1
|
Gupta E, Conway AE, Verdi M, Groetch M, Anagnostou A, Abrams EM, Nowak-Wegrzyn A, Bukstein D, Madan JC, Hand M, Garnaat SL, Shaker MS. Food Allergy, Nutrition, Psychology, and Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025; 13:773-782.e2. [PMID: 39393524 DOI: 10.1016/j.jaip.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
This article explores food allergy and the nascent field of nutritional psychiatry. Individuals with food allergy experience lower levels of "food freedom" than their nonallergic counterparts, which can create cognitive, emotional, social, nutritional, and financial burdens. Patterns of food avoidance may influence neuroinflammatory states and the gut microbiome; these changes may be associated with neuropsychiatric symptoms. Food restriction may promote disruption of the microbiome neuroimmune axis, which has been linked to various allergic diseases. Targeted psychological counseling strategies can provide benefit. Food allergy and restricted diets may impact dietary health benefits.
Collapse
Affiliation(s)
- Elena Gupta
- Geisel School of Medicine at Dartmouth, Hanover, NH
| | | | | | - Marion Groetch
- Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aikaterini Anagnostou
- Department of Pediatrics, Division of Allergy and Immunology, Baylor College of Medicine, Houston, Texas
| | - Elissa M Abrams
- Section of Allergy and Clinical Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Anna Nowak-Wegrzyn
- Department of Population Health, NYU Grossman School of Medicine, New York, NY; Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Don Bukstein
- Allergy, Asthma, and Sinus Center, Milwaukee, Wis
| | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH; Departments of Pediatrics and Psychiatry, Division of Child Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Matthew Hand
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH; Section of Pediatric Nephrology, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Sarah L Garnaat
- Department of Psychiatry, Geisel School of Medicine, Hanover, NH; Department of Psychiatry, Dartmouth Hitchcock Medical Center, Lebanon, NH
| | - Marcus S Shaker
- Section of Allergy and Immunology, Dartmouth-Hitchcock Medical Center, Lebanon, NH; Departments of Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH.
| |
Collapse
|
2
|
Mateș L, Banc R, Zaharie FA, Rusu ME, Popa DS. Mechanistic Insights into the Biological Effects and Antioxidant Activity of Walnut ( Juglans regia L.) Ellagitannins: A Systematic Review. Antioxidants (Basel) 2024; 13:974. [PMID: 39199220 PMCID: PMC11351988 DOI: 10.3390/antiox13080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Walnuts (Juglans regia L.) are an important source of ellagitannins. They have been linked to positive effects on many pathologies, including cardiovascular disorders, neurodegenerative syndromes, and cancer. The limited bioavailability of ellagitannins prevents them from reaching significant circulatory levels, despite their antioxidant, anti-inflammatory, and chemopreventive properties. Urolithins are ellagitannin gut microbiota-derived metabolites. They have better intestinal absorption and may be responsible for the biological activities of ellagitannins. Recent evidence showed that walnut ellagitannins and their metabolites, urolithins, could have positive outcomes for human health. This study aims to synthesize the current literature on the antioxidant activity and mechanistic pathways involved in the therapeutic potential of walnut ellagitannins and their metabolites. In the eligible selected studies (n = 31), glansreginin A, pedunculagin, and casuarictin were the most prevalent ellagitannins in walnuts. A total of 15 urolithins, their glucuronides, and sulfate metabolites have been identified in urine, blood, feces, breast milk, and prostate tissue in analyzed samples. Urolithins A and B were associated with antioxidant, anti-inflammatory, cardioprotective, neuroprotective, anticarcinogenic, and anti-aging activities, both in preclinical and clinical studies. Despite the promising results, further well-designed studies are necessary to fully elucidate the mechanisms and confirm the therapeutic potential of these compounds in human health.
Collapse
Affiliation(s)
- Letiția Mateș
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (L.M.); (D.-S.P.)
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Flaviu Andrei Zaharie
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 Ion Creangǎ Street, 400010 Cluj-Napoca, Romania;
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (L.M.); (D.-S.P.)
| |
Collapse
|
3
|
Zuelch ML, Radtke MD, Holt RR, Basu A, Burton-Freeman B, Ferruzzi MG, Li Z, Shay NF, Shukitt-Hale B, Keen CL, Steinberg FM, Hackman RM. Perspective: Challenges and Future Directions in Clinical Research with Nuts and Berries. Adv Nutr 2023; 14:1005-1028. [PMID: 37536565 PMCID: PMC10509432 DOI: 10.1016/j.advnut.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Consumption of nuts and berries are considered part of a healthy eating pattern. Nuts and berries contain a complex nutrient profile consisting of essential vitamins and minerals, fiber, polyunsaturated fatty acids, and phenolics in quantities that improve physiological outcomes. The spectrum of health outcomes that may be impacted by the consumptions of nuts and berries includes cardiovascular, gut microbiome, and cognitive, among others. Recently, new insights regarding the bioactive compounds found in both nuts and berries have reinforced their role for use in precision nutrition efforts. However, challenges exist that can affect the generalizability of outcomes from clinical studies, including inconsistency in study designs, homogeneity of test populations, variability in test products and control foods, and assessing realistic portion sizes. Future research centered on precision nutrition and multi-omics technologies will yield new insights. These and other topics such as funding streams and perceived risk-of-bias were explored at an international nutrition conference focused on the role of nuts and berries in clinical nutrition. Successes, challenges, and future directions with these foods are presented here.
Collapse
Affiliation(s)
- Michelle L Zuelch
- Department of Nutrition, University of California, Davis, CA, United States
| | - Marcela D Radtke
- Department of Nutrition, University of California, Davis, CA, United States
| | - Roberta R Holt
- Department of Nutrition, University of California, Davis, CA, United States
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, United States
| | - Britt Burton-Freeman
- Department of Food Science and Nutrition, Illinois Institute of Technology, Chicago, IL, United States
| | - Mario G Ferruzzi
- Department of Pediatrics, Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Zhaoping Li
- UCLA Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Neil F Shay
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Barbara Shukitt-Hale
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, CA, United States; Department of Internal Medicine, University of California, Davis, CA, United States
| | | | - Robert M Hackman
- Department of Nutrition, University of California, Davis, CA, United States.
| |
Collapse
|
4
|
Hosseini Adarmanabadi SMH, Karami Gilavand H, Taherkhani A, Sadat Rafiei SK, Shahrokhi M, Faaliat S, Biabani M, Abil E, Ansari A, Sheikh Z, Poudineh M, Khalaji A, ShojaeiBaghini M, Koorangi A, Deravi N. Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neurosci Rep 2023; 14:1-20. [PMID: 36507190 PMCID: PMC9727645 DOI: 10.1016/j.ibneur.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Global and regional trends of population aging spotlight major public health concerns. As one of the most common adverse prognostic factors, advanced age is associated with a remarkable incidence risk of many non-communicable diseases, affecting major organ systems of the human body. Age-dependent factors and molecular processes can change the nervous system's normal function and lead to neurodegenerative disorders. Oxidative stress results from of a shift toward reactive oxygen species (ROS) production in the equilibrium between ROS generation and the antioxidant defense system. Oxidative stress and neuroinflammation caused by Amyloid-ß protein deposition in the human brain are the most likely pathogenesis of Alzheimer's disease (AD). Walnut extracts could reduce Amyloid-ß fibrillation and aggregation, indicating their beneficial effects on memory and cognition. Walnut can also improve movement disabilities in Parkinson's disease due to their antioxidant and neuroprotective effect by reducing ROS and nitric oxide (NO) generation and suppressing oxidative stress. It is noteworthy that Walnut compounds have potential antiproliferative effects on Glioblastoma (the most aggressive primary cerebral neoplasm). This effective therapeutic agent can stimulate apoptosis of glioma cells in response to oxidative stress, concurrent with preventing angiogenesis and migration of tumor cells, improving the quality of life and life expectancy of patients with glioblastoma. Antioxidant Phenolic compounds of the Walnut kernel could explain the significant anti-convulsion ability of Walnut to provide good prevention and treatment for epileptic seizures. Moreover, the anti-inflammatory effect of Walnut oil could be beneficial in treating multiple sclerosis. In this study, we review the pharmaceutical properties of Walnut in age-related neurological disorders.
Collapse
Affiliation(s)
| | - Helia Karami Gilavand
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Taherkhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Kiarash Sadat Rafiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Faaliat
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Biabani
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elaheh Abil
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Akram Ansari
- Laboratory Science, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Zahra Sheikh
- Student Research Committee, School of medicine, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Mahdie ShojaeiBaghini
- Medical Informatics, Research Center, Institute for Futures Studies in Health, Kerman, Iran
| | - Amirhosein Koorangi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Novaj A, Engel MG, Wang R, Mao K, Xue X, Amir Y, Atzmon G, Huffman DM. Dietary Walnuts Preserve Aspects of Health Span and Alter the Hippocampal Lipidome in Aged High-Fat Diet-Fed Mice. Int J Mol Sci 2023; 24:ijms24032314. [PMID: 36768636 PMCID: PMC9916809 DOI: 10.3390/ijms24032314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Evidence continues to accrue that aging and its diseases can be delayed by pharmacologic and dietary strategies that target the underlying hallmarks of the aging process. However, identifying simple, safe, and effective dietary strategies involving the incorporation of whole foods that may confer some protection against the aging process is also needed. Recent observational studies have suggested that nut consumption can reduce mortality risk in humans. Among these, walnuts are particularly intriguing, given their high content of n-3 fatty acids, fiber, and antioxidant and anti-inflammatory compounds. To this end, 12-month-old male CB6F1 mice were provided either a defined control low-fat diet (LFD), a control high-fat diet (HFD), or an isocaloric HFD containing 7.67% walnuts by weight (HFD + W), and measures of healthspan and related biochemical markers (n = 10-19 per group) as well as survival (n = 20 per group) were monitored. Mice provided the HFD or HFD + W demonstrated marked weight gain, but walnuts lowered baseline glucose (p < 0.05) and tended to temper the effects of HFD on liver weight gain (p < 0.05) and insulin tolerance (p = 0.1). Additional assays suggested a beneficial effect on some indicators of health with walnut supplementation, including preservation of exercise capacity and improved short-term working memory, as determined by Y maze (p = 0.02). However, no effect was observed via any diet on inflammatory markers, antioxidant capacity, or survival (p = 0.2). Ingenuity Pathway Analysis of the hippocampal transcriptome identified two processes predicted to be affected by walnuts and potentially linked to cognitive function, including estrogen signaling and lipid metabolism, with changes in the latter confirmed by lipidomic analysis. In summary, while walnuts did not significantly improve survival on a HFD, they tended to preserve features of healthspan in the context of a metabolic stressor with aging.
Collapse
Affiliation(s)
- Ardijana Novaj
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthew G. Engel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruixuan Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaonan Xue
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yam Amir
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| | - Gil Atzmon
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Derek M. Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: ; Tel.: +1-718-430-4278; Fax: +1-718-430-8922
| |
Collapse
|
6
|
Zhao D, Xiao J, Qiang L, Deng X, An J, Zhang Q, Zhao F, Ma J, Fang C, Guan G, Wu Y, Xie Y. Walnut ointment promotes full-thickness burning wound healing: role of linoleic acid. Acta Cir Bras 2022; 37:e370902. [PMID: 36449813 PMCID: PMC9710187 DOI: 10.1590/acb370902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate the active ingredients of walnut ointment (WO) and its mechanism in repairing wounds. METHODS The ingredients of WO were detected by gas chromatography-mass spectrometry. The effect of linoleic acid (LA) was tested by in vitro Alamar Blue (AB) reagent. Image J software, histological and immunohistochemical analysis were used to confirm the healing effect of LA in the porcine skin model. The animals were euthanized after the experiment by injection of pentobarbital sodium. RESULTS LA, 24% in WO, promotes keratinocytes and fibroblasts proliferation, which were 50.09% and 15.07% respectively higher than control (p < 0.05). The healing rate of the LA group (96.02% ± 2%, 98.58% ± 0.78%) was higher than the saline group (82.11% ± 3.37%, 88.72% ± 1.73%) at week 3 and week 4 (p < 0.05). The epidermal thickness of the LA was 0.16 ± 0.04 mm greater and the expression of the P63 and CK10 proteins was stronger in the LA group than the control (p < 0.05). CONCLUSIONS LA, which is the main components in WO can promote full-thickness burning wounds (FBWs) by stimulating cell proliferation and differentiation.
Collapse
Affiliation(s)
- Dan Zhao
- Research Assistant. Ningxia Medical University General Hospital –Tissue and Organ Bank – Ningxia, China
| | - Jinli Xiao
- Graduate student. Ningxia Medical University – School of Clinical Medicine – Ningxia, China
| | - Lijuan Qiang
- Surgeon-in-charge. People’s Hospital of Ningxia Hui Autonomous Region – Department of Burns and Plastic Surgery – Ningxia, China
| | - Xingwang Deng
- Associate Professor of Surgery. The First People’s Hospital of Shizuishan – Department of Burns and Plastic Surgery – Ningxia, China
| | - Jingjing An
- Technologist-in-charge. Ningxia Center for Diseases Prevention and Control – Department of Physical and Chemical Examination – Ningxia, China
| | - Qing Zhang
- Research Assistant. Ningxia Medical University General Hospital –Tissue and Organ Bank – Ningxia, China
| | - Fang Zhao
- Research Assistant. Ningxia Medical University General Hospital –Tissue and Organ Bank – Ningxia, China
| | - Jiaxiang Ma
- Technologist. Ningxia Medical University General Hospital – Tissue and Organ Bank – Ningxia, China
| | - Chao Fang
- Surgeon-in-charge. Ningxia Medical University General Hospital – Department of Burns and Plastic Surgery – Ningxia, China
| | - Guangyu Guan
- Senior Technologist. Ningxia Center for Diseases Prevention and Control – Department of Physical and Chemical Examination – Ningxia, China
| | - Yinsheng Wu
- Professor of Surgery. Ningxia Medical University General Hospital – Department of Burns and Plastic Surgery – Ningxia, China
| | - Yan Xie
- Professor. Ningxia Center for Diseases Prevention and Control –Tissue and Organ Bank – Ningxia, China.,PhD. Queensland University of Technology – Faculty of Health – Brisbane, Australia.,Corresponding author:
- (86) 0951-6746240
| |
Collapse
|
7
|
Elouafy Y, El Idrissi ZL, El Yadini A, Harhar H, Alshahrani MM, AL Awadh AA, Goh KW, Ming LC, Bouyahya A, Tabyaoui M. Variations in Antioxidant Capacity, Oxidative Stability, and Physicochemical Quality Parameters of Walnut ( Juglans regia) Oil with Roasting and Accelerated Storage Conditions. Molecules 2022; 27:molecules27227693. [PMID: 36431794 PMCID: PMC9696496 DOI: 10.3390/molecules27227693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
Walnut oil, like all vegetable oils, is chemically unstable because of the sensitivity of its unsaturated fatty acids to the oxidation phenomenon. This phenomenon is based on a succession of chemical reactions, under the influence of temperature or storage conditions, that always lead to a considerable change in the quality of the oil by promoting the oxidation of unsaturated fatty acids through the degradation of their C-C double bonds, leading to the formation of secondary oxidation products that reduce the nutritional values of the oil. This research examines the oxidative stability of roasted and unroasted cold-pressed walnut oils under accelerated storage conditions. The oxidative stability of both oils was evaluated using physicochemical parameters: chemical composition (fatty acids, phytosterols, and tocopherols), pigment content (chlorophyll and carotenoids), specific extinction coefficients (K232 and K270), and quality indicators (acid and peroxide value) as well as the evaluation of radical scavenging activity by the DPPH method. The changes in these parameters were evaluated within 60 days at 60 ± 2 °C. The results showed that the levels of total phytosterols, the parameters of the acid and peroxide value, K232 and K270, increased slightly for both oils as well as the total tocopherol content and the antioxidant activity affected by the roasting process. In contrast, the fatty acid profiles did not change considerably during the 60 days of our study. After two months of oil treatment at 60 °C, the studied oils still showed an excellent physicochemical profile, which allows us to conclude that these oils are stable and can withstand such conditions. This may be due to the considerable content of tocopherols (vitamin E), which acts as an antioxidant.
Collapse
Affiliation(s)
- Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Zineb Lakhlifi El Idrissi
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Adil El Yadini
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah AL Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
- Correspondence: (K.W.G.); (A.B.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
- Correspondence: (K.W.G.); (A.B.)
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| |
Collapse
|
8
|
Tan B, Wang Y, Zhang X, Sun X. Recent Studies on Protective Effects of Walnuts against Neuroinflammation. Nutrients 2022; 14:nu14204360. [PMID: 36297047 PMCID: PMC9609811 DOI: 10.3390/nu14204360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation plays a significant role in the aging process and the pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease. Accordingly, possible therapeutic strategies aimed at anti-inflammatory effects may be beneficial to brain health. Walnut kernels contain large quantities of unsaturated fatty acids, peptides, and phenolic compounds that have anti-inflammatory effects. The long-term intake of walnuts has been found to improve cognitive function and memory in rats and humans. However, the modulatory effect of walnuts on neuroinflammation has received much less attention. This review focuses on the potential influence and main regulating mechanisms of walnuts and their active ingredients on neuroinflammation, including the regulation of microglia activation induced by amyloid β or lipopolysaccharides, inhibition of peripheral inflammation mediated by macrophages, reduction in oxidative stress by decreasing free radical levels and boosting antioxidant defenses, and control of gut microbes to maintain homeostasis. However, the majority of evidence of the beneficial effects of walnuts or their components on neuroinflammation and neurodegeneration comes from experimental work, whereas evidence from clinical studies on the beneficial effects is scarcer and less conclusive. This review aims to provide new insights into the neuroinflammation-regulating mechanisms and natural active ingredients of walnuts and the development of walnut-based functional foods for the alleviation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Bing Tan
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxi Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xudong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangjun Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
9
|
Liu D, Guo Y, Ma H. Production, bioactivities and bioavailability of bioactive peptides derived from walnut origin by-products: a review. Crit Rev Food Sci Nutr 2022; 63:8032-8047. [PMID: 35361034 DOI: 10.1080/10408398.2022.2054933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Walnut-origin by-products obtained from walnut oil extraction industry are high in proteins with various physiological functions and pharmacological properties and an extensive potential for usage in producing bioactive peptides. This review presents the current research status of bioactive peptides derived from walnut by-products, including preparation, separation, purification, identification, bioactivities, and bioavailability. A plethora of walnut peptides with multiple biological activities, including antioxidative, antihypertensive, neuroprotective, antidiabetic, anticancer, and antihyperuricemia activities, were obtained from walnut-origin by-products by enzymatic hydrolysis, fermentation, and synthesis. Different bioactive peptides show various structural characteristics and amino acid composition due to their diverse mechanism of action. Furthermore, walnut protein and its hydrolysate present a high bioavailability in human gastrointestinal digestive system. Improving the bioavailability of walnut peptides is needful in the development of walnut industry. However, future research still needs to exploit energy conservation, high efficiency, environmentally friendly and low-cost production method of walnut bioactive peptide. The molecular mechanisms of different bioactive walnut peptides still need to be explored at the cell and gene levels. Additionally, the digestion, absorption, and metabolism processes of walnut peptides are also the focus of future research.
Collapse
Affiliation(s)
- Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Iranshahy M, Javadi B, Sahebkar A. Protective effects of functional foods against Parkinson's disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother Res 2022; 36:1952-1989. [PMID: 35244296 DOI: 10.1002/ptr.7425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
In Persian Medicine (PM), PD (brain-based tremor) is a known CNS disorder with several therapeutic and preventive options. In their medical textbooks and pharmacopeias, Persian great scientists such as Rhazes (854-925 AD), Avicenna (980-1037 AD), and Jorjani (1042-1136 AD), have discussed pharmacological and nutritional strategies for the prevention, slowing progression, and treatment of PD. In the present study, we surveyed plant- and animal-based foods recommended by PM for the prevention and treatment of CNS-related tremors. In vivo and in-vitro pharmacological evidence supporting the beneficial effects of PM-recommended foods in prevention and alleviating PD, major active phytochemicals along with the relevant mechanisms of action were studied. Several PM plants possess potent antioxidant, antiinflammatory, and PD preventing properties. Garlic and allicin, cabbage and isothiocyanates, chickpea seed and its O-methylated isoflavones biochanin A and formononetin, cinnamon, and cinnamaldehyde, saffron and its crocin, crocetin, and safranal, black cumin and its thymoquinone, black pepper and piperine, pistachio and genistein and daidzein, and resveratrol are among the most effective dietary itemsagainst PD. They act through attenuating neurotoxin-induced memory loss and behavioral impairment, oxidative stress, and dopaminergic cell death. PM-recommended foods can help alleviate PD progression and also discovering and developing new neuroprotective anti-PD pharmaceuticals.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Fasogbon BM, Akinwande FF, Ademuyiwa OH, Bamidele OP. The Influence of Cooked Grated African Walnut on the Nutritional Composition, Antioxidant and Sensorial Properties of a Cookie Snack. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1955797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Nguyen TH, Vu DC. A Review on Phytochemical Composition and Potential Health-promoting Properties of Walnuts. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1912084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Trang H.D. Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Danh C. Vu
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| |
Collapse
|
13
|
Food and Food Groups in Inflammatory Bowel Disease (IBD): The Design of the Groningen Anti-Inflammatory Diet (GrAID). Nutrients 2021; 13:nu13041067. [PMID: 33806061 PMCID: PMC8064481 DOI: 10.3390/nu13041067] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Diet plays a pivotal role in the onset and course of inflammatory bowel disease (IBD). Patients are keen to know what to eat to reduce symptoms and flares, but dietary guidelines are lacking. To advice patients, an overview of the current evidence on food (group) level is needed. This narrative review studies the effects of food (groups) on the onset and course of IBD and if not available the effects in healthy subjects or animal and in vitro IBD models. Based on this evidence the Groningen anti-inflammatory diet (GrAID) was designed and compared on food (group) level to other existing IBD diets. Although on several foods conflicting results were found, this review provides patients a good overview. Based on this evidence, the GrAID consists of lean meat, eggs, fish, plain dairy (such as milk, yoghurt, kefir and hard cheeses), fruit, vegetables, legumes, wheat, coffee, tea and honey. Red meat, other dairy products and sugar should be limited. Canned and processed foods, alcohol and sweetened beverages should be avoided. This comprehensive review focuses on anti-inflammatory properties of foods providing IBD patients with the best evidence on which foods they should eat or avoid to reduce flares. This was used to design the GrAID.
Collapse
|
14
|
Scialo F, Sanz A. Coenzyme Q redox signalling and longevity. Free Radic Biol Med 2021; 164:187-205. [PMID: 33450379 DOI: 10.1016/j.freeradbiomed.2021.01.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Mitochondria are the powerhouses of the cell. They produce a significant amount of the energy we need to grow, survive and reproduce. The same system that generates energy in the form of ATP also produces Reactive Oxygen Species (ROS). Mitochondrial Reactive Oxygen Species (mtROS) were considered for many years toxic by-products of metabolism, responsible for ageing and many degenerative diseases. Today, we know that mtROS are essential redox messengers required to determine cell fate and maintain cellular homeostasis. Most mtROS are produced by respiratory complex I (CI) and complex III (CIII). How and when CI and CIII produce ROS is determined by the redox state of the Coenzyme Q (CoQ) pool and the proton motive force (pmf) generated during respiration. During ageing, there is an accumulation of defective mitochondria that generate high levels of mtROS. This causes oxidative stress and disrupts redox signalling. Here, we review how mtROS are generated in young and old mitochondria and how CI and CIII derived ROS control physiological and pathological processes. Finally, we discuss why damaged mitochondria amass during ageing as well as methods to preserve mitochondrial redox signalling with age.
Collapse
Affiliation(s)
- Filippo Scialo
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", 80131, Napoli, Italy
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, United Kingdom.
| |
Collapse
|
15
|
Lack of Autophagy Induction by Lithium Decreases Neuroprotective Effects in the Striatum of Aged Rats. Pharmaceutics 2021; 13:pharmaceutics13020135. [PMID: 33494241 PMCID: PMC7909773 DOI: 10.3390/pharmaceutics13020135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The pharmacological modulation of autophagy is considered a promising neuroprotective strategy. While it has been postulated that lithium regulates this cellular process, the age-related effects have not been fully elucidated. Here, we evaluated lithium-mediated neuroprotective effects in young and aged striatum. After determining the optimal experimental conditions for inducing autophagy in loco with lithium carbonate (Li2CO3), we measured cell viability, reactive oxygen species (ROS) generation and oxygen consumption with rat brain striatal slices from young and aged animals. In the young striatum, Li2CO3 increased tissue viability and decreased ROS generation. These positive effects were accompanied by enhanced levels of LC3-II, LAMP 1, Ambra 1 and Beclin-1 expression. In the aged striatum, Li2CO3 reduced the autophagic flux and increased the basal oxygen consumption rate. Ultrastructural changes in the striatum of aged rats that consumed Li2CO3 for 30 days included electrondense mitochondria with disarranged cristae and reduced normal mitochondria and lysosomes area. Our data show that the striatum from younger animals benefits from lithium-mediated neuroprotection, while the striatum of older rats does not. These findings should be considered when developing neuroprotective strategies involving the induction of autophagy in aging.
Collapse
|
16
|
Mosaddeghi P, Eslami M, Farahmandnejad M, Akhavein M, Ranjbarfarrokhi R, Khorraminejad-Shirazi M, Shahabinezhad F, Taghipour M, Dorvash M, Sakhteman A, Zarshenas MM, Nezafat N, Mobasheri M, Ghasemi Y. A systems pharmacology approach to identify the autophagy-inducing effects of Traditional Persian medicinal plants. Sci Rep 2021; 11:336. [PMID: 33431946 PMCID: PMC7801619 DOI: 10.1038/s41598-020-79472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Aging is correlated with several complex diseases, including type 2 diabetes, neurodegeneration diseases, and cancer. Identifying the nature of this correlation and treatment of age-related diseases has been a major subject of both modern and traditional medicine. Traditional Persian Medicine (TPM) embodies many prescriptions for the treatment of ARDs. Given that autophagy plays a critical role in antiaging processes, the present study aimed to examine whether the documented effect of plants used in TPM might be relevant to the induction of autophagy? To this end, the TPM-based medicinal herbs used in the treatment of the ARDs were identified from modern and traditional references. The known phytochemicals of these plants were then examined against literature for evidence of having autophagy inducing effects. As a result, several plants were identified to have multiple active ingredients, which indeed regulate the autophagy or its upstream pathways. In addition, gene set enrichment analysis of the identified targets confirmed the collective contribution of the identified targets in autophagy regulating processes. Also, the protein-protein interaction (PPI) network of the targets was reconstructed. Network centrality analysis of the PPI network identified mTOR as the key network hub. Given the well-documented role of mTOR in inhibiting autophagy, our results hence support the hypothesis that the antiaging mechanism of TPM-based medicines might involve autophagy induction. Chemoinformatics study of the phytochemicals using docking and molecular dynamics simulation identified, among other compounds, the cyclo-trijuglone of Juglans regia L. as a potential ATP-competitive inhibitor of mTOR. Our results hence, provide a basis for the study of TPM-based prescriptions using modern tools in the quest for developing synergistic therapies for ARDs.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Mitra Farahmandnejad
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahshad Akhavein
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Ratin Ranjbarfarrokhi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadhossein Khorraminejad-Shirazi
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Farbod Shahabinezhad
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadjavad Taghipour
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadreza Dorvash
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Amirhossein Sakhteman
- grid.412571.40000 0000 8819 4698Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.9668.10000 0001 0726 2490Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mohammad M. Zarshenas
- grid.412571.40000 0000 8819 4698Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Meysam Mobasheri
- grid.472338.9Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran ,Iranian Institute of New Sciences (IINS), Tehran, Iran
| | - Younes Ghasemi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| |
Collapse
|
17
|
Esselun C, Dilberger B, Silaidos CV, Koch E, Schebb NH, Eckert GP. A Walnut Diet in Combination with Enriched Environment Improves Cognitive Function and Affects Lipid Metabolites in Brain and Liver of Aged NMRI Mice. Neuromolecular Med 2020; 23:140-160. [PMID: 33367957 PMCID: PMC7929966 DOI: 10.1007/s12017-020-08639-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022]
Abstract
This in vivo study aimed to test if a diet enriched with 6% walnuts alone or in combination with physical activity supports healthy ageing by changing the oxylipin profile in brain and liver, improving motor function, cognition, and cerebral mitochondrial function. Female NMRI mice were fed a 6% walnut diet starting at an age of 12 months for 24 weeks. One group was additionally maintained in an enriched environment, one group without intervention served as control. After three months, one additional control group of young mice (3 weeks old) was introduced. Motor and cognitive functions were measured using Open Field, Y-Maze, Rotarod and Passive Avoidance tests. Lipid metabolite profiles were determined using RP-LC-ESI(-)-MS/MS in brain and liver tissues of mice. Cerebral mitochondrial function was characterized by the determination of ATP levels, mitochondrial membrane potential and mitochondrial respiration. Expression of genes involved with mito- and neurogenesis, inflammation, and synaptic plasticity were determined using qRT-PCR. A 6% walnut-enriched diet alone improved spatial memory in a Y-Maze alternation test (p < 0.05) in mice. Additional physical enrichment enhanced the significance, although the overall benefit was virtually identical. Instead, physical enrichment improved motor performance in a Rotarod experiment (p* < 0.05) which was unaffected by walnuts alone. Bioactive oxylipins like hydroxy-polyunsaturated fatty acids (OH-PUFA) derived from linoleic acid (LA) were significantly increased in brain (p** < 0.01) and liver (p*** < 0.0001) compared to control mice, while OH-PUFA of α-linolenic acid (ALA) could only be detected in the brains of mice fed with walnuts. In the brain, walnuts combined with physical activity reduced arachidonic acid (ARA)-based oxylipin levels (p < 0.05). Effects of walnut lipids were not linked to mitochondrial function, as ATP production, mitochondrial membrane potential and mitochondrial respiration were unaffected. Furthermore, common markers for synaptic plasticity and neuronal growth, key genes in the regulation of cytoprotective response to oxidative stress and neuronal growth were unaffected. Taken together, walnuts change the oxylipin profile in liver and brain, which could have beneficial effects for healthy ageing, an effect that can be further enhanced with an active lifestyle. Further studies may focus on specific nutrient lipids that potentially provide preventive effects in the brain.
Collapse
Affiliation(s)
- Carsten Esselun
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Justus-Liebig-University, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany
| | - Benjamin Dilberger
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Justus-Liebig-University, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany
| | - Carmina V Silaidos
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Justus-Liebig-University, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany
| | - Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Gunter P Eckert
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Justus-Liebig-University, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|
18
|
Abstract
Walnuts have high levels of the omega-3 fatty acid alpha-linolenic acid (C18:3n-3, ALA) and the omega-6 fatty acid linoleic acid (C18:2n-6, LA). Previous research has demonstrated that pre-treatment of BV-2 microglia with walnut extract inhibited lipopolysaccharide (LPS)-induced activation of microglia. As an extension of that study, the effects of walnut-associated fatty acids on BV-2 microglia were assessed. BV-2 murine microglia cells were treated with LA, ALA, or a combination of LA+ALA prior to or after exposure to LPS. Nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) were measured in cell-conditioned media. Cyclooxeganse-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression were assessed in BV-2 microglia. Both LA and ALA protected against LPS-induced increases in NO, iNOS, COX-2, and TNF-alpha when used before LPS exposure. When BV-2 microglia were treated with fatty acids after LPS, only COX-2 and TNF-alpha were significantly attenuated by the fatty acids. There was no synergism of LA+ALA, as the LA+ALA combination was no more effective than LA or ALA alone. Fatty acids, like those found in walnuts, may protect against production of cytotoxic intermediates and cell-signaling molecules from microglia and may prove beneficial for preventing age- or disease-related neurodegeneration.
Collapse
|
19
|
Kim JM, Lee U, Kang JY, Park SK, Shin EJ, Kim HJ, Kim CW, Kim MJ, Heo HJ. Anti-Amnesic Effect of Walnut via the Regulation of BBB Function and Neuro-Inflammation in Aβ 1-42-Induced Mice. Antioxidants (Basel) 2020; 9:antiox9100976. [PMID: 33053754 PMCID: PMC7600148 DOI: 10.3390/antiox9100976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
This study was conducted to assess the protective effect of walnut (Juglans regia L.) extract on amyloid beta (Aβ)1-42-induced institute of cancer research (ICR) mice. By conducting a Y-maze, passive avoidance, and Morris water maze tests with amyloidogenic mice, it was found that walnut extract ameliorated behavioral dysfunction and memory deficit. The walnut extract showed a protective effect on the antioxidant system and cholinergic system by regulating malondialdehyde (MDA) levels, superoxide dismutase (SOD) contents, reduced glutathione (GSH) contents, acetylcholine (ACh) levels, acetylcholinesterase (AChE) activity, and protein expression of AChE and choline acetyltransferase (ChAT). Furthermore, the walnut extract suppressed Aβ-induced abnormality of mitochondrial function by ameliorating reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP contents. Finally, the walnut extract regulated the expression of zonula occludens-1 (ZO-1) and occludin concerned with blood–brain barrier (BBB) function, expression of tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 1 (TNFR1), phosphorylated c-Jun N-terminal kinase (p-JNK), phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (p-IκB), cyclooxygenase-2 (COX-2), and interleukin 1 beta (IL-1β), related to neuroinflammation and the expression of phosphorylated protein kinase B (p-Akt), caspase-3, hyperphosphorylation of tau (p-tau), and heme oxygenase-1 (HO-1), associated with the Aβ-related Akt pathway.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Uk Lee
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Jin Yong Kang
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Seon Kyeong Park
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Eun Jin Shin
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Chul-Woo Kim
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Mahn-Jo Kim
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
- Correspondence: ; Tel.: +82-55-772-1907
| |
Collapse
|
20
|
Chen Q, Deng X, Qiang L, Yao M, Guan L, Xie N, Zhao D, Ma J, Ma L, Wu Y, Yan X. Investigating the effects of walnut ointment on non-healing burn wounds. Burns 2020; 47:455-465. [PMID: 32736884 DOI: 10.1016/j.burns.2020.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
Effective treatments for non-healing burn wounds are an unmet need for 95% of burn sufferers. Approaches currently available to treat non-healing burn wounds are not satisfactory due to undesirable side-effects or expense. The anti-oxidation and antibacterial activities of walnuts are recommended for treating chronic diseases. Walnut ointment has been developed and successfully applied to treat non-healing burn wounds in our hospital for decades. We report herein a detailed retrospective case review examining patients' response to the walnut ointment. The walnut ointment has shortened healing time of non-healing burn wounds and improved clinical outcomes. In order to investigate the mechanism of action, walnut ointment has been applied on wounds of porcine full-thickness burn wound models. Histological and immunohistochemical analysis indicated our walnut ointment supports wound healing through promoting keratinocyte proliferation and differentiation. Taken together, we recommend the walnut ointment offers an effective and economical treatment for patients presenting with non-healing burn wounds.
Collapse
Affiliation(s)
- Qian Chen
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, Xinyang Central Hospital, Henan, China
| | - Xingwang Deng
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, The First People's Hospital of Shizuishan, Ningxia, China
| | - Lijuan Qiang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, China
| | - Ming Yao
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Lifeng Guan
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Nan Xie
- Clinical Medicine Research Center, National Health Commission, Beijing National Health Hospital, Beijing, China
| | - Dan Zhao
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jiaxiang Ma
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Liqiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Yinsheng Wu
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xie Yan
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
21
|
Antioxidant Effects of Walnut ( Juglans regia L.) Kernel and Walnut Septum Extract in a D-Galactose-Induced Aging Model and in Naturally Aged Rats. Antioxidants (Basel) 2020; 9:antiox9050424. [PMID: 32423149 PMCID: PMC7278598 DOI: 10.3390/antiox9050424] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Antioxidant dietary intervention is considered a potential strategy in delaying age-related dysfunctions. In this study of 56 days, we assessed the antioxidant effects of walnut kernel (WK) and walnut septum extract (WSE) in a D-galactose (D-gal)-induced aging model and in a naturally aged rat model. Young Wistar rats, treated with D-gal (1200 mg/week), and old rats received daily WK or WSE added to the feed. After 8 weeks, blood, liver, and brain samples were collected and hematological, biochemical, oxidative stress biomarkers, histological, and immunohistochemical analyses were performed. Moreover, acetylcholinesterase activity was investigated in brain homogenates. The outcomes demonstrated significant improvement in cellular antioxidant activity and/or decrease of reactive oxygen species, advanced glycation end products, nitric oxide, malondialdehyde, or increase of glutathione after WK or WSE intake in both models. Additionally, WSE showed hypoglycemic effect, and both WK and WSE lowered acetylcholinesterase activity. Both diets could protect neurons against the induced senescence and could reverse the pathological conditions in the physiological aged brain. Thus, dietary supplementation with WK or WSE can maintain the liver and brain health and reduce the risk of age-related diseases, as well as delaying the onset of aging processes.
Collapse
|
22
|
Rusu ME, Fizesan I, Pop A, Mocan A, Gheldiu AM, Babota M, Vodnar DC, Jurj A, Berindan-Neagoe I, Vlase L, Popa DS. Walnut ( Juglans regia L.) Septum: Assessment of Bioactive Molecules and In Vitro Biological Effects. Molecules 2020; 25:E2187. [PMID: 32392837 PMCID: PMC7248768 DOI: 10.3390/molecules25092187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Walnut (Juglans regia L.) septum represents an interesting bioactive compound source by-product. In our study, a rich phenolic walnut septum extract, previously selected, was further examined. The tocopherol content determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed higher amounts of α-tocopherol compared to γ- and δ-tocopherols. Moreover, several biological activities were investigated. The in vitro inhibiting assessment against acetylcholinesterase, α-glucosidase, or lipase attested a real management potential in diabetes or obesity. The extract demonstrated very strong antimicrobial potential against Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella enteritidis. It also revealed moderate (36.08%) and strong (43.27%) antimutagenic inhibitory effects against TA 98 and TA 100 strains. The cytotoxicity of the extract was assessed on cancerous (A549, T47D-KBluc, MCF-7) and normal (human gingival fibroblasts (HGF)) cell lines. Flow cytometry measurements confirmed the cytotoxicity of the extract in the cancerous cell lines. Additionally, the extract demonstrated antioxidant activity on all four cell types, as well as anti-inflammatory activity by lowering the inflammatory cytokines (interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-1 β (IL-1β)) evaluated in HGF cells. To the best of our knowledge, most of the cellular model analyses were performed for the first time in this matrix. The results prove that walnut septum may be a potential phytochemical source for pharmaceutical and food industry.
Collapse
Affiliation(s)
- Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (M.E.R.); (L.V.)
| | - Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.P.); (D.-S.P.)
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.P.); (D.-S.P.)
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-M.G.); (M.B.)
| | - Ana-Maria Gheldiu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-M.G.); (M.B.)
| | - Mihai Babota
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-M.G.); (M.B.)
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (I.B.-N.)
- MEDFUTURE—Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (M.E.R.); (L.V.)
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.P.); (D.-S.P.)
| |
Collapse
|
23
|
The Gastroprotective Effect of Small Molecule Oligopeptides Isolated from Walnut ( Juglans regia L.) against Ethanol-Induced Gastric Mucosal Injury in Rats. Nutrients 2020; 12:nu12041138. [PMID: 32325708 PMCID: PMC7231309 DOI: 10.3390/nu12041138] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022] Open
Abstract
The study investigated the protective effect of walnut oligopeptides (WOPs) against ethanol-induced gastric injury using Sprague-Dawley (SD) rats. Rats were randomly divided into seven groups based on body weight (10/group), normal group, ethanol group, whey protein group (220 mg/kg body weight), omeprazole group (20 mg/kg body weight), and three WOPs groups (220, 440, 880 mg/kg body weight). After 30 days of treatment with WOPs, rats were given 5 mL/kg absolute ethanol by gavage to induce gastric mucosal injury. Gastric ulcer index (GUI) were determined and the following measured; gastric content pH, gastric mucin, endogenous pepsinogens (PG), prostaglandin E2 (PGE2), inflammatory cytokines, oxidative stress indicators, and the expression of apoptosis-related proteins were measured to evaluate the gastroprotective effect of WOPs. The results showed that the administration with WOPs markedly mitigated the hemorrhagic gastric lesions caused by ethanol in rats, and decreased the GUI, the gastric content pH, PG1, PG2, and NO levels, enhanced mucin and PGE2. Also, WOPs repressed gastric inflammation through the reduction of TNF-α, IL-6, IL-1β and increase IL-10 levels, and revealed antioxidant properties with the enhancement of superoxide dismutase, glutathione, and catalase activity, while reduction of malondialdehyde. Moreover, WOPs treatment significantly down-regulated Bax, caspase-3 and nuclear factor-κB p65 (NF-κB p65) expression, while up-regulating the expression of Bcl-2 and inhibitor kappa Bα (IκBα) protein. These results indicated that WOPs have protective effects against ethanol-induced gastric mucosal injury in rats through anti-inflammatory, anti-oxidation, and anti-apoptosis mechanisms.
Collapse
|
24
|
Aslan A, Gok O, Beyaz S, Arslan E, Erman O, Ağca CA. The preventive effect of ellagic acid on brain damage in rats via regulating of Nrf-2, NF-kB and apoptotic pathway. J Food Biochem 2020; 44:e13217. [PMID: 32250487 DOI: 10.1111/jfbc.13217] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the neuroprotective role of ellagic acid (EA) on CCl4 -induced brain injury in rats. In this study, the rats were divided into four groups. Groups: (1) Control group; (2) EA group; (3) CCl4 group; (4) EA + CCl4 group. In brain tissue, tumor necrosis factor-α (TNF-α), nuclear factor kappa b (NF-kB), cyclooxygenase-2 (COX-2), nuclear erythroid related factor 2 (Nrf-2), cysteine-aspartic acid protease (caspase-3), VEGF (vascular endothelial growth factor) and B-cell lymphoma-2 (bcl-2) protein expression levels were analyzed by western blotting. MDA (malondialdehyde), catalase enzyme activity (CAT) and glutathione (GSH) analysis were determined by spectrophotometer. In our findings, EA ameliorated Nrf-2 and caspase-3 protein expression levels, GSH and catalase activities, NF-kB, TNF-α, VEGF, Bcl-2, COX-2 protein expression levels and MDA levels in CCl4 intoxicated rats. These results suggest that EA demonstrated the neuroprotective effect on CCl4 -induced brain damage in rats. PRACTICAL APPLICATIONS: Ellagic acid has different biological activities, these are; antioxidant, anti-inflammatory, antidepressant, antifibrosis, anticancer, neuroprotective and hepatoprotective. For example it was reported that EA protects the cells against DNA injury induced by free radicals and it can prevent the traumatic brain injury. These results obtained from this study reveals that EA has a protective effect against rat brain damage and it may be used as an alternative drugs for the brain injury treatment in future.
Collapse
Affiliation(s)
- Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics Program, Faculty of Science, University of Firat, Elazığ, Turkey
| | - Ozlem Gok
- Department of Biology, Faculty of Science, University of Firat, Elazığ, Turkey
| | - Seda Beyaz
- Department of Biology, Faculty of Science, University of Firat, Elazığ, Turkey
| | - Emre Arslan
- Department of Biology, Faculty of Science, University of Firat, Elazığ, Turkey
| | - Orhan Erman
- Department of Biology, Faculty of Science, University of Firat, Elazığ, Turkey
| | - Can Ali Ağca
- Department of Molecular Biology and Genetics, Faculty of Science, University of Bingol, Bingol, Turkey
| |
Collapse
|
25
|
Ramachandran S, Nikitha J, Gopi C, Amala M, Dhanaraju MD. Effect of Prunus dulcis and Salvia hispenica in the management of polycystic ovary syndrome in Wistar rats. J Taibah Univ Med Sci 2020; 15:122-128. [PMID: 32368208 PMCID: PMC7184214 DOI: 10.1016/j.jtumed.2020.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Research has shown that polycystic ovary syndrome (PCOS) is a common cause of infertility in women. The drugs used to treat PCOS tend to manage the symptoms rather than cure the disease. Furthermore, these drugs have severe side-effects and influence the quality of life for the patients. There is therefore a need for natural medicine that can effectively treat PCOS without side-effects. METHOD PCOS was induced in adult female Wistar rats by daily oral administration of letrozole (1 mg/kg) for 21 days. From day 22 until the end of the experiment (day 36), these rats were given a daily oral dose of either Prunus dulcis (walnut) or Salvia hispenica (chia seed) alone, or in combination. Animals were subsequently examined for morphological, biochemical, and histopathological changes. RESULT When compared with the control and standard groups, rats who had consumed P. dulcis and S. hispenica, either as individual agents or in combination, had significantly lower body and ovarian weights, and hormone concentrations were maintained at healthy levels. The presence of polyphenolic compounds in these substances induced ovulation in the PCOS model animals. CONCLUSION This study demonstrated that animals fed with P. dulcis and S. hispenica either individually or in combination were able to overcome infertility. Hormone levels and metabolism were restored in these animals. Therefore, P. dulcis and S. hispenica can be used as therapeutic agents to treat patients who are infertile due to suboptimal oocyte competence and anovulation.
Collapse
Affiliation(s)
| | - Jasthi Nikitha
- Department of Pharmacology, GIET School of Pharmacy, Rajahmundry, India
| | - Chandravadivelu Gopi
- Department of Pharmaceutical Chemistry, GIET School of Pharmacy, Rajahmundry, India
| | - Masa Amala
- Department of Pharmacology, GIET School of Pharmacy, Rajahmundry, India
| | | |
Collapse
|
26
|
Santos LL, De Almeida PCL, Rodrigues CA, De Battisti LFF, Costa LH, Bastos RG, De Oliveira CM, Ferraz VP, Moraes ALL, Paula HADA, Paula FBDA, Silva MJD, Vilegas W, Veiga SMOM, Da Silva Amorim AF, Da Silva GA, Da Silva MA. Nutritional composition, fatty acid profile, phytochemistry and evaluation of the effects of Carya illinoinensison diabetes. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lorenna Lino Santos
- Department of Foods and Drugs Faculty of Pharmaceutical Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Pedro Costa Lima De Almeida
- Institute of Natural Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Carla Aparecida Rodrigues
- Institute of Natural Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Luís Felipe Franco De Battisti
- Faculty of Medicine Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Lellis Henrique Costa
- Faculty of Medicine Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Renan Gomes Bastos
- Department of Foods and Drugs Faculty of Pharmaceutical Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Carla Miguel De Oliveira
- Department of Clinical and Toxicological Analysis Faculty of Pharmaceutical Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Vany Perpétua Ferraz
- Institute of Exact Sciences Federal University of Minas Gerais Avenue Antônio Carlos, 6627 CEP: 31270‐901 Belo Horizonte MG Brazil
| | - Ana Lúcia Leite Moraes
- Department of Foods and Drugs Faculty of Pharmaceutical Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | | | - Fernanda Borges de Araújo Paula
- Department of Clinical and Toxicological Analysis Faculty of Pharmaceutical Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Marcelo José Dias Silva
- Institute of Biosciences São Paulo State University Square Infante Dom Henrique, C.P: 73601 São Vicente SP Brazil
| | - Wagner Vilegas
- Institute of Biosciences São Paulo State University Square Infante Dom Henrique, C.P: 73601 São Vicente SP Brazil
| | - Sandra Maria Oliveira Morais Veiga
- Department of Foods and Drugs Faculty of Pharmaceutical Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Ana Flávia Da Silva Amorim
- Department of Foods and Drugs Faculty of Pharmaceutical Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Geraldo Alves Da Silva
- Department of Foods and Drugs Faculty of Pharmaceutical Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| | - Marcelo Aparecido Da Silva
- Department of Foods and Drugs Faculty of Pharmaceutical Sciences Federal University of Alfenas Street Gabriel Monteiro da Silva, 700 CEP: 37130‐001 Alfenas MG Brazil
| |
Collapse
|
27
|
Rusu ME, Simedrea R, Gheldiu AM, Mocan A, Vlase L, Popa DS, Ferreira IC. Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Dietary Walnut Supplementation Alters Mucosal Metabolite Profiles During DSS-Induced Colonic Ulceration. Nutrients 2019; 11:nu11051118. [PMID: 31137456 PMCID: PMC6566840 DOI: 10.3390/nu11051118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Walnuts contain a complex array of natural compounds and phytochemicals that exhibit a wide range of health benefits, including protection against inflammation and colon cancer. In this study, we assess the effects of dietary supplementation with walnuts on colonic mucosal injury induced in mice by the ulcerogenic agent, dextran sodium sulfate (DSS). C57Bl/6J mice were started on the Total Western Diet supplemented with freshly-ground whole walnuts (0, 3.5, 7 and 14% g/kg) 2 weeks prior to a 5-day DSS treatment and walnut diets were continued throughout the entire experimental period. Mice were examined at 2 days or 10 days after withdrawal of DSS. In a separate study, a discovery-based metabolite profiling analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed on fecal samples and colonic mucosa following two weeks of walnut supplementation. Dietary walnut supplementation showed significant effects in the 10-day post-DSS recovery-phase study, in which the extent of ulceration was significantly reduced (7.5% vs. 0.3%, p < 0.05) with 14% walnuts. In the metabolite-profiling analysis, walnuts caused a significant increase in several polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) and 9-oxo-10(E),12(E)-octadecadienoic acid (9-oxoODA), as well as kynurenic acid. In colon tissue samples, walnuts caused a significant increase in the levels of S-adenosylhomocysteine (SAH) and betaine, important components of fatty acid β-oxidation. These metabolite changes may contribute in part to the observed protection against DSS-induced inflammatory tissue injury.
Collapse
|
29
|
Abstract
Vegetable oils, which are a rich source of unsaturated fatty acids, phytosterols, vitamins and antioxidants, have a significant effect on the functioning and development of the body and contribute to health maintenance. They can be obtained from seeds, fruit stones, fruit, nuts or sprouts. This study discusses various species of plants that are sources of nut oils consumed in the daily diet and also used in the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Michalak Monika
- Department of Dermatology and Cosmetology, Institute of Medical Sciences, Faculty of Medicine and Health Sciences, Jan Kochanowski University in Kielce
| | - Kiełtyka-Dadasiewicz Anna
- Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin
| |
Collapse
|
30
|
Small Molecule Oligopeptides Isolated from Walnut ( Juglans regia L.) and Their Anti-Fatigue Effects in Mice. Molecules 2018; 24:molecules24010045. [PMID: 30583565 PMCID: PMC6337178 DOI: 10.3390/molecules24010045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Walnut (Juglans regia L.) is unique for its extensive biological activities and pharmaceutical properties. There are few studies on walnut oligopeptides (WOPs), which are small molecule peptides extracted from walnuts. This study aimed to evaluate the anti-fatigue effects of WOPs on ICR mice and explore the possible underlying mechanism. Mice were randomly divided into four experimental sets and each set of mice were then randomly divided into four groups. The vehicle group was administered distilled water, and the three WOP intervention groups were orally administered WOP solution at a dose of 110, 220, and 440 mg/kg of body weight, respectively. After 30 days of WOP intervention, the anti-fatigue activity of WOPs were evaluated using the weight-loaded swimming test and by measuring the change of biochemical parameters, glycogen storage and energy metabolism enzymes, anti-oxidative capacity and mitochondrial function. It was observed that WOPs could significantly prolong the swimming time, decrease the accumulation of lactate dehydrogenase (LDH), creatine kinase (CK), blood urea nitrogen (BUN) and blood lactic acid (BLA), and increased the glycogen storage of liver and gastrocnemius muscle. WOPs also markedly inhibited fatigue induced oxidative stress by increasing the activity of superoxide dismutase (SOD), glutathione peroxidase (GPX) and decreasing the content malondialdehyde (MDA). Notably, WOPs improved the activity of pyruvate kinase (PK), succinate dehydrogenase (SDH), Na+-K+-ATPase, and enhanced the mRNA expression of mitochondrial biogenesis factors and mitochondrial DNA content in skeletal muscles of mice. These results suggest that WOPs have beneficial anti-fatigue effects, which may be attributed to their positive effects on increasing glycogen storage, improving energy metabolism, inhibiting oxidative stress, enhancing mitochondrial function in skeletal muscle, and ameliorating the cell damage and the muscular injury.
Collapse
|
31
|
Miller HC, Struyf D, Baptist P, Dalile B, Van Oudenhove L, Van Diest I. A mind cleared by walnut oil: The effects of polyunsaturated and saturated fat on extinction learning. Appetite 2018; 126:147-155. [PMID: 29634989 DOI: 10.1016/j.appet.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
The treatment of anxiety-based psychopathology often hinges upon extinction learning. Research in nutritional neuroscience has observed that the regular consumption of perilla oil (50% alpha-linolenic acid (ALA)) facilitates extinction learning in rats (Yamamoto et al., 1988). However, acute facilitation of extinction learning by oils rich in ALA has not been reported for rats or humans, though the acute consumption of rapeseed oil (10% ALA) has been observed to improve cognitive processing speed in humans (Jones, Sünram-Lea, & Wesnes, 2012). For this reason, the present laboratory work examined the effects of adding walnut oil (12% ALA) to a chocolate milkshake on the acquisition, generalization, and extinction of a fear-based prediction in young adults. It compared performance between subjects. The other participants consumed a similar milkshake with either an equicaloric amount of cream (saturated fat), or with no added fat (control). Acquisition and generalization of the fear-based prediction were similar for all groups. However, those who consumed walnut oil extinguished most rapidly and profoundly. Implications for extinction learning are discussed.
Collapse
Affiliation(s)
| | - Dieter Struyf
- KULeuven, Health, Behavior and Psychopathology, Belgium
| | | | - Boushra Dalile
- KULeuven, Translational Research in GastroIntestinal Disorders, Belgium
| | | | - Ilse Van Diest
- KULeuven, Health, Behavior and Psychopathology, Belgium.
| |
Collapse
|
32
|
Malik J, Choudhary S. The Molecular Basis for Protective Effect of Mediterranean Diet in Neurodegenerative Disorders. ROLE OF THE MEDITERRANEAN DIET IN THE BRAIN AND NEURODEGENERATIVE DISEASES 2018:53-76. [DOI: 10.1016/b978-0-12-811959-4.00004-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Thangthaeng N, Poulose SM, Fisher DR, Shukitt-Hale B. Walnut extract modulates activation of microglia through alteration in intracellular calcium concentration. Nutr Res 2017; 49:88-95. [PMID: 29420996 DOI: 10.1016/j.nutres.2017.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022]
Abstract
Diets supplemented with walnuts have shown to protect brain against oxidative and inflammatory cytotoxicity and promote protective cellular and cognitive function. The current study was undertaken to test the hypothesize that whole walnut extract (WNE) inhibits lipopolysaccharide (LPS)-induced microglial activation by regulating calmodulin (CaM) expression through [Ca2+]i. To test this hypothesis, we used an in vitro model the highly aggressively proliferating immortalized cells, a rat microglial cell line, treated with various concentrations of WNEs. Treatment with WNE (1.5%, 3%, or 6%) induced a slow rise in intracellular calcium in a concentration- and time-dependent manner, and this rise became exaggerated when cells were depolarized with potassium chloride (100 mmol/L). Cells treated with WNE (1%, 3%, or 6%) upregulated CaM protein levels, with 1 hour posttreatment being the peak time, regardless of WNE concentration. Interestingly, this WNE-induced upregulation of CaM was blocked by pretreatment with thapsigargin. Additionally, treatment with WNE (1%, 3%, or 6%) 1 hour prior to LPS treatment was found to be effective in preventing LPS-induced upregulation of inducible nitric oxide synthase expression, upregulation of ionized Ca2+-binding adaptor-1, and downregulation of CaM. These findings suggest that bioactive compounds in walnut are capable of modulating microglial activation through regulation of intracellular calcium and CaM expression. Nutritional interventions using walnuts may be effective in the amelioration of chronic inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nopporn Thangthaeng
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Shibu M Poulose
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Derek R Fisher
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA.
| |
Collapse
|
34
|
Ganji A, Farahani I, Palizvan MR, Ghazavi A, Ejtehadifar M, Ebrahimimonfared M, Shojapour M, Mosayebi G. Therapeutic effects of walnut oil on the animal model of multiple sclerosis. Nutr Neurosci 2017; 22:215-222. [PMID: 28891414 DOI: 10.1080/1028415x.2017.1371389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Therapeutic approaches for multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS), are accompanied by various undesirable side effects. Owing to the anti-inflammatory and antioxidant effects of walnut, we investigated its effects on the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. METHODS After EAE induction in mice, the treated group was gavaged daily with walnut oil. The weights and clinical symptoms were monitored daily for 21 days following the onset of symptoms. The spleens and brains of the mouse were removed and used for ELISA and histological studies. RESULTS The average disease severity and plaque formation in the brains of the walnut oil-treated group were significantly lower (P < 0.05) than those of the untreated group. Stimulated splenocytes of the treated group expressed significantly less INF-γ and interleukin (IL)-17 than the untreated group with no significant differences in IL-10 or IL-5 production. In serum from the treated group, IL-17 expression was also significantly less than in the untreated group, while IL-10 was greater (P < 0.05). CONCLUSION Walnut oil significantly reduced disease severity, inhibited plaque formation, and altered cytokine production. More studies are required to identify the mechanism of action of walnut oil as a valuable supplement in the treatment of MS.
Collapse
Affiliation(s)
- Ali Ganji
- a Traditional and Complementary Medicine Research Center (TCMRC) , Arak University of Medical Sciences , Iran.,b Department of Microbiology and Immunology, School of Medicine , Arak University of Medical Sciences , Iran
| | - Iman Farahani
- a Traditional and Complementary Medicine Research Center (TCMRC) , Arak University of Medical Sciences , Iran
| | - Mohammad Reza Palizvan
- c Department of Physiology, Faculty of Medicine , Arak University of Medical Sciences , Iran
| | - Ali Ghazavi
- a Traditional and Complementary Medicine Research Center (TCMRC) , Arak University of Medical Sciences , Iran.,b Department of Microbiology and Immunology, School of Medicine , Arak University of Medical Sciences , Iran
| | - Mostafa Ejtehadifar
- a Traditional and Complementary Medicine Research Center (TCMRC) , Arak University of Medical Sciences , Iran
| | - Mohsen Ebrahimimonfared
- d Department of Neurology, Valiasr Hospital, School of Medicine , Arak University of Medical Sciences , Iran
| | - Mana Shojapour
- e Molecular and Medicine Research Center , Arak University of Medical Sciences , Iran
| | - Ghasem Mosayebi
- b Department of Microbiology and Immunology, School of Medicine , Arak University of Medical Sciences , Iran.,e Molecular and Medicine Research Center , Arak University of Medical Sciences , Iran
| |
Collapse
|
35
|
Effect of walnut protein hydrolysate on scopolamine-induced learning and memory deficits in mice. Journal of Food Science and Technology 2017; 54:3102-3110. [PMID: 28974795 DOI: 10.1007/s13197-017-2746-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
Abstract
A walnut protein hydrolysate (WPH) was prepared by using a mixture of pancreatin and viscozyme L from industrially available defatted walnut meal. The antioxidant effects of WPH were confirmed and quantified by reducing power, oxygen radical absorbance capacity, hydroxyl radical radical-scavenging activity and ABTS+· radical-scavenging activity assays. The protective effects of WPH on scopolamine-induced learning and memory deficits in mice were also evaluated based on in vivo behavioral tests. Results showed that WPH administration would lead to significantly decreased latencies while increased crossing times and target times in the spatial probe test, and increased escape latency and decreased error times in the step-down avoidance test for the scopolamine-induced dementia mice. Biochemical results indicated that the ameliorative effects of WPH on scopolamine-induced dementia mice could be attributed to the significantly increased amount of acetylcholine receptors. Therefore, WPH may be a potential therapeutic agent against Alzheimer's disease.
Collapse
|
36
|
Abstract
Good health while aging depends upon optimal cellular and organ functioning that contribute to the regenerative ability of the body during the lifespan, especially when injuries and diseases occur. Although diet may help in the maintenance of cellular fitness during periods of stability or modest decline in the regenerative function of an organ, this approach is inadequate in an aged system, in which the ability to maintain homeostasis is further challenged by aging and the ensuing suboptimal functioning of the regenerative unit, tissue-specific stem cells. Focused nutritional approaches can be used as an intervention to reduce decline in the body's regenerative capacity. This article brings together nutrition-associated therapeutic approaches with the fields of aging, immunology, neurodegenerative disease, and cancer to propose ways in which diet and nutrition can work with standard-of-care and integrated medicine to help improve the brain's function as it ages. The field of regenerative medicine has exploded during the past 2 decades as a result of the discovery of stem cells in nearly every organ system of the body, including the brain, where neural stem cells persist in discrete areas throughout life. This fact, and the uncovering of the genetic basis of plasticity in somatic cells and cancer stem cells, open a door to a world where maintenance and regeneration of organ systems maintain health and extend life expectancy beyond its present limits. An area that has received little attention in regenerative medicine is the influence on regulatory mechanisms and therapeutic potential of nutrition. We propose that a strong relation exists between brain regenerative medicine and nutrition and that nutritional intervention at key times of life could be used to not only maintain optimal functioning of regenerative units as humans age but also play a primary role in therapeutic treatments to combat injury and diseases (in particular, those that occur in the latter one-third of the lifespan).
Collapse
Affiliation(s)
- Dennis A Steindler
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, and
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA; and
| | - Brent A Reynolds
- Department of Neurosurgery, University of Florida, Gainesville, FL
| |
Collapse
|
37
|
Thangthaeng N, Poulose SM, Gomes SM, Miller MG, Bielinski DF, Shukitt-Hale B. Tart cherry supplementation improves working memory, hippocampal inflammation, and autophagy in aged rats. AGE (DORDRECHT, NETHERLANDS) 2016; 38:393-404. [PMID: 27578256 PMCID: PMC5266225 DOI: 10.1007/s11357-016-9945-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
High consumption of fruits and vegetables has been associated with reduced risk of debilitating diseases and improved cognition in aged populations. These beneficial effects have been attributed to the phytochemicals found in fruits and vegetables, which have previously been shown to be anti-inflammatory and modulate autophagy. Tart cherries contain a variety of potentially beneficial phytochemicals; however, little research has been done to investigate the effects of tart cherry on the aging brain. Therefore, the purpose of this study was to determine if tart cherry supplementation can improve cognitive and motor function of aged rats via modulation of inflammation and autophagy in the brain. Thirty 19-month-old male Fischer 344 rats were weight-matched and assigned to receive either a control diet or a diet supplemented with 2 % Montmorency tart cherry. After 6 weeks on the diet, rats were given a battery of behavioral tests to assess for strength, stamina, balance, and coordination, as well as learning and working memory. Although no significant effects were observed on tests of motor performance, tart cherry improved working memory of aged rats. Following behavioral testing, the hippocampus was collected for western/densitometric analysis of inflammatory (GFAP, NOX-2, and COX-2) and autophagy (phosphorylated mTOR, Beclin 1, and p62/SQSTM) markers. Tart cherry supplementation significantly reduced inflammatory markers and improved autophagy function. Daily consumption of tart cherry reduced age-associated inflammation and promoted protein/cellular homeostasis in the hippocampus, along with improvements in working memory. Therefore, addition of tart cherry to the diet may promote healthy aging and/or delay the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nopporn Thangthaeng
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Shibu M Poulose
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Stacey M Gomes
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Marshall G Miller
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Donna F Bielinski
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Barbara Shukitt-Hale
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA.
| |
Collapse
|
38
|
Preservation of Cognitive Function by Lepidium meyenii (Maca) Is Associated with Improvement of Mitochondrial Activity and Upregulation of Autophagy-Related Proteins in Middle-Aged Mouse Cortex. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4394261. [PMID: 27648102 PMCID: PMC5018343 DOI: 10.1155/2016/4394261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022]
Abstract
Maca has been used as a foodstuff and a traditional medicine in the Andean region for over 2,000 years. Recently the neuroprotective effects of maca also arouse interest of researchers. Decrease in mitochondrial function and decline in autophagy signaling may participate in the process of age-related cognitive decline. This study aimed to investigate if maca could improve cognitive function of middle-aged mice and if this effect was associated with improvement of mitochondrial activity and modulation of autophagy signaling in mouse cortex. Fourteen-month-old male ICR mice received maca powder administered by gavage for five weeks. Maca improved cognitive function, motor coordination, and endurance capacity in middle-aged mice, accompanied by increased mitochondrial respiratory function and upregulation of autophagy-related proteins in cortex. Our findings suggest that maca is a newly defined nutritional plant which can improve mitochondrial function and upregulate autophagy-related proteins and may be an effective functional food for slowing down age-related cognitive decline.
Collapse
|
39
|
Câmara CRS, Schlegel V. A Review on the Potential Human Health Benefits of the Black Walnut: A Comparison with the English Walnuts and Other Tree Nuts. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1114951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Vicki Schlegel
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
40
|
Fisher DR, Poulose SM, Bielinski DF, Shukitt-Hale B. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in BV-2 microglial cells. Nutr Neurosci 2016; 20:103-109. [PMID: 25153536 DOI: 10.1179/1476830514y.0000000150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defenses in brain is a critical factor in the declining neural function and cognitive deficit accompanying age. Previous studies from our laboratory have reported that walnuts, rich in polyphenols, antioxidants, and omega fatty acids such as alpha-linolenic acid and linoleic acid, improve the age-associated declines in cognition and neural function in rats. Possible mechanisms of action of these effects include enhancing protective signaling, altering membrane microstructures, decreasing inflammation, and preventing accumulation of polyubiquitinated protein aggregates in critical regions of the brain. In the current study, we investigated whether the serum collected from aged animals fed with walnut diets (0, 6, and 9%, w/w) would enhance protection on stressed BV-2 microglia in vitro. In the growth medium, fetal bovine serum was substituted with the serum collected from 22-month-old rats fed per protocol for 12 weeks. Walnut diet serum (6 and 9%) significantly attenuated lipopolysaccharide-induced nitrite release compared to untreated control cells and those treated with serum from rats fed 0% walnut diets. The results also indicated a significant reduction in pro-inflammatory tumor necrosis factor-alpha, cyclooxygenase-2, and inducible nitric oxide synthase. These results suggest antioxidant and anti-inflammatory protection or enhancement of membrane-associated functions in brain cells by walnut serum metabolites.
Collapse
Affiliation(s)
- Derek R Fisher
- a United States Department of Agriculture - Agricultural Research Services , Human Nutrition Research Center on Aging, Tufts University , Boston , MA , USA
| | - Shibu M Poulose
- a United States Department of Agriculture - Agricultural Research Services , Human Nutrition Research Center on Aging, Tufts University , Boston , MA , USA
| | - Donna F Bielinski
- a United States Department of Agriculture - Agricultural Research Services , Human Nutrition Research Center on Aging, Tufts University , Boston , MA , USA
| | - Barbara Shukitt-Hale
- a United States Department of Agriculture - Agricultural Research Services , Human Nutrition Research Center on Aging, Tufts University , Boston , MA , USA
| |
Collapse
|
41
|
Poulose SM, Bielinski DF, Carey A, Schauss AG, Shukitt-Hale B. Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açaí-enriched diets. Nutr Neurosci 2016; 20:305-315. [PMID: 26750735 DOI: 10.1080/1028415x.2015.1125654] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Açaí (Euterpe spp.), an exotic palm fruit, has recently emerged as a promising source of natural antioxidants with wide pharmacological and nutritional value. In this study, two different species of açaí pulp extracts, naturally grown in two distinct regions of the Amazon, namely, Euterpe oleracea Mart. (habitat: Brazilian floodplains of the Amazon) and Euterpe precatoria Mart. (habitat: Bolivian Amazon), were studied for their effects on brain health and cognition. METHODS Neurochemical analyses were performed in critical brain regions associated with memory and cognition of 19-month-old açaí-fed rats, in whom the cognitive benefits of açaí had been established. RESULTS Results indicated significant reductions (P< 0.05) in prooxidant NADPH-oxidoreductase-2 (NOX2) and proinflammatory transcription factor NF-κB in açaí-fed rats. Measurement of Nrf2 expression, a transcription factor for antioxidant enzymes, and a possible link between oxidative stress, neuroinflammation and autophagy mechanisms, indicated significant overexpression (P<0.005) in the hippocampus and frontal cortex of the açaí-fed rats. Furthermore, significant activation of endogenous antioxidant enzymes GST and SOD were also observed in the açaí-fed animals when compared to control. Analysis of autophagy markers such as p62, phospho-mTOR, beclin1 and MAP1B-LC3 revealed differential expression in frontal cortex and hippocampus, mostly indicating an upregulation in the açaí-fed rats. DISCUSSION In general, results were more profound for EP than EO in hippocampus as well as frontal cortex. Therefore, an açaí-enriched diet could possibly modulate Nrf2, which is known to modulate the intracellular redox status, thereby regulating the ubiquitin-proteosomal pathway, ultimately affecting cognitive function in the aging brain.
Collapse
Affiliation(s)
- Shibu M Poulose
- a USDA-ARS, Human Nutrition Research Center on Aging at Tufts University , Boston , MA 02111 , USA
| | - Donna F Bielinski
- a USDA-ARS, Human Nutrition Research Center on Aging at Tufts University , Boston , MA 02111 , USA
| | - Amanda Carey
- a USDA-ARS, Human Nutrition Research Center on Aging at Tufts University , Boston , MA 02111 , USA.,b Department of Psychology , Simmons College , 300 The Fenway, Boston , MA , USA
| | - Alexander G Schauss
- c Natural and Medicinal Products Research , AIBMR Life Sciences , Puyallup , WA , USA
| | - Barbara Shukitt-Hale
- a USDA-ARS, Human Nutrition Research Center on Aging at Tufts University , Boston , MA 02111 , USA
| |
Collapse
|
42
|
Forestalling Age-Related Brain Disorders. LIFESTYLE MEDICINE 2016. [DOI: 10.1007/978-3-319-24687-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Layé S, Madore C, St-Amour I, Delpech JC, Joffre C, Nadjar A, Calon F. N-3 polyunsaturated fatty acid and neuroinflammation in aging and Alzheimer’s disease. ACTA ACUST UNITED AC 2015. [DOI: 10.3233/nua-150049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sophie Layé
- Nutrition et Neurobiologie Intégrée, Bordeaux Cedex, France
- University of Bordeaux, Bordeaux, France
- OptiNutriBrain International associated Laboratory (NutriNeuro France-INAF Canada)
| | - Charlotte Madore
- Nutrition et Neurobiologie Intégrée, Bordeaux Cedex, France
- University of Bordeaux, Bordeaux, France
| | - Isabelle St-Amour
- Faculté de Pharmacie, Université Laval; Centre de Recherche du CHU de Québec, Québec, Canada
| | - Jean-Christophe Delpech
- Nutrition et Neurobiologie Intégrée, Bordeaux Cedex, France
- University of Bordeaux, Bordeaux, France
| | - Corinne Joffre
- Nutrition et Neurobiologie Intégrée, Bordeaux Cedex, France
- University of Bordeaux, Bordeaux, France
- OptiNutriBrain International associated Laboratory (NutriNeuro France-INAF Canada)
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, Bordeaux Cedex, France
- University of Bordeaux, Bordeaux, France
- OptiNutriBrain International associated Laboratory (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval; Centre de Recherche du CHU de Québec, Québec, Canada
- OptiNutriBrain International associated Laboratory (NutriNeuro France-INAF Canada)
| |
Collapse
|
44
|
Bulló M, Juanola-Falgarona M, Hernández-Alonso P, Salas-Salvadó J. Nutrition attributes and health effects of pistachio nuts. Br J Nutr 2015; 113 Suppl 2:S79-S93. [PMID: 26148925 DOI: 10.1017/s0007114514003250] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Epidemiological and/or clinical trials have suggested that nut consumption has a beneficial impact on health outcomes such as hypertension, diabetes, CVD, cancer, other inflammatory conditions and total mortality. Nuts are nutrient-dense foods with a healthy fatty acid profile, as well as provide other bioactive compounds with recognised health benefits. Among nuts, pistachios have a lower fat and energy content and the highest levels of K, γ-tocopherol, vitamin K, phytosterols, xanthophyll carotenoids, certain minerals (Cu, Fe and Mg), vitamin B₆ and thiamin. Pistachios have a high antioxidant and anti-inflammatory potential. The aforementioned characteristics and nutrient mix probably contribute to the growing body of evidence that consumption of pistachios improves health. The present review examines the potential health effects of nutrients and phytochemicals in pistachios, as well as epidemiological and clinical evidence supporting these health benefits.
Collapse
Affiliation(s)
- M Bulló
- Human Nutrition Unit, Hospital Universitari de Sant Joan de Reus, Faculty of Medicine and Health Sciences, IISPV (Institut d'Investigació Sanitària Pere Virgili), Universitat Rovira i Virgili,C/Sant Llorenç 21,43201Reus,Spain
| | - M Juanola-Falgarona
- Human Nutrition Unit, Hospital Universitari de Sant Joan de Reus, Faculty of Medicine and Health Sciences, IISPV (Institut d'Investigació Sanitària Pere Virgili), Universitat Rovira i Virgili,C/Sant Llorenç 21,43201Reus,Spain
| | - P Hernández-Alonso
- Human Nutrition Unit, Hospital Universitari de Sant Joan de Reus, Faculty of Medicine and Health Sciences, IISPV (Institut d'Investigació Sanitària Pere Virgili), Universitat Rovira i Virgili,C/Sant Llorenç 21,43201Reus,Spain
| | - J Salas-Salvadó
- Human Nutrition Unit, Hospital Universitari de Sant Joan de Reus, Faculty of Medicine and Health Sciences, IISPV (Institut d'Investigació Sanitària Pere Virgili), Universitat Rovira i Virgili,C/Sant Llorenç 21,43201Reus,Spain
| |
Collapse
|
45
|
Poulose SM, Bielinski DF, Carrihill-Knoll KL, Rabin BM, Shukitt-Hale B. Protective effects of blueberry- and strawberry diets on neuronal stress following exposure to 56Fe particles. Brain Res 2014; 1593:9-18. [DOI: 10.1016/j.brainres.2014.10.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
|
46
|
Pistollato F, Battino M. Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Pribis P, Shukitt-Hale B. Cognition: the new frontier for nuts and berries. Am J Clin Nutr 2014; 100 Suppl 1:347S-52S. [PMID: 24871475 DOI: 10.3945/ajcn.113.071506] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The inclusion of nuts in the diet is associated with a decreased risk of coronary artery disease, hypertension, gallstones, diabetes, cancer, metabolic syndrome, and visceral obesity. Frequent consumption of berries seems to be associated with improved cardiovascular and cancer outcomes, improved immune function, and decreased recurrence of urinary tract infections; the consumption of nuts and berries is associated with reduction in oxidative damage, inflammation, vascular reactivity, and platelet aggregation, and improvement in immune functions. However, only recently have the effects of nut and berry consumption on the brain, different neural systems, and cognition been studied. There is growing evidence that the synergy and interaction of all of the nutrients and other bioactive components in nuts and berries can have a beneficial effect on the brain and cognition. Regular nut consumption, berry consumption, or both could possibly be used as an adjunctive therapeutic strategy in the treatment and prevention of several neurodegenerative diseases and age-related brain dysfunction. A number of animal and a growing number of human studies show that moderate-duration dietary supplementation with nuts, berry fruit, or both is capable of altering cognitive performance in humans, perhaps forestalling or reversing the effects of neurodegeneration in aging.
Collapse
Affiliation(s)
- Peter Pribis
- From the Department of Public Health and Wellness, Andrews University, Berrien Springs, MI (PP), and Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA (BS-H)
| | - Barbara Shukitt-Hale
- From the Department of Public Health and Wellness, Andrews University, Berrien Springs, MI (PP), and Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA (BS-H)
| |
Collapse
|
48
|
Poulose SM, Miller MG, Shukitt-Hale B. Role of walnuts in maintaining brain health with age. J Nutr 2014; 144:561S-566S. [PMID: 24500933 DOI: 10.3945/jn.113.184838] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Because of the combination of population growth and population aging, increases in the incidence of chronic neurodegenerative disorders have become a societal concern, both in terms of decreased quality of life and increased financial burden. Clinical manifestation of many of these disorders takes years, with the initiation of mild cognitive symptoms leading to behavioral problems, dementia and loss of motor functions, the need for assisted living, and eventual death. Lifestyle factors greatly affect the progression of cognitive decline, with high-risk behaviors including unhealthy diet, lack of exercise, smoking, and exposure to environmental toxins leading to enhanced oxidative stress and inflammation. Although there exists an urgent need to develop effective treatments for age-related cognitive decline and neurodegenerative disease, prevention strategies have been underdeveloped. Primary prevention in many of these neurodegenerative diseases could be achieved earlier in life by consuming a healthy diet, rich in antioxidant and anti-inflammatory phytochemicals, which offers one of the most effective and least expensive ways to address the crisis. English walnuts (Juglans regia L.) are rich in numerous phytochemicals, including high amounts of polyunsaturated fatty acids, and offer potential benefits to brain health. Polyphenolic compounds found in walnuts not only reduce the oxidant and inflammatory load on brain cells but also improve interneuronal signaling, increase neurogenesis, and enhance sequestration of insoluble toxic protein aggregates. Evidence for the beneficial effects of consuming a walnut-rich diet is reviewed in this article.
Collapse
Affiliation(s)
- Shibu M Poulose
- USDA-Agricultural Research Services, Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | | | | |
Collapse
|
49
|
Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich açaí (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro. Nutrition 2013; 30:853-62. [PMID: 24985004 DOI: 10.1016/j.nut.2013.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Oxidative damage to lipids, proteins, and nucleic acids in the brain often causes progressive neuronal degeneration and death that are the focal traits of chronic and acute pathologies, including those involving cognitive decline. The aim of this study was to investigate the specific effects of both Euterpe oleracea and Euterpe precatoria açaí fruit pulp on restoring stressor-induced calcium dysregulation, stunted growth of basal dendrites, and autophagy inhibition using embryonic hippocampal and HT22 hippocampal neurons. METHODS Water-soluble whole fruit pulp extracts from two açaí species were applied to rat primary neurons and HT22 hippocampal neurons with varied time and concentrations. Recovery of neurons from dopamine-induced Ca(2+) dysregulation was measured by live cell imaging using fluorescent microscopy. The effect of açaí fruit pulp extracts on neurons following chemically-induced autophagy inhibition was measured using both immunofluorescence and immunohistochemical techniques. RESULTS It has been postulated that at least part of the loss of cognitive function in aging may depend on a dysregulation in calcium ion (Ca(2+)) homeostasis and a loss of autophagy function in the brain, which affects numerous signaling pathways and alters protein homeostasis. In the present study, polyphenol-rich fruit pulp extracts from two species of açaí, Euterpe precatoria and Euterpe oleracea, when applied to rat hippocampal primary neuronal cells (E18), caused a significant (P < 0.05) recovery of depolarized brain cells from dopamine-induced Ca(2+) influx. Autophagy, a protein homeostasis mechanism in brain, when blocked by known inhibitors such as bafilomycin A1 or wortmannin, caused a significant reduction in the growth of primary basal dendrites in rodent primary hippocampal neurons and significant accumulation of polyubiquitinated proteins in mouse HT22 hippocampal neurons in culture. However, pretreatment with açaí extracts up to 1 mg/mL significantly increased the length of basal dendrites and attenuated the inhibitor-induced autophagy dysfunction. Açaí extracts activated the phosphorylation of mammalian target of rapamycin, increased the turnover of autophagosomes and MAP1 B LC3-II, and decreased accumulation of LC3-ubiquitin binding P62/SQSTM1. CONCLUSION Although the polyphenol profile of Euterpe precatoria showed substantially higher concentrations of major flavonoids han Euterpe oleracea, the relative effects were essentially similar for both species. The study adds to growing evidence that supports the putative health effects of açaí fruit species on brain cells.
Collapse
|