1
|
Parrotta ME, Colangeli L, Scipione V, Vitale C, Sbraccia P, Guglielmi V. Time Restricted Eating: A Valuable Alternative to Calorie Restriction for Addressing Obesity? Curr Obes Rep 2025; 14:17. [PMID: 39899119 PMCID: PMC11790783 DOI: 10.1007/s13679-025-00609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE OF REVIEW In this review, we summarize the molecular effects of time-restricted eating (TRE) and its possible role in appetite regulation. We also discuss the potential clinical benefits of TRE in obesity. RECENT FINDINGS TRE is an emerging dietary approach consisting in limiting food intake to a specific window of time each day. The rationale behind this strategy is to restore the circadian misalignment, commonly seen in obesity. Preclinical studies have shown that restricting food intake only during the active phase of the day can positively influence several cellular functions including senescence, mitochondrial activity, inflammation, autophagy and nutrients' sensing pathways. Furthermore, TRE may play a role by modulating appetite and satiety hormones, though further research is needed to clarify its exact mechanisms. Clinical trials involving patients with obesity or type 2 diabetes suggest that TRE can be effective for weight loss, but its broader effects on improving other clinical outcomes, such as cardiovascular risk factors, remain less certain. The epidemic proportions of obesity cause urgency to find dietary, pharmacological and surgical interventions that can be effective in the medium and long term. According to its molecular effects, TRE can be an interesting alternative to caloric restriction in the treatment of obesity, but the considerable variability across clinical trials regarding population, intervention, and follow-up duration makes it difficult to reach definitive conclusions.
Collapse
Affiliation(s)
| | - Luca Colangeli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Valeria Scipione
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carolina Vitale
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Valeria Guglielmi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
2
|
Mutlu HH, Koç Ada S, Uzunlulu M, Mutlu HH, Sargın M, Oğuz A. A comparison of brown fat tissue related hormone levels in metabolically healthy and unhealthy individuals with obesity. Endocrine 2024; 86:1025-1034. [PMID: 39008201 PMCID: PMC11554687 DOI: 10.1007/s12020-024-03960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE One of the key functions of brown adipose tissue is its positive impact on metabolism. This study aimed to examine the potential involvement of brown fat-related hormones in the development of metabolically healthy obesity. Specifically, we sought to compare the levels of NRG4, FGF21, and irisin between metabolically healthy and unhealthy individuals with obesity. METHODS Patients with BMI ≥ 30 kg/m2 and aged between 20 and 50 years were included in the study. Among these patients, those who did not have any metabolic syndrome criteria except for increased waist circumference were defined as metabolically healthy obese. Age, gender, BMI, body fat, and muscle mass, matched metabolically healthy and unhealthy obese groups were compared in terms of FGF21, irisin, and NRG4 levels. RESULTS Metabolically healthy and unhealthy obese groups were similar in terms of age and gender. There was no difference between the two groups in terms of BMI, weight, total body fat, muscle, fat-free mass, distribution of body fat and muscle mass. No statistically significant difference was found between irisin, NRG4, and FGF21 levels between metabolically healthy and unhealthy individuals with obesity. It was found that irisin had a significant inverse correlation with BMI and body fat percentage. CONCLUSION The present study showed no difference between metabolically healthy and unhealthy obese individuals in terms of irisin, FGF21, and NRG4 levels. The weak association between irisin and BMI and body fat percentage may suggest a potential link between irisin with metabolic health.
Collapse
Affiliation(s)
- Hacer Hicran Mutlu
- Department of Family Medicine, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| | - Saniye Koç Ada
- Department of Biochemistry, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Mehmet Uzunlulu
- Department of Internal Medicine, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Hasan Hüseyin Mutlu
- Department of Family Medicine, Faculty of Medicine, Health Sciences University, Istanbul, Turkey
| | - Mehmet Sargın
- Department of Family Medicine, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Aytekin Oğuz
- Department of Internal Medicine, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
3
|
Pollard AE. New concepts in the roles of AMPK in adipocyte stem cell biology. Essays Biochem 2024; 68:349-361. [PMID: 39175418 DOI: 10.1042/ebc20240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Obesity is a major risk factor for many life-threatening diseases. Adipose tissue dysfunction is emerging as a driving factor in the transition from excess adiposity to comorbidities such as metabolic-associated fatty liver disease, cardiovascular disease, Type 2 diabetes and cancer. However, the transition from healthy adipose expansion to the development of these conditions is poorly understood. Adipose stem cells, residing in the vasculature and stromal regions of subcutaneous and visceral depots, are responsible for the expansion and maintenance of organ function, and are now recognised as key mediators of pathological transformation. Impaired tissue expansion drives inflammation, dysregulation of endocrine function and the deposition of lipids in the liver, muscle and around vital organs, where it is toxic. Contrary to previous hypotheses, it is the promotion of healthy adipose tissue expansion and function, not inhibition of adipogenesis, that presents the most attractive therapeutic strategy in the treatment of metabolic disease. AMP-activated protein kinase, a master regulator of energy homeostasis, has been regarded as one such target, due to its central role in adipose tissue lipid metabolism, and its apparent inhibition of adipogenesis. However, recent studies utilising AMP-activated protein kinase (AMPK)-specific compounds highlight a more subtle, time-dependent role for AMPK in the process of adipogenesis, and in a previously unexplored repression of leptin, independent of adipocyte maturity. In this article, I discuss historic evidence for AMPK-mediated adipogenesis inhibition and the multi-faceted roles for AMPK in adipose tissue.
