saffron, has been reported to possess anti-inflammatory and antioxidant functions; however, its role in FHF is poorly understood. The aim of this study was to explore the protective effects of crocetin against lipopolysac§§charide (LPS)/D-galactosamine (D-GalN)-induced FHF and the underlying mechanisms in a rat model. For the in vivo study, rats were assigned to the LPS/D-GalN group or to the crocetin pre-treatment+LPS/D- GalN group. Each group was then further divided according to the different LPS/D-GalN treatment times of 0, 6, 12 or 48 h. The results demonstrated that crocetin pre-treatment efficiently protected against LPS/D-GalN-induced FHF by improving liver tissue morphology, reducing total bilirubin generation and decreasing the activities of alanine transaminase and aspartate aminotransferase. Moreover, crocetin pre-treatment significantly decreased hepatocyte apoptosis, p53 mRNA expression and the expression of proteins in the caspase family and the Bcl-2 pro-apoptotic family following LPS/D-GalN treatment. Furthermore, crocetin also decreased the secretion of pro-inflammatory cytokines in the serum and in the liver via suppression of NF-κB activation, and also suppressed hepatic oxidative stress. In conclusion, crocetin protected against LPS/D-GalN-induced FHF and inhibited apoptosis, inflammation and oxidative stress. The underlying mechanisms may be related to the regulation of apoptotic proteins in the caspase family and the Bcl-2 family, as well as the modulation of NF-κB expression. Therefore, crocetin may be used as a novel therapy for preventing FHF.
Collapse
Affiliation(s)
- Ke Gao
- Department of Pathology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Faquan Liu
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Xi Chen
- Department of Ears, Nose and Throat, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518115, P.R. China
| | - Mengxue Chen
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Qingwen Deng
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Xingjian Zou
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Hongxing Guo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| |
Collapse
|
17
|
Li YT, Ye JZ, Lv LX, Xu H, Yang LY, Jiang XW, Wu WR, Shi D, Fang DQ, Bian XY, Wang KC, Wang QQ, Xie JJ, Lu YM, Li LJ. Pretreatment With Bacillus cereus Preserves Against D-Galactosamine-Induced Liver Injury in a Rat Model. Front Microbiol 2019; 10:1751. [PMID: 31417535 PMCID: PMC6685349 DOI: 10.3389/fmicb.2019.01751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Bacillus cereus (B. cereus) functions as a probiotic in animals, but the underlying mechanisms remain unclear. We aim to evaluate the protective effects and definite mechanism by which orally administered B. cereus prevents D-galactosamine (D-GalN)-induced liver injury in rats. Twenty-one Sprague–Dawley rats were equally assigned into three groups (N = 7 animals per group). B. cereus ATCC11778 (2 × 109 colony-forming units/ml) was administered to the B. cereus group via gavage, and phosphate-buffered saline was administered to the positive control (PC) and negative control (NC) groups for 2 weeks. The PC and B. cereus groups received 1.1 g/kg D-GalN via an intraperitoneal injection to induce liver injury. The blood, terminal ileum, liver, kidney and mesenteric lymph nodes (MLNs) were collected for histological examinations and to evaluate bacterial translocation. Liver function was also determined. Fecal samples were collected for deep sequencing of the 16S rRNA on an Illumina MiSeq platform. B. cereus significantly attenuated D-GalN-induced liver injury and improved serum alanine aminotransferase (ALT) and serum cholinesterase levels (P < 0.05 and P < 0.01, respectively). B. cereus modulated cytokine secretion, as indicated by the elevated levels of the anti-inflammatory cytokine interleukin-10 (IL-10) in both the liver and plasma (P < 0.05 and P < 0.01, respectively) and the substantially decreased levels of the cytokine IL-13 in the liver (P < 0.05). Pretreatment with B. cereus attenuated anoxygenic bacterial translocation in the veins (P < 0.05) and liver (P < 0.05) and upregulated the expression of the tight junction protein 1. The gut microbiota from the B. cereus group clustered separately from that of the PC group, with an increase in species of the Ruminococcaceae and Peptococcaceae families and a decrease in those of the Parabacteroides, Paraprevotella, and Desulfovibrio families. The potential probiotic B. cereus attenuated liver injury by restoring the gut flora balance and enhancing the intestinal barrier function.
Collapse
Affiliation(s)
- Ya-Ting Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jian-Zhong Ye
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Long-Xian Lv
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Xu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Li-Ya Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xian-Wan Jiang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wen-Rui Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Dai-Qiong Fang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao-Yuan Bian
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Kai-Cen Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qiang-Qiang Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiao-Jiao Xie
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yan-Meng Lu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
18
|
Deoxyelephantopin suppresses hepatic stellate cells activation associated with inhibition of aerobic glycolysis via hedgehog pathway. Biochem Biophys Res Commun 2019; 516:1222-1228. [PMID: 31296386 DOI: 10.1016/j.bbrc.2019.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
Abstract
Accumulating evidence suggests that hepatic stellate cells (HSCs) adopt aerobic glycolysis during activation. Hedgehog (Hh) pathway plays a vital role in the process of HSCs activation by regulating metabolism, and activation of the Hh pathway promotes transdifferentiation of HSCs into myofibroblasts. Deoxyelephantopin (DET), a naturally occurring sesquiterpene lactone from Elephantopus scaber, has been shown to exert hepatoprotective as well as anticancer effects. However, the effect of DET on hepatic fibrosis and glycolysis in HSCs have never been elucidated. Here, we studied the function of the DET on HSCs activation and investigated the anti-fibrogenic effects of DET was associated with interfering with glycolysis in HSCs. Our results first demonstrated that DET reduced the expression of a-smooth muscle actin (a-SMA) and a1(I)procollagen at both mRNA and protein levels, and restore lipogenesis in HSCs. Furthermore, DET decreased the expression of hexokinase (HK), phosphofructokinase-2 (PFK2), Glucose transporter 4 (Glut4), and reduced lactate production dose-dependently in HSCs. Moreover, we further revealed that DET reduced fibrotic gene expression, restored lipid accumulation in HSCs. However, the Hh pathway agonist SAG could reverse the above effect of DET. Together, these results indicate DET inhibits aerobic glycolysis in HSCs associated with inhibition of Hh pathway. Our results provided a novel mechanism for DET suppression of HSC activation implicated in antifibrotic therapy.
Collapse
|
19
|
Kabeer FA, Rajalekshmi DS, Nair MS, Prathapan R. In vitro and in vivo antitumor activity of deoxyelephantopin from a potential medicinal plant Elephantopus scaber against Ehrlich ascites carcinoma. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Chao WW, Cheng YW, Chen YR, Lee SH, Chiou CY, Shyur LF. Phyto-sesquiterpene lactone deoxyelephantopin and cisplatin synergistically suppress lung metastasis of B16 melanoma in mice with reduced nephrotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:194-206. [PMID: 30668340 DOI: 10.1016/j.phymed.2018.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cisplatin (CP) is a chemotherapeutic drug for treating melanoma that also causes adverse side effects in cancer patients. PURPOSE This study investigated the bioefficacy of a phytoagent deoxyelephantopin (DET) in inhibiting B16 melanoma cell activity, its synergism with CP against metastatic melanoma, and its capability to attenuate CP side effects in animals. METHODS DET and CP bioactivities were assessed by MTT assay, isobologram analysis, time-lapse microscopy, migration and invasion assays, flow cytometry and western blotting. In vivo bioluminescence imaging was used to detect lung metastasis of B16 cells carrying COX-2 reporter gene in syngeneic mice. H&E staining and immunohistochemistry were used to evaluate the compound/drug efficacy and CP side effects. Nephrotoxicity caused by CP treatment in mice was evaluated by UPLC/ESI-QTOF MS - based metabolomics and haematometry. RESULT DET, alone or in combination with cisplatin, inhibited B16 cell proliferation, migration, and invasion, and induced cell-cycle arrested at the G2/M phase and de-regulated cell-cycle mediators in cancer cells. In a murine B16COX-Luc metastatic allograft model, CP2 (2 mg/kg) treatment inhibited B16 lung metastasis accompanied by severe body weight loss, renal damage and inflammation, and haematological toxicity. DET10 and CP cotreatment (DET10 + CP1) or sequential treatment (CP2→DET10) significantly inhibited formation of pulmonary melanoma foci and reduced renal damage. DET pretreatment (Pre-DET10) or CP2→DET10 treatment had the longest survival (52 vs. 37 days for tumor control mice). CP treatment caused abnormally accumulated urea cycle metabolites and serotonin metabolite hippuric acid in renal tissues that were not seen with DET alone or in combination with CP. CONCLUSION The CP and DET combination may be an effective intervention for melanoma with reduced side effects.
Collapse
Affiliation(s)
- Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan 338, Taiwan
| | - Ya-Wen Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Hua Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Yi Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
21
|
Piceatannol attenuates D-GalN/LPS-induced hepatoxicity in mice: Involvement of ER stress, inflammation and oxidative stress. Int Immunopharmacol 2018; 64:131-139. [DOI: 10.1016/j.intimp.2018.08.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
|
22
|
Lv H, Fan X, Wang L, Feng H, Ci X. Daphnetin alleviates lipopolysaccharide/d-galactosamine-induced acute liver failure via the inhibition of NLRP3, MAPK and NF-κB, and the induction of autophagy. Int J Biol Macromol 2018; 119:240-248. [PMID: 30031824 DOI: 10.1016/j.ijbiomac.2018.07.101] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 01/31/2023]
|
23
|
Elmann A, Telerman A, Ofir R, Kashman Y, Lazarov O. β-amyloid cytotoxicity is prevented by natural achillolide A. J Nat Med 2018; 72:626-631. [PMID: 29546477 PMCID: PMC5960475 DOI: 10.1007/s11418-018-1191-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/11/2018] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia in adults. Current available drugs for AD transiently alleviate some of the symptoms, but do not modify the disease mechanism or cure it. Therefore, new drugs are desperately needed. Key contributors to AD are amyloid beta (Aβ)- and reactive oxygen species (ROS)-induced cytotoxicities. Plant-derived substances have been shown to affect various potential targets in various diseases including AD. Therefore, phytochemicals which can protect neuronal cells against these insults might help in preventing and treating this disease. In the following research, we have isolated the sesquiterpene lactone achillolide A from the plant Achillea fragrantissima and, for the first time, characterized its effects on Aβ-treated neuroblastoma cells. Aβ is a peptide derived from the sequential cleavage of amyloid precursor protein, and is part of the pathogenesis of AD. Our current study aimed to determine whether achillolide A can interfere with Aβ-induced processes in Neuro2a cells, and protect them from its toxicity. Our results show that achillolide A decreased Aβ-induced death and enhanced the viability of Neuro2a cells. In addition, achillolide A reduced the accumulation of Aβ-induced ROS and inhibited the phosphorylation of stress-activated protein kinase/c-Jun N-terminal kinase and p44/42 mitogen-activated protein kinase in these cells. We therefore suggest that achillolide A may have therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
- Anat Elmann
- Department of Food Quality and Safety, Agricultural Research Organization, The Volcani Center, POB 15159, 7528809 Rishon LeZion, Israel
| | - Alona Telerman
- Department of Food Quality and Safety, Agricultural Research Organization, The Volcani Center, POB 15159, 7528809 Rishon LeZion, Israel
| | - Rivka Ofir
- The Dead Sea and Arava Science Center, Central Arava Branch, 8682500 Merkaz Sapir, Israel
| | - Yoel Kashman
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
24
|
Deoxyelephantopin ameliorates lipopolysaccharides (LPS)-induced memory impairments in rats: Evidence for its anti-neuroinflammatory properties. Life Sci 2018; 206:45-60. [PMID: 29792878 DOI: 10.1016/j.lfs.2018.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
AIM Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model. MATERIALS AND METHODS In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group. KEY FINDINGS DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3. SIGNIFICANCE Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD.
Collapse
|
25
|
Jose D, Lekshmi N, Goel AK, Kumar RA, Thomas S. Development of a Novel Herbal Formulation To Inhibit Biofilm Formation in Toxigenic Vibrio cholerae. J Food Prot 2017; 80:1933-1940. [PMID: 29053421 DOI: 10.4315/0362-028x.jfp-17-091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/03/2017] [Indexed: 11/11/2022]
Abstract
Vibrio cholerae, a causative agent of the waterborne disease cholera, still threatens a large proportion of world's population. The role of biofilm formation in V. cholerae pathogenesis is well established, as it provides the bacterium enhanced tolerance to antimicrobial agents and increased transmission. In the present study, four medicinal plants used in traditional medicines with antidiarrheal properties were evaluated for its antibiofilm activity. Methanol extracts of these plants (Centella asiatica, Elephantopus scaber, Camellia sinensis, and Holarrhena antidysenterica) showed promising antibiofilm activity against V. cholerae with crystal violet and air-liquid interface coverslip assays. Results revealed that C. asiatica, E. scaber, C. sinensis, and H. antidysenterica extracts significantly inhibited biofilm formation by approximately 75, 76, 78, and 55% at concentrations of 3, 2, 1, and 0.6 mg/mL, respectively. A promising antibiofilm activity of ∼89% inhibition at 1.5 mg/mL concentration was observed when a combination of E. scaber and C. sinensis was used. The herbal extracts were thermostable at a temperature range of 40 to 100°C. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that the viability of bacteria was not affected by treatment with these plant extracts. Gene expression studies revealed that extracts of H. antidysenterica leaf, H. antidysenterica bark, and the whole plant of E. scaber and C. asiatica down-regulate aphA or aphB, the major regulator genes modulating both virulence and biofilm formation. Hence, we propose that these herbal combinations could serve as a multifaceted approach to combat the pathogen and also, in turn, reduce antimicrobial resistance development.
Collapse
Affiliation(s)
- Diana Jose
- Cholera and Biofilm Research Laboratory, Thiruvananthapuram 695 014, Kerala, India
| | - N Lekshmi
- Cholera and Biofilm Research Laboratory, Thiruvananthapuram 695 014, Kerala, India.,University of Kerala, Thiruvananthapuram, 695034, Kerala, India
| | - A K Goel
- Defence Research and Development Establishment, Gwalior 474 002, Madhya Pradesh, India
| | - R Ajay Kumar
- Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Thiruvananthapuram 695 014, Kerala, India
| |
Collapse
|
26
|
Shiau JY, Nakagawa-Goto K, Lee KH, Shyur LF. Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stress-mediated paraptosis-like cell death. Oncotarget 2017; 8:56942-56958. [PMID: 28915644 PMCID: PMC5593615 DOI: 10.18632/oncotarget.18183] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/18/2017] [Indexed: 11/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a highly metastatic cancer among the breast cancer subgroups. A thorny issue for clinical therapy of TNBC is lack of an efficient targeted therapeutic strategy. We previously created a novel sesquiterpene lactone analog (named DETD-35) derived from plant deoxyelephantopin (DET) which exhibits potent effects against human TNBC MDA-MB-231 tumor growth in a xenograft mouse model. Here we studied the mechanisms of both DET and DETD-35 against MDA-MB-231 cells. DETD-35 (3-fold decreased in IC50) exhibited better anti-TNBC cell activity than DET as observed through induction of reactive oxygen species production (within 2 h treatment) and damage to the ER structures, resulting in ER-derived cytoplasmic vacuolation and ubiquitinated protein accumulation in the treated cells. Intriguingly, the effects of both compounds were blockaded by pretreatment with ROS scavengers, N-acetylcysteine and reduced glutathione, and protein synthesis inhibitor, cycloheximide. Further, knockdown of MEK upstream regulator RAF1 and autophagosomal marker LC3, and co-treatment with JNK or ERK1/2 inhibitor resulted in the most significant attenuation of DETD-35-induced morphological and molecular or biochemical changes in cancer cells, while the inhibitory effect of DET was not influenced by MAPK inhibitor treatment. Therefore, DETD-35 exerted both ER stress-mediated paraptosis and apoptosis, which may explain its superior activity to DET against TNBC cells. Although the chemotherapeutic drug paclitaxel induced vacuole-like structures in MDA-MB-231 cells, no paraptotic cell death features were detected. This study provides a strategy for combating TNBC through sesquiterpene lactone analogs by induction of oxidative and ER stresses that cause paraptosis-like cell death.
Collapse
Affiliation(s)
- Jeng-Yuan Shiau
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Kyoko Nakagawa-Goto
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lie-Fen Shyur
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Teah YF, Abduraman MA, Amanah A, Adenan MI, Sulaiman SF, Tan ML. The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (I Kr) and human ether-a-go-go-related gene (hERG) expression. Food Chem Toxicol 2017; 107:293-301. [PMID: 28689918 DOI: 10.1016/j.fct.2017.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022]
Abstract
Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 μM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 μM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and Ikr blocker.
Collapse
Affiliation(s)
- Yi Fan Teah
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation Malaysia, Pulau Pinang, Malaysia
| | | | - Azimah Amanah
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation Malaysia, Pulau Pinang, Malaysia
| | - Mohd Ilham Adenan
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, Malaysia
| | | | - Mei Lan Tan
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation Malaysia, Pulau Pinang, Malaysia; Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
28
|
Lv H, Qi Z, Wang S, Feng H, Deng X, Ci X. Asiatic Acid Exhibits Anti-inflammatory and Antioxidant Activities against Lipopolysaccharide and d-Galactosamine-Induced Fulminant Hepatic Failure. Front Immunol 2017; 8:785. [PMID: 28736552 PMCID: PMC5500632 DOI: 10.3389/fimmu.2017.00785] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 01/17/2023] Open
Abstract
Inflammation and oxidative stress are essential for the pathogenesis of fulminant hepatic failure (FHF). Asiatic acid (AA), which is a pentacyclic triterpene that widely occurs in various vegetables and fruits, has been reported to possess antioxidant and anti-inflammatory properties. In this study, we investigated the protective effects of AA against lipopolysaccharide (LPS) and d-galactosamine (GalN)-induced FHF and the underlying molecular mechanisms. Our findings suggested that AA treatment effectively protected against LPS/d-GalN-induced FHF by lessening the lethality; decreasing the alanine transaminase and aspartate aminotransferase levels, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α production, malondialdehyde formation, myeloperoxidase level and reactive oxygen species generation (i.e., H2O2, NO, and O2−), and increasing the glutathione and superoxide dismutase contents. Moreover, AA treatment significantly inhibited mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathway activation via the partial induction of programmed cell death 4 (PDCD4) protein expressions, which are involved in inflammatory responses. Furthermore, AA treatment dramatically induced the expression of the glutamate-cysteine ligase modifier subunit, the glutamate-cysteine ligase catalytic subunit, heme oxygenase-1, and NAD (P) H: quinoneoxidoreductase 1 (NQO1), which are largely dependent on activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) through the induction of AMP-activated protein kinase (AMPK) and glycogen synthase kinase-3β (GSK3β) phosphorylation. Accordingly, AA exhibited protective roles against LPS/d-GalN-induced FHF by inhibiting oxidative stress and inflammation. The underlying mechanism may be associated with the inhibition of MAPK and NF-κB activation via the partial induction of PDCD4 and upregulation of Nrf2 in an AMPK/GSK3β pathway activation-dependent manner.
Collapse
Affiliation(s)
- Hongming Lv
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhimin Qi
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sisi Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Haihua Feng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinxin Ci
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Shiau JY, Chang YQ, Nakagawa-Goto K, Lee KH, Shyur LF. Phytoagent Deoxyelephantopin and Its Derivative Inhibit Triple Negative Breast Cancer Cell Activity through ROS-Mediated Exosomal Activity and Protein Functions. Front Pharmacol 2017; 8:398. [PMID: 28706483 PMCID: PMC5490438 DOI: 10.3389/fphar.2017.00398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022] Open
Abstract
A novel plant sesquiterpene lactone derivative, DET derivative (DETD)-35, originating from parental deoxyelephantopin (DET) was previously observed to effectively suppress human triple negative breast cancer (TNBC) MDA-MB-231 cell activity and tumor growth in mice. In this study, the mechanisms underlying the activity of DETD-35 were elucidated. DET and DETD-35 induced reactive oxygen species (ROS) which caused structural damage and dysfunction of mitochondria and increased cytosolic calcium level, subsequently evoking exosome release from the cancer cells. Intriguingly, exosomes induced by both compounds had an atypical function. Cancer cell-derived exosomes commonly show metastatic potential, but upon DET/DETD-35 treatment exosomes showed anti-proliferative activity against MDA-MB-231 cells. Quantitative proteome analysis of TNBC cell-secreted exosomes showed that DET and DETD-35 attenuated the expression of proteins related to cell migration, cell adhesion, and angiogenesis. Furthermore, several exosomal proteins participating in biological mechanisms such as oxidative stress and decrease of transmembrane potential of mitochondria were found deregulated by treatment with either compound. Pretreatment with ROS scavenger, N-acetylcysteine, blockaded DET- or DETD-35-induced oxidative stress and calcium dependent exosome release mechanisms, and also reverted DET- or DETD-35-induced reprogramming exosomal protein expression profiles resulting in attenuation of exosomal toxicity against TNBC cell proliferation. In summary, this study shows that a plant-derived sesquiterpene lactone DET and its analog DETD-35 inhibitory TNBC cell activities through oxidative stress-induced cancer cell releasing exosomes in tandem with alteration of exosomal protein composition and functions. The findings of this study suggest that DETD-35 may be suitable for further development into an anti-TNBC drug.
Collapse
Affiliation(s)
- Jeng-Yuan Shiau
- Institute of Biotechnology, National Taiwan UniversityTaipei, Taiwan.,Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Yong-Qun Chang
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan.,Department of Biochemical Science and Technology, College of Life Science, National Taiwan UniversityTaipei, Taiwan
| | - Kyoko Nakagawa-Goto
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawa, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel HillNC, United States
| | - Lie-Fen Shyur
- Institute of Biotechnology, National Taiwan UniversityTaipei, Taiwan.,Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan.,Department of Biochemical Science and Technology, College of Life Science, National Taiwan UniversityTaipei, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
30
|
Deoxyelephantopin and Isodeoxyelephantopin as Potential Anticancer Agents with Effects on Multiple Signaling Pathways. Molecules 2017. [PMID: 28635648 PMCID: PMC6152668 DOI: 10.3390/molecules22061013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer is the 2nd leading cause of death worldwide. The development of drugs to target only one specific signaling pathway has limited therapeutic success. Developing chemotherapeutics to target multiple signaling pathways has emerged as a new prototype for cancer treatment. Deoxyelephantopin (DET) and isodeoxyelephantopin (IDET) are sesquiterpene lactone components of “Elephantopus scaber and Elephantopus carolinianus”, traditional Chinese medicinal herbs that have long been used as folk medicines to treat liver diseases, diabetes, diuresis, bronchitis, fever, diarrhea, dysentery, cancer, and inflammation. Recently, the anticancer activity of DET and IDET has been widely investigated. Here, our aim is to review the current status of DET and IDET, and discuss their anticancer activity with specific emphasis on molecular targets and mechanisms used by these compounds to trigger apoptosis pathways which may help to further design and conduct research to develop them as lead therapeutic drugs for cancer treatments. The literature has shown that DET and IDET induce apoptosis through multiple signaling pathways which are deregulated in cancer cells and suggested that by targeting multiple pathways simultaneously, these compounds could selectively kill cancer cells. This review suggests that DET and IDET hold promising anticancer activity but additional studies and clinical trials are needed to validate and understand their therapeutic effect to develop them into potent therapeutics for the treatment of cancer.
Collapse
|
31
|
Ethyl Caffeate Ameliorates Collagen-Induced Arthritis by Suppressing Th1 Immune Response. J Immunol Res 2017; 2017:7416792. [PMID: 28706956 PMCID: PMC5494568 DOI: 10.1155/2017/7416792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/26/2017] [Indexed: 12/25/2022] Open
Abstract
The present study was designed to assess the antiarthritic potential of ECF in collagen-induced arthritis (CIA) and explore its underlying mechanism. Methods. In vitro, lymphocyte proliferation assay was measured by CCK-8 kit. In vivo, the therapeutic potential of ECF on CIA was investigated; surface marker, Treg cell, and intracellular cytokines (IL-17A and IFN-γ) were detected by flow cytometry. Th1 cell differentiation assay was performed, and mRNA expression in interferon-γ-related signaling was examined by q-PCR analysis. Results. In vitro, ECF markedly inhibited the proliferation of splenocytes in response to ConA and anti-CD3. In vivo, ECF treatment reduced the severity of CIA, inhibited IFN-γ and IL-6 secretion, and decreased the proportion of CD11b+Gr-1+ splenic neutrophil. Meanwhile, ECF treatment significantly inhibited the IFN-γ expression in CD4+T cell without obviously influencing the development of Th17 cells and T regulatory cells. In vitro, ECF suppressed the differentiation of naive CD4+ T cells into Th1. Furthermore, ECF intensely blocked the transcriptional expression in interferon-γ-related signaling, including IFN-γ, T-bet, STAT1, and STAT4. Conclusion. Our results indicated that ECF exerted antiarthritic potential in collagen-induced arthritis by suppressing Th1 immune response and interferon-γ-related signaling.
Collapse
|
32
|
Molecular mechanisms of anticancer activity of deoxyelephantopin in cancer cells. Integr Med Res 2017; 6:190-206. [PMID: 28664142 PMCID: PMC5478298 DOI: 10.1016/j.imr.2017.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/04/2017] [Accepted: 03/22/2017] [Indexed: 01/16/2023] Open
Abstract
Background Deoxyelephantopin (DOE) is a natural bioactive sesquiterpene lactone from Elephantopus scaber, a traditionally relevant herb in Chinese and Indian medicine. It has shown promising anticancer effects against a broad spectrum of cancers. Methods We examined the effect of DOE on growth, autophagy, apoptosis, cell cycle progression, metastasis, and various molecular signaling pathways in cancer cells, and endeavored to decipher the molecular mechanisms underlying its effect. The cytotoxicity of DOE was examined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and colony formation assays. The antimetastatic potential of DOE was identified by wound closure, as well as invasion and migration assays. The expression of mRNAs and proteins related to cytotoxicity in cancer cells induced by DOE was investigated using reverse transcription-polymerase chain reaction, flow cytometry, and Western blot analysis. Results DOE showed significant cytotoxicity and induced apoptosis in cancer cells. DOE promoted the autophagy of HCT 116 and K562 cells. DOE arrested cell cycle progression in the G2/M phase. DOE treatment caused activation of caspase-8, -9, -3 and -7, reactive oxygen species production, and cleavage of cleavage of poly-ADP-ribose polymerase (PARP), the markers of apoptosis. Moreover, apoptosis induction was associated with mitochondrial permeability and endoplasmic reticulum stress. Treatment of cancer cells with DOE inhibited mitogen-activated protein kinases, nuclear factor-kappa B, phosphatidylinositol 3-kinase (PI3K/Akt), and β-catenin signaling. Furthermore, treatment of DOE increased the expression of p53, phospho-Jun amino-terminal kinases (p-JNK), and p-p38 and decreased the expression of phospho-signal transducer and activator of transcription 3 (p-STAT3) and phospho-mammalian target of rapamycin (p-mTOR) in cancer cells. DOE downregulated matrix metalloproteinase (MMP-2) and MMP-9, urokinase-type plasminogen activator (uPA), and urokinase-type plasminogen activator receptor (uPAR) mRNA levels in cancer cells. Conclusion These findings concluded that DOE may be useful as a chemotherapeutic agent against cancer.
Collapse
|
33
|
|
34
|
Feng JH, Nakagawa-Goto K, Lee KH, Shyur LF. A Novel Plant Sesquiterpene Lactone Derivative, DETD-35, Suppresses BRAFV600E Mutant Melanoma Growth and Overcomes Acquired Vemurafenib Resistance in Mice. Mol Cancer Ther 2016; 15:1163-76. [PMID: 27048951 DOI: 10.1158/1535-7163.mct-15-0973] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
Abstract
Acquired resistance to vemurafenib develops through reactivation of RAF/MEK/ERK signaling or bypass mechanisms. Recent combination therapies such as a MEK inhibitor combined with vemurafenib show improvement in major clinical end points, but the percentage of patients with adverse toxic events is higher than with vemurafenib monotherapy and most patients ultimately relapse. Therefore, there is an urgent need to develop new antimelanoma drugs and/or adjuvant agents for vemurafenib therapy. In this study, we created a novel semiorganically modified derivative, DETD-35, from deoxyelephantopin (DET), a plant sesquiterpene lactone demonstrated as an anti-inflammatory and anti-mammary tumor agent. Our results show that DETD-35 inhibited proliferation of a panel of melanoma cell lines, including acquired vemurafenib resistance A375 cells (A375-R) established in this study, with superior activities to DET and no cytotoxicity to normal melanocytes. DETD-35 suppressed tumor growth and reduced tumor mass as effectively as vemurafenib in A375 xenograft study. Furthermore, DETD-35 also reduced tumor growth in both acquired (A375-R) and intrinsic (A2058) vemurafenib resistance xenograft models, where vemurafenib showed no antitumor activity. Notably, the combination of DETD-35 and vemurafenib exhibited the most significant effects in both in vitro and in vivo xenograft studies due to synergism of the compound and the drug. Mechanistic studies suggested that DETD-35 overcame acquired vemurafenib resistance at least in part through deregulating MEK-ERK, Akt, and STAT3 signaling pathways and promoting apoptosis of cancer cells. Overall, our results suggest that DETD-35 may be useful as a therapeutic or adjuvant agent against BRAF(V600E) mutant and acquired vemurafenib resistance melanoma. Mol Cancer Ther; 15(6); 1163-76. ©2016 AACR.
Collapse
Affiliation(s)
- Jia-Hua Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Kyoko Nakagawa-Goto
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan. Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
35
|
Nakagawa-Goto K, Chen JY, Cheng YT, Lee WL, Takeya M, Saito Y, Lee KH, Shyur LF. Novel sesquiterpene lactone analogues as potent anti-breast cancer agents. Mol Oncol 2016; 10:921-37. [PMID: 27055598 DOI: 10.1016/j.molonc.2016.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with high grade, metastatic phenotype, younger patient age, and poor prognosis. The discovery of an effective anti-TNBC agent has been a challenge in oncology. In this study, fifty-eight ester derivatives (DETDs) with a novel sesquiterpene dilactone skeleton were organically synthesized from a bioactive natural product deoxyelephantopin (DET). Among them, DETD-35 showed potent antiproliferative activities against a panel of breast cancer cell lines including TNBC cell line MDA-MB-231, without inhibiting normal mammary cells M10. DETD-35 exhibited a better effect than parental DET on inhibiting migration, invasion, and motility of MDA-MB-231 cells in a concentration-dependent manner. Comparative study of DETD-35, DET and chemotherapeutic drug paclitaxel (PTX) showed that PTX mainly caused a typical time-dependent G2/M cell-cycle arrest, while DETD-35 or DET treatment induced cell apoptosis. In vivo efficacy of DETD-35 was evaluated using a lung metastatic MDA-MB-231 xenograft mouse model. DETD-35 significantly suppressed metastatic pulmonary foci information along with the expression level of VEGF and COX-2 in SCID mice. DETD-35 also showed a synergistic antitumor effect with PTX in vitro and in vivo. This study suggests that the novel compound DETD-35 may have a potential to be further developed into a therapeutic or adjuvant agent for chemotherapy against metastatic TNBC.
Collapse
Affiliation(s)
- Kyoko Nakagawa-Goto
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA.
| | - Jo-Yu Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University 11031, Taipei, Taiwan, ROC
| | - Yu-Ting Cheng
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, ROC; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, ROC; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Wai-Leng Lee
- School of Science, Monash University Sunway Campus, Selangor 47500, Malaysia
| | - Munehisa Takeya
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yohei Saito
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Chinese Medicine Research and Development Center, China Medical University and Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan, ROC.
| | - Lie-Fen Shyur
- Graduate Institute of Pharmacognosy, Taipei Medical University 11031, Taipei, Taiwan, ROC; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, ROC; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, ROC.
| |
Collapse
|
36
|
Choi JW, Kim IH, Kim YM, Lee MK, Nam TJ. Pyropia yezoensis glycoprotein regulates antioxidant status and prevents hepatotoxicity in a rat model of D-galactosamine/lipopolysaccharide-induced acute liver failure. Mol Med Rep 2016; 13:3110-4. [PMID: 26935645 DOI: 10.3892/mmr.2016.4932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 11/18/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effects of Pyropia yezoensis glycoprotein (PYGP) on hepatic antioxidative enzyme activity and mitogen-activated protein kinase (MAPK) phosphorylation in a rat model of D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced hepatotoxicity. Glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were measured to determine the severity of hepatotoxicity. Treatment with D‑GalN/LPS significantly increased the GOT, GPT and lipid peroxidation levels, and decreased the antioxidant capacity of the rats. Treatment with PYGP (150 and 300 mg/kg/body weight) decreased the levels of GOT, GPT and lipid peroxidation levels. The activities of antioxidative enzymes, including catalase, glutathione S‑transferase and glutathione were upregulated following PYGP treatment. Furthermore, D‑GalN/LPS‑induced MAPK phosphorylation, and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression were downregulated by PYGP. These results indicated that PYGP may exert hepatoprotective effects via the upregulation of antioxidative enzymes, and the downregulation of the MAPK signaling pathway and iNOS and COX-2 expression.
Collapse
Affiliation(s)
- Jeong-Wook Choi
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - In-Hye Kim
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Young-Min Kim
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| |
Collapse
|
37
|
Xia X, Fu J, Song X, Shi Q, Su C, Song E, Song Y. Neohesperidin dihydrochalcone down-regulates MyD88-dependent and -independent signaling by inhibiting endotoxin-induced trafficking of TLR4 to lipid rafts. Free Radic Biol Med 2015; 89:522-32. [PMID: 26453923 DOI: 10.1016/j.freeradbiomed.2015.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023]
Abstract
Fulminant hepatic failure (FHF) is a lethal clinical syndrome characterized by the activation of macrophages and the increased production of inflammatory mediators. The purpose of this study was to investigate the effects of neohesperidin dihydrochalcone (NHDC), a widely-used low caloric artificial sweetener against FHF. An FHF experimental model was established in mice by intraperitoneal injection of D-galactosamine (d-GalN) (400mg/kg)/lipopolysaccharides (LPS) (10 μg/kg). Mice were orally administered NHDC for 6 continuous days and at 1h before d-GalN/LPS administration. RAW264.7 macrophages were used as an in vitro model. Cells were pre-treated with NHDC for 1h before stimulation with LPS (10 μg/ml) for 6h. d-GalN/LPS markedly increased the serum transaminase activities and levels of oxidative and inflammatory markers, which were significantly attenuated by NHDC. Mechanistic analysis indicated that NHDC inhibited LPS-induced myeloid differentiation factor 88 (MyD88) and TIR-containing adapter molecule (TRIF)-dependent signaling. Transient transfection of TLR4 or MyD88 siRNA inhibited the downstream inflammatory signaling. This effect could also be achieved by the pretreatment with NHDC. The fluorescence microscopy and flow cytometry results suggested that NHDC potently inhibited the binding of LPS to TLR4 in RAW264.7 macrophages. In addition, the inhibitory effect of NHDC on LPS-induced translocation of TLR4 into lipid raft domains played an important role in the amelioration of production of downstream pro-inflammatory molecules. Furthermore, the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) by NHDC inhibited TLR4 signaling. In conclusion, our results suggest that NHDC attenuates d-GalN/LPS-induced FHF by inhibiting the TLR4-mediated inflammatory pathway, demonstrating a new application of NHDC as a hepatoprotective agent.
Collapse
Affiliation(s)
- Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Juanli Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Xiufang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Qiong Shi
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Chuanyang Su
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715.
| |
Collapse
|
38
|
Fonsêca DV, Salgado PRR, de Carvalho FL, Salvadori MGSS, Penha ARS, Leite FC, Borges CJS, Piuvezam MR, Pordeus LCDM, Sousa DP, Almeida RN. Nerolidol exhibits antinociceptive and anti-inflammatory activity: involvement of the GABAergic system and proinflammatory cytokines. Fundam Clin Pharmacol 2015; 30:14-22. [DOI: 10.1111/fcp.12166] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/24/2015] [Accepted: 10/23/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Diogo V. Fonsêca
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Paula R. R. Salgado
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Fabíola L. de Carvalho
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Mirian Graciela S. S. Salvadori
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Antônia Rosângela S. Penha
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Fagner C. Leite
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Immunology; University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Clóvis José S. Borges
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Marcia R. Piuvezam
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Immunology; University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Liana Clébia de Morais Pordeus
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Damião P. Sousa
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Reinaldo N. Almeida
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| |
Collapse
|
39
|
Bioactivities of Compounds from Elephantopus scaber, an Ethnomedicinal Plant from Southwest China. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:569594. [PMID: 24963325 PMCID: PMC4055671 DOI: 10.1155/2014/569594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 11/17/2022]
Abstract
Elephantopus scaber is an ethnomedicinal plant used by the Zhuang people in Southwest China to treat headaches, colds, diarrhea, hepatitis, and bronchitis. A new δ-truxinate derivative, ethyl, methyl 3,4,3′,4′-tetrahydroxy-δ-truxinate (1), was isolated from the ethyl acetate extract of the entire plant, along with 4 known compounds. The antioxidant activity of these 5 compounds was determined by ABTS radical scavenging assay. Compound 1 was also tested for its cytotoxicity effect against HepG2 by MTT assay (IC50 = 60 μM), and its potential anti-inflammatory, antibiotic, and antitumor bioactivities were predicted using target fishing method software.
Collapse
|
40
|
Kabeer FA, Sreedevi GB, Nair MS, Rajalekshmi DS, Gopalakrishnan LP, Prathapan R. Isodeoxyelephantopin from Elephantopus scaber (Didancao) induces cell cycle arrest and caspase-3-mediated apoptosis in breast carcinoma T47D cells and lung carcinoma A549 cells. Chin Med 2014; 9:14. [PMID: 24742378 PMCID: PMC4003511 DOI: 10.1186/1749-8546-9-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Isodeoxyelephantopin (IDOE) isolated from Elephantopus scaber L. (Didancao) is used in Chinese medicine for the treatment of some types of cancer. The anti-cancer mechanism of IDOE remains unclear. This study aims to investigate the antiproliferative activity of IDOE on breast carcinoma T47D cells and lung carcinoma A549 cells. METHODS The growth inhibitory effects of IDOE on breast carcinoma T47D cells, lung carcinoma A549 cells, and normal lymphocytes were evaluated by the MTT assay. Morphological analysis of apoptosis induction was performed by acridine orange/ethidium bromide dual-staining and Hoechst 33342 nuclear staining. The cell cycle profile, caspase-3 expression, and annexin V staining were evaluated by flow cytometry. RESULTS IDOE inhibited the growth of A549 and T47D cells in a dose- and time-dependent manner with IC50 values of 10.46 and 1.3 μg/mL, respectively. IDOE was not significantly toxic to normal lymphocytes. The cells became detached from the monolayer and rounded up, had fragmented nuclei and condensed chromatin, and the numbers of apoptotic cells increased (P = 0.0003). IDOE-induced cell death was associated with activated caspase-3 expression followed by cell cycle arrest at G2/M phase. CONCLUSIONS IDOE inhibited the proliferation of breast cancer cells and lung carcinoma cells and induced caspase-3-mediated apoptosis and cell cycle arrest in the treated cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Remani Prathapan
- Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
41
|
Quan J, Jin M, Xu H, Qiu D, Yin X. BRP, a polysaccharide fraction isolated from Boschniakia rossica, protects against galactosamine and lipopolysaccharide induced hepatic failure in mice. J Clin Biochem Nutr 2014; 54:181-9. [PMID: 24895481 PMCID: PMC4042147 DOI: 10.3164/jcbn.13-105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/25/2013] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to investigate the hepatoprotective effect of BRP, a polysaccharide fraction isolated from Boschniakia rossica, against galactosamine and lipopolysaccharide induced fulminant hepatic failure. Mice were injected with a single dose of galactosamine/lipopolysaccharide with or without pretreatment of BRP. Results showed marked reduction of hepatic necrosis, serum marker enzymes and levels of tumor necrosis factor-α and interleukin-6 in BRP pretreated mice when compared with galactosamine/lipopolysaccharide-challenged mice. Mice pretreated with BRP decreased the activation of caspases-3 and caspase-8, and showed a reduced level of DNA fragmentation of liver cells. BRP also reduced hepatic lipid peroxidation, increased potential of hepatic antioxidative defense system, and reduced hepatic nitric oxide level which was elevated by galactosamine/lipopolysaccharide injection. Immunoblot analysis showed down-regulation of inducible nitric oxide synthase and cyclooxygenase-2 proteins of liver tissues in BRP pretreated group when compared with galactosamine/lipopolysaccharide-challenged group. Furthermore, treatment with galactosamine/lipopolysaccharide markedly increased toll-like receptor 4, nuclear level of nuclear factor-κB, and phosphorylation of both extracellular signal-regulated kinase and c-Jun N-terminal kinase in liver tissues. However, these increases were attenuated by pretreatment with BRP. The results suggest that BRP alleviates galactosamine/lipopolysaccharide-induced liver injury by enhancing antioxidative defense system, suppressing inflammatory responses and reducing apoptotic signaling.
Collapse
Affiliation(s)
- Jishu Quan
- Department of Biochemistry and Molecular Biology, Medical College of Yanbian University, Yanji, Jilin Province 133000, China ; Department of Physiology and Pathophysiology, Medical College of Yanbian University, Yanji, Jilin Province 133000, China
| | - Meihua Jin
- Department of Biochemistry and Molecular Biology, Medical College of Yanbian University, Yanji, Jilin Province 133000, China
| | - Huixian Xu
- The Affiliated Hospital of Yanbian University, Yanji, Jilin Province 133000, China
| | - Delai Qiu
- Department of Physiology and Pathophysiology, Medical College of Yanbian University, Yanji, Jilin Province 133000, China
| | - Xuezhe Yin
- The Affiliated Hospital of Yanbian University, Yanji, Jilin Province 133000, China
| |
Collapse
|
42
|
Hiradeve SM, Rangari VD. Elephantopus scaber Linn.: A review on its ethnomedical, phytochemical and pharmacological profile. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Hiradeve SM, Rangari VD. A review on pharmacology and toxicology of Elephantopus scaber Linn. Nat Prod Res 2014; 28:819-30. [DOI: 10.1080/14786419.2014.883394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sachin M. Hiradeve
- School of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur 495009, Chhattisgarh, India
| | - Vinod D. Rangari
- School of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
44
|
Chou TW, Feng JH, Huang CC, Cheng YW, Chien SC, Wang SY, Shyur LF. A plant kavalactone desmethoxyyangonin prevents inflammation and fulminant hepatitis in mice. PLoS One 2013; 8:e77626. [PMID: 24143247 PMCID: PMC3797050 DOI: 10.1371/journal.pone.0077626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/03/2013] [Indexed: 01/25/2023] Open
Abstract
Alpinia pricei Hayata is a Formosan plant which has been popularly used as nutraceutical or folk medicine for inflammation and various disorders. An active compound of the plant rhizomes, desmethoxyyangonin (DMY), was identified in this study for its novel effect against endotoxin lipopolysaccharide (LPS)-stimulated inflammation in murine macrophages and LPS/D-galactosamine (LPS/D-GalN)-induced fulminant hepatitis in mice. DMY was observed to significantly inhibit proliferation and activation of T cells ex vivo and the activity of several pro-inflammatory mediators in vitro. DMY also protected LPS/D-GalN−induced acute hepatic damages in mice through inhibiting aminotransferases activities and infiltrations of inflammatory macrophages, neutrophils and pathogenic T cells into the liver tissues. In addition, pretreatment with DMY significantly improved the survival rate of LPS/D-GalN−treated mice to 90% (9/10), compared to LPS/D-GalN−treated group (40%, 4/10). UPLC/MS platform-based comparative metabolomics approach was used to explore the serum metabolic profile in fulminant hepatic failure (FHF) mice with or without the DMY pretreatment. The results showed that LPS/D-GalN−induced hepatic damage is likely through perturbing amino acid metabolism, which leads to decreased pyruvate formation via catalysis of aminotransferases, and DMY treatment can prevent to a certain degree of these alterations in metabolic network in mouse caused by LPS/D-GalN. Mechanistic investigation demonstrated that DMY protects LPS or LPS/D-GalN−induced damages in cell or liver tissues mainly through de-regulating IKK/NFκB and Jak2/STAT3 signaling pathways. This report provides evidence-based knowledge to support the rationale for the use of A. pricei root extract in anti-inflammation and also its new function as hepatoprotetive agent against fulminant hepatitis.
Collapse
Affiliation(s)
- Tsui-Wei Chou
- Department of Culinary Arts, Taoyuan Innovation Institute of Technology, Chungli, Taoyuan County, Taiwan
| | - Jia-Hua Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Guishan Township, Taoyuan County, Taiwan
| | - Ya-Wen Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Chang Chien
- The Experimental Forest Management Office, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (LS); (SW)
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
- * E-mail: (LS); (SW)
| |
Collapse
|
45
|
Huang CC, Huang WC, Yang SC, Chan CC, Lin WT. Ganoderma tsugae hepatoprotection against exhaustive exercise-induced liver injury in rats. Molecules 2013; 18:1741-54. [PMID: 23434860 PMCID: PMC6270576 DOI: 10.3390/molecules18021741] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 12/19/2022] Open
Abstract
Several studies have been shown that accelerated apoptosis is involved in post-exercise lymphocytopenia and tissue damage after high-intensity exercise. Ganoderma tsugae (GT) is one of the well-known medicinal mushrooms that possess various pharmacological functions. This mushroom has traditionally been used for health promotion purposes. This study investigates the hepatoprotective effects of GT on exhaustive exercise-induced liver damage. Twenty-four male Sprague-Dawley rats were randomly divided into four groups and designated as exhaustive exercise only (E), exhaustive exercise with low dosage (EL), medium dosage (EM) and high dosage (EH) GT at 0, 0.1875, 0.9375 and 1.875 g/kg/day, respectively. After 30 days all rats were euthanized immediately after an exhaustive running challenge on a motorized treadmill. The rat livers were immediately harvested. Evidence of apoptotic liver cell death was revealed using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspases mediated cascade events. DNA fragmentation, an apoptosis process, can be examined using TUNEL assay. A few TUNEL-positive hepatocytes, compared to the exercise only group, were observed in the livers from exhaustive animals supplemented with GT. Immunoblot analysis also showed that caspase-6-mediated specific cleavage of lamin A/C was increased significantly in the livers of group E, but was significantly decreased in the EM and EH groups. Our observations demonstrate that GT possesses anti-apoptotic and hepatoprotective potential after exhaustive exercise.
Collapse
Affiliation(s)
- Chi-Chang Huang
- Graduate Institute of Sports Science, College of Exercise and Health Sciences, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Wen-Ching Huang
- Graduate Institute of Athletics and Coaching Science, College of Sports and Athletics, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Chi Chan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung 40704, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-2359-0121 (ext. 37709); Fax: +886-4-2350-6053
| |
Collapse
|
46
|
Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 2013; 55:279-89. [PMID: 23353004 DOI: 10.1016/j.fct.2012.12.063] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/08/2023]
Abstract
Extracts from medicinal plants, many of which have been used for centuries, are increasingly tested in models of hepatotoxicity. One of the most popular models to evaluate the hepatoprotective potential of natural products is acetaminophen (APAP)-induced liver injury, although other hepatotoxicity models such as carbon tetrachloride, thioacetamide, ethanol and endotoxin are occasionally used. APAP overdose is a clinically relevant model of drug-induced liver injury. Critical mechanisms and signaling pathways, which trigger necrotic cell death and sterile inflammation, are discussed. Although there is increasing understanding of the pathophysiology of APAP-induced liver injury, the mechanism is complex and prone to misinterpretation, especially when unknown chemicals such as plant extracts are tested. This review discusses the fundamental aspects that need to be considered when using this model, such as selection of the animal species or in vitro system, timing and dose-responses of signaling events, metabolic activation and protein adduct formation, the role of lipid peroxidation and apoptotic versus necrotic cell death, and the impact of the ensuing sterile inflammatory response. The goal is to enable researchers to select the appropriate model and experimental conditions for testing of natural products that will yield clinically relevant results and allow valid interpretations of the pharmacological mechanisms.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|