1
|
Wu Y, Guo F, Liu Y, Li J, Shi W, Song L, Wang G, Liu J. Curcumin mitigates heatstroke-induced myocardial injury by modulating the Akt/Bad/Caspase-3 pathway. Biochem Biophys Res Commun 2025; 758:151653. [PMID: 40112539 DOI: 10.1016/j.bbrc.2025.151653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Heatstroke (HS) presents a major health threat, especially during summer, and is linked to myocardial injury and persistent cardiovascular complications.Curcumin has shown promise in treating myocardial damage, but its mechanisms in HS-induced myocardial damage remain unclear. We integrated curcumin targets from BATMAN-TCM, DGIdb, and PharmMapper, and identified HS-related targets from GeneCards and OMIM. The intersection of these targets was identified using Venn diagrams, and subsequently analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.Protein interactions were analyzed using STRING and visualized in Cytoscape to screen core proteins. Molecular docking was performed with these proteins and curcumin. HS mouse model was constructed for pathological assessments and WB validation of core protein expression. We identified 132 potential therapeutic targets and selected AKT1, Bad, and CASP3 as our targets for validation. Molecular docking indicated that these proteins all have good affinity with curcumin. In HS mouse model, we observed that HS led to significant myocardial cell edema, disordered arrangement, and pronounced mitochondrial swelling accompanied by the destruction of cristae. The application of curcumin effectively alleviated myocardial cell edema and the degree of mitochondrial swelling. WB revealed that HS decreased p-Akt and p-Bad while increasing cleaved-caspase-3. Curcumin treatment reversed these effects, inhibiting HS-induced myocardial cell apoptosis. Our research demonstrates that curcumin effectively safeguards against HS-induced myocardial injury in mice, potentially through the modulation of the Akt/Bad/caspase-3 pathway.
Collapse
Affiliation(s)
- Yizhan Wu
- Department of Graduate School, Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Fei Guo
- Department of Emergency Trauma Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang Uygur Autonomous Region, China
| | - Ya Liu
- Department of Rehabilitation, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiajia Li
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Wenhui Shi
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Laiyang Song
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Guangjun Wang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Jiangwei Liu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
2
|
Li Z, Qin F, Liu C, Zhao Z, Wu H, Li J, Zhang Z, Qin Q. Alleviating heat stress-induced immune organ damage in ducks: Role of melittin. Trop Anim Health Prod 2025; 57:57. [PMID: 39939510 DOI: 10.1007/s11250-025-04303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Heat stress, one of the major challenges facing the global livestock industry, can adversely affect the immune system. The present study explored the mechanisms by which melittin alleviates heat stress-induced immune organ damage. Three hundred 20-day-old male Huainan sheldrakes were randomly assigned to four groups: heat stress group (basal diet), heat stress + melittin group (I, II, III group, basal diet + 0.08, 0.12, 0.16 g/kg melittin, respectively). The ducks were subjected to heat stress for 4 h per day (temperature 36-38 °C, relative humidity 60-70%) for 15 consecutive days. The results showed that compared with the heat-stress group, melittin improved the production performance of heat-stressed ducks, significantly increased serum immune indices (immunoglobulin G and interferon-gamma) and antioxidant indices (total antioxidant capacity, superoxide dismutase (SOD), and glutathione) (P < 0.05), and significantly decreased malondialdehyde (MDA) levels (P < 0.05). Additionally, melittin increased antioxidant function (nuclear factor-erythroid 2 p45-related factor 2, glutathione peroxidase, SOD, and catalase), and immune index (interleukin-10). Meanwhile, melittin significantly reduced immune indices (inducible nitric oxide synthase and cyclooxygenase-2), heat shock protein 70 expression, and apoptosis levels (P < 0.05) in heat-stressed ducks. Consequently, supplementing heat-stressed ducks with 0.12 g/kg melittin increases serum immune function and antioxidants, alleviate heat stress-induced immune organ damage, and improve growth performance.
Collapse
Affiliation(s)
- Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Feng Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Chang Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Zhimin Zhao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Jianzhu Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Zifu Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China.
| |
Collapse
|
3
|
Zeng Y, Shi Y, Chen Y, Zhong S, Omar SM, Liu P, Zhuang Y, Cai G, Guo X, Gao X. Preparation of polyclonal antibody to CHOP protein and its application in heat stress of chickens. Int J Biol Macromol 2025; 286:138362. [PMID: 39645104 DOI: 10.1016/j.ijbiomac.2024.138362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Heat stress (HS) is a stress response of organisms to temperature changes, which can result in organ damage and increased chicken mortality in high-temperature environments. The CHOP protein, also known as GADD 135, plays a crucial role in endoplasmic reticulum stress. However, there are fewer studies related to whether CHOP proteins are involved in heat stress-induced organ damage. In this study, recombinant CHOP-pET-32a expression vector was constructed by using the prokaryotic expression technique of exogenous genes, and recombinant CHOP protein was obtained. Subsequently, rabbit anti-chicken CHOP polyclonal antibody was prepared by immunizing rabbits, and the antibody potency was higher than 1:102,400 as determined by ELISA. Immunofluorescence and western blotting demonstrated that the anti-CHOP antibody specifically recognized chicken CHOP protein. The protein was expressed in various organs, including the heart, liver, spleen, lung, kidney, bursa of Fabricius, and all segments of the intestine. Following heat stress, the expression of CHOP in the heart significantly increased, indicating a close association between CHOP and the occurrence of heat stress. The preparation of rabbit anti-CHOP polyclonal antibodies will be useful for future studies on poultry diseases.
Collapse
Affiliation(s)
- Yizhou Zeng
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yunfeng Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shengwei Zhong
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Salma Mbarouk Omar
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaofeng Cai
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Feng Y, Zhang S, Suo D, Fu T, Li Y, Li Z, Wang C, Fan X. Integrating Metabolomics and Transcriptomics to Analyse and Reveal the Regulatory Mechanisms of Mung Bean Polyphenols on Intestinal Cell Damage Under Different Heat Stress Temperatures. Nutrients 2024; 17:88. [PMID: 39796522 PMCID: PMC11722878 DOI: 10.3390/nu17010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Polyphenols represent a new strategy of dietary intervention for heat stress regulation. METHODS The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels. RESULTS Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways. Under the heat stresses of 39 °C, 41 °C, and 43 °C, the key pathways regulated by mung bean polyphenols on intestinal epithelial Mode-k cells were choline metabolism, pyrimidine metabolism, and the retrograde endorphin signalling pathway in cancer, respectively. FoxO, Rap1, and PI3K-Akt signalling pathways were the key environmental regulatory signalling pathways. Mung bean polyphenols can alleviate heat stress-induced cells at 39 °C by inhibiting cell apoptosis and promoting lipid and amino acid accumulation. Mung bean polyphenols can alleviate the threat of cell death caused by heat stress at 41 °C by regulating heat shock proteins, inhibiting mitochondrial function and some nerve disease-related genes. The threat of cell death by heat stress at 43 °C can be alleviated by regulating nerve-related genes. CONCLUSIONS This study confirmed that mung bean polyphenols can regulate heat stress. The results provide a reference for analysing the mechanism of dietary polyphenol regulating heat stress.
Collapse
Affiliation(s)
- Yuchao Feng
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Decheng Suo
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
| | - Tianxin Fu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Ying Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Zetong Li
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Xia Fan
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
| |
Collapse
|
5
|
Wu Y, Guo F, Ma Y, Chai W, Li J, Shi W, Liu J. Curcumin's Protective Role in Heatstroke-Induced Acute Liver Injury: Targeting Pyroptosis and Enhancing SIRT1 Expression. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400178. [PMID: 39679288 PMCID: PMC11637775 DOI: 10.1002/gch2.202400178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/28/2024] [Indexed: 12/17/2024]
Abstract
Heatstroke (HS) is a severe systemic condition that significantly impacts organ function, with the liver being particularly vulnerable. Sirtuin 1 (SIRT1), a crucial deacetylase, is implicated in various diseases' pathophysiology. Curcumin, a natural polyphenol, has been shown to modulate SIRT1 activity, offering therapeutic benefits. This study explores the impact of HS on hepatic SIRT1 expression and the protective mechanisms of curcumin against HS-induced hepatic injury. Male C57BL/6 mice are divided into control and curcumin pretreatment groups, subjected to HS induction, and assessed for liver injury biomarkers, oxidative stress, and inflammatory cytokines. Results indicate that HS downregulates SIRT1, leading to liver damage and systemic inflammation. Curcumin pretreatment dose-responsively attenuates these effects, with the highest dose providing optimal protection, potentially through SIRT1 restoration. The findings suggest that curcumin's hepatoprotective role in HS may be mediated by upregulating SIRT1, highlighting its therapeutic potential in heatstroke-related liver damage.
Collapse
Affiliation(s)
- Yizhan Wu
- Department of Graduate SchoolXinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous Region830000China
| | - Fei Guo
- Department of Emergency Trauma SurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous Region830054China
| | - Yan Ma
- Department of AnesthesiologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous Region830054China
| | - Weihao Chai
- Department of Graduate SchoolXinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous Region830000China
| | - Jiajia Li
- Key Laboratory of Special Environmental Medicine of XinjiangGeneral Hospital of Xinjiang Military Command of the PLAUrumqiXinjiang Uygur Autonomous Region830000China
| | - Wenhui Shi
- Key Laboratory of Special Environmental Medicine of XinjiangGeneral Hospital of Xinjiang Military Command of the PLAUrumqiXinjiang Uygur Autonomous Region830000China
| | - Jiangwei Liu
- Key Laboratory of Special Environmental Medicine of XinjiangGeneral Hospital of Xinjiang Military Command of the PLAUrumqiXinjiang Uygur Autonomous Region830000China
| |
Collapse
|
6
|
Zhou X, Wei C, Chen Z, Xia X, Wang L, Li X. Potential mechanisms of ischemic stroke induced by heat exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175815. [PMID: 39197783 DOI: 10.1016/j.scitotenv.2024.175815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Recent decades of epidemiological and clinical research have suggested that heat exposure could be a potential risk factor for ischemic stroke. Despite climate factors having a minor impact on individuals compared with established risk factors such as smoking, their widespread and persistent effects significantly affect public health. The mechanisms by which heat exposure triggers ischemic stroke are currently unclear. However, several potential mechanisms, such as the impact of temperature variability on stroke risk factors, inflammation, oxidative stress, and coagulation system changes, have been proposed. This article details the potential mechanisms by which heat exposure may induce ischemic stroke, aiming to guide the prevention and treatment of high-risk groups in hot climates and support public health policy development.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chanjuan Wei
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
7
|
Yang K, Zhang P, Li J, Zhang G, Chang X. Potential of natural drug modulation of endoplasmic reticulum stress in the treatment of myocardial injury. J Pharm Anal 2024; 14:101034. [PMID: 39720623 PMCID: PMC11667710 DOI: 10.1016/j.jpha.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 12/26/2024] Open
Abstract
Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death. Cardiac damage frequently triggers ERS in response to different types of injuries and stress. High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis. To target ERS in MI prevention and treatment, current medical research is focused on identifying effective therapy approaches. Traditional Chinese medicine (TCM) is frequently used because of its vast range of applications and low risk of adverse effects. Various studies have demonstrated that active components of Chinese medicines, including polyphenols, saponins, and alkaloids, can reduce myocardial cell death, inflammation, and modify the ERS pathway, thus preventing and mitigating cardiac injury. Thus, this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment. We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.
Collapse
Affiliation(s)
- Kai Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Genming Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
8
|
Bokharaeian M, Toghdory A, Ghoorchi T. Effects of dietary curcumin nano-micelles on performance, biological responses, and thermal stress resilience in heat-stressed fattening lambs across varying temperature-humidity index conditions: Implications for climate change. J Therm Biol 2024; 123:103905. [PMID: 38941825 DOI: 10.1016/j.jtherbio.2024.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Heat stress poses a significant challenge to sheep farming in arid and semi-arid regions, impacting growth performance, health, and physiological responses. While sheep have innate mechanisms to manage heat stress, prolonged exposure impairs their performance and health. This study evaluated the influence of varying doses of Curcumin Nano-Micelle (CNM) on heat-stressed fattening lambs in northeastern Iran over three months, examining the relationship between CNM doses and growth performance, feeding behavior, physiological responses, immune function, and antioxidant status. Thirty-two crossbred male lambs were included in a completely randomized design with four treatments and eight replications. The experimental treatments were as follows: 1) CTRL: No dietary inclusion of CNM, (control group); 2) T20: Dietary inclusion of 20 mg of CNM per head per day; 3) T40: Dietary inclusion of 40 mg of CNM per head per day; and 4) T80: Dietary inclusion of 80 mg of CNM per head per day. The results revealed that dietary supplementation with 20 and 40 mg of CNM significantly improved live body weight, weight gain, average daily gain (ADG), and feed conversion ratio (FCR) compared to the control treatment. Regression analysis demonstrated quadratic models between growth performance parameters and the Temperature-Humidity Index (THI), indicating a correlation between CNM doses and the animals' responses to heat stress. Regarding eating behavior, CNM doses of 40 and 80 mg/day significantly reduced eating time while increasing ruminating time. Blood analysis indicated significant reductions in glucose levels across all treatments, with T40 significantly reducing both cholesterol and triglyceride (TG) levels. Additionally, CNM supplementation decreased serum malondialdehyde (MDA) levels and increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, indicating enhanced antioxidant status. Physiological responses were influenced by CNM, notably reducing rectal temperature (RT), skin temperature (ST), respiration rate (RR), while pulse rate (PR) increased across various time intervals, particularly in the T80 group. This study demonstrates that CNM supplementation can enhance performance, physiological responses, and antioxidant status in heat-stressed fattening lambs, highlighting its potential to mitigate heat stress effects in sheep farming.
Collapse
Affiliation(s)
- Mostafa Bokharaeian
- Department of Animal and Poultry Nutrition, Animal Science Faculty, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Abdolhakim Toghdory
- Department of Animal and Poultry Nutrition, Animal Science Faculty, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Taghi Ghoorchi
- Department of Animal and Poultry Nutrition, Animal Science Faculty, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
9
|
Wu X, Du X, Pian H, Yu D. Effect of Curcumin on Hepatic mRNA and lncRNA Co-Expression in Heat-Stressed Laying Hens. Int J Mol Sci 2024; 25:5393. [PMID: 38791430 PMCID: PMC11121607 DOI: 10.3390/ijms25105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heat stress is an important factor affecting poultry production; birds have a range of inflammatory reactions under high-temperature environments. Curcumin has anti-inflammatory and antioxidant effects. The purpose of this experiment was to investigate the effect of dietary curcumin supplementation on the liver transcriptome of laying hens under heat stress conditions. In the animal experiment, a total of 240 Hy-Line brown hens aged 280 days were divided randomly into four different experimental diets with four replicates, and each replicate consisted of 15 hens during a 42-D experiment. The ambient temperature was adjusted to 34 ± 2 °C for 8 h per day, transiting to a range of 22 °C to 28 °C for the remaining 16 h. In the previous study of our lab, it was found that supplemental 150 mg/kg curcumin can improve production performance, antioxidant enzyme activity, and immune function in laying hens under heat stress. To further investigate the regulatory mechanism of curcumin on heat stress-related genes, in total, six samples of three liver tissues from each of 0 mg/kg and 150 mg/kg curcumin test groups were collected for RNA-seq analysis. In the transcriptome analysis, we reported for the first time that the genes related to heat stress of mRNA, such as HSPA8, HSPH1, HSPA2, and DNAJA4, were co-expressed with lncRNA such as XLOC010450, XLOC037987, XLOC053511, XLOC061207, and XLOC100318, and all of these genes are shown to be down-regulated. These findings provide a scientific basis for the possible benefits of dietary curcumin addition in heat-stressed laying hens.
Collapse
Affiliation(s)
- Xinyue Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Xubin Du
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China;
| | - Huifang Pian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| |
Collapse
|
10
|
Mol N, Priya A, Singh AK, Mago P, Shalimar, Ray AK. "Unravelling the impacts of climatic heat events on cardiovascular health in animal models". ENVIRONMENTAL RESEARCH 2024; 248:118315. [PMID: 38301760 DOI: 10.1016/j.envres.2024.118315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Climate change has led to an increase in high ambient temperatures, causing extreme heat events worldwide. According to the World Meteorological Organization (WMO), July 2023 marked a historic milestone as the Earth reached its hottest recorded temperature, precisely hitting the critical threshold of 1.5 °C set by the Paris Agreement. This distressing development led to a stark warning from the United Nations, signaling the dawn of what they call "an era of global boiling". The increasing global temperatures can result in high heat stress which leads to various physiological and biochemical alterations in the human body. Given that cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality globally, heat events exacerbate this public health issue. While clinical and in-vitro studies have suggested a range of pathophysiological and biochemical mechanisms underlying the body's response to heat stress, the complex nature of organ-system level interactions makes precise investigation challenging. To address this knowledge gap effectively, the use of animal models exposed to acute or chronic heat stress can be invaluable. These models can closely replicate the multifaceted effects observed in humans during heat stress conditions. Despite extensive independent reviews, limited focus has been shed on the high heat-induced cardiovascular complications and their mechanisms, particularly utilizing animal models. Therefore, in this comprehensive review, we highlight the crucial biomarkers altered during heat stress, contributing significantly to various CVDs. We explore potential mechanisms underlying heat-induced cardiovascular dysfunction and damage, delving into various animal models. While traditional rodent models are commonly employed, we also examine less conventional models, including ruminants, broilers, canines, and primates. Furthermore, we delve into various potential therapeutic approaches and preventive measures. These insights hold significant promise for the development of more effective clinical interventions against the effects of heat stress on the human cardiovascular system.
Collapse
Affiliation(s)
- Nidhi Mol
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India; Campus of Open Learning, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
11
|
Zhou G, Zhang J, Liu S, Dong S, Cong Y, Jiang X, Yu W. Potential of exogenous melatonin administration to mitigate heat stress induce pathophysiology of chicken. J Therm Biol 2024; 122:103883. [PMID: 38875961 DOI: 10.1016/j.jtherbio.2024.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Melatonin (MT) is an amine hormone secreted by the body that has antioxidant and anti-inflammatory properties. The aim of this study was to investigate pathophysiological protection of MT in heat-stressed chickens. By modelling heat-stressed chickens and treating them with MT. After 21 days of administration, serum antioxidant enzymes, biochemical indices, inflammatory cytokine and heat-stress indices were detected, along with cardiopulmonary function indices and histological observations in chickens. The results show heat-stress induced a decrease (P < 0.05) in body weight and an increase in body temperature, which was reversed after MT intervention. Treatment with MT inhibited (P < 0.05) the secretion of pro-inflammatory factors interleukin-1β, interleukin-6, tumor necrosis factor α, serum heat shock protein 70, corticosterone, and elevated (P < 0.05) the levels of biochemical factors total protein, albumin, globulin, and increased (P < 0.05) the activities of antioxidant enzymes superoxide dismutase, glutathione peroxidase and catalase in chicken serum caused by heat stress, and the best effect was observed with the medium dose of MT. The heat-stress caused cardiac atrophy and pulmonary congestion, decreased (P < 0.05) the cardiac function indices creatine kinase isoenzyme, cardiac troponin I, angiotensin receptor I, creatine kinase and lung function indices myeloperoxidase, angiotensin-II, heat shock factor I, and increased (P < 0.05) the lung vascular endothelial growth factor II. Sections of the heart and lungs after administration of MT were observed to be more complete with more normal tissue indices. At the same time, compared with heat stress, heart and lung function indices of grade chickens after MT administration were significantly (P < 0.05)reduced and tended to normal levels, and the best effect was observed in the medium-dose MT. In conclusion, heat stress can cause pathophysiological damage in chickens, and 1 mg/kg/d of exogenous melatonin can attenuate this adverse effect.
Collapse
Affiliation(s)
- Guanghu Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingjing Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Sainan Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yimei Cong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Prevention and Control of Common Animal Diseases, Harbin, 150030, PR China; Chinese Veterinary Research Institute, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Shati AA, Eid RA, El-kott AF, Alqahtani YA, Shatoor AS, Ahmed Zaki MS. Curcumin attenuates doxorubicin-induced cardiotoxicity via suppressing oxidative Stress, preventing inflammation and apoptosis: Ultrastructural and computational approaches. Heliyon 2024; 10:e27164. [PMID: 38468941 PMCID: PMC10926088 DOI: 10.1016/j.heliyon.2024.e27164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Currently, doxorubicin (DOX) is one of the medications commonly used in chemotherapy to treat different types of tumors.Nonetheless, despite being effective in multiple tumors, yet its use is limited owing to its cytotoxic effects, the therapeutic use of DOX has been limited. This work aimed to explore whether curcumin (CMN) can prevents DOX-induced cardiotoxicity in rats. Four groups of rats were created, with the first functioning as a control, while the second group received CMN. DOX alone was administered to the third group, whereas CMN and DOX were administered to the fourth group. Lipid peroxidation assessed as Malondialdehyde (MDA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), oxidative stress markers as catalase (CAT), superoxide dismutase (SOD), and inflammatory markers as tumor necrosis factor-alpha (TNF-α) in heart homogenates, each one was assessed. Heart specimens was investigated histologically and ultrastructurally. Increased, AST, and ALT serum levels, increased MDA levels, decreased SOD and CAT levels, and increased TNF-α concentrations in heart homogenates were all signs of DOX-induced myocardial injury. Histological and ultrastructural examinations revealed vacuoles and larger, swollen mitochondria in the cytoplasm. Furthermore, DOX caused significant changes in the myocardium, most notably nuclei disintegration, myofibrillar loss, and myocyte vacuolization. Using CMN with DOX reduced the harmful consequences of DOX on the myocardium by returning the increased AST and ALT levels to their original levels as compared to the control and reducing them. In cardiac tissue, CMN significantly increased the concentrations of SOD and CAT and significantly decreased the concentrations of MDA and TNF-α. Biochemical and histological studies have demonstrated that CMN has a heart-protective effect that might be related to its antioxidant and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Attalla F. El-kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdullah S. Shatoor
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Yi L, Xu R, Yuan X, Ren Z, Song H, Lai H, Sun Z, Deng H, Yang B, Yu D. Heat stress enhances the occurrence of erythromycin resistance of Enterococcus isolates in mice feces. J Therm Biol 2024; 120:103786. [PMID: 38428103 DOI: 10.1016/j.jtherbio.2024.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Heat stress is a common environmental factor in livestock breeding that has been shown to impact the development of antibiotic resistance within the gut microbiota of both human and animals. However, studies investigating the effect of temperature on antibiotic resistance in Enterococcus isolates remain limited. In this study, specific pathogen free (SPF) mice were divided into a control group maintained at normal temperature and an experimental group subjected to daily 1-h heat stress at 38 °C, respectively. Gene expression analysis was conducted to evaluate the activation of heat shock responsive genes in the liver of mice. Additionally, the antibiotic-resistant profile and antibiotic resistant genes (ARGs) in fecal samples from mice were analyzed. The results showed an upregulation of heat-inducible proteins HSP27, HSP70 and HSP90 following heat stress exposure, indicating successful induction of cellular stress within the mice. Furthermore, heat stress resulted in an increase in the proportion of erythromycin-resistant Enterococcus isolates, escalating from 0 % to 0.23 % over a 30-day duration of heat stress. The resistance of Enterococcus isolates to erythromycin also had a 128-fold increase in minimum inhibitory concentration (MIC) within the heated-stressed group compared to the control group. Additionally, a 2∼8-fold rise in chloramphenicol MIC was observed among these erythromycin-resistant Enterococcus isolates. The acquisition of ermB genes was predominantly responsible for mediating the erythromycin resistance in these Enterococcus isolates. Moreover, the abundance of macrolide, lincosamide and streptogramin (MLS) resistant-related genes in the fecal samples from the heat-stressed group exhibited a significant elevation compared to the control group, primarily driven by changes in bacterial community composition, especially Enterococcaceae and Planococcaceae, and the transfer of mobile genetic elements (MGEs), particularly insertion elements. Collectively, these results highlight the role of environmental heat stress in promoting antibiotic resistance in Enterococcus isolates and partly explain the increasing prevalence of erythromycin-resistant Enterococcus isolates observed among animals in recent years.
Collapse
Affiliation(s)
- Lingxian Yi
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rui Xu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaowu Yuan
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zining Ren
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihui Song
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huamin Lai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhihua Sun
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Yang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daojin Yu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
14
|
Deng ZC, Yang JC, Huang YX, Zhao L, Zheng J, Xu QB, Guan L, Sun LH. Translocation of gut microbes to epididymal white adipose tissue drives lipid metabolism disorder under heat stress. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2877-2895. [PMID: 37480471 DOI: 10.1007/s11427-022-2320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 07/24/2023]
Abstract
Heat stress induces multi-organ damage and serious physiological dysfunction in mammals, and gut bacteria may translocate to extra-intestinal tissues under heat stress pathology. However, whether gut bacteria translocate to the key metabolic organs and impair function as a result of heat stress remains unknown. Using a heat stress-induced mouse model, heat stress inhibited epididymal white adipose tissue (eWAT) expansion and induced lipid metabolic disorder but did not damage other organs, such as the heart, liver, spleen, or muscle. Microbial profiling analysis revealed that heat stress shifted the bacterial community in the cecum and eWAT but not in the inguinal white adipose tissue, blood, heart, liver, spleen, or muscle. Notably, gut-vascular barrier function was impaired, and the levels of some bacteria, particularly Lactobacillus, were higher in the eWAT, as confirmed by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) staining when mice were under heat stress. Moreover, integrated multi-omics analysis showed that the eWAT microbiota was associated with host lipid metabolism, and the expression of genes involved in the lipid metabolism in eWAT was upregulated under heat stress. A follow-up microbial supplementation study after introducing Lactobacillus plantarum to heat-stressed mice revealed that the probiotic ameliorated heat stress-induced loss of eWAT and dyslipidemia and reduced gut bacterial translocation to the eWAT by improving gut barrier function. Overall, our findings suggest that gut bacteria, particularly Lactobacillus spp., play a crucial role in heat stress-induced lipid metabolism disorder and that there is therapeutic potential for using probiotics, such as Lactobacillus plantarum.
Collapse
Affiliation(s)
- Zhang-Chao Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Biao Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Tuong DTC, Moniruzzaman M, Smirnova E, Chin S, Sureshbabu A, Karthikeyan A, Min T. Curcumin as a Potential Antioxidant in Stress Regulation of Terrestrial, Avian, and Aquatic Animals: A Review. Antioxidants (Basel) 2023; 12:1700. [PMID: 37760003 PMCID: PMC10525612 DOI: 10.3390/antiox12091700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Stress has brought about a variety of harmful impacts on different animals, leading to difficulties in the management of animal husbandry and aquaculture. Curcumin has been recognized as a potential component to ameliorate the adverse influence of animal stress induced by toxicity, inflammation, diseases, thermal effect, and so on. In detail, this compound is known to offer various outstanding functions, including antibacterial properties, antioxidant effects, immune response recovery, and behavioral restoration of animals under stress conditions. However, curcumin still has some limitations, owing to its low bioavailability. This review summarizes the latest updates on the regulatory effects of curcumin in terms of stress management in terrestrial, avian, and aquatic animals.
Collapse
Affiliation(s)
- Do Thi Cat Tuong
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea; (D.T.C.T.); (E.S.); (S.C.); (A.S.)
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea; (D.T.C.T.); (E.S.); (S.C.); (A.S.)
| | - Elena Smirnova
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea; (D.T.C.T.); (E.S.); (S.C.); (A.S.)
| | - Sungyeon Chin
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea; (D.T.C.T.); (E.S.); (S.C.); (A.S.)
| | - Anjana Sureshbabu
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea; (D.T.C.T.); (E.S.); (S.C.); (A.S.)
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea;
| | - Taesun Min
- Department of Animal Biotechnology, Bio-Resources Computing Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
16
|
Bokharaeian M, Toghdory A, Ghoorchi T. Effects of dietary curcumin nano-micelles on growth performance, blood metabolites, antioxidant status, immune and physiological responses of fattening lambs under heat-stress conditions. J Therm Biol 2023; 114:103585. [PMID: 37344033 DOI: 10.1016/j.jtherbio.2023.103585] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023]
Abstract
The aim of the current study was to investigate the effects of dietary curcumin nano-micelles (C-NM) on the growth performance, blood metabolites, antioxidant status, and immune and physiological responses of fattening lambs under heat stress conditions. Thirty-two crossbred male lambs [Île-de-France × (Dalagh × Romanov)] with an average weight of 31.2 ± 1.55 kg and age of 4-5 months were assigned to experimental treatments in a completely randomized design including four treatments and eight replications. The treatments were T0, T20, T40, and T80, representing dietary supplementation of C-NM at 0, 20, 40, and 80 mg per head per day, respectively. The study lasted for 37 days including 7 days of adaptation period. Lambs were weighed on days 0 and 30 of the experiment before morning feeding to determine the average daily gain (ADG) and feed conversion ratio (FCR). Blood samples were collected from the jugular vein on day 30 of the experiment and physiological parameters, including rectal temperature (RT), skin temperature (ST), respiration rate (RR), and pulse rate (PR), were measured once a week on a certain day during the study. Lambs in the T40 group showed higher final live weight (FLW) and ADG, while exhibiting lower FCR (P < 0.01). Regression analysis predicted the optimum levels of dietary inclusion of C-NM to be 44.7, 38.3, and 42.0 mg/day for FLW, ADG, and FCR, respectively. Dietary supplementation of C-NM decreased RT, ST, and RR, while increasing PR (P < 0.01). The levels of immunoglobulins G (IgG) and A (IgA) increased linearly with the dietary inclusion of C-NM (P < 0.01), while levels of immunoglobulin M (IgM) remained unaffected (P > 0.05). Dietary inclusion of C-NM had a quadratic reducing effect on the serum concentration of malondialdehyde (MDA) and a cubic increasing effect on the serum activities of glutathione peroxidase (GPx) (P < 0.05). Superoxide dismutase (SOD) was linearly increased in T80, while total antioxidant capacity (TAC) showed a linear increase in T40 and T80 groups (P < 0.01). Based on the results of this study, we recommend the administration of C-NM in the diet of fattening lambs during hot months in tropical and subtropical areas. However, further studies are needed to assess the long-term effects of C-NM during various physiological and production statuses.
Collapse
Affiliation(s)
- Mostafa Bokharaeian
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Abdolhakim Toghdory
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Taghi Ghoorchi
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
17
|
Wang X, Hu J, Liu L. Editorial: Relieving stress response in animals. Front Vet Sci 2022; 9:1098796. [PMID: 36590801 PMCID: PMC9795221 DOI: 10.3389/fvets.2022.1098796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
|
18
|
Wang M, Huang X, Liu Y, Zeng J. Effects of Macleaya cordata Extract on Blood Biochemical Indices and Intestinal Flora in Heat-Stressed Mice. Animals (Basel) 2022; 12:ani12192589. [PMID: 36230331 PMCID: PMC9558519 DOI: 10.3390/ani12192589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress (HS) leads to disturbance of homeostasis and gut microbiota. Macleaya cordata extract (MCE) has anti-inflammatory, antibacterial, and gut health maintenance properties. Still, the specific effects of MCE on blood biochemical indices and gut microbiota homeostasis in heat-stressed mice are not entirely understood. This study aimed to investigate the impact of MCE on blood biochemical indices and gut microbiota in heat-stressed mice. A control group (CON) (25 °C, n = 6) and HS group (42 °C, n = 6) were gavaged with normal saline 0.2 mL/g body weight/day, and HS plus MCE group (HS-MCE) (42 °C, n = 6) was gavaged with 5 mg MCE/kg/day. HS (2 h/d) on 8–14 d. The experiment lasted 14 days. The results showed that HS increased mice’ serum aspartate transaminase, alanine transferase activities, heat shock protein 70 level, and malondialdehyde concentrations, and decreased serum catalase and superoxide dismutase activities. HS also disrupted microbiota diversity and community structure in mice, increasing the Bacteroidetes and decreasing Firmicutes and Lactobacillus; however, MCE can alleviate the disturbance of biochemical indicators caused by HS and regulate the flora homeostasis. Furthermore, MCE was able to moderate HS-induced metabolic pathways changes in gut microbiota. The Spearman correlation analysis implied that changes in serum redox status potentially correlate with gut microbiota alterations in HS-treated mice.
Collapse
Affiliation(s)
- Mingcan Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Xiuqiong Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Jianguo Zeng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
- Correspondence: ; Tel.: +86-731-84686560
| |
Collapse
|
19
|
Li H, Xu X, Cai M, Qu Y, Ren Z, Ye C, Shen H. The combination of HT-ac and HBET improves the cognitive and learning abilities of heat-stressed mice by maintaining mitochondrial function through the PKA-CREB-BDNF pathway. Food Funct 2022; 13:6166-6179. [PMID: 35582986 DOI: 10.1039/d1fo04157f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim was to investigate whether the combination of hydroxytyrosol acetate (HT-ac) and ethyl β-hydroxybutyrate (HBET) can improve the cognition of heat-stressed mice, meanwhile exploring the mechanism of action. Mice were divided into 5 groups: control, heat-stressed, HT-ac, HBET, and HT-ac + HBET. Mice were gavaged for 21 days and exposed to heat (42.5 ± 0.5 °C, RH 60 ± 10%, 1 h day-1) on days 15-21, except for the control group. Results showed that the combination of HT-ac + HBET improved the cognitive and learning abilities of heat-stressed mice, which were tested by Morris water maze, shuttle box, and jumping stage tests. The combination of HT-ac + HBET maintained the integrity of neurons and mitochondria of heat-stressed mice. Likewise, this combination increased the mitochondrial membrane potential, the ATP content, the expression of phosphorylated PKA, BDNF, phosphorylated CREB and Bcl-2, and decreased the expression of Bax, caspase-3, and intracytoplasmic Cyt C in heat-stressed mice.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Xin Xu
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Mengyu Cai
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Yicui Qu
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Zifu Ren
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Chuyang Ye
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
20
|
Du S, Zhu X, Zhou N, Zheng W, Zhou W, Li X. Curcumin alleviates hepatic steatosis by improving mitochondrial function in postnatal overfed rats and fatty L02 cells through the SIRT3 pathway. Food Funct 2022; 13:2155-2171. [PMID: 35113098 DOI: 10.1039/d1fo03752h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Postnatal overfeeding could increase the risk of non-alcoholic fatty liver disease (NAFLD) in adulthood. This study investigated the effects of curcumin (CUR) on hepatic steatosis in postnatal overfed rats and elucidated potential mechanisms in mitochondrial functions. Male rats were adjusted to ten (normal litter, NL) or three (small litter, SL) at postnatal day 3. After weaning, NL rats were fed with normal diet (NL) or a high-fat diet (NH) for 10 weeks. SL rats were fed with normal diet (SL), a high-fat diet (SH), a normal diet supplemented with 2% CUR (SL-CUR) or a high-fat diet supplemented with 2% CUR (SH-CUR). At week 13, compared with NL rats, SL and NH rats showed increased body weight, glucose intolerance, dyslipidemia and hepatic lipid accumulation, and these changes were more obvious in SH rats. The opposite trends were observed in SL-CUR and SH-CUR rats. Moreover, CUR could preserve mitochondrial biogenesis and antioxidant response in postnatal overfed rats, and upregulated the mRNA and protein levels of SIRT3. In vitro, L02 cells were exposed to free fatty acids and/or CUR. CUR decreased the levels of cellular lipids and mitochondrial reactive oxygen species, and increased the mitochondrial DNA copy number and superoxide dismutase activity in fatty L02 cells. However, these effects were blocked after SIRT3 silencing. It was concluded that postnatal overfeeding damaged mitochondrial biogenesis and antioxidant response, and increased hepatic lipids and the severity of high-fat-induced NAFLD, while CUR alleviated hepatic steatosis, at least partially, by enhancing mitochondrial function through SIRT3.
Collapse
Affiliation(s)
- Susu Du
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Xiaolei Zhu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Nan Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Wen Zheng
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Wei Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China. .,Institute of Pediatric Research, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
21
|
Ibrahim Fouad G, Ahmed KA. Curcumin Ameliorates Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity Via Suppressing Oxidative Stress and Modulating iNOS, NF-κB, and TNF-α in Rats. Cardiovasc Toxicol 2022; 22:152-166. [PMID: 34837640 DOI: 10.1007/s12012-021-09710-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023]
Abstract
Doxorubicin (DOX) is one of the widely used anti-tumor drugs. However, DOX-induced cardiotoxicity (DIC) and hepatotoxicity (DIH) are among the side effects that limited its therapeutic efficiency and clinical applicability. This study aimed to investigate the cardioprotective and hepatoprotective potentials of curcumin (CMN)-a bioactive polyphenolic compound-in alleviating DOX-induced cardiotoxicity (DIC) and hepatotoxicity (DIH) in male rats. A single intraperitoneal (i.p.) dose of DOX (20 mg/kg) was used to induce DIC and DIH. DOX-intoxicated rats were co-treated with CMN (100 mg/kg, oral) for 10 days before and 5 days after a single dose of DOX. We studied the anti-inflammatory and anti-oxidative activities of CMN on biochemical and immunohistochemical aspects. DOX disrupted cardiac and hepatic functions and stimulated oxidative stress and inflammation in both tissues that was confirmed biochemically and immunohistochemically. DOX enhanced inflammatory interferon-gamma (IFN-γ) and upregulated immunoexpression of nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNF-α). DOX induced structural alterations in both cardiac and hepatic tissues. CMN demonstrated cardioprotective potential through reducing cardiac troponin I (cTn1) and aspartate amino transaminase (AST). In addition, CMN significantly ameliorated liver function through decreasing alanine amino transaminase (ALT) and, gamma-glutamyl transferase (GGT), total cholesterol (TC), and triglycerides (TG). CMN demonstrated anti-inflammatory potential through decreasing IFN-γ levels and immunoexpression of iNOS, NF-κB, and TNF-α. Histopathologically, CMN restored DOX-associated cardiac and liver structural alterations. CMN showed anti-oxidative and anti-inflammatory potentials in both the cardiac and hepatic tissues. In addition, cTn1, IFN-γ, and AST could be used as blood-based biomarkers.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
22
|
Yu T, Dohl J, Park YM, Brown LL, Costello RB, Chen Y, Deuster PA. Protective effects of dietary curcumin and astaxanthin against heat-induced ROS production and skeletal muscle injury in male and female C57BL/6J mice. Life Sci 2022; 288:120160. [PMID: 34801514 DOI: 10.1016/j.lfs.2021.120160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 11/19/2022]
Abstract
AIMS This study aimed to: 1) investigate sex differences in heat-induced mitochondrial dysfunction, ROS production, and skeletal muscle injury in mice; 2) evaluate whether curcumin and astaxanthin, alone or together, would prevent those heat-induced changes. MAIN METHODS Male and female C57BL/6J mice were treated with curcumin and astaxanthin for 10 days, then exposed to 39.5 °C heat for up to 3 h. Heat-induced hyperthermia, changes in mitochondrial morphology and function, and oxidative damage to skeletal muscle were evaluated. KEY FINDINGS Although female mice had a slightly higher basal core body temperature (Tc) than male mice, peak Tc during heat exposure was significantly lower in females than in males. Heat increased ROS levels in skeletal muscle in both sexes; interestingly, the increases in ROS were greater in females than in males. Despite the above-mentioned differences, heat induced similar levels of mitochondrial fragmentation and membrane potential depolarization, caspase 3/7 activation, and injury in male and female skeletal muscle. Individual treatment of curcumin or astaxanthin did not affect basal and peak Tc but prevented heat-induced mitochondrial dysfunction, ROS increases, and apoptosis in a dose-dependent manner. Moreover, a low-dose combination of curcumin and astaxanthin, which individually showed no effect, reduced the heat-induced oxidative damage to skeletal muscle. SIGNIFICANCE Both male and female mice can develop mitochondrial dysfunction and oxidative stress in skeletal muscle when exposed to heat stress. High doses of either curcumin or astaxanthin limit heat-induced skeletal muscle injury, but a low-dose combination of these ingredients may increase their efficacy.
Collapse
Affiliation(s)
- Tianzheng Yu
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Jacob Dohl
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Yu Min Park
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - LaVerne L Brown
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca B Costello
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, USA
| | - Yifan Chen
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
23
|
Chen Y, Wang J, Jing Z, Ordovas JM, Wang J, Shen L. Anti-fatigue and anti-oxidant effects of curcumin supplementation in exhaustive swimming mice via Nrf2/Keap1 signal pathway. Curr Res Food Sci 2022; 5:1148-1157. [PMID: 35875345 PMCID: PMC9304720 DOI: 10.1016/j.crfs.2022.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Demands for dietary supplements with anti-fatigue effects are growing fast due to increasing societal demands. Moreover, in highly physically active individuals, there are also significant needs for supplements to improve exercise performance. The present study evaluated the potential anti-fatigue and anti-oxidant effects of curcumin in mice using exhaustive swimming test. Male C57BL/6J mice were randomized into six groups: blank control (Rest), swimming control (Con), Vitamin C (Vc), low-dose curcumin (C50), middle-dose curcumin (C100), and high-dose curcumin (C200). After a 4-week intervention, the mice in all groups except the Rest group were subject to an exhaustive swimming test. Then, mice were sacrificed to examine serum biochemical markers and fatigue-related enzymes. Moreover, the gene and protein expressions of signal transduction factors involved in the Nrf2/Keap1 signaling pathway were measured. The results indicated that curcumin significantly enhanced the exercise tolerance of mice in the exhaustive swimming test. Particularly, the swimming time of mice in the C100 group was increased by 273.5% when compared to that of mice in the Con group. The levels of blood urea nitrogen, blood ammonia, lactic acid, creatine kinase and lactate dehydrogenase in the C100 group were decreased by 13.3%, 21.0%, 18.6%, 16.7% and 21.9%, respectively, when compared to those of mice in the Con group. Curcumin alleviated exercise-induced oxidative stress and significantly enhanced the activities of superoxide dismutase, catalase and glutathione peroxidase by activating the Nrf2 signaling. These findings indicated that curcumin supplementation exerted remarkable anti-oxidant and anti-fatigue effects in mice, providing additional evidence supporting the use of curcumin as functional food, especially by those engaged in sports-related activities. Curcumin exerted remarkable anti-oxidant and anti-fatigue effects in mice. Curcumin can activate anti-oxidant response via Nrf2/Keap1 signaling pathway. Curcumin greatly enhanced the exercise tolerance of mice in exhaustive swimming test. Curcumin alleviated exercise-induced oxidative stress by its anti-oxidant effects. Curcumin can be an anti-fatigue promising candidate improving exercise performance.
Collapse
Affiliation(s)
- Yong Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, 310018, Zhejiang, China
- Hangzhou Beewords Apiculture Co. Ltd., Hangzhou, China
| | - Jiajun Wang
- Hangzhou Beewords Apiculture Co. Ltd., Hangzhou, China
| | - Ziheng Jing
- Henan ZhongdaHengyuan Biotechnology Co. Ltd., Luohe, China
| | - Jose M. Ordovas
- Human Nutrition Research Center on Aging at Tufts University, Boston, United States
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, China
- Corresponding author. Ningbo Research Institute, Zhejiang University, Ningbo, 315010, Zhejiang, China.
| | - Lirong Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Hangzhou Beewords Apiculture Co. Ltd., Hangzhou, China
- Corresponding author. Department of Food Science and Nutrition, Zhejiang University, 866 Yu-hang-tang Road, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Wen C, Li S, Wang J, Zhu Y, Zong X, Wang Y, Jin M. Heat Stress Alters the Intestinal Microbiota and Metabolomic Profiles in Mice. Front Microbiol 2021; 12:706772. [PMID: 34512584 PMCID: PMC8430895 DOI: 10.3389/fmicb.2021.706772] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Heat stress has negative effects on the intestinal health of humans and animals. However, the impact of heat stress on intestinal microbial and metabolic changes remains elusive. Here, we investigated the cecal microbial and metabolic profiles in mice in response to heat stress. Methods The mouse heat stress model was constructed by simulating a high-temperature environment. Twenty mice were randomly assigned to two groups, the control group (CON, 25°C) and the heat treatment group (HS, 40°C from 13:00 to 15:00 every day for 7 days). Serum and cecal contents were collected from the mice for serum biochemical analysis, 16S rRNA high-throughput sequencing, and non-targeted metabolomics. Results Both core body temperature and water intake were significantly increased in the HS group. Serum biochemical indicators were also affected, including significantly increased triglyceride and decreased low-density lipoprotein in the heat stress group. The composition and structure of intestinal microbiota were remarkably altered in the HS group. At the species level, the relative abundance of Candidatus Arthromitus sp. SFB-mouse-Japan and Lactobacillus murinus significantly reduced, while that of Lachnospiraceae bacterium 3-1 obviously increased after HS. Metabolomic analysis of the cecal contents clearly distinguished metabolite changes between the groups. The significantly different metabolites identified were mainly involved in the fatty acid synthesis, purine metabolism, fatty acid metabolism, cyanoamino acid metabolism, glyceride metabolism, and plasmalogen synthesis. Conclusion In summary, high temperature disrupted the homeostatic balance of the intestinal microbiota in mice and also induced significant alterations in intestinal metabolites. This study provides a basis for treating intestinal disorders caused by elevated temperature in humans and animals and can further formulate nutritional countermeasures to reduce heat stress-induced damage.
Collapse
Affiliation(s)
- Chaoyue Wen
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiaojiao Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yimin Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
25
|
Pourbagher-Shahri AM, Farkhondeh T, Ashrafizadeh M, Talebi M, Samargahndian S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed Pharmacother 2021; 136:111214. [PMID: 33450488 DOI: 10.1016/j.biopha.2020.111214] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of the most considerable mortality globally, and it has been tried to find the molecular mechanisms and design new drugs that triggered the molecular target. Curcumin is the main ingredient of Curcuma longa (turmeric) that has been used in traditional medicine for treating several diseases for years. Numerous investigations have indicated the beneficial effect of Curcumin in modulating multiple signaling pathways involved in oxidative stress, inflammation, apoptosis, and proliferation. The cardiovascular protective effects of Curcumin against CVDs have been indicated in several studies. In the current review study, we provided novel information on Curcumin's protective effects against various CVDs and potential molecular signaling targets of Curcumin. Nonetheless, more studies should be performed to discover the exact molecular target of Curcumin against CVDs.
Collapse
Affiliation(s)
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19968 35115, Iran
| | - Saeed Samargahndian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
26
|
Tabaee S, Sahebkar A, Aghamohammadi T, Pakdel M, Dehabeh M, Sobhani R, Alidadi M, Majeed M, Mirhafez SR. The Effects of Curcumin Plus Piperine Supplementation in Patients with Acute Myocardial Infarction: A Randomized, Double-Blind, and Placebo-Controlled Trial. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:199-211. [PMID: 34981479 DOI: 10.1007/978-3-030-73234-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a leading cause of death and disability worldwide. Previous investigations have demonstrated that curcumin has a cardioprotective effect and may improve myocardial injury. So this study was performed to assess whether supplementation with curcumin could diminish myocardial injury following AMI. METHODS To conduct this randomized, double-blinded, and placebo-controlled clinical trial, seventy-two patients with acute myocardial infarction, aged 18-75 years, were enrolled and randomly divided into the active intervention and control groups. The active intervention group (n = 38) received curcumin capsules with piperine supplement (500 mg/day, 95% curcuminoids) for 8 weeks, whereas the control group (n = 34) received a placebo capsule. At the baseline and end of the study, ejection fraction was assessed, and blood samples were taken from all patients to measure the levels of cardiac troponin I(cTnI), lipid profile, FBG, HbA1C, liver enzymes, renal function parameters, and electrolytes. RESULTS In this trial, curcumin supplementation significantly reduced the levels of HbA1C (-0.3 ± 2.2 vs. +1.1 ± 1.3, P = 0.002), LDL (-10.3 ± 20.7 vs. +0.2 ± 22.5, P = 0.039), ALT (-10.2 ± 28.5 vs. +7.3 ± 39.2, P = 0.029), and ALP (+6.4 ± 39.5 vs. +38.0 ± 69.0, P = 0.018) compared to the placebo group. Moreover, the serum concentration of HDL significantly improved in comparison with the placebo group (+4.5 ± 8.9 vs. -1.6 ± 7.7, P = 0.002). However, no substantial difference was perceived between the groups regarding the ejection fraction and serum levels of cTnI, FBG, renal function parameters, and electrolytes. CONCLUSION Our results indicated that daily intake of 500 mg of curcumin capsules with piperine supplement for 8 weeks modified lipid profile, liver enzymes, and glycemic status, but did not have any effect on ejection fraction and serum concentration of cardiac troponin I, renal function parameters, and electrolytes in acute myocardial infarction patients.
Collapse
Affiliation(s)
- Samaneh Tabaee
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Tayebe Aghamohammadi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Manizhe Pakdel
- Faculty of Nursing, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maryam Dehabeh
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Sobhani
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mona Alidadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Reza Mirhafez
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
27
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020; 235:9241-9268. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|