1
|
Keskin A, Acar G, Aladag T, Onal U, Baltaci SB, Mogulkoc R, Baltaci AK. Effect of 2 Weeks Naringin Application on Neurological Function and Neurogenesis After Brain Ischemia-Reperfusion in Ovariectomized Rats. Mol Neurobiol 2025:10.1007/s12035-025-05050-w. [PMID: 40374843 DOI: 10.1007/s12035-025-05050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Cerebral ischemia-reperfusion (I/R) is a condition that occurs when blood flow is restored after a temporary interruption and may lead to deterioration in brain functions depending on the time passed. One of the changes in functions is neurological score values. This study aimed to determine the effect of brain ischemia reperfusion and 2-week naringin supplementation on changes in neurological score and neurogenesis in ovariectomized female rats. Experimental groups of 36 Wistar-albino-type female rats were created as follows: control group: no anesthesia or surgical procedure was applied. Ovariectomy-sham brain I/R group: After the ovariectomy was performed under general anesthesia, the carotid artery regions were opened and closed, and sham ischemia-reperfusion was performed, followed by a vehicle application for 2 weeks (2 weeks, 1 ml 0.25% carboxymethylcellulose). Ovariectomy-I/R group: After ovariectomy, carotid arteries were isolated under general anesthesia, ligated for 30 min, and reperfused for 2 weeks after ischemia was performed. Ovariectomy-I/R sham treatment group: After ovariectomy, the carotid arteries were isolated under general anesthesia, then ligated and ischemia was performed for 30 min, and then reperfusion and vehicle application were performed for 2 weeks. Ovariectomy-I/R naringin treatment group: After ovariectomy, carotid arteries were isolated under general anesthesia, ligated for 30 min, and ischemia was performed, followed by naringin application with reperfusion for 2 weeks. Neurological scoring values performed on the 1st, 7th, and 14th days after the surgical procedure significantly increased with ischemia-reperfusion. Also, hippocampus and frontal cortex calbindin, alpha/beta-tubulin, and Neu-N levels were reduced considerably by ischemia-reperfusion. However, it was observed that a 2-week naringin application significantly suppressed the increase in neurological scores. The suppression in neurological score values became more evident in the 2nd week. Our results show that the impairment of motor functions and neurogenesis in the frontal cortex and hippocampus in brain ischemia-reperfusion after ovariectomy in female rats was significantly improved by 2 weeks of naringin supplementation.
Collapse
Affiliation(s)
- Aysenur Keskin
- Faculty of Medicine, Department of Physiology, Selcuk University, Konya, Turkey
| | - Gozde Acar
- Faculty of Medicine, Department of Physiology, Selcuk University, Konya, Turkey
| | - Tugce Aladag
- Faculty of Medicine, Department of Physiology, Selcuk University, Konya, Turkey
| | - Ummugulsum Onal
- Faculty of Medicine, Department of Histology, Selcuk University, Konya, Turkey
| | - Saltuk Bugra Baltaci
- Faculty of Medicine, Department of Physiology, Istanbul Medipol University, Istanbul, Turkey
| | - Rasim Mogulkoc
- Faculty of Medicine, Department of Physiology, Selcuk University, Konya, Turkey.
| | | |
Collapse
|
2
|
Yang J, Ma YM, Yang L, Li P, Jing L, Li PA, Zhang JZ. Quercetin alleviates cerebral ischemia and reperfusion injury in hyperglycemic animals by reducing endoplasmic reticulum stress through activating SIRT1. PLoS One 2025; 20:e0321006. [PMID: 40273147 PMCID: PMC12021246 DOI: 10.1371/journal.pone.0321006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 02/27/2025] [Indexed: 04/26/2025] Open
Abstract
Hyperglycemia aggravates cerebral ischemic reperfusion injury (CIRI). Neuroprotective drugs that are effective in reducing CIRI in animals with normoglycemic condition are ineffective in ameliorating CIRI under hyperglycemic condition. This study investigated whether quercetin alleviates hyperglycemic CIRI by inhibiting endoplasmic reticulum stress (ERS) through modulating the SIRT1 signaling pathway. A middle cerebral artery occlusion/reperfusion (MCAO/R) model was induced in STZ-injected hyperglycemic rats. High glucose and oxygen glucose deprivation/reoxygenation (OGD/R) models were established in HT22 cells. The results demonstrated that hyperglycemia exacerbated CIRI, and quercetin pretreatment decreased the neurological deficit score and cerebral infarct volume, and alleviated neuron damage in the cortex of the penumbra in hyperglycemic MCAO/R rats, indicating that quercetin could be a candidate for treating hyperglycemic CIRI. Moreover, quercetin pretreatment reduced apoptosis, inhibited the expression of the ERS marker proteins GRP78 and ATF6, and mitigated the expression of the ERS-mediated proapoptotic protein CHOP in hyperglycemic MCAO/R rats, suggesting that quercetin alleviated hyperglycemic CIRI by inhibiting ERS and ERS-mediated apoptosis. Furthermore, quercetin upregulated Sirt1 expression in HG+OGD/R treated HT22 cells and inhibited PERK, p-eIF2α, ATF4, and CHOP expression. In contrast, the SIRT1 selective inhibitor EX-527 blocked the effect of quercetin on protein expression in the SIRT1/PERK pathway and aggravated HT22 cell injury. These findings indicate that quercetin inhibits ERS-mediated apoptosis through modulating the SIRT1 and PERK pathway. In conclusion, quercetin alleviates hyperglycemic CIRI by inhibiting ERS-mediated apoptosis through activating SIRT1 that consequently suppressed ERS signaling.
Collapse
Affiliation(s)
- Jing Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yan-Mei Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lan Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Peng Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Jing
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise, College of Health and Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Jian-Zhong Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Shu H, Liao Q, Chen Z, Liang M, Zhang S, Liu J, Wu Y, Hu P, Luo M, Zhu W, Zhu X, Yang L, Yan T. Flavonoids serve as a promising therapeutic agent for ischemic stroke. Brain Res 2025; 1853:149528. [PMID: 39999903 DOI: 10.1016/j.brainres.2025.149528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemic stroke (IS) continues to be a major public health concern and is characterized by significantly high mortality and disabling rates. Inhibiting nerve cells death and enhancing the repair of ischemic tissue are important treatment concepts for IS. Currently, the mainstream treatment strategies mainly focus on short-term care, which underscores the urgent need for novel therapeutic strategies for long-term care. Emerging data reveal that flavonoids have surfaced as promising candidates for IS patients' long-term care. Flavonoids can alleviate neuroinflammation and anti-apoptosis due to their characteristic pharmacological mechanisms. Clinical evidence suggests that long-term flavonoids intake improves IS patients' long-term outcomes. Though the effect of flavonoids in IS treatment has been explored for decades, the neuroprotective pharmacodynamics have not been well established. Thereby, the aim of current review is to summarize the pathways involved in neuroprotective effect of flavonoids. This review will also advance the potential of flavonoids as a viable clinical candidate for the treatment of IS.
Collapse
Affiliation(s)
- Hongxin Shu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiuye Liao
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhihao Chen
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Mingyu Liang
- School of life sciences, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Si Zhang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Junzhe Liu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanze Wu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ping Hu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ming Luo
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenping Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xingen Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Li Yang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Tengfeng Yan
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Javanbakht P, Talebinasab A, Asadi-Golshan R, Shabani M, Kashani IR, Mojaverrostami S. Effects of Quercetin against fluoride-induced neurotoxicity in the medial prefrontal cortex of rats: A stereological, histochemical and behavioral study. Food Chem Toxicol 2025; 196:115126. [PMID: 39613240 DOI: 10.1016/j.fct.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Exposure to high levels of fluoride leads to brain developmental and functional damage. Motor performance deficits, learning and memory dysfunctions are related to fluoride neurotoxicity in human and rodent studies. MATERIALS AND METHODS Here, we evaluated the effects of Quercetin treatment (25 mg/kg) against sodium fluoride-induced neurotoxicity (NaF, 200 ppm) in the medial prefrontal cortex (mPFC) of male adult rats based on oxidative markers, behavioral performances, mRNA expressions, and stereological parameters. After a 4-week experimental period, the brains of rats were collected and used for molecular and histological analysis. RESULTS We found that 4 weeks of NaF exposure decreased body weight, working memory, Brain-derived neurotrophic factor (BDNF) mRNA expression, total volume of mPFC, number of neurons and non-neuronal cells in the mPFC, and anti-oxidative markers (CAT, SOD, and GSH-Px), while increased lipid peroxidation, P53 mRNA expression and anxiety. Quercetin treatment could significantly reverse the neurotoxic effect of NaF in the mPFC. CONCLUSIONS In summary, Quercetin could decrease the detrimental effects of NaF in the mPFC of adult rats by improving antioxidant potency and consequently decreasing neuronal and non-neuronal apoptosis.
Collapse
Affiliation(s)
- Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Talebinasab
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Luo Y, Liu R, Yuan G, Pan Y. Polyphenols for stroke therapy: the role of oxidative stress regulation. Food Funct 2024; 15:11383-11399. [PMID: 39497601 DOI: 10.1039/d4fo01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Stroke is associated with a high incidence and disability rate, which seriously endangers human health. Oxidative stress (OS) plays a crucial role in the underlying pathologic progression of cerebral damage in stroke. Emerging experimental studies suggest that polyphenols have antioxidant potential and express protective effects after different types of strokes, but no breakthrough has been achieved in clinical studies. Nanomaterials, due to small characteristic sizes, can be used to deliver drugs, and have shown excellent performance in the treatment of various diseases. The drug delivery capability of nanomaterials has significant implications for the clinical translation and application of polyphenols. This comprehensive review introduces the mechanism of oxidative stress in stroke, and also summarizes the antioxidant effects of polyphenols on reactive oxygen species generation and oxidative stress after stroke. Also, the application characteristics and research progress of nanomaterials in the treatment of stroke with antioxidants are presented.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ruolan Liu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Academician Workstation, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
6
|
Yousefi Zardak M, Keshavarz F, Mahyaei A, Gholami M, Moosavi FS, Abbasloo E, Abdollahi F, Hossein Rezaei M, Madadizadeh E, Soltani N, Bejeshk F, Salehi N, Rostamabadi F, Bagheri F, Jafaraghae M, Ranjbar Zeydabadi M, Baghgoli M, Sepehri G, Bejeshk MA. Quercetin as a therapeutic agent activate the Nrf2/Keap1 pathway to alleviate lung ischemia-reperfusion injury. Sci Rep 2024; 14:23074. [PMID: 39367100 PMCID: PMC11452703 DOI: 10.1038/s41598-024-73075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) causes oxidative stress, inflammation, and immune system activation. The Nrf2/Keap1/HO-1 pathway is important in cellular defense against these effects. Quercetin, a flavonoid with antioxidant, anti-inflammatory, and anti-cancer properties, has been investigated. Our aim in this study was to investigate the effect of quercetin on preventing lung ischemia-reperfusion injury and the role of the Nrf2/Keap1/HO-1 pathway. Sixty-four male Wistar rats were divided into four distinct groups(n = 16). Sham, lung ischemia-reperfusion (LIR), Saline + LIR, Quercetin + LIR (30 mg/kg i.p for a week before LIR). LIR groups were subjected to 60 min of ischemia (left pulmonary artery, vein, and bronchus) and 120 min of reperfusion. Our assessment encompassed a comprehensive analysis of various factors, including the evaluation of expression Nrf2, Keap1, and Heme Oxygenase-1 (HO-1) levels and NF-κB protein. Furthermore, we examined markers related to inflammation (interleukin-1β and tumor necrosis factor alpha), oxidative stress (malondialdehyde, total oxidant status, superoxide dismutase, glutathione peroxidase, total antioxidant capacity), lung edema (Wet/dry lung weight ratio and total protein concentration), apoptosis (Bax and Bcl2 protein), and histopathological alterations (intra-alveolar edema, alveolar hemorrhage, and neutrophil infiltration). Our results show that ischemia-reperfusion results in heightened inflammation, oxidative stress, apoptosis, lung edema, and histopathological damage. Quercetin showed preventive effects by reducing these markers, acting through modulation of the Nrf2/Keap1 pathway and inhibiting the NF-κB pathway. This anti-inflammatory effect, complementary to the antioxidant effects of quercetin, provides a multifaceted approach to cell protection that is important for developing therapeutic strategies against ischemia-reperfusion injury and could be helpful in preventive strategies against ischemia-reperfusion.
Collapse
Affiliation(s)
- Mohammad Yousefi Zardak
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Keshavarz
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mahyaei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Gholami
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sadat Moosavi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abbasloo
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Abdollahi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hossein Rezaei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Nasrin Soltani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Niyan Salehi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research center, Bam University of Medical Sciences, Bam, Kerman, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Mahla Jafaraghae
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Meraj Baghgoli
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Pulmonary Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Safarzadeh E, Ataei S, Akbari M, Abolhasani R, Baziar M, Asghariazar V, Dadkhah M. Quercetin ameliorates cognitive deficit, expression of amyloid precursor gene, and pro-inflammatory cytokines in an experimental models of Alzheimer's disease in Wistar rats. Exp Gerontol 2024; 193:112466. [PMID: 38821324 DOI: 10.1016/j.exger.2024.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Chronic stress (CS) is critically involved in the Alzheimer's disease (AD) pathogenesis resulting in cognitive disturbance. Also, amyloid precursor protein (APP) related gens, pro-inflammatory cytokines, and stress increases AD-related pathogenesis through increasing APP, all are important players in the development of AD. Herein, we explore the possible neuroprotective and anti-amnestic effect of quercetin (QUER) on cognitive deficits induced by scopolamine (SCOP) in stressed rats. Stress induction was performed by exposed of rats to 2-h chronic restraint stress for 10 days. Then rats were supplemented with QUER (25 mg/kg/day oral gavage, for 1 month). Ratswere submitted to intraperitoneal (i.p.) injection of SCOP (1 mg/kg) during the final 9 days of QUER supplementation to induce dementia like condition. Following the interventions, behavioral tests [elevated plus maze (EPM) and novel object recognition memory (NORM)] was examined to analysis the cognitive functions. Meanwhile, prefrontal cortex (PFC) and hippocampus of brain were used for gene expression and biochemical studies. Also, the plasma corticosterone (CORT) level was measured. We established that administration of QUER ameliorated the SCOP-related memory impairment. Also, QUER decreased stress related anxiety like behaviors in the EPM. QUER also altered the interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in both PFC and hippocampus of SCOP treated rats in stress and non-stress conditions. We found that QUER increased APP and amyloid precursor-like protein 2 (APLP2) mRNA expression in both non-stress and stressed rats. Also, our findings imply that QUER suppress the effect of SCOP on cognitive functions. Moreover, decreased APP mRNA expression in the hippocampus were observed following pretreatment of rats with QUER in both stress and non-stress groups. Given that decreased amyloid beta (Aβ) expression in the hippocampus of stressed rats, it can be proposed that elevations in APP mRNA expression by QUER activates non-amyloidogenic pathways leading to reduction in Aβ levels. However, our findings indicate that QUER can be a therapeutic candidate, which exerts an anti-amnesic property against SCOP-induced memory decline. On the other hand, prior QUER administration in stress condition could be a promising approach against AD prevention.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sina Ataei
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; USERN Office, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Akbari
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rozita Abolhasani
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; USERN Office, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
8
|
Zhang D, Qin H, Chen W, Xiang J, Jiang M, Zhang L, Zhou K, Hu Y. Utilizing network pharmacology, molecular docking, and animal models to explore the therapeutic potential of the WenYang FuYuan recipe for cerebral ischemia-reperfusion injury through AGE-RAGE and NF-κB/p38MAPK signaling pathway modulation. Exp Gerontol 2024; 191:112448. [PMID: 38697555 DOI: 10.1016/j.exger.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Stroke is a debilitating condition with high morbidity, disability, and mortality that significantly affects the quality of life of patients. In China, the WenYang FuYuan recipe is widely used to treat ischemic stroke. However, the underlying mechanism remains unknown, so exploring the potential mechanism of action of this formula is of great practical significance for stroke treatment. OBJECTIVE This study employed network pharmacology, molecular docking, and in vivo experiments to clarify the active ingredients, potential targets, and molecular mechanisms of the WenYang FuYuan recipe in cerebral ischemia-reperfusion injury, with a view to providing a solid scientific foundation for the subsequent study of this recipe. MATERIALS AND METHODS Active ingredients of the WenYang FuYuan recipe were screened using the traditional Chinese medicine systems pharmacology database and analysis platform. Network pharmacology approaches were used to explore the potential targets and mechanisms of action of the WenYang FuYuan recipe for the treatment of cerebral ischemia-reperfusion injury. The Middle Cerebral Artery Occlusion/Reperfusion 2 h Sprague Dawley rat model was prepared, and TTC staining and modified neurological severity score were applied to examine the neurological deficits in rats. HE staining and Nissl staining were applied to examine the pathological changes in rats. Immunofluorescence labeling and Elisa assay were applied to examine the expression levels of certain proteins and associated factors, while qRT-PCR and Western blotting were applied to examine the expression levels of linked proteins and mRNAs in disease-related signaling pathways. RESULTS We identified 62 key active ingredients in the WenYang FuYuan recipe, with 222 highly significant I/R targets, forming 138 pairs of medication components and component-targets, with the top five being Quercetin, Kaempferol, Luteolin, β-sitosterol, and Stigmasterol. The key targets included TP53, RELA, TNF, STAT1, and MAPK14 (p38MAPK). Targets related to cerebral ischemia-reperfusion injury were enriched in chemical responses, enzyme binding, endomembrane system, while enriched pathways included lipid and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling in diabetic complications. In addition, the main five active ingredients and targets in the WenYang FuYuan recipe showed high binding affinity (e.g. Stigmasterol and MAPK14, total energy <-10.5 Kcal/mol). In animal experiments, the WenYang FuYuan recipe reduced brain tissue damage, increased the number of surviving neurons, and down-regulated S100β and RAGE protein expression. Moreover, the relative expression levels of key targets such as TP53, RELA and p38MAPK mRNA were significantly down-regulated in the WenYang FuYuan recipe group, and serum IL-6 and TNF-a factor levels were reduced. After WenYang FuYuan recipe treatment, the AGE-RAGE signaling pathway and downstream NF-kB/p38MAPK signaling pathway-related proteins were significantly modulated. CONCLUSION This study utilized network pharmacology, molecular docking, and animal experiments to identify the potential mechanism of the WenYang FuYuan recipe, which may be associated with the regulation of the AGE-RAGE signaling pathway and the inhibition of target proteins and mRNAs in the downstream NF-kB/p38MAPK pathway.
Collapse
Affiliation(s)
- Ding Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Hongling Qin
- Guangxi University of Chinese Medicine First Affiliated Hospital, Nanning, China
| | - Wei Chen
- Guangxi University of Chinese Medicine First Affiliated Hospital, Nanning, China
| | - Junjun Xiang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Minghe Jiang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ling Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Keqing Zhou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Yueqiang Hu
- Guangxi University of Chinese Medicine First Affiliated Hospital, Nanning, China.
| |
Collapse
|
9
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
10
|
Wu G, Ren Z, Hao Q, Wong Y, Zha D, Cao X, Liu R. The mechanism of Zhenzhu Pills treating intracerebral hemorrhage secondary injury based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e36837. [PMID: 38363944 PMCID: PMC10869077 DOI: 10.1097/md.0000000000036837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) secondary injury is serious and affects patient's prognosis. The Zhenzhu Pills used to treat subacute ICH in Tibet has shown to have a certain curative effect. Network pharmacology and molecular docking technology are employed to explore the potential mechanism of Zhenzhu Pills. The components and potential targets of Zhenzhu Pills were screened from the Traditional Chinese Medicine Systems Pharmacology database. The Gene Expression Omnibus Series 24265 was used to screen differentially expressed genes between perihematomal tissue and normal brain. METHODS The herbs-components-targets network was established, with weighted eigenvalue to identify the core components and targets of Zhenzhu Pills treatment of ICH secondary injury. Targets' bioinformatics enrichment was proceeded by gene ontology and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis. Finally, molecular docking was used to identify the hydrogen bonding activity between the key components and action targets. RESULTS Five herbal drugs were screened from Traditional Chinese Medicine Systems Pharmacology database, with a total of 48 components and 234 targets. The Gene Expression Omnibus Series 24265 dataset was evaluated and 920 differentially expressed genes were identified. A total of 29 intersection targets of Zhenzhu Pills were explored in the treatment of ICH secondary injury. Drugs-components-targets network analysis showed that the pivotal targets were prostaglandin G/H synthase 2, interleukin 6, heme oxygenase-1, vascular endothelial growth factor, and vascular cell adhesion molecule 1, and the core components were quercetin, luteolin, and kaempferol. Gene ontology and KEGG pathway enrichment analysis showed that biological processes such as cell chemotaxis, wound healing, leukocyte migration, and regulation of body fluid levels played an important role in the secondary injury of ICH. The results of KEGG pathway analysis were mainly related to advanced glycation end products-receptor for advanced glycation end products signal pathway and tumor necrosis factor signal pathway. Molecular docking of 3 flavonoids with 5 core targets with the results also showed active hydrogen bonding. CONCLUSIONS This study provides insights into the potential mechanisms of Zhenzhu Pills in the treatment of secondary injuries resulting from ICH and highlights specific components, targets, and molecular pathways involved in this therapeutic effect. These possible therapeutic mechanisms include inhibiting inflammation, edema, oxidative stress, and so on.
Collapse
Affiliation(s)
- Gang Wu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, P.R. China
| | - Zeng Ren
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Qingpei Hao
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, P.R. China
| | - Yu Wong
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Duo Zha
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Xudong Cao
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, P.R. China
| |
Collapse
|
11
|
Wan H, Yang YD, Zhang Q, Chen YH, Hu XM, Huang YX, Shang L, Xiong K. VDAC1, as a downstream molecule of MLKL, participates in OGD/R-induced necroptosis by inducing mitochondrial damage. Heliyon 2024; 10:e23426. [PMID: 38173512 PMCID: PMC10761567 DOI: 10.1016/j.heliyon.2023.e23426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury constitutes a significant risk factor for a range of diseases, including ischemic stroke, myocardial infarction, and trauma. Following the restoration of blood flow post-tissue ischemia, oxidative stress can lead to various forms of cell death, including necrosis, apoptosis, autophagy, and necroptosis. Recent evidence has highlighted the crucial role of mitochondrial dysfunction in I/R injury. Nevertheless, there remains much to be explored regarding the molecular signaling network governing cell death under conditions of oxidative stress. Voltage-dependent anion channel 1 (VDAC1), a major component in the outer mitochondrial membrane, is closely involved in the regulation of cell death. In a cellular model of oxygen-glucose deprivation and reoxygenation (OGD/R), which effectively simulates I/R injury in vitro, our study reveals that OGD/R induces VDAC1 oligomerization, consequently exacerbating cell death. Furthermore, we have revealed the translocation of mixed lineage kinase domain-like protein (MLKL) to the mitochondria, where it interacts with VDAC1 following OGD/R injury, leading to an increased mitochondrial membrane permeability. Notably, the inhibition of MLKL by necrosulfonamide hinders the binding of MLKL to VDAC1, primarily by affecting the membrane translocation of MLKL, and reduces OGD/R-induced VDAC1 oligomerization. Collectively, our findings provide preliminary evidence of the functional association between MLKL and VDAC1 in the regulation of necroptosis.
Collapse
Affiliation(s)
- Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yan-di Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yu-hua Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yan-xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| |
Collapse
|
12
|
Liu TT, Shi X, Hu HW, Chen JP, Jiang Q, Zhen YF, Cao C, Liu XW, Liu JG. Endothelial cell-derived RSPO3 activates Gαi1/3-Erk signaling and protects neurons from ischemia/reperfusion injury. Cell Death Dis 2023; 14:654. [PMID: 37805583 PMCID: PMC10560285 DOI: 10.1038/s41419-023-06176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The current study explores the potential function and the underlying mechanisms of endothelial cell-derived R-spondin 3 (RSPO3) neuroprotection against ischemia/reperfusion-induced neuronal cell injury. In both neuronal cells (Neuro-2a) and primary murine cortical neurons, pretreatment with RSPO3 ameliorated oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced neuronal cell death and oxidative injury. In neurons RSPO3 activated the Akt, Erk and β-Catenin signaling cascade, but only Erk inhibitors reversed RSPO3-induced neuroprotection against OGD/R. In mouse embryonic fibroblasts (MEFs) and neuronal cells, RSPO3-induced LGR4-Gab1-Gαi1/3 association was required for Erk activation, and either silencing or knockout of Gαi1 and Gαi3 abolished RSPO3-induced neuroprotection. In mice, middle cerebral artery occlusion (MCAO) increased RSPO3 expression and Erk activation in ischemic penumbra brain tissues. Endothelial knockdown or knockout of RSPO3 inhibited Erk activation in the ischemic penumbra brain tissues and increased MCAO-induced cerebral ischemic injury in mice. Conversely, endothelial overexpression of RSPO3 ameliorated MCAO-induced cerebral ischemic injury. We conclude that RSPO3 activates Gαi1/3-Erk signaling to protect neuronal cells from ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ting-Tao Liu
- Shandong University, Department of Neurology, Shandong Provincial Hospital, Jinan, China
- Department of Neurology, Shouguang Hospital of T.C.M, Shouguang, China
| | - Xin Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Wei Hu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ju-Ping Chen
- Department of Neurology, Changshu Hospital of Traditional Chinese Medicine, Changshu, China
| | - Qin Jiang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yun-Fang Zhen
- Department of Orthopedics, Children's hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xue-Wu Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jian-Gang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
El Midaoui A, Khallouki F, Couture R, Moldovan F, Ismael MA, Ongali B, Akoume MY, Alem C, Ait Boughrous A, Zennouhi W, Roqai MC, Hajji L, Ghzaiel I, Vejux A, Lizard G. Thymus atlanticus: A Source of Nutrients with Numerous Health Benefits and Important Therapeutic Potential for Age-Related Diseases. Nutrients 2023; 15:4077. [PMID: 37764861 PMCID: PMC10534698 DOI: 10.3390/nu15184077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Thymus atlanticus (Lamiaceae) is a plant endemic to the Mediterranean basin that is found in significant quantities in the arid regions of Morocco. Thymus atlanticus is used in traditional medicine to treat infectious and non-infectious diseases. It is also used for the isolation of essential oils and for the seasoning of many dishes in the Mediterranean diet. The major constituents of Thymus atlanticus are saponins, flavonoids, tannins, alkaloids, various simple and hydroxycinnamic phenolic compounds, and terpene compounds. Several of these compounds act on signaling pathways of oxidative stress, inflammation, and blood sugar, which are parameters often dysregulated during aging. Due to its physiochemical characteristics and biological activities, Thymus atlanticus could be used for the prevention and/or treatment of age-related diseases. These different aspects are treated in the present review, and we focused on phytochemistry and major age-related diseases: dyslipidemia, cardiovascular diseases, and type 2 diabetes.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada; (R.C.); (B.O.)
- Department of Biology, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University of Meknes, Meknes 50050, Morocco; (F.K.); (A.A.B.); (W.Z.)
| | - Farid Khallouki
- Department of Biology, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University of Meknes, Meknes 50050, Morocco; (F.K.); (A.A.B.); (W.Z.)
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada; (R.C.); (B.O.)
| | - Florina Moldovan
- Research Center of CHU Sainte Justine, Faculty of Dentistry, Université de Montréal, Montreal, QC H3T 1J4, Canada; (F.M.); (M.Y.A.)
| | | | - Brice Ongali
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada; (R.C.); (B.O.)
| | - Marie Yvonne Akoume
- Research Center of CHU Sainte Justine, Faculty of Dentistry, Université de Montréal, Montreal, QC H3T 1J4, Canada; (F.M.); (M.Y.A.)
| | - Chakib Alem
- Research Team in Biochemistry and Natural Resources, Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, Meknes 20250, Morocco;
| | - Ali Ait Boughrous
- Department of Biology, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University of Meknes, Meknes 50050, Morocco; (F.K.); (A.A.B.); (W.Z.)
| | - Wafa Zennouhi
- Department of Biology, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University of Meknes, Meknes 50050, Morocco; (F.K.); (A.A.B.); (W.Z.)
| | - Mhammed Chaoui Roqai
- Ecole des Hautes Etudes de Biotechnologie et de Santé (EHEB), 183 Bd de la Résistance, Casablanca 20250, Morocco;
| | - Lhoussain Hajji
- Laboratory of Bioactives and Environmental Health, Faculty of Sciences, Moulay Ismail University, Meknes 50050, Morocco;
| | - Imen Ghzaiel
- Laboratory “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”, Bio-peroxIL/EA7270, Université de Bourgogne/Inserm, 21000 Dijon, France; (I.G.); (A.V.)
| | - Anne Vejux
- Laboratory “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”, Bio-peroxIL/EA7270, Université de Bourgogne/Inserm, 21000 Dijon, France; (I.G.); (A.V.)
| | - Gérard Lizard
- Laboratory “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”, Bio-peroxIL/EA7270, Université de Bourgogne/Inserm, 21000 Dijon, France; (I.G.); (A.V.)
| |
Collapse
|
14
|
Orellana-Urzúa S, Briones-Valdivieso C, Chichiarelli S, Saso L, Rodrigo R. Potential Role of Natural Antioxidants in Countering Reperfusion Injury in Acute Myocardial Infarction and Ischemic Stroke. Antioxidants (Basel) 2023; 12:1760. [PMID: 37760064 PMCID: PMC10525378 DOI: 10.3390/antiox12091760] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Stroke and acute myocardial infarction are leading causes of mortality worldwide. The latter accounts for approximately 9 million deaths annually. In turn, ischemic stroke is a significant contributor to adult physical disability globally. While reperfusion is crucial for tissue recovery, it can paradoxically exacerbate damage through oxidative stress (OS), inflammation, and cell death. Therefore, it is imperative to explore diverse approaches aimed at minimizing ischemia/reperfusion injury to enhance clinical outcomes. OS primarily arises from an excessive generation of reactive oxygen species (ROS) and/or decreased endogenous antioxidant potential. Natural antioxidant compounds can counteract the injury mechanisms linked to ROS. While promising preclinical results, based on monotherapies, account for protective effects against tissue injury by ROS, translating these models into human applications has yielded controversial evidence. However, since the wide spectrum of antioxidants having diverse chemical characteristics offers varied biological actions on cell signaling pathways, multitherapy has emerged as a valuable therapeutic resource. Moreover, the combination of antioxidants in multitherapy holds significant potential for synergistic effects. This study was designed with the aim of providing an updated overview of natural antioxidants suitable for preventing myocardial and cerebral ischemia/reperfusion injuries.
Collapse
Affiliation(s)
- Sofía Orellana-Urzúa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | | | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| |
Collapse
|
15
|
Chang CY, Wu CC, Pan PH, Wang YY, Lin SY, Liao SL, Chen WY, Kuan YH, Chen CJ. Tetramethylpyrazine alleviates mitochondrial abnormality in models of cerebral ischemia and oxygen/glucose deprivation Reoxygenation. Exp Neurol 2023; 367:114468. [PMID: 37307890 DOI: 10.1016/j.expneurol.2023.114468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Traditional herbal medicine Ligusticum wallichii Franchat (Chuan Xiong) is frequently prescribed and highly recommended to patients with stroke. Rodent studies have demonstrated the neuroprotective effects of its active component tetramethylpyrazine against post-stroke brain injury and highlighted its role in antioxidant, anti-inflammation, and anti-apoptosis activity. Using permanent cerebral ischemia in rats and oxygen/glucose deprivation and reoxygenation (OGDR) in rat primary neuron/glia cultures, this study sheds light on the role of mitochondria as crucial targets for tetramethylpyrazine neuroprotection. Tetramethylpyrazine protected against injury and alleviated oxidative stress, interleukin-1β release, and caspase 3 activation both in vivo and in vitro. Reduction of mitochondrial biogenesis- and integrity-related proliferator-activated receptor-gamma coactivator-1 alpha, mitochondrial transcription factor A (TFAM), translocase of outer mitochondrial membrane 20, mitochondrial DNA, and citrate synthase activity, as well as activation of mitochondrial dynamics disruption-related Lon protease, dynamin-related protein 1 (Drp1) phosphorylation, stimulator of interferon genes, TANK-binding kinase 1 phosphorylation, protein kinase RNA-like endoplasmic reticulum kinase phosphorylation, eukaryotic initiation factor 2α phosphorylation, and activating transcription factor 4 were revealed in permanent cerebral ischemia in rats and OGDR in neuron/glia cultures. TMP alleviated those biochemical changes. Our findings suggest that preservation or restoration of mitochondrial dynamics and functional integrity and alleviation of mitochondria-oriented pro-oxidant, pro-inflammatory, and pro-apoptotic cascades are alternative neuroprotective mechanisms of tetramethylpyrazine. Additionally, mitochondrial TFAM and Drp1 as well as endoplasmic reticulum stress could be targeted by TMP to induce neuroprotection. Data of this study provide experimental base to support clinical utility and value of Chuan Xiong towards stroke treatment and highlight an alternative neuroprotective target of tetramethylpyrazine.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Financial Engineering, Providence University, Taichung City 433, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung City 435, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan.
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan.
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City 402, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan.
| |
Collapse
|
16
|
Abdelrahman SA, El-Shal AS, Abdelrahman AA, Saleh EZH, Mahmoud AA. Neuroprotective effects of quercetin on the cerebellum of zinc oxide nanoparticles (ZnoNps)-exposed rats. Tissue Barriers 2023; 11:2115273. [PMID: 35996208 PMCID: PMC10364653 DOI: 10.1080/21688370.2022.2115273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022] Open
Abstract
Engineered nanomaterials induce hazardous effects at the cellular and molecular levels. We investigated different mechanisms underlying the neurotoxic potential of zinc oxide nanoparticles (ZnONPs) on cerebellar tissue and clarified the ameliorative role of Quercetin supplementation. Forty adult male albino rats were divided into control group (I), ZnONPs-exposed group (II), and ZnONPs and Quercetin group (III). Oxidative stress biomarkers (MDA & TOS), antioxidant biomarkers (SOD, GSH, GR, and TAC), serum interleukins (IL-1β, IL-6, IL-8), and tumor necrosis factor alpha (TNF-α) were measured. Serum micro-RNA (miRNA): miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-3p expression levels were quantified by real-time quantitative polymerase-chain reaction (RT-QPCR). Cerebellar tissue sections were stained with Hematoxylin & Eosin and Silver stains and examined microscopically. Expression levels of Calbindin D28k, GFAP, and BAX proteins in cerebellar tissue were detected by immunohistochemistry. Quercetin supplementation lowered oxidative stress biomarkers levels and ameliorated the antioxidant parameters that were decreased by ZnONPs. No significant differences in GR activity were detected between the study groups. ZnONPs significantly increased serum IL-1β, IL-6, IL-8, and TNF-α which were improved with Quercetin. Serum miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-p expression levels showed significant increase in ZnONPs group, while no significant difference was observed between Quercetin-treated group and control group. ZnONPs markedly impaired cerebellar tissue structure with decreased levels of calbindin D28k, increased BAX and GFAP expression. Quercetin supplementation ameliorated cerebellar tissue apoptosis, gliosis and improved calbindin levels. In conclusion: Quercetin supplementation ameliorated cerebellar neurotoxicity induced by ZnONPs at cellular and molecular basis by different studied mechanisms.Abbreviations: NPs: Nanoparticles, ROS: reactive oxygen species, ZnONPs: Zinc oxide nanoparticles, AgNPs: silver nanoparticles, BBB: blood-brain barrier, ncRNAs: Non-coding RNAs, miRNA: Micro RNA, DMSO: Dimethyl sulfoxide, LPO: lipid peroxidation, MDA: malondialdehyde, TBA: thiobarbituric acid, TOS: total oxidative status, ELISA: enzyme-linked immunosorbent assay, H2O2: hydrogen peroxide, SOD: superoxide dismutase, GR: glutathione reductase, TAC: total antioxidant capacity, IL-1: interleukin-1, TNF: tumor necrosis factor alpha, cDNA: complementary DNA, RT-QPCR: Real-time quantitative polymerase-chain reaction, ABC: Avidin biotin complex technique, DAB: 3', 3-diaminobenzidine, SPSS: Statistical Package for Social Sciences, ANOVA: One way analysis of variance, Tukey's HSD: Tukey's Honestly Significant Difference, GFAP: glial fiberillar acitic protein, iNOS: Inducible nitric oxide synthase, NO: nitric oxide, HO-1: heme oxygenase-1, Nrf2: nuclear factor erythroid 2-related factor 2, NF-B: nuclear factor-B, SCI: spinal cord injury, CB: Calbindin.
Collapse
Affiliation(s)
- Shaimaa A. Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal S. El-Shal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Biochemistry and Molecular Biology Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Abeer A. Abdelrahman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ebtehal Zaid Hassen Saleh
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A. Mahmoud
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Li L, Liu Y, Zheng Y, Zhu J, Wu D, Yan X, Li C, Wu M, Li W. Exploring the mechanisms under Zuogui Pill's treatment of ischemic stroke through network pharmacology and in vitro experimental verification. Front Pharmacol 2023; 14:1153478. [PMID: 37426810 PMCID: PMC10323140 DOI: 10.3389/fphar.2023.1153478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Due to its high mortality, incidence and disability rates, ischemic stroke poses heavy economic burdens to families and society. Zuogui Pill (ZGP) is a classic Chinese medicine for tonifying the kidney, which is effective for the recovery of neurological function after ischemic stroke. However, Zuogui Pill has not been evaluated for its potential effects on ischemic strokes. Using network pharmacology, the research aimed to explore the mechanisms of Zuogui Pill on ischemic stroke, which were further validated in SH-SY5Y cells injured by oxygen and glucose deprivation/reperfusion (OGD/R). Network analysis of Zuogui Pill identified 86 active ingredients and 107 compound-related targets correlated with ischemic stroke. Additionally, 11 core active compounds were obtained, such as Quercetin, beta sitosterol, and stigmasterol. Most of the compounds have been proven to have pharmacological activities. Based on pathway enrichment studies, Zuogui Pill may exert neuroprotection through MAPK signaling, PI3K-Akt signaling and apoptosis, as well as enhance neurite outgrowth and axonal regeneration effect via mTOR signaling, p53 signaling and Wnt signaling pathways. In vitro experiment, the viability of ischemic neuron treated with Zuogui Pill was increased, and the ability of neurite outgrowth was significantly improved. Western blot assays shown that the pro-neurite outgrowth effect of Zuogui Pill on ischemic stroke may be relate to PTEN/mTOR signal pathway. The results of the study provided new insights into Zuogui Pill's molecular mechanism in treatment of ischemic stroke, as well as clinical references for its use.
Collapse
Affiliation(s)
- Li Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Liu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yawei Zheng
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dan Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohui Yan
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changyin Li
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenlei Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Wang YY, Lin SY, Chang CY, Wu CC, Chen WY, Huang WC, Liao SL, Wang WY, Chen CJ. α7 nicotinic acetylcholine receptor agonist improved brain injury and impaired glucose metabolism in a rat model of ischemic stroke. Metab Brain Dis 2023; 38:1249-1259. [PMID: 36662413 DOI: 10.1007/s11011-023-01167-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Vagus nerve stimulation through the action of acetylcholine can modulate inflammatory responses and metabolism. α7 Nicotinic Acetylcholine Receptor (α7nAChR) is a key component in the biological functions of acetylcholine. To further explore the health benefits of vagus nerve stimulation, this study aimed to investigate whether α7nAChR agonists offer beneficial effects against poststroke inflammatory and metabolic changes and to identify the underlying mechanisms in a rat model of stroke established by permanent cerebral ischemia. We found evidence showing that pretreatment with α7nAChR agonist, GTS-21, improved poststroke brain infarction size, impaired motor coordination, brain apoptotic caspase 3 activation, dysregulated glucose metabolism, and glutathione reduction. In ischemic cortical tissues and gastrocnemius muscles with GTS-21 pretreatment, macrophages/microglia M1 polarization-associated Tumor Necrosis Factor-α (TNF-α) mRNA, Cluster of Differentiation 68 (CD68) protein, and Inducible Nitric Oxide Synthase (iNOS) protein expression were reduced, while expression of anti-inflammatory cytokine IL-4 mRNA, and levels of M2 polarization-associated CD163 mRNA and protein were increased. In the gastrocnemius muscles, stroke rats showed a reduction in both glutathione content and Akt Serine 473 phosphorylation, as well as an elevation in Insulin Receptor Substrate-1 Serine 307 phosphorylation and Dynamin-Related Protein 1 Serine 616 phosphorylation. GTS-21 reversed poststroke changes in the gastrocnemius muscles. Overall, our findings, provide further evidence supporting the neuroprotective benefits of α7nAChR agonists, and indicate that they may potentially exert anti-inflammatory and metabolic effects peripherally in the skeletal muscle in an acute ischemic stroke animