1
|
Estrada-Meza J, Videlo J, Bron C, Duchampt A, Saint-Béat C, Zergane M, Silva M, Rajas F, Bouret SG, Mithieux G, Gautier-Stein A. Intestinal gluconeogenesis controls the neonatal development of hypothalamic feeding circuits. Mol Metab 2024; 89:102036. [PMID: 39304064 PMCID: PMC11470480 DOI: 10.1016/j.molmet.2024.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE Intestinal gluconeogenesis (IGN) regulates adult energy homeostasis in part by controlling the same hypothalamic targets as leptin. In neonates, leptin exhibits a neonatal surge controlling axonal outgrowth between the different hypothalamic nuclei involved in feeding circuits and autonomic innervation of peripheral tissues involved in energy and glucose homeostasis. Interestingly, IGN is induced during this specific time-window. We hypothesized that the neonatal pic of IGN also regulates the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues. METHODS We genetically induced neonatal IGN by overexpressing G6pc1 the catalytic subunit of glucose-6-phosphatase (the mandatory enzyme of IGN) at birth or at twelve days after birth. The neonatal development of hypothalamic feeding circuits was studied by measuring Agouti-related protein (AgRP) and Pro-opiomelanocortin (POMC) fiber density in hypothalamic nuclei of 20-day-old pups. The effect of the neonatal induction of intestinal G6pc1 on sympathetic innervation of the adipose tissues was studied via tyrosine hydroxylase (TH) quantification. The metabolic consequences of the neonatal induction of intestinal G6pc1 were studied in adult mice challenged with a high-fat/high-sucrose (HFHS) diet for 2 months. RESULTS Induction of intestinal G6pc1 at birth caused a neonatal reorganization of AgRP and POMC fiber density in the paraventricular nucleus of the hypothalamus, increased brown adipose tissue tyrosine hydroxylase levels, and protected against high-fat feeding-induced metabolic disorders. In contrast, inducing intestinal G6pc1 12 days after birth did not impact AgRP/POMC fiber densities, adipose tissue innervation or adult metabolism. CONCLUSION These findings reveal that IGN at birth but not later during postnatal life controls the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues, promoting a better management of metabolism in adulthood.
Collapse
Affiliation(s)
| | - Jasmine Videlo
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Clara Bron
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Adeline Duchampt
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Mickael Zergane
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Marine Silva
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Fabienne Rajas
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Sebastien G Bouret
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| | - Gilles Mithieux
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
2
|
Bello-Medina PC, Díaz-Muñoz M, Martín del Campo ST, Pacheco-Moisés FP, Flores Miguel C, Cobián Cervantes R, García Solano PB, Navarro-Meza M. A maternal low-protein diet results in sex-specific differences in synaptophysin expression and milk fatty acid profiles in neonatal rats. J Nutr Sci 2024; 13:e64. [PMID: 39469193 PMCID: PMC11514622 DOI: 10.1017/jns.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/30/2024] Open
Abstract
The developmental origins of health and disease hypothesis have highlighted the link between early life environment and long-term health outcomes in offspring. For example, maternal protein restriction during pregnancy and lactation can result in adverse metabolic and cognitive outcomes in offspring postnatal. Hence, in the present study, we assess whether an isocaloric low-protein diet (ILPD) affects the fatty acid profile in breast milk, the hippocampal synaptophysin (Syn) ratio, and the oxidative stress markers in the neonatal stage of male and female offspring. The aim of this work was to assess the effect of an ILPD on the fatty acid profile in breast milk, quantified the hippocampal synaptophysin (Syn) ratio and oxidative stress markers in neonatal stage of male and female offspring. Female Wistar rats were fed with either a control diet or an ILPD during gestation to day 10 of lactation. Oxidative stress markers were assessed in serum and liver. All quantifications were done at postnatal day 10. The results showed: ILPD led to decreases of 38.5% and 17.4% in breast milk volume and polyunsaturated fatty acids content. Significant decreases of hippocampal Syn ratio in male offspring (decreases of 98% in hippocampal CA1 pyramidal and CA1 oriens, 83%, stratum pyramidal in CA3, 80%, stratum lucidum in CA3, and 81% stratum oriens in CA3). Male offspring showed an increase in pro-oxidant status in serum and liver. Thus, the data suggest that male offspring are more vulnerable than females to an ILPD during gestation and lactation.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Sandra Teresita Martín del Campo
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Querétaro, México
- Food Engineering and Statistical Independent Consultant, Querétaro, México
| | | | - Claudia Flores Miguel
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Raquel Cobián Cervantes
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Perla Belén García Solano
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Mónica Navarro-Meza
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Departamento de Ciencias Clínicas, División de Ciencias de Salud, Centro Universitario del Sur, Ciudad Guzmán, Jalisco, México
| |
Collapse
|
3
|
Fonseca PAS, Suárez-Vega A, Esteban-Blanco C, Pelayo R, Marina H, Gutiérrez-Gil B, Arranz JJ. Epigenetic regulation of functional candidate genes for milk production traits in dairy sheep subjected to protein restriction in the prepubertal stage. BMC Genomics 2023; 24:511. [PMID: 37658326 PMCID: PMC10472666 DOI: 10.1186/s12864-023-09611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND As the prepubertal stage is a crucial point for the proper development of the mammary gland and milk production, this study aims to evaluate how protein restriction at this stage can affect methylation marks in milk somatic cells. Here, 28 Assaf ewes were subjected to 42.3% nutritional protein restriction (14 animals, NPR) or fed standard diets (14 animals, C) during the prepubertal stage. During the second lactation, the milk somatic cells of these ewes were sampled, and the extracted DNA was subjected to whole-genome bisulfite sequencing. RESULTS A total of 1154 differentially methylated regions (DMRs) were identified between the NPR and C groups. Indeed, the results of functional enrichment analyses of the genes harboring these DMRs suggested their relevant effects on the development of the mammary gland and lipid metabolism in sheep. The additional analysis of the correlations of the mean methylation levels within these DMRs with fat, protein, and dry extract percentages in the milk and milk somatic cell counts suggested associations between several DMRs and milk production traits. However, there were no phenotypic differences in these traits between the NPR and C groups. CONCLUSION In light of the above, the results obtained in the current study might suggest potential candidate genes for the regulation of milk production traits in the sheep mammary gland. Further studies focusing on elucidating the genetic mechanisms affected by the identified DMRs may help to better understand the biological mechanisms modified in the mammary gland of dairy sheep as a response to nutritional challenges and their potential effects on milk production.
Collapse
Affiliation(s)
- P. A. S. Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - A. Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - C. Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - R. Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - H. Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - B. Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - J. J. Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| |
Collapse
|
4
|
Protein-caloric restriction induced HPA axis activation and altered the milk composition imprint metabolism of weaned rat offspring. Nutrition 2023; 108:111945. [PMID: 36696704 DOI: 10.1016/j.nut.2022.111945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Maternal protein-caloric restriction during lactation can malprogram offspring into having a lean phenotype associated with metabolic dysfunction in early life and adulthood. The aim of this study was to investigate the relationships between nutritional stress, maternal behavior and metabolism, milk composition, and offspring parameters. Additionally, we focused on the role of hypothalamus-pituitary-adrenal axis hyperactivation during lactation. METHODS Dams were fed a low-protein diet (4% protein) during the first 2 wk of lactation or a normal-protein diet (20% protein) during all lactation. Analyses of dams, milk, and offspring were conducted on postnatal days (PD) 7, 14, and 21. RESULTS Body weight and food intake decreased in dams, which was associated with reduced fat pad stores and increased corticosterone levels at PD 14. The stressed low-protein diet dams demonstrated alterations in behavior and offspring care. Despite nutritional deprivation, dams adapted their metabolism to provide adequate energy supply through milk; however, we demonstrated elevated corticosterone and total fat levels in milk at PD 14. Male offspring also showed increased corticosterone at PD 7, associated with a lean phenotype and alterations in white and brown adipose tissue morphology at PD 21. CONCLUSION Exposure to protein-caloric restriction diet of dams during lactation increased the glucocorticoid levels in dams, milk, and offspring, which is associated with alterations in maternal behavior and milk composition. Thus, glucocorticoids and milk composition may play an important role in metabolic programming induced by maternal undernutrition.
Collapse
|
5
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
6
|
Moullé VS, Frapin M, Amarger V, Parnet P. Maternal Protein Restriction in Rats Alters Postnatal Growth and Brain Lipid Sensing in Female Offspring. Nutrients 2023; 15:nu15020463. [PMID: 36678336 PMCID: PMC9863736 DOI: 10.3390/nu15020463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Perinatal nutrition is a key player in the susceptibility to developing metabolic diseases in adulthood, leading to the concept of "metabolic programming". The aim of this study was to assess the impact of maternal protein restriction during gestation and lactation on glucose homeostasis and eating behaviour in female offspring. Pregnant rats were fed a normal or protein-restricted (PR) diet and followed throughout gestation and lactation. Body weight, glucose homeostasis, and eating behaviour were evaluated in offspring, especially in females. Body weight gain was lower in PR dams during lactation only, despite different food and water intakes throughout gestation and lactation. Plasma concentration of leptin, adiponectin and triglycerides increased drastically before delivery in PR dams in relation to fat deposits. Although all pups had identical birth body weight, PR offspring body weight differed from control offspring around postnatal day 10 and remained lower until adulthood. Offspring glucose homeostasis was mildly impacted by maternal PR, although insulin secretion was reduced for PR rats at adulthood. Food intake, satiety response, and cerebral activation were examined after a lipid preload and demonstrated some differences between the two groups of rats. Maternal PR during gestation and lactation does induce extrauterine growth restriction, accompanied by alterations in maternal plasma leptin and adiponectin levels, which may be involved in programming the alterations in eating behaviour observed in females at adulthood.
Collapse
|
7
|
Rodent models of metabolic disorders: considerations for use in studies of neonatal programming. Br J Nutr 2022; 128:802-827. [PMID: 34551828 DOI: 10.1017/s0007114521003834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epidemiologically, metabolic disorders have garnered much attention, perhaps due to the predominance of obesity. The early postnatal life represents a critical period for programming multifactorial metabolic disorders of adult life. Though altricial rodents are prime subjects for investigating neonatal programming, there is still no sufficiently generalised literature on their usage and methodology. This review focuses on establishing five approach-based models of neonatal rodents adopted for studying metabolic phenotypes. Here, some modelled interventions that currently exist to avoid or prevent metabolic disorders are also highlighted. We also bring forth recommendations, guidelines and considerations to aid research on neonatal programming. It is hoped that this provides a background to researchers focused on the aetiology, mechanisms, prevention and treatment of metabolic disorders.
Collapse
|
8
|
Bertasso IM, de Moura EG, Pietrobon CB, Cabral SS, Kluck GEG, Atella GC, Manhães AC, Lisboa PC. Low protein diet during lactation programs hepatic metabolism in adult male and female rats. J Nutr Biochem 2022; 108:109096. [PMID: 35779796 DOI: 10.1016/j.jnutbio.2022.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 02/28/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
The liver is an essential regulator of energy metabolism, and its function can be disrupted by nutritional alterations. Since liver development continues during breastfeeding nutritional challenges during this period predispose patients to diseases throughout life. A maternal protein-restricted (PR) diet during lactation promotes reductions in the body weight, adiposity, and plasma glucose and insulin, leptin resistance and an increase in corticosterone and catecholamines in adult male rat offspring. Here, we investigated hepatic metabolism in the offspring (both sexes) of PR (8% protein diet during lactation) and control (23% protein diet) dams. Both male and female offspring were evaluated at 6 months of age. PR males had no liver steatosis and manifested a reduction in lipids in hepatocytes adjacent to the vasculature. These animals had lower levels of esterified cholesterol in hepatocytes, suggesting higher biliary excretion, unchanged glycolysis and gluconeogenesis, and lower contents of the markers of mitochondrial redox balance and endoplasmic reticulum (ER) stress response and estrogen receptor alpha. PR females showed normal hepatic morphology associated with higher uptake of cholesterol esters, normal glycolysis and gluconeogenesis, and lower ER stress parameters without changes in the key markers of the redox balance. Additionally, these animals had lower content of estrogen receptor alpha and higher content of androgen receptor. The maternal PR diet during lactation did not program hepatic lipid accumulation in the adult progeny. However, several repair homeostasis pathways were altered in males and females, possibly compromising maintenance of normal liver function.
Collapse
Affiliation(s)
- Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Silva Cabral
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Amaro A, Baptista FI, Matafome P. Programming of future generations during breastfeeding: The intricate relation between metabolic and neurodevelopment disorders. Life Sci 2022; 298:120526. [DOI: 10.1016/j.lfs.2022.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
|
10
|
Sevrin T, Sirvins C, David A, Aguesse A, Gandon A, Castellano B, Darmaun D, Boquien CY, Alexandre-Gouabau MC. Dietary Arginine Supplementation during Gestation and Lactation Increases Milk Yield and Mammary Lipogenesis in Rats. J Nutr 2021; 151:2188-2198. [PMID: 34091672 DOI: 10.1093/jn/nxab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Arginine, an essential amino acid during the reproductive period, has been shown to enhance lactation performances in livestock. Whether it could help mothers with breastfeeding difficulties is not known. OBJECTIVES This study aimed to determine whether dietary arginine supplementation would enhance milk production in rat dams nursing large 12-pup litters and, if so, what mechanisms are involved. METHODS In 3 series of experiments, differing in dam killing timing, 59 primiparous, pregnant Sprague-Dawley rats (mean ± SD weight: 254 ± 24.7 g) were randomly assigned to receive either 1) an AIN-93G diet supplemented with l-arginine at 2.0% (ARG diet), through lactation and gestation (AGL group); 2) a control AIN-93G diet including at 3.5% an isonitrogenous mix of amino acids that are not essential for lactation (MA diet), during gestation and lactation (MA group); or 3) the MA diet during gestation and the ARG diet during lactation (AL group). Milk flow was measured using deuterated water enrichment between days 11 and 18. Plasma hormones and mammary expression of genes involved in lactation were measured using ELISA and qRT-PCR, respectively, at lactation days 12, 18, or 21 in the 3 experiments. Data were analyzed by ANOVA. RESULTS Dam food intake, pup weight gain, milk flow normalized to dam weight, and milk fat concentration were 17%, 9%, 20%, and 20% greater in the AGL group than in the MA group, respectively (P < 0.05). Genes involved in lipogenesis and lipid regulation were overexpressed ≤2.76-fold in the mammary gland of AGL dams compared with MA dams (P < 0.05) and plasma leptin concentration was 39% higher (P = 0.008). Milk flow and composition and mammary gene expression of the AL group did not differ from those of the MA group, whereas milk fat concentration and flow were 26% and 37% lower than in the AGL group, respectively. CONCLUSIONS Arginine supplementation during gestation and lactation enhances milk flow and mammary lipogenesis in rats nursing large litters.
Collapse
Affiliation(s)
- Thomas Sevrin
- Laboratoire FRANCE Bébé Nutrition, Laval, France
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Charlène Sirvins
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Agnès David
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Audrey Aguesse
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Alexis Gandon
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Blandine Castellano
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Dominique Darmaun
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
- University Hospital of Nantes, Nantes, France
| | - Clair-Yves Boquien
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | | |
Collapse
|
11
|
Meng X, Lyu C, Ma J, Zhang X, Hu C, Su X, Ning C, Xie W, Zhang S. Metabolomics and Network Pharmacology-Based Investigation into the Mechanisms Underlying the Therapeutic Effect of a New Chinese Traditional Medicine (Cui Nai Ling) on Bromocriptine-Induced Hypogalactia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8857449. [PMID: 34221092 PMCID: PMC8221871 DOI: 10.1155/2021/8857449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
As a traditional veterinary medicine to promote lactation, Cui Nai Ling (CNL) can not only increase milk supply and promote health but also improve the overall physiological function and immunity of the animals. In order to further improve CNL's effect on lactation, we have previously made a new CNL (NCNL) by adding Tetrapanacis Medulla and replacing Vaccariae Semen with fried Vaccariae Semen in CNL. We have demonstrated that the lactation-promoting effect of NCNL is better than that of CNL. However, the underlying mechanisms by which NCNL promotes lactation are unclear. In this study, we performed metabolomics, network pharmacology, and pharmacodynamic studies to explore the underlying mechanisms by which NCNL promotes lactation in rats with bromocriptine-induced hypogalactia. The results showed that NCNL significantly improved the loss of appetite in female adult rats and the weight loss of pups caused by the disorder of lactation. Biochemical analysis showed that NCNL could regulate the levels of PRL, T4, E2, Ca, UREA, GLU, ALT, AST, TCHO, and TG in serum. The pathological results showed that NCNL could promote lactation and increase the mammary gland index by improving breast acinar tissue morphology in rats with hypogalactia. Network pharmacology studies showed that NCNL promotes lactation through P13K-Akt, insulin resistance, and prolactin signaling pathways, among which the most frequently affected pathway was the P13K-Akt signaling pathway. Metabolomics studies showed that NCNL can significantly upregulate phenylalanine, tyrosine, and tryptophan biosynthesis and tyrosine metabolism pathways and downregulate cysteine and methionine metabolism pathways. NCNL can significantly increase the serum prolactin concentration, improve the glucose and lipid metabolism disorders, and regulate PI3K-Akt, insulin resistance, and prolactin pathways to affect the amino acids' metabolism in the mammary gland and ultimately exert its therapeutic effect on bromocriptine-induced postpartum hypogalactia. These findings revealed the effect and application value of NCNL on animals with postpartum hypogalactia.
Collapse
Affiliation(s)
- Xianglong Meng
- Experimental Teaching Center, College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Chenzi Lyu
- Experimental Teaching Center, College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Junnan Ma
- Department of Formulaology, Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiaoyan Zhang
- Experimental Teaching Center, College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Cong Hu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xiaojuan Su
- Experimental Teaching Center, College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Chenxu Ning
- Experimental Teaching Center, College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Wenbin Xie
- Experimental Teaching Center, College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Shuosheng Zhang
- Experimental Teaching Center, College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| |
Collapse
|
12
|
Pocheron AL, Le Dréan G, Billard H, Moyon T, Pagniez A, Heberden C, Le Chatelier E, Darmaun D, Michel C, Parnet P. Maternal Microbiota Transfer Programs Offspring Eating Behavior. Front Microbiol 2021; 12:672224. [PMID: 34211445 PMCID: PMC8239415 DOI: 10.3389/fmicb.2021.672224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 01/15/2023] Open
Abstract
Understanding the link between mother's obesity and regulation of the child's appetite is a prerequisite for the design of successful preventive strategies. Beyond the possible contributions of genetic heritage, family culture, and hormonal and metabolic environment during pregnancy, we investigate in the present paper the causal role of the transmission of the maternal microbiotas in obesity as microbiotas differ between lean and obese mothers, maternal microbiotas are the main determinants of a baby's gut colonization, and the intestinal microbiota resulting from the early colonization could impact the feeding behavior of the offspring with short- and long-term consequences on body weight. We thus investigated the potential role of vertical transfers of maternal microbiotas in programming the eating behavior of the offspring. Selectively bred obese-prone (OP)/obese-resistant (OR) Sprague-Dawley dams were used since differences in the cecal microbiota have been evidenced from males of that strain. Microbiota collected from vagina (at the end of gestation), feces, and milk (at postnatal days 1, 5, 10, and 15) of OP/OR dams were orally inoculated to conventional Fischer F344 recipient pups from birth to 15 days of age to create three groups of pups: F-OP, F-OR, and F-Sham group (that received the vehicle). We first checked microbiotal differences between inoculas. We then assessed the impact of transfer (from birth to adulthood) onto the intestinal microbiota of recipients rats, their growth, and their eating behavior by measuring their caloric intake, their anticipatory food reward responses, their preference for sweet and fat tastes in solutions, and the sensations that extend after food ingestion. Finally, we searched for correlation between microbiota composition and food intake parameters. We found that maternal transfer of microbiota differing in composition led to alterations in pups' gut microbiota composition that did not last until adulthood but were associated with specific eating behavior characteristics that were predisposing F-OP rats to higher risk of over consuming at subsequent periods of their life. These findings support the view that neonatal gut microbiotal transfer can program eating behavior, even without a significant long-lasting impact on adulthood microbiota composition.
Collapse
|
13
|
Picó C, Reis F, Egas C, Mathias P, Matafome P. Lactation as a programming window for metabolic syndrome. Eur J Clin Invest 2021; 51:e13482. [PMID: 33350459 DOI: 10.1111/eci.13482] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
The concept of developmental origins of health and disease (DOHaD) was initially supported by the low birth weight and higher risk of developing cardiovascular disease in adult life, caused by nutrition restriction during foetal development. However, other programming windows have been recognized in the last years, namely lactation, infancy, adolescence and even preconception. Although the concept has been developed in order to study the impact of foetal calorie restriction in adult life, it is now recognized that maternal overweight during programming windows is also harmful to the offspring. This article explores and summarizes the current knowledge about the impact of maternal obesity and obesogenic diets during lactation in the metabolic programming towards the development of metabolic syndrome in the adult life. The impact of maternal obesity and obesogenic diets in milk quality is discussed, including the alterations in specific micro and macronutrients, as well as the impact of such alterations in the development of metabolic syndrome-associated features in the newborn, such as insulin resistance and adiposity. Moreover, the impact of milk quality and formula feeding in infants' gut microbiota, immune system maturation and in the nutrient-sensing mechanisms, namely those related to gut hormones and leptin, are also discussed under the current knowledge.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma (Mallorca), Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma (Mallorca), Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma (Mallorca), Spain
| | - Flávio Reis
- Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics and Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Conceição Egas
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Center of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Faculty of Medicine, Institute of Physiology and Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
14
|
Postnatal Growth Restriction in Mice Alters Cardiac Protein Composition and Leads to Functional Impairment in Adulthood. Int J Mol Sci 2020; 21:ijms21249459. [PMID: 33322681 PMCID: PMC7763900 DOI: 10.3390/ijms21249459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Postnatal growth restriction (PGR) increases the risk for cardiovascular disease (CVD) in adulthood, yet there is minimal mechanistic rationale for the observed pathology. The purpose of this study was to identify proteomic differences in hearts of growth-restricted and unrestricted mice, and propose mechanisms related to impairment in adulthood. Friend leukemia virus B (FVB) mouse dams were fed a control (CON: 20% protein), or low-protein (LP: 8% protein) isocaloric diet 2 weeks before mating. LP dams produce 20% less milk, inducing growth restriction. At birth (postnatal; PN1), pups born to dams fed the CON diet were switched to LP dams (PGR group) or a different CON dam. At PN21, a sub-cohort of CON (n = 3 males; n = 3 females) and PGR (n = 3 males; n = 3 females) were euthanized and their proteome analyzed by two-dimensional differential in-gel electrophoresis (2D DIGE) and mass spectroscopy. Western blotting and silver nitrate staining confirmed 2D DIGE results. Littermates (CON: n = 4 males and n = 4 females; PGR: n = 4 males and n = 4 females) were weaned to the CON diet. At PN77, echocardiography measured cardiac function. At PN80, hearts were removed for western blotting to determine if differences persisted into adulthood. 2D DIGE and western blot confirmation indicated PGR had reductions in p57kip2, Titin (Ttn), and Collagen (Col). At PN77, PGR had impaired cardiac function as measured by echocardiography. At PN80, western blots of p57kip2 showed protein abundance recovered from PN21. PN80 silver staining of large molecular weight proteins (Ttn and Col) was reduced in PGR. PGR reduces cell cycle activity at PN21, which is recovered in adulthood. However, collagen fiber networks are altered into adulthood.
Collapse
|
15
|
Sevrin T, Boquien CY, Gandon A, Grit I, de Coppet P, Darmaun D, Alexandre-Gouabau MC. Fenugreek Stimulates the Expression of Genes Involved in Milk Synthesis and Milk Flow through Modulation of Insulin/GH/IGF-1 Axis and Oxytocin Secretion. Genes (Basel) 2020; 11:E1208. [PMID: 33081164 PMCID: PMC7602737 DOI: 10.3390/genes11101208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated galactagogue effect of fenugreek in a rat model of lactation challenge, foreshadowing its use in women's breastfeeding management. To assess longitudinal molecular mechanisms involved in milk synthesis/secretion in dams submitted to fenugreek supplementation, inguinal mammary, pituitary glands and plasma were isolated in forty-three rats nursing large 12 pups-litters and assigned to either a control (CTL) or a fenugreek-supplemented (FEN) diet during lactation. RT-PCR were performed at days 12 and 18 of lactation (L12 and L18) and the first day of involution (Inv1) to measure the relative expression of genes related to both milk synthesis and its regulation in the mammary gland and lactogenic hormones in the pituitary gland. Plasma hormone concentrations were measured by ELISA. FEN diet induced 2- to 3-times higher fold change in relative expression of several genes related to macronutrient synthesis (Fasn, Acaca, Fabp3, B4galt1, Lalba and Csn2) and energy metabolism (Cpt1a, Acads) and in IGF-1 receptor in mammary gland, mainly at L12. Pituitary oxytocin expression and plasma insulin concentration (+77.1%) were also significantly increased. Altogether, these findings suggest fenugreek might extend duration of peak milk synthesis through modulation of the insulin/GH/IGF-1 axis and increase milk ejection by activation of oxytocin secretion.
Collapse
Affiliation(s)
- Thomas Sevrin
- FRANCE Bébé Nutrition (FBN) Laboratory, 53000 Laval, France;
- Mixed Research Unit 1280 Pathophysiology of Nutritional adaptations (UMR 1280 PhAN) Nantes University, Research Center in Human Nutrition-West (CRNH-O), Institute of Digestive Tract Diseases (IMAD), French National Research Institute for Agriculture, Food and Environment (INRAE), F-44000 Nantes, France; (C.-Y.B.); (A.G.); (I.G.); (P.d.C.); (D.D.)
| | - Clair-Yves Boquien
- Mixed Research Unit 1280 Pathophysiology of Nutritional adaptations (UMR 1280 PhAN) Nantes University, Research Center in Human Nutrition-West (CRNH-O), Institute of Digestive Tract Diseases (IMAD), French National Research Institute for Agriculture, Food and Environment (INRAE), F-44000 Nantes, France; (C.-Y.B.); (A.G.); (I.G.); (P.d.C.); (D.D.)
| | - Alexis Gandon
- Mixed Research Unit 1280 Pathophysiology of Nutritional adaptations (UMR 1280 PhAN) Nantes University, Research Center in Human Nutrition-West (CRNH-O), Institute of Digestive Tract Diseases (IMAD), French National Research Institute for Agriculture, Food and Environment (INRAE), F-44000 Nantes, France; (C.-Y.B.); (A.G.); (I.G.); (P.d.C.); (D.D.)
| | - Isabelle Grit
- Mixed Research Unit 1280 Pathophysiology of Nutritional adaptations (UMR 1280 PhAN) Nantes University, Research Center in Human Nutrition-West (CRNH-O), Institute of Digestive Tract Diseases (IMAD), French National Research Institute for Agriculture, Food and Environment (INRAE), F-44000 Nantes, France; (C.-Y.B.); (A.G.); (I.G.); (P.d.C.); (D.D.)
| | - Pierre de Coppet
- Mixed Research Unit 1280 Pathophysiology of Nutritional adaptations (UMR 1280 PhAN) Nantes University, Research Center in Human Nutrition-West (CRNH-O), Institute of Digestive Tract Diseases (IMAD), French National Research Institute for Agriculture, Food and Environment (INRAE), F-44000 Nantes, France; (C.-Y.B.); (A.G.); (I.G.); (P.d.C.); (D.D.)
| | - Dominique Darmaun
- Mixed Research Unit 1280 Pathophysiology of Nutritional adaptations (UMR 1280 PhAN) Nantes University, Research Center in Human Nutrition-West (CRNH-O), Institute of Digestive Tract Diseases (IMAD), French National Research Institute for Agriculture, Food and Environment (INRAE), F-44000 Nantes, France; (C.-Y.B.); (A.G.); (I.G.); (P.d.C.); (D.D.)
- Nantes University Hospital (CHU) Nantes, F-44000 Nantes, France
| | - Marie-Cécile Alexandre-Gouabau
- Mixed Research Unit 1280 Pathophysiology of Nutritional adaptations (UMR 1280 PhAN) Nantes University, Research Center in Human Nutrition-West (CRNH-O), Institute of Digestive Tract Diseases (IMAD), French National Research Institute for Agriculture, Food and Environment (INRAE), F-44000 Nantes, France; (C.-Y.B.); (A.G.); (I.G.); (P.d.C.); (D.D.)
| |
Collapse
|
16
|
Moderate High Caloric Maternal Diet Impacts Dam Breast Milk Metabotype and Offspring Lipidome in a Sex-Specific Manner. Int J Mol Sci 2020; 21:ijms21155428. [PMID: 32751478 PMCID: PMC7432416 DOI: 10.3390/ijms21155428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/29/2023] Open
Abstract
Lactation is a critical period during which maternal sub- or over-nutrition affect milk composition and offspring development that can have lasting health effects. The consequences of moderate high-fat, high-simple carbohydrate diet (WD) consumption by rat dams, during gestation and lactation, on milk composition and offspring blood lipidome and its growth, at weaning, were investigated by using a comprehensive lipidomic study on mass-spectrometric platform combined to targeted fatty- and free amino-acids analysis. This holistic approach allowed clear-cut differences in mature milk-lipidomic signature according to maternal diet with a similar content of protein, lactose and leptin. The lower WD-milk content in total fat and triglycerides (TGs), particularly in TGs-with saturated medium-chain, and higher levels in both sphingolipid (SL) and TG species with unsaturated long-chain were associated to a specific offspring blood-lipidome with decreased levels in TGs-containing saturated fatty acid (FA). The sexual-dimorphism in the FA-distribution in TG (higher TGs-rich in oleic and linoleic acids, specifically in males) and SL species (increased levels in very long-chain ceramides, specifically in females) could be associated with some differences that we observed between males and females like a higher total body weight gain in females and an increased preference for fatty taste in males upon weaning.
Collapse
|
17
|
Abstract
Abstract
Lactation is a critical period during which maternal nutritional and environmental challenges affect milk composition and, therefore, organ differentiation, structure, and function in offspring during the early postnatal period. Evidence to date shows that lactation is a vulnerable time during which transient insults can have lasting effects, resulting in altered health outcomes in offspring in adult life. Despite the importance of the developmental programming that occurs during this plastic period of neonatal life, there are few comprehensive reviews of the multiple challenges—especially to the dam—during lactation. This review presents milk data from rodent studies involving maternal nutritional challenges and offspring outcome data from studies involving maternal manipulations during lactation. Among the topics addressed are maternal nutritional challenges and the effects of litter size and artificial rearing on offspring metabolism and neural and endocrine outcomes. The lactation period is an opportunity to correct certain functional deficits resulting from prenatal challenges to the fetus, but, if not personalized, can also lead to undesirable outcomes related to catch up-growth and overnutrition.
Collapse
|
18
|
Bardanzellu F, Puddu M, Fanos V. The Human Breast Milk Metabolome in Preeclampsia, Gestational Diabetes, and Intrauterine Growth Restriction: Implications for Child Growth and Development. J Pediatr 2020; 221S:S20-S28. [PMID: 32482230 DOI: 10.1016/j.jpeds.2020.01.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Italy.
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Italy
| |
Collapse
|
19
|
Chen Q, Zhao FQ, Ren Y, Han J, Liu J, Li Y, Liu H. Parenterally Delivered Methionyl-Methionine Dipeptide During Pregnancy Enhances Mammogenesis and Lactation Performance Over Free Methionine by Activating PI3K-AKT Signaling in Methionine-Deficient Mice. J Nutr 2020; 150:1186-1195. [PMID: 32006013 DOI: 10.1093/jn/nxaa005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/23/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pregnancy-induced hypoaminoacidemia, l-methionine (Met) included, disturbs embryogenesis and may also affect breast function. Supplementation with the dipeptide l-methionyl-Met (Met-Met) may improve lactation performance. OBJECTIVE We compared the effects of supplemental Met or Met-Met during pregnancy on mammogenesis and lactogenesis and investigated underlying mechanisms. METHODS In experiment 1, 9-wk-old ICR mice (n = 72, ∼30 g) were divided into 3 groups. During the first 17 days of pregnancy (DP), the Control group was fed a diet with Met (8.2 g/kg) and saline was intraperitoneally injected, the Met group was fed a Met-devoid diet and 35% of the Met (92-mmo l Met) as contained in the Control diet was intraperitoneally injected, and the Met-Met group was fed the same diet and 70-mmo l Met plus 11-mmo l Met-Met was intraperitoneally injected. All animals were fed the Control diet after DP17 and during lactation. Mammogenesis, lactogenesis, transcriptome at DP17, and milk performance during lactation were examined. In experiment 2, 9-wk-old ICR mice (n = 55, ∼30 g) at DP0 were injected through the teat with adeno-associated virus for overexpression/inhibition of phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1), divided into the Control, Met, and Met-Met groups and received the same treatment as experiment 1 to examine mammogenesis and lactogenesis at DP17. RESULTS In experiment 1, compared with the Met group, the Met-Met group showed higher (P < 0.05) mammary epithelium percentage (42%) and αS1-casein expression (84%) at DP17, milk yield (34%) and energy concentrations (8.7%) during lactation; transcriptomic analysis illustrated activated phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling in the mammary glands of the Met-Met group (P-adj < 0.001). In experiment 2, overexpression of Pik3r1 enhanced (P < 0.05) the protective effect of Met-Met over Met on mammogenesis and β-casein expression. CONCLUSION Met-Met is more effective than Met in promoting mammogenesis and lactogenesis mainly by activation of PI3K-AKT signaling in Met-deficient mice.
Collapse
Affiliation(s)
- Qiong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Feng-Qi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.,Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Yifei Ren
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jialiang Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yang Li
- Obstetrical Department, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
20
|
Altered molecular signatures during kidney development after intrauterine growth restriction of different origins. J Mol Med (Berl) 2020; 98:395-407. [PMID: 32008055 PMCID: PMC7080693 DOI: 10.1007/s00109-020-01875-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Abstract This study was performed to identify transcriptional alterations in male intrauterine growth restricted (IUGR) rats during and at the end of nephrogenesis in order to generate hypotheses which molecular mechanisms contribute to adverse kidney programming. IUGR was induced by low protein (LP) diet throughout pregnancy, bilateral uterine vessel ligation (LIG), or intrauterine stress (IUS) by sham operation. Offspring of unimpaired dams served as controls. Significant acute kidney damage was ruled out by negative results for proteins indicative of ER-stress, autophagy, apoptosis, or infiltration with macrophages. Renal gene expression was examined by transcriptome microarrays, demonstrating 53 (LP, n = 12; LIG, n = 32; IUS, n = 9) and 134 (LP, n = 10; LIG, n = 41; IUS, n = 83) differentially expressed transcripts on postnatal days (PND) 1 and 7, respectively. Reduced Pilra (all IUGR groups, PND 7), Nupr1 (LP and LIG, PND 7), and Kap (LIG, PND 1) as well as increased Ccl20, S100a8/a9 (LIG, PND 1), Ifna4, and Ltb4r2 (IUS, PND 7) indicated that inflammation-related molecular dysregulation could be a “common” feature after IUGR of different origins. Network analyses of transcripts and predicted upstream regulators hinted at proinflammatory adaptions mainly in LIG (arachidonic acid-binding, neutrophil aggregation, toll-like-receptor, NF-kappa B, and TNF signaling) and dysregulation of AMPK and PPAR signaling in LP pups. The latter may increase susceptibility towards obesity-associated kidney damage. Western blots of the most prominent predicted upstream regulators confirmed significant dysregulation of RICTOR in LP (PND 7) and LIG pups (PND 1), suggesting that mTOR-related processes could further modulate kidney programming in these groups of IUGR pups. Key messages Inflammation-related transcripts are dysregulated in neonatal IUGR rat kidneys. Upstream analyses indicate renal metabolic dysregulation after low protein diet. RICTOR is dysregulated after low protein diet and uterine vessel ligation.
Electronic supplementary material The online version of this article (10.1007/s00109-020-01875-1) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Sulfur-containing amino acid supplementation to gilts from late pregnancy to lactation altered offspring's intestinal microbiota and plasma metabolites. Appl Microbiol Biotechnol 2019; 104:1227-1242. [PMID: 31853564 DOI: 10.1007/s00253-019-10302-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/14/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Maternal nutrition during late pregnancy and lactation is highly involved with the offspring's health status. The study was carried out to evaluate the effects of different ratios of methionine and cysteine (Met/Cys: 46% Met, 51% Met, 56% Met, and 62% Met; maintained with 0.78% of total sulfur-containing amino acids; details in "Materials and methods") supplements in the sows' diet from late pregnancy to lactation on offspring's plasma metabolomics and intestinal microbiota. The results revealed that the level of serum albumin, calcium, iron, and magnesium was increased in the 51% Met group compared with the 46% Met, 56% Met, and 62% Met groups. Plasma metabolomics results indicated that the higher ratios of methionine and cysteine (0.51% Met, 0.56% Met, and 0.62% Met)-supplemented groups enriched the level of hippuric acid, retinoic acid, riboflavin, and δ-tocopherol than in the 46% Met group. Furthermore, the 51% Met-supplemented group had a higher relative abundance of Firmicutes compared with the other three groups (P < 0.05), while the 62% Met-supplemented group increased the abundance of Proteobacteria compared with the other three groups (P < 0.05) in piglets' intestine. These results indicated that a diet consisting with 51% Met is the optimum Met/Cys ratio from late pregnancy to lactation can maintain the offspring's health by improving the serum biochemical indicators and altering the plasma metabolomics profile and intestinal gut microbiota composition, but higher proportion of Met/Cys may increase the possible risk to offspring's health.
Collapse
|
22
|
Lacerda DC, Manhães-de-Castro R, Gouveia HJCB, Tourneur Y, Costa de Santana BJ, Assunção Santos RE, Olivier-Coq J, Ferraz-Pereira KN, Toscano AE. Treatment with the essential amino acid L-tryptophan reduces masticatory impairments in experimental cerebral palsy. Nutr Neurosci 2019; 24:927-939. [PMID: 31766953 DOI: 10.1080/1028415x.2019.1695360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose Children with cerebral palsy (CP) often exhibit difficulties in feeding resulting from deficits in chewing. This study investigates the therapeutic potential of L-tryptophan (TRI) to reduce deficits in chewing in rats subjected to an experimental model of CP.Methods A total of 80 Wistar albino rats were used. Pups were randomly assigned to 4 experimental groups: Control Saline, Control TRI, CP Saline, and CP TRI groups. The experimental model of CP was based on the combination of perinatal anoxia associated with postnatal sensorimotor restriction of the hind limbs. TRI was administered subcutaneously during the lactation period. Anatomical and behavioral parameters were evaluated during maturation, including body weight gain, food intake, chewing movements, relative weight and the distribution of the types of masseter muscle fibers.Results The induction of CP limited body weight gain, decreased food intake and led to impairment in the morphological and functional parameters of chewing. Moreover, for a comparable amount of food ingested, CP TRI animals grew the most. In addition, supplementation with TRI improved the number of chewing movements, and increased the weight and proportion of type IIB fibers of the masseter in rats subjected to CP.Conclusion These results demonstrate that experimental CP impaired the development of mastication and that TRI supplementation increased masticatory maturation in animals subjected to CP.
Collapse
Affiliation(s)
- Diego Cabral Lacerda
- Post Graduate Program in Nutrition, Federal University of Pernambuco Recife, Brazil
| | | | | | | | | | | | - Jacques Olivier-Coq
- Institut de Neuroscience de la Timone (INT), UMR 7289, CNRS Aix Marseille Université, Marseille, France
| | | | - Ana Elisa Toscano
- Department of Nursing, CAV, Federal University of Pernambuco Recife, Brazil
| |
Collapse
|
23
|
Moullé VS, Parnet P. Effects of Nutrient Intake during Pregnancy and Lactation on the Endocrine Pancreas of the Offspring. Nutrients 2019; 11:nu11112708. [PMID: 31717308 PMCID: PMC6893668 DOI: 10.3390/nu11112708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
The pancreas has an essential role in the regulation of glucose homeostasis by secreting insulin, the only hormone with a blood glucose lowering effect in mammals. Several circulating molecules are able to positively or negatively influence insulin secretion. Among them, nutrients such as fatty acids or amino acids can directly act on specific receptors present on pancreatic beta cells. Dietary intake, especially excessive nutrient intake, is known to modify energy balance in adults, resulting in pancreatic dysfunction. However, gestation and lactation are critical periods for fetal development and pup growth and specific dietary nutrients are required for optimal growth. Feeding alterations during these periods will impact offspring development and increase the risk of developing metabolic disorders in adulthood, leading to metabolic programming. This review will focus on the influence of nutrient intake during gestation and lactation periods on pancreas development and function in offspring, highlighting the molecular mechanism of imprinting on this organ.
Collapse
|
24
|
Impact of Fenugreek on Milk Production in Rodent Models of Lactation Challenge. Nutrients 2019; 11:nu11112571. [PMID: 31653107 PMCID: PMC6893785 DOI: 10.3390/nu11112571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Fenugreek, a herbal remedy, has long been used as galactologue to help mothers likely to stop breastfeeding because of perceived insufficient milk production. However, few studies highlight the efficacy of fenugreek in enhancing milk production. The aims of our study were to determine whether fenugreek increased milk yield in rodent models of lactation challenge and if so, to verify the lack of adverse effects on dam and offspring metabolism. Two lactation challenges were tested: increased litter size to 12 pups in dams fed a 20% protein diet and perinatal restriction to an 8% protein diet with eight pups’ litter, with or without 1 g.kg−1.day−1 dietary supplementation of fenugreek, compared to control dams fed 20% protein diet with eight pups’ litters. Milk flow was measured by the deuterium oxide enrichment method, and milk composition was assessed. Lipid and glucose metabolism parameters were assessed in dam and offspring plasmas. Fenugreek increased milk production by 16% in the litter size increase challenge, resulting in an 11% increase in pup growth without deleterious effect on dam-litter metabolism. Fenugreek had no effect in the maternal protein restriction challenge. These results suggest a galactologue effect of fenugreek when mothers have no physiological difficulties in producing milk.
Collapse
|
25
|
Effects of maternal protein restriction during pregnancy and lactation on milk composition and offspring development. Br J Nutr 2019; 122:141-151. [PMID: 31345278 DOI: 10.1017/s0007114519001120] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Before weaning, breast milk is the physiological form of neonatal nutrition, providing pups with all nutrient requirements. Maternal low-protein diet (LPD) during pregnancy and lactation induces adverse changes in key maternal organs, which have negative effects on pup development. We studied the effects of maternal LPD on liver weight, mammary gland (MG) cell differentiation, milk composition and production and pup development throughout lactation. We fed rats with control (C) or LPD (R) during pregnancy and lactation. At 7 d early, 14 d mid and 21 d late lactation stages, maternal biochemical parameters, body, liver and MG weights were analysed. MG cell differentiation was analysed by haematoxylin and eosin staining; milk nutrient composition and production were studied; pup body, liver and brain weights, hippocampal arachidonic acid (AA) and DHA were quantified. Results showed lower body and liver weights, minor MG cell differentiation and lower serum insulin and TAG in R compared with C. R milk contained less protein and higher AA at early and mid stages compared with C. R pup milk and fat intake were lower at all stages. R protein intake at early and mid stages and DHA intake at mid and late stages were lower compared with C. In R pups, lower body, liver and brain weights were associated with decreased hippocampal AA and DHA. We conclude that maternal LPD impairs liver and MG function and induces significant changes in maternal milk composition, pup milk intake and organ development.
Collapse
|
26
|
Palou M, Torrens JM, Castillo P, Sánchez J, Palou A, Picó C. Metabolomic approach in milk from calorie-restricted rats during lactation: a potential link to the programming of a healthy phenotype in offspring. Eur J Nutr 2019; 59:1191-1204. [DOI: 10.1007/s00394-019-01979-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
|
27
|
Ferguson DP, Monroe TO, Heredia CP, Fleischmann R, Rodney GG, Taffet GE, Fiorotto ML. Postnatal undernutrition alters adult female mouse cardiac structure and function leading to limited exercise capacity. J Physiol 2019; 597:1855-1872. [PMID: 30730556 DOI: 10.1113/jp277637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Impaired growth during fetal life can reprogramme heart development and increase the risk for long-term cardiovascular dysfunction. It is uncertain if the developmental window during which the heart is vulnerable to reprogramming as a result of inadequate nutrition extends into the postnatal period. We found that adult female mice that had been undernourished only from birth to 3 weeks of age had disproportionately smaller hearts compared to males, with thinner ventricle walls and more mononucleated cardiomyocytes. In females, but not males, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited and maximal exercise capacity was compromised. These data suggest that the developmental window during which the heart is vulnerable to reprogramming by inadequacies in nutrient intake may extend into postnatal life and such individuals could be at increased risk for a cardiac event as a result of strenuous exercise. ABSTRACT Adults who experienced undernutrition during critical windows of development are at increased risk for cardiovascular disease. The contribution of cardiac function to this increased disease risk is uncertain. We evaluated the effect of a short episode of postnatal undernutrition on cardiovascular function in mice at the whole animal, organ, and cellular levels. Pups born to control mouse dams were suckled from birth to postnatal day (PN) 21 on dams fed either a control (20% protein) or a low protein (8% protein) isocaloric diet. After PN21 offspring were fed the same control diet until adulthood. At PN70 V ̇ O 2 , max was measured by treadmill test. At PN80 cardiac function was evaluated by echocardiography and Doppler analysis at rest and following β-adrenergic stimulation. Isolated cardiomyocyte nucleation and Ca2+ transients (with and without β-adrenergic stimulation) were measured at PN90. Female mice that were undernourished and then refed (PUN), unlike male mice, had disproportionately smaller hearts and their exercise capacity, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited. A reduced left ventricular end diastolic volume, impaired early filling, and decreased stored energy at the beginning of diastole contributed to these impairments. Female PUN mice had more mononucleated cardiomyocytes; under resting conditions binucleated cells had a functional profile suggestive of increased basal adrenergic activation. Thus, a brief episode of early postnatal undernutrition in the mouse can produce persistent changes to cardiac structure and function that limit exercise/functional capacity and thereby increase the risk for the development of a wide variety of cardiovascular morbidities.
Collapse
Affiliation(s)
- David P Ferguson
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Kinesiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tanner O Monroe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Celia Pena Heredia
- Section of Geriatrics, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ryan Fleischmann
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - George E Taffet
- Section of Geriatrics, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
28
|
Almeida DL, Simões FS, Saavedra LPJ, Praxedes Moraes AM, Matiusso CCI, Malta A, Palma-Rigo K, Mathias PCDF. Maternal low-protein diet during lactation combined with early overfeeding impair male offspring's long-term glucose homeostasis. Endocrine 2019; 63:62-69. [PMID: 30128960 DOI: 10.1007/s12020-018-1719-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE The early-life nutritional environment affects long-term glucose homeostasis, we investigated the effects of maternal low-protein diet combined with postnatal early overfeeding on the male offspring's glucose homeostasis in adulthood. METHODS Only male rats were used, and their delivery was considered postnatal-day 0 (PN0). Wistar rats' dams were divided into control (NP) or low-protein diet (LP). LP dams remained on the diet until PN14, after which all animals were supplied with the control diet. At PN2, litters were adjusted to 9 (control-NL) or 3 (postnatal-overfeeding-PO) pups, resulting in four experimental groups: NP-NL, NP-PO, LP-NL, and LP-PO. Litters were weaned on PN21. At PN80, a batch of animals from all experimental groups underwent surgery for cannula implantation, followed by intravenous glucose tolerance test (ivGTT), but the insulinogenic index (ISI) was calculated. At PN81, animals were euthanized and tissues were collected. RESULTS LP-diet and early postnatal-overfeeding were effective in promoting the expected biometric outcomes at PN21 and PN81, but the LP-PO animals present a biometric profile similar to the control (NP-NL) group. Postnatal-overfeeding increased fasting glycemia in LP-PO animals (p < 0.01). In the ivGTT, postnatal-overfeeding elevated the glycemia (p < 0.0001), exacerbated in LP-PO animals (p < 0.0001). Insulinemia was reduced by both, maternal LP-diet and postnatal-overfeeding, with a higher degree of reduction in LP-PO animals (p < 0.0001). Maternal LP-diet and postnatal-overfeeding reduced the ISI (p < 0.0001). Factors interaction lead the LP-PO to a lower ISI compared to all other groups (p < 0.0001). CONCLUSIONS The combination of low-protein diet in breastfeeding dams with postnatal overfeeding disturbed the offspring's glucose metabolism in adulthood.
Collapse
Affiliation(s)
- Douglas Lopes Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil.
| | - Fernando Salgueiro Simões
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
- Plenavita Clinics, 1021 rua Julio Prestes, Ribeirão Preto, SP, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | - Ana Maria Praxedes Moraes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | - Camila Cristina Ianoni Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Cesar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
29
|
Chen Q, Dai W, Sun Y, Zhao F, Liu J, Liu H. Methionine Partially Replaced by Methionyl-Methionine Dipeptide Improves Reproductive Performance over Methionine Alone in Methionine-Deficient Mice. Nutrients 2018; 10:nu10091190. [PMID: 30200399 PMCID: PMC6165284 DOI: 10.3390/nu10091190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 11/23/2022] Open
Abstract
Decreased protein breakdown in pregnant women results in lower concentration of methionine (Met) in plasma, causing pregnancy-related metabolic disturbance. Its dipeptide methionyl-methionine (Met-Met) may exert positive influence in fetal development. This study mainly investigated whether Met-Met can be used as part of free Met to promote reproductive outcomes in mice and the underlying mechanisms. Met-deficient pregnant mice were treated with Met alone or with Met-Met during pregnancy. Daily intraperitoneal injection of 35% dietary Met in pregnant mice was the best dose among the 15–45% doses. Embryo development and newborn birth weight were enhanced when 25% of the Met in the 35% Met group was replaced with Met-Met. Met-Met replacement had higher plasma insulin, glucose, and free amino acids (AA) concentrations. Besides, in the placenta, the AA transporter mRNA abundances and peptide transporters (PhT1 and PepT1) protein levels were higher in Met-Met treatment group. Moreover, Met-Met increased 4E-BP1, S6K1 and AKT/mTOR phosphorylation. These results suggest that Met-Met could be used as a partial source of Met to promote reproductive outcomes in Met-restricted pregnant mice, which might be mediated by promoting nutrient availability and activating AKT/mTOR-mediated signaling pathway.
Collapse
Affiliation(s)
- Qiong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yalu Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Fengqi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405, USA.
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood. J Nutr Biochem 2018; 57:153-161. [DOI: 10.1016/j.jnutbio.2018.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/09/2018] [Accepted: 03/07/2018] [Indexed: 01/13/2023]
|
31
|
Martin Agnoux A, El Ghaziri A, Moyon T, Pagniez A, David A, Simard G, Parnet P, Qannari EM, Darmaun D, Antignac JP, Alexandre-Gouabau MC. Maternal protein restriction during lactation induces early and lasting plasma metabolomic and hepatic lipidomic signatures of the offspring in a rodent programming model. J Nutr Biochem 2018; 55:124-141. [DOI: 10.1016/j.jnutbio.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/12/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
|
32
|
Metabolic phenotyping of malnutrition during the first 1000 days of life. Eur J Nutr 2018; 58:909-930. [PMID: 29644395 PMCID: PMC6499750 DOI: 10.1007/s00394-018-1679-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Nutritional restrictions during the first 1000 days of life can impair or delay the physical and cognitive development of the individual and have long-term consequences for their health. Metabolic phenotyping (metabolomics/metabonomics) simultaneously measures a diverse range of low molecular weight metabolites in a sample providing a comprehensive assessment of the individual's biochemical status. There are a growing number of studies applying such approaches to characterize the metabolic derangements induced by various forms of early-life malnutrition. This includes acute and chronic undernutrition and specific micronutrient deficiencies. Collectively, these studies highlight the diverse and dynamic metabolic disruptions resulting from various forms of nutritional deficiencies. Perturbations were observed in many pathways including those involved in energy, amino acid, and bile acid metabolism, the metabolic interactions between the gut microbiota and the host, and changes in metabolites associated with gut health. The information gleaned from such studies provides novel insights into the mechanisms linking malnutrition with developmental impairments and assists in the elucidation of candidate biomarkers to identify individuals at risk of developmental shortfalls. As the metabolic profile represents a snapshot of the biochemical status of an individual at a given time, there is great potential to use this information to tailor interventional strategies specifically to the metabolic needs of the individual.
Collapse
|
33
|
Alexandre-Gouabau MC, Moyon T, Cariou V, Antignac JP, Qannari EM, Croyal M, Soumah M, Guitton Y, David-Sochard A, Billard H, Legrand A, Boscher C, Darmaun D, Rozé JC, Boquien CY. Breast Milk Lipidome Is Associated with Early Growth Trajectory in Preterm Infants. Nutrients 2018; 10:E164. [PMID: 29385065 PMCID: PMC5852740 DOI: 10.3390/nu10020164] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/30/2022] Open
Abstract
Human milk is recommended for feeding preterm infants. The current pilot study aims to determine whether breast-milk lipidome had any impact on the early growth-pattern of preterm infants fed their own mother's milk. A prospective-monocentric-observational birth-cohort was established, enrolling 138 preterm infants, who received their own mother's breast-milk throughout hospital stay. All infants were ranked according to the change in weight Z-score between birth and hospital discharge. Then, we selected infants who experienced "slower" (n = 15, -1.54 ± 0.42 Z-score) or "faster" (n = 11, -0.48 ± 0.19 Z-score) growth; as expected, although groups did not differ regarding gestational age, birth weight Z-score was lower in the "faster-growth" group (0.56 ± 0.72 vs. -1.59 ± 0.96). Liquid chromatography-mass spectrometry lipidomic signatures combined with multivariate analyses made it possible to identify breast-milk lipid species that allowed clear-cut discrimination between groups. Validation of the selected biomarkers was performed using multidimensional statistical, false-discovery-rate and ROC (Receiver Operating Characteristic) tools. Breast-milk associated with faster growth contained more medium-chain saturated fatty acid and sphingomyelin, dihomo-γ-linolenic acid (DGLA)-containing phosphethanolamine, and less oleic acid-containing triglyceride and DGLA-oxylipin. The ability of such biomarkers to predict early-growth was validated in presence of confounding clinical factors but remains to be ascertained in larger cohort studies.
Collapse
Affiliation(s)
- Marie-Cécile Alexandre-Gouabau
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
| | - Thomas Moyon
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
| | - Véronique Cariou
- Statistique, Sensométrie et Chimiométrie (StatSC), Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (ONIRIS), Institut National de la Recherche Agronomique (INRA), 44322 Nantes, France.
| | - Jean-Philippe Antignac
- L'Université Nantes Angers Le Mans (LUNAM Université), Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (ONIRIS), Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 1329, 44200 Nantes, France.
| | - El Mostafa Qannari
- Statistique, Sensométrie et Chimiométrie (StatSC), Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (ONIRIS), Institut National de la Recherche Agronomique (INRA), 44322 Nantes, France.
| | - Mikaël Croyal
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
| | - Mohamed Soumah
- Statistique, Sensométrie et Chimiométrie (StatSC), Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (ONIRIS), Institut National de la Recherche Agronomique (INRA), 44322 Nantes, France.
| | - Yann Guitton
- L'Université Nantes Angers Le Mans (LUNAM Université), Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (ONIRIS), Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 1329, 44200 Nantes, France.
| | - Agnès David-Sochard
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
| | - Hélène Billard
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
| | - Arnaud Legrand
- Faculté de Médicine de Nantes, Centre Hospitalo-Universitaire Hôtel-Dieu (CHU), 44093 Nantes, France.
| | - Cécile Boscher
- Faculté de Médicine de Nantes, Centre Hospitalo-Universitaire Hôtel-Dieu (CHU), 44093 Nantes, France.
| | - Dominique Darmaun
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
- Faculté de Médicine de Nantes, Centre Hospitalo-Universitaire Hôtel-Dieu (CHU), 44093 Nantes, France.
| | - Jean-Christophe Rozé
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
- Faculté de Médicine de Nantes, Centre Hospitalo-Universitaire Hôtel-Dieu (CHU), 44093 Nantes, France.
| | - Clair-Yves Boquien
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
- European Milk Bank Association (EMBA), 20126 Milan, Italy.
| |
Collapse
|
34
|
Sevrin T, Alexandre-Gouabau MC, Darmaun D, Palvadeau A, André A, Nguyen P, Ouguerram K, Boquien CY. Use of water turnover method to measure mother's milk flow in a rat model: Application to dams receiving a low protein diet during gestation and lactation. PLoS One 2017; 12:e0180550. [PMID: 28715436 PMCID: PMC5513591 DOI: 10.1371/journal.pone.0180550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/16/2017] [Indexed: 11/24/2022] Open
Abstract
Assessment of milk production is of utmost relevance for pediatricians and scientists interested in early life nutrition. The weight-suckle-weight (WSW) method, which consists of weighing babies before and after they suckle their mother, uses the difference in body weight as an estimate of milk intake. However, this is prone to many sources of error. In the current study, we used for the first time the water turnover method and compartmental analysis with deuterated water (D2O) as a non-toxic tracer to quantify in vivo milk production in a rat model. We assessed the effect of a nutritional intervention presumed to affect milk production, a maternal dietary protein restriction during gestation and lactation, which results in the birth of pups with intrauterine growth restriction. The specific aim of this study was to determine milk production with the body water turnover method in rat dams receiving during gestation and lactation, either a control diet (NP) or an iso-caloric low-protein diet (LP). In NP dams, mass of dam’s total body water, output flow constant from dam to litter (K21) and median milk flow, calculated between days 11 to 14 after pup birth, were 282.1 g, 0.0122 h-1 and 3.30 g/h for NP dams, respectively. Maternal dietary protein restriction (-59%) during perinatal period led to a 34% reduction in milk flow (NP versus LP). With the WSW method, milk flow varied from 1.96 g/h to 2.37 g/h between days 11 to 14 for NP dams. The main advantage of the D20 method compared to the WSW method stems from its higher precision, as attested by the narrowest range of measured values of milk flow ([2.90; 3.75] and [0.98; 6.85] g/h, respectively) for NP group. This method could be suitable for testing the effectiveness of candidate galactologue molecules presumed to enhance milk production in the lactating rat model.
Collapse
Affiliation(s)
- Thomas Sevrin
- UMR PhAN, INRA, CRNH Ouest, Université de Nantes, Nantes, France
| | | | - Dominique Darmaun
- UMR PhAN, INRA, CRNH Ouest, Université de Nantes, Nantes, France
- Nantes Hospital, CHU Hôtel-Dieu, CRNH Ouest, IMAD, DHU2020, Nantes, France
| | | | - Agnès André
- ONIRIS, Nantes-Atlantic National College of Veterinary Medicine, UNE, Nantes, France
| | - Patrick Nguyen
- ONIRIS, Nantes-Atlantic National College of Veterinary Medicine, UNE, Nantes, France
| | | | - Clair-Yves Boquien
- UMR PhAN, INRA, CRNH Ouest, Université de Nantes, Nantes, France
- * E-mail:
| |
Collapse
|
35
|
Maternal protein restriction depresses the duodenal expression of iron transporters and serum iron level in male weaning piglets. Br J Nutr 2017; 117:923-929. [PMID: 28534724 DOI: 10.1017/s0007114517000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To investigate the effects of maternal dietary protein restriction on offspring Fe metabolism, twenty-four second-parity Landrace×Yorkshire sows were randomly allocated to standard-protein (SP) and low-protein (LP) groups. The SP sows were fed diets containing 15 and 18 % crude protein throughout pregnancy and lactation, respectively, whereas the LP sows were subjected to 50 % dietary protein restriction. Offspring birth weight was not affected, but the body weight at weaning (P=0·06) and average daily gain (P=0·01) of the female piglets were significantly decreased. Serum Fe level in the LP piglets was markedly decreased at weaning, especially in males (P=0·03). Serum ferritin level (P=0·08) tended to be lower, yet serum transferrin was greatly higher (P=0·01) in male weaning piglets of the LP group. Duodenal expression of the divalent metal transporter 1 (DMT1) and ferroportin (FPN) was surprisingly reduced (P<0·05) at the level of protein, but not at the mRNA level, in male weaning piglets of the LP group. Male weaning piglets born to the LP sows exhibited higher hepatic hepcidin levels (P=0·09), lower hepatic expression of transferrin (P<0·01) and transferrin receptor 1 (P<0·05) at the level of mRNA. However, no significant differences were observed for hepatic Fe storage, ferritin, transferrin and transferrin receptor 1 protein expression in male weaning piglets of the two groups. These results indicate that maternal protein restriction during pregnancy and lactation influences growth of female offspring at weaning, reduces duodenal expression of Fe transporters (DMT1 and FPN) and decreases serum Fe level in male weaning piglets.
Collapse
|
36
|
Altered lipid metabolism in rat offspring of dams fed a low-protein diet containing soy protein isolate. Life Sci 2017; 174:1-7. [DOI: 10.1016/j.lfs.2017.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/08/2017] [Accepted: 02/18/2017] [Indexed: 11/17/2022]
|
37
|
Abstract
Animal studies show that the lactation period contributes to metabolic programming of the offspring and that oral leptin and insulin show bioactivity. Stage of lactation, duration of gestation, maternal body composition, and maternal diet seem to influence the concentrations of small molecules in human milk. Variability of small molecule concentrations seems higher in preterm milk than in term milk. Insulin in human milk shows concentrations similar to plasma. Leptin concentration is lower in milk than in plasma and reflects maternal body mass index. Early in lactation, leptin could contribute to mediating the association between maternal and infant body composition.
Collapse
Affiliation(s)
- Hans Demmelmair
- Division of Metabolism and Nutritional Medicine, Dr. von Hauner Childrens Hospital, University of Munich Medical Center, Lindwurmstrasse 4, 80337 München, Germany.
| | - Berthold Koletzko
- Division of Metabolism and Nutritional Medicine, Dr. von Hauner Childrens Hospital, University of Munich Medical Center, Lindwurmstrasse 4, 80337 München, Germany
| |
Collapse
|
38
|
Lee S, You YA, Kwon EJ, Jung SC, Jo I, Kim YJ. Maternal Food Restriction during Pregnancy and Lactation Adversely Affect Hepatic Growth and Lipid Metabolism in Three-Week-Old Rat Offspring. Int J Mol Sci 2016; 17:ijms17122115. [PMID: 27983688 PMCID: PMC5187915 DOI: 10.3390/ijms17122115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/02/2016] [Accepted: 12/11/2016] [Indexed: 12/14/2022] Open
Abstract
Maternal malnutrition influences the early development of foetal adaptive changes for survival. We explored the effects of maternal undernutrition during gestation and lactation on hepatic growth and function. Sprague-Dawley rats were fed a normal or a food-restricted (FR) diet during gestation and/or lactation. We performed analyses of covariance (adjusting for the liver weight/body weight ratio) to compare hepatic growth and lipid metabolism among the offspring. Maternal FR during gestation triggered the development of wide spaces between hepatic cells and increased the expression of mammalian target of rapamycin (mTOR) in three-week-old male offspring compared with controls (both p < 0.05). Offspring nursed by FR dams exhibited wider spaces between hepatic cells and a lower liver weight/body weight ratio than control offspring, and increased mTOR expression (p < 0.05). Interestingly, the significant decrease in expression of lipogenic-related genes was dependent on carbohydrate-responsive element-binding protein, despite the increased expression of sterol regulatory element-binding protein 1 (SREBP1) (p < 0.05). This study demonstrated increased expression of key metabolic regulators (mTOR and SREBP1), alterations in lipid metabolism, and deficits in hepatic growth in the offspring of FR-treated dams.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
- Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Eun Jin Kwon
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Sung-Chul Jung
- Department of Biochemistry, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| |
Collapse
|