Collapse
Affiliation(s)
- Alice E Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
4
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
5
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
6
|
Yang Z, Zarbl H, Guo GL. Circadian Regulation of Endocrine Fibroblast Growth Factors on Systemic Energy Metabolism. Mol Pharmacol 2024; 105:179-193. [PMID: 38238100 PMCID: PMC10877735 DOI: 10.1124/molpharm.123.000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
The circadian clock is an endogenous biochemical timing system that coordinates the physiology and behavior of organisms to earth's ∼24-hour circadian day/night cycle. The central circadian clock synchronized by environmental cues hierarchically entrains peripheral clocks throughout the body. The circadian system modulates a wide variety of metabolic signaling pathways to maintain whole-body metabolic homeostasis in mammals under changing environmental conditions. Endocrine fibroblast growth factors (FGFs), namely FGF15/19, FGF21, and FGF23, play an important role in regulating systemic metabolism of bile acids, lipids, glucose, proteins, and minerals. Recent evidence indicates that endocrine FGFs function as nutrient sensors that mediate multifactorial interactions between peripheral clocks and energy homeostasis by regulating the expression of metabolic enzymes and hormones. Circadian disruption induced by environmental stressors or genetic ablation is associated with metabolic dysfunction and diurnal disturbances in FGF signaling pathways that contribute to the pathogenesis of metabolic diseases. Time-restricted feeding strengthens the circadian pattern of metabolic signals to improve metabolic health and prevent against metabolic diseases. Chronotherapy, the strategic timing of medication administration to maximize beneficial effects and minimize toxic effects, can provide novel insights into linking biologic rhythms to drug metabolism and toxicity within the therapeutical regimens of diseases. Here we review the circadian regulation of endocrine FGF signaling in whole-body metabolism and the potential effect of circadian dysfunction on the pathogenesis and development of metabolic diseases. We also discuss the potential of chrononutrition and chronotherapy for informing the development of timing interventions with endocrine FGFs to optimize whole-body metabolism in humans. SIGNIFICANCE STATEMENT: The circadian timing system governs physiological, metabolic, and behavioral functions in living organisms. The endocrine fibroblast growth factor (FGF) family (FGF15/19, FGF21, and FGF23) plays an important role in regulating energy and mineral metabolism. Endocrine FGFs function as nutrient sensors that mediate multifactorial interactions between circadian clocks and metabolic homeostasis. Chronic disruption of circadian rhythms increases the risk of metabolic diseases. Chronological interventions such as chrononutrition and chronotherapy provide insights into linking biological rhythms to disease prevention and treatment.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Helmut Zarbl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| |
Collapse
|
7
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
8
|
Diao X, Yao L, Wang X, Li S, Qin J, Yang L, He L, Zhang W. Hair Follicle Development and Cashmere Traits in Albas Goat Kids. Animals (Basel) 2023; 13:ani13040617. [PMID: 36830404 PMCID: PMC9951752 DOI: 10.3390/ani13040617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The objectives of this trial were to study the growth and development of hair follicles and cashmere traits in cashmere goats and to provide a theoretical basis for the regulation of secondary hair follicle development and the scientific breeding selection of cashmere goats. Twelve single-fetal female kids were selected as research objects. A long-term tracking plan was created to regularly determine their growth performance, cashmere performance, and hair follicle traits. The results showed no significant difference in live weight after the first and second combing. The cashmere yield and unit yield of the first combing were significantly higher than those of the second combing (p < 0.05). Sections of hair follicles showed that the primary hair follicles are almost fully developed by 1 month, and the secondary hair follicles are fully developed by 5-6 months after birth. The primary hair follicle density (PFD) and secondary hair follicle density (SFD) were highest at birth and decreased within 1 month; and SFD was stable at 5-6 months of age. The change of MSFD took a maximum time of 2 to 3 months. The S:P increase reached its peak at 6 months. BMP4 expression increased with time. FGF2, FGF21 and BMP7 were higher at 3 months old than at the other two-time points. In conclusion, this study determined the total development time of primary and secondary hair follicles from morphology and speculated that FGF2, FGF21, and BMP7 may play a regulatory role in developing secondary hair follicles. Therefore, the period from birth to 6 months of age was the best time to regulate secondary hair follicle development in cashmere goats kids. The traits of the hair follicle and cashmere at 6 months of age could be breeding selection indicators for cashmere goats.
Collapse
Affiliation(s)
- Xiaogao Diao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lingyun Yao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinhui Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaxin Qin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lu Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liwen He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Beijing 100193, China
- Correspondence:
| |
Collapse
|
9
|
Power Guerra N, Leyens K, Müller L, Brauer D, Janowitz D, Schlick S, Pilz K, Grabe HJ, Vollmar B, Kuhla A. The effect of different weight loss strategies to treat non-alcoholic fatty liver disease focusing on fibroblast growth factor 21. Front Nutr 2022; 9:935805. [PMID: 36034917 PMCID: PMC9399780 DOI: 10.3389/fnut.2022.935805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Obesity, often associated with non-alcoholic fatty liver disease (NAFLD), is characterized by an imbalance between energy expenditure and food intake, which is also reflected by desensitization of fibroblast growth factor 21 (FGF21). FGF21 is strongly influenced, among others, by TNFα, which is known to be upregulated in obesity-induced inflammation. Successful long-term treatments of NAFLD might be dietary modification, exercise, or fasting. Materials and methods Whether succeeded NAFLD recovery is linked with improved FGF21 sensitivity and finally reverted FGF21 resistance was the focus of the present study. For this purpose, mice received a high-fat diet (HFD) for 6 months to establish obesity. Afterward, the mice were subjected to three different weight loss interventions, namely, dietary change to low-fat diet (LFD), treadmill training, and/or time-restricted feeding for additional 6 months, whereas one group remained on HFD. Results In addition to the expected decrease in NAFLD activity with dietary change, this was also observed in the HFD group with additional time-restricted feeding. There was also an associated decrease in hepatic TNFα and FGF21 expression and an increase in ß-klotho expression, demonstrated mainly by using principal component analysis. Pearson correlation analysis shows that independent of any intervention, TNFα expression decreased with improved NAFLD recovery. This was accompanied with higher FGF21 sensitivity, as expressed by an increase in β-klotho and FGFR1c expression and concomitantly decreased FGF21 levels. Conclusion In summary, we conclude that successful NAFLD therapy is associated with a reversion of the TNFα-triggered FGF21-resistant state or desensitization.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Katharina Leyens
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Luisa Müller
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - David Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Deborah Janowitz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany.,Clinic for Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Samin Schlick
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany.,Clinic for Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Kristin Pilz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
10
|
Song DK, Kim YW. Beneficial effects of intermittent fasting: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 40:4-11. [PMID: 35368155 PMCID: PMC9946909 DOI: 10.12701/jyms.2022.00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
Abstract
Caloric restriction is a popular approach to treat obesity and its associated chronic illnesses but is difficult to maintain for a long time. Intermittent fasting is an alternative and easily applicable dietary intervention for caloric restriction. Moreover, intermittent fasting has beneficial effects equivalent to those of caloric restriction in terms of body weight control, improvements in glucose homeostasis and lipid profiles, and anti-inflammatory effects. In this review, the beneficial effects of intermittent fasting are discussed.
Collapse
Affiliation(s)
- Dae-Kyu Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea,Corresponding author: Yong-Woon Kim, MD, PhD Department of Physiology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea Tel: +82-53-640-6922 • Fax: +82-53-629-7093 • E-mail:
| |
Collapse
|
11
|
Power Guerra N, Parveen A, Bühler D, Brauer DL, Müller L, Pilz K, Witt M, Glass Ä, Bajorat R, Janowitz D, Wolkenhauer O, Vollmar B, Kuhla A. Fibroblast Growth Factor 21 as a Potential Biomarker for Improved Locomotion and Olfaction Detection Ability after Weight Reduction in Obese Mice. Nutrients 2021; 13:nu13092916. [PMID: 34578793 PMCID: PMC8470262 DOI: 10.3390/nu13092916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of the most challenging diseases of the 21st century and is accompanied by behavioural disorders. Exercise, dietary adjustments, or time-restricted feeding are the only successful long-term treatments to date. Fibroblast growth factor 21 (FGF21) plays a key role in dietary regulation, but FGF21 resistance is prevalent in obesity. The aim of this study was to investigate in obese mice whether weight reduction leads to improved behaviour and whether these behavioural changes are associated with decreased plasma FGF21 levels. After establishing a model for diet-induced obesity, mice were subjected to three different interventions for weight reduction, namely dietary change, treadmill exercise, or time-restricted feeding. In this study, we demonstrated that only the combination of dietary change and treadmill exercise affected all parameters leading to a reduction in weight, fat, and FGF21, as well as less anxious behaviour, higher overall activity, and improved olfactory detection abilities. To investigate the interrelationship between FGF21 and behavioural parameters, feature selection algorithms were applied designating FGF21 and body weight as one of five highly weighted features. In conclusion, we concluded from the complementary methods that FGF21 can be considered as a potential biomarker for improved behaviour in obese mice after weight reduction.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Alisha Parveen
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - Daniel Bühler
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - David Leon Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
| | - Luisa Müller
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Kristin Pilz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Änne Glass
- Institute for Biostatistics and Informatics, Rostock University Medical Centre, Ernst-Heydemann-Straße 8, 18057 Rostock, Germany;
| | - Rika Bajorat
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Schillingallee 35, 18057 Rostock, Germany;
| | - Deborah Janowitz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-381-494-2503
| |
Collapse
|
12
|
A Low-Protein High-Fat Diet Leads to Loss of Body Weight and White Adipose Tissue Weight via Enhancing Energy Expenditure in Mice. Metabolites 2021; 11:metabo11050301. [PMID: 34064590 PMCID: PMC8150844 DOI: 10.3390/metabo11050301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
Obesity has become a worldwide health problem over the past three decades. During obesity, metabolic dysfunction of white adipose tissue (WAT) is a key factor increasing the risk of type 2 diabetes. A variety of diet approaches have been proposed for the prevention and treatment of obesity. The low-protein high-fat diet (LPHF) is a special kind of high-fat diet, characterized by the intake of a low amount of protein, while compared to typical high-fat diet, may induce weight loss and browning of WAT. Physical activity is another effective intervention to treat obesity by reducing WAT mass, inducing browning of WAT. In order to determine whether an LPHF, along with exercise enhanced body weight loss and body fat loss as well as the synergistic effect of an LPHF and exercise on energy expenditure in a mice model, we combined a 10-week LPHF with an 8-week forced treadmill training. Meanwhile, a traditional high-fat diet (HPHF) containing the same fat and relatively more protein was introduced as a comparison. In the current study, we further analyzed energy metabolism-related gene expression, plasma biomarkers, and related physiological changes. When comparing to HPHF, which induced a dramatic increase in body weight and WAT weight, the LPHF led to considerable loss of body weight and WAT, without muscle mass and strength decline, while it exhibited a risk of liver and pancreas damage. The mechanism underlying the LPHF-induced loss of body weight and WAT may be attributed to the synergistically upregulated expression of Ucp1 in WAT and Fgf21 in the liver, which may enhance energy expenditure. The 8-week training did not further enhance weight loss and increased plasma biomarkers of muscle damage when combined with LPHF. Furthermore, LPHF reduced the expression of fatty acid oxidation-related genes in adipose tissues, muscle tissues, and liver. Our results indicated that an LPHF has potential for obesity treatment, while the physiological condition should be monitored during application.
Collapse
|
13
|
Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules 2021; 11:biom11040516. [PMID: 33808424 PMCID: PMC8065500 DOI: 10.3390/biom11040516] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled by a complex system of central and peripheral pacemakers, influenced by exogenous factors like light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on these results and personal physical goals, optimal time periods for food intake and exercise have been identified. This review shows that appropriate nutrition and exercise timing are powerful tools to support, rather than not disturb, the circadian rhythm and potentially contribute to the prevention of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real issue: the misalignment of our biological with our social time.
Collapse
|
14
|
Kim JH, Lee GY, Maeng HJ, Kim H, Bae JH, Kim KM, Lim S. Effects of Glucagon-Like Peptide-1 Analogue and Fibroblast Growth Factor 21 Combination on the Atherosclerosis-Related Process in a Type 2 Diabetes Mouse Model. Endocrinol Metab (Seoul) 2021; 36:157-170. [PMID: 33677937 PMCID: PMC7937856 DOI: 10.3803/enm.2020.781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) analogues regulate glucose homeostasis and have anti-inflammatory properties, but cause gastrointestinal side effects. The fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism that has poor pharmacokinetic properties, including a short half-life. To overcome these limitations, we investigated the effect of a low-dose combination of a GLP-1 analogue and FGF21 on atherosclerosis-related molecular pathways. METHODS C57BL/6J mice were fed a high-fat diet for 30 weeks followed by an atherogenic diet for 10 weeks and were divided into four groups: control (saline), liraglutide (0.3 mg/kg/day), FGF21 (5 mg/kg/day), and low-dose combination treatment with liraglutide (0.1 mg/kg/day) and FGF21 (2.5 mg/kg/day) (n=6/group) for 6 weeks. The effects of each treatment on various atherogenesisrelated pathways were assessed. RESULTS Liraglutide, FGF21, and their low-dose combination significantly reduced atheromatous plaque in aorta, decreased weight, glucose, and leptin levels, and increased adiponectin levels. The combination treatment upregulated the hepatic uncoupling protein-1 (UCP1) and Akt1 mRNAs compared with controls. Matric mentalloproteinase-9 (MMP-9), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) were downregulated and phosphorylated Akt (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) were upregulated in liver of the liraglutide-alone and combination-treatment groups. The combination therapy also significantly decreased the proliferation of vascular smooth muscle cells. Caspase-3 was increased, whereas MMP-9, ICAM-1, p-Akt, and p-ERK1/2 were downregulated in the liraglutide-alone and combination-treatment groups. CONCLUSION Administration of a low-dose GLP-1 analogue and FGF21 combination exerts beneficial effects on critical pathways related to atherosclerosis, suggesting the synergism of the two compounds.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Gha Young Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyo Jin Maeng
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hoyoun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Kyoung Min Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
15
|
Hua L, Feng B, Huang L, Li J, Luo T, Jiang X, Han X, Che L, Xu S, Lin Y, Fang Z, Wu D, Zhuo Y. Time-restricted feeding improves the reproductive function of female mice via liver fibroblast growth factor 21. Clin Transl Med 2020; 10:e195. [PMID: 33135359 PMCID: PMC7533054 DOI: 10.1002/ctm2.195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/16/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background There has been a significant increase, to epidemic levels, of obese and overweight women of reproductive age, causing impairments to reproductive health. Time‐restricted feeding (TRF) including isocaloric intake has shown to be preventive of obesity‐related disorders. However, its therapeutic ability to improve the reproductive function of female remains largely unknown. Methods Here, we investigated the ability of TRF to improve the reproductive function in wild‐type and liver‐specific FGF21 knockout female mice. To study fertility, a continuous and a short‐term fertility test, gonadotropin releasing‐hormone (GnRH), and Kisspeptin test were performed. Immortalized GnRH neuron was used to examine the direct role of liver fibroblast growth factor 21 (FGF21) on GnRH secretion. Results We found that TRF rescues female mice from bodyweight gain and glucose intolerance, as well as ovarian follicle loss and dysfunction of estrus cyclicity induced by high‐fat diet. Furthermore, the beneficial effects of the TRF regimen on the reproductive performance were also observed in mice fed both chow and high‐fat diet. However, those beneficial effects of TRF on metabolism and reproduction were absent in liver‐specific FGF21 knockout mice. In vitro, FGF21 directly acted on GnRH neurons to modulate GnRH secretion via extracellular regulated protein kinases (ERK1/2) pathway. Conclusions Overall, time‐restricted feeding improves the reproductive function of female mice and liver FGF21 signaling plays a key role in GnRH neuron activity in female mice.
Collapse
Affiliation(s)
- Lun Hua
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Liansu Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jing Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ting Luo
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xuemei Jiang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xingfa Han
- School of Life Sciences, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Shengyu Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yan Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yong Zhuo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
16
|
Hu D, Xie Z, Ye Y, Bahijri S, Chen M. The beneficial effects of intermittent fasting: an update on mechanism, and the role of circadian rhythm and gut microbiota. Hepatobiliary Surg Nutr 2020; 9:597-602. [PMID: 33163510 DOI: 10.21037/hbsn-20-317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Importance There is accumulating evidence that intermittent fasting (IF) is connected to improved health condition and longevity time-restricted feeding (TRF) is the most recognized and extensively studied model of IF. Objective To investigate the underlying mechanism of pleiotropic benefits of IF and hint the most advantageous feeding pattern for humans. Evidence review We searched MEDLINE, EMBASE, Cochrane Library and Google Scholar by 2020 April for publications on IF or TRF and their mechanisms. Studies include animal models and human cohorts. Findings One important mechanism is that IF allows certain period of fasting time, in which our bodies activate pathways of repair and rejuvenation. Moreover, the advantages of IF, especially TRF over total caloric restriction (CR) provided bases for various animal and human studies which suggested that the feeding-fasting rhythm stimulates the fluctuation of our gut microbiota and a series of subsequent molecular alterations, which in turn restored a healthier circadian clock that resembled our inherent clock formed throughout millions of years of homo sapiens history. Conclusions and Relevance for Reviews Complete understanding of the mechanism leading to the beneficial effects of IF paves the way for tailored dietary regimen to combat a wide range of diseases and ill health conditions.
Collapse
Affiliation(s)
- Dandan Hu
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhibo Xie
- Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yuqian Ye
- Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Suhad Bahijri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Saudi Diabetes Study Research Group (SDRG)-King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
17
|
Kaelin BR, McKenzie CM, Hempel KW, Lang AL, Arteel GE, Beier JI. Adipose tissue-liver crosstalk during pathologic changes caused by vinyl chloride metabolites in mice. Toxicol Appl Pharmacol 2020; 399:115068. [PMID: 32445754 DOI: 10.1016/j.taap.2020.115068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Volatile organic compounds (VOCs), such as vinyl chloride (VC), can be directly toxic at high concentrations. However, we have shown that 'nontoxic' exposures to VC and its metabolite chloroethanol (CE) enhances experimental non-alcoholic fatty liver disease (NAFLD), suggesting an unpredicted interaction. Importantly, VOC exposure has been identified as a potential risk factor for the development of obesity and its sequelae in humans. As there is a known axis between adipose and hepatic tissue in NAFLD, the impact of CE on white adipose tissue (WAT) inflammation and lipolysis was investigated. Mice were administered CE (or vehicle) once, after 10 weeks of being fed high-fat or low-fat diet (LFD). CE significantly enhanced hepatic steatosis and inflammation caused by HFD. HFD significantly increased the size of epididymal fat pads, which was enhanced by CE. The relative size of adipocyte lipid droplets increased by HFD + CE, which was also correlated with increased expression of lipid-associated proteins (e.g., PLINs). CE also enhanced HFD-induced indices of WAT inflammation, and ER stress. Hepatic-derived circulating FGF21, a major modulator of WAT lipolysis, which is hypothesized to thereby regulate hepatic steatosis, was significantly increased by CE in animals fed HFD. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH, involving the liver-adipose axis in this process. Specifically, CE enhances local inflammation and alters lipid metabolism and WAT-mediated hepatic steatosis due to changes in WAT lipolysis.
Collapse
Affiliation(s)
- Brenna R Kaelin
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Collin M McKenzie
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Karl W Hempel
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Gavin E Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Juliane I Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
18
|
Hu D, Mao Y, Xu G, Liao W, Ren J, Yang H, Yang J, Sun L, Chen H, Wang W, Wang Y, Sang X, Lu X, Zhang H, Zhong S. Time-restricted feeding causes irreversible metabolic disorders and gut microbiota shift in pediatric mice. Pediatr Res 2019; 85:518-526. [PMID: 30188503 PMCID: PMC6760561 DOI: 10.1038/s41390-018-0156-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Time-restricted feeding regimen (TRF), that is, no food consumption for 14-16 h during the light phase per day, attenuates the fattening traits and metabolic disorders in adults. This study aims to further investigate whether TRF would be protective against similar nutritional challenges in juvenile mice. METHODS Mice in the experimental group were treated with TRF during the first 4 weeks (considered to be the childhood phase of mice) before switching to ad libitum (AD) feeding pattern as adults; the control group with all subjects sticks to AD mode. Body weight was monitored, and serum biochemistry, sexual maturity, immune function, and gut microbiota were assessed at a certain timing. RESULTS Mice treated with TRF during the childhood period (from weaning age) but went through AD feeding pattern as adults demonstrated the tendency of higher body weight, higher levels of serum glucose, shrunken Langerhans islets, fatty liver disease, thickening of aortic walls, delayed sexual development, increased proportion of T regulatory cells, and unhealthy gut microbiota. CONCLUSION Childhood TRF causes pleiotropic adverse effects, including severe irreversible metabolic disorders, depressed immune function, and retarded puberty. Microbiota set the stage for TRF to employ downstream reactions on the above changes.
Collapse
Affiliation(s)
- Dandan Hu
- 0000 0000 9889 6335grid.413106.1Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yilei Mao
- Department of Surgery, Peking Union Medical College Hospital, Beijing, China.
| | - Gang Xu
- 0000 0000 9889 6335grid.413106.1Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Wenjun Liao
- grid.412455.3Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Jinjun Ren
- 0000 0004 1799 4638grid.414008.9Department of General Surgery, Henan Cancer Hospital, Zhengzhou, Henan China
| | - Huayu Yang
- 0000 0000 9889 6335grid.413106.1Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Jun Yang
- 0000 0000 9889 6335grid.413106.1Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Lejia Sun
- 0000 0000 9889 6335grid.413106.1Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hongyu Chen
- 0000 0001 0662 3178grid.12527.33Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenda Wang
- 0000 0000 9889 6335grid.413106.1Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yanan Wang
- 0000 0001 0662 3178grid.12527.33Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinting Sang
- 0000 0000 9889 6335grid.413106.1Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xin Lu
- 0000 0000 9889 6335grid.413106.1Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hongbing Zhang
- 0000 0001 0662 3178grid.12527.33Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Shouxian Zhong
- 0000 0000 9889 6335grid.413106.1Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
19
|
Yilmaz U, Tekin S, Demir M, Cigremis Y, Sandal S. Effects of central FGF21 infusion on the hypothalamus-pituitary-thyroid axis and energy metabolism in rats. J Physiol Sci 2018; 68:781-788. [PMID: 29417398 PMCID: PMC10717191 DOI: 10.1007/s12576-018-0595-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
The aim of this study was to evaluate the impact of intracerebroventricular chronic fibroblast growth factor 21 (FGF21) infusion on hypothalamic-pituitary-thyroid (HPT) axis, energy metabolism, food intake and body weight. Thirty male Wistar albino rats were used and divided into three groups including control, sham (vehicle) and FGF21 infused groups (n = 10). Intracerebroventricularly, FGF21 and vehicle groups were infused for 7 days with FGF21 (0.72 µg/day) and artificial cerebrospinal fluid, respectively. During the experimental period, changes in food intake and body weight were recorded daily. Serum thyroid stimulating hormone (TSH), Triiodothyronine (T3) and thyroxine (T4) levels were measured using ELISA. TRH and uncoupling protein 1 (UCP1) gene expressions were analyzed by using RT-PCR in hypothalamus and adipose tissues, respectively. Chronic infusion of FGF21 significantly increased serum TSH (p < 0.05), T3 (p < 0.05) and T4 (p < 0.001) levels. Additionally, hypothalamic TRH (p < 0.05) and UCP1 gene expressions (p < 0.05) in white adipose tissue were found to be higher than in the vehicle and control groups. While FGF21 infusion did not cause a significant change in food consumption, it caused a reduction in the body weight of rats (p < 0.05). Our findings indicate that FGF21 may have an effect on energy metabolism via the HPT axis.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Mehmet Demir
- Department of Physiology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Yilmaz Cigremis
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey.
| |
Collapse
|
20
|
Pineda C, Rios R, Raya AI, Rodriguez M, Aguilera-Tejero E, Lopez I. Hypocaloric Diet Prevents the Decrease in FGF21 Elicited by High Phosphorus Intake. Nutrients 2018; 10:E1496. [PMID: 30322116 PMCID: PMC6213303 DOI: 10.3390/nu10101496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
The effect of dietary phosphorus (P) on fibroblast growth factor 21 (FGF21)/β-klotho axis was investigated in rats that were fed diets with: Normal (NP) or high P (HP) and either normal (NC), high (HC) or low calories (LC). Sampling was performed at 1, 4 and 7 months. Plasma FGF21 concentrations were higher (p < 0.05) in NC and HC than in LC groups. Increasing P intake had differing effects on plasma FGF21 in rats fed NC and HC vs. rats fed LC at the three sampling times. When compared with the NP groups, FGF21 concentrations decreased at the three sampling points in rats fed NC-HP (80 vs. 194, 185 vs. 382, 145 vs. 403 pg/mL) and HC-HP (90 vs. 190, 173 vs. 353, 94 vs. 434 pg/mL). However, FGF21 did not decrease in rats fed LC-HP (34 vs. 20, 332 vs. 164 and 155 vs. 81 pg/mL). In addition, LC groups had a much lower liver FGF21 messenger ribonucleic acid/glyceraldehyde 3-phosphate dehydrogenase (mRNA/GAPDH) ratio (0.51 ± 0.08 and 0.56 ± 0.07) than the NC-NP (0.97 ± 0.14) and HC-NP (0.97 ± 0.22) groups. Increasing P intake reduced liver FGF21 mRNA/GAPDH in rats fed NC and HC to 0.42 ± 0.05 and 0.37 ± 0.04. Liver β-klotho mRNA/GAPDH ratio was lower (p < 0.05) in LC groups (0.66 ± 0.06 and 0.59 ± 0.10) than in NC (1.09 ± 0.17 and 1.03 ± 0.14) and HC (1.19 ± 0.12 and 1.34 ± 0.19) groups. A reduction (p < 0.05) in β-klotho protein/α-tubulin ratio was also observed in LC groups (0.65 ± 0.05 and 0.49 ± 0.08) when compared with NC (1.12 ± 0.11 and 0.91 ± 0.11) and HC (0.93 ± 0.17 and 0.87 ± 0.09) groups. In conclusion β-klotho is potently regulated by caloric restriction but not by increasing P intake while FGF21 is regulated by both caloric restriction and increased P intake. Moreover, increased P intake has a differential effect on FGF21 in calorie repleted and calorie depleted rats.
Collapse
Affiliation(s)
- Carmen Pineda
- Department Medicina y Cirugia Animal, University of Cordoba, 14071 Cordoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain.
| | - Rafael Rios
- Department Medicina y Cirugia Animal, University of Cordoba, 14071 Cordoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain.
| | - Ana I Raya
- Department Medicina y Cirugia Animal, University of Cordoba, 14071 Cordoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain.
| | - Mariano Rodriguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain.
| | - Escolastico Aguilera-Tejero
- Department Medicina y Cirugia Animal, University of Cordoba, 14071 Cordoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain.
| | - Ignacio Lopez
- Department Medicina y Cirugia Animal, University of Cordoba, 14071 Cordoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain.
| |
Collapse
|
21
|
Hua L, Zhuo Y, Jiang D, Li J, Huang X, Zhu Y, Li Z, Yan L, Jin C, Jiang X, Che L, Fang Z, Lin Y, Xu S, Li J, Feng B, Wu D. Identification of hepatic fibroblast growth factor 21 as a mediator in 17β‐estradiol‐induced white adipose tissue browning. FASEB J 2018; 32:5602-5611. [DOI: 10.1096/fj.201800240r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lun Hua
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Yong Zhuo
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Dandan Jiang
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Jing Li
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Xiaohua Huang
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Yingguo Zhu
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Zhen Li
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Lijun Yan
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Chao Jin
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Xuemei Jiang
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Lianqiang Che
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Zhengfeng Fang
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Yan Lin
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Shengyu Xu
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Jian Li
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Bin Feng
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - De Wu
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| |
Collapse
|
22
|
Santoso P, Nakata M, Shiizaki K, Boyang Z, Parmila K, Otgon-Uul Z, Hashimoto K, Satoh T, Mori M, Kuro-O M, Yada T. Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin-1 neurons to produce satiety under fed states. Sci Rep 2017; 7:45819. [PMID: 28374855 PMCID: PMC5379189 DOI: 10.1038/srep45819] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), liver-derived hormone, exerts diverse metabolic effects, being considered for clinical application to treat obesity and diabetes. However, its anorexigenic effect is debatable and whether it involves the central mechanism remains unclarified. Moreover, the neuron mediating FGF21’s anorexigenic effect and the systemic energy state supporting it are unclear. We explored the target neuron and fed/fasted state dependence of FGF21’s anorexigenic action. Intracerebroventricular (ICV) injection of FGF21 markedly suppressed food intake in fed mice with elevated blood glucose. FGF21 induced c-Fos expression preferentially in hypothalamic paraventricular nucleus (PVN), and increased mRNA expression selectively for nucleobindin 2/nesfatin-1 (NUCB2/Nesf-1). FGF21 at elevated glucose increased [Ca2+]i in PVN NUCB2/Nesf-1 neurons. FGF21 failed to suppress food intake in PVN-preferential Sim1-Nucb2-KO mice. These findings reveal that FGF21, assisted by elevated glucose, activates PVN NUCB2/Nesf-1 neurons to suppress feeding under fed states, serving as the glycemia-monitoring messenger of liver-hypothalamic network for integrative regulation of energy and glucose metabolism.
Collapse
Affiliation(s)
- Putra Santoso
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Masanori Nakata
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Kazuhiro Shiizaki
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Zhang Boyang
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Kumari Parmila
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Zesemdorj Otgon-Uul
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Koshi Hashimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Department of Preemptive Medicine and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.,Metabolic and Obese Research Institute, Maebashi, Gunma 371-0037, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Toshihiko Yada
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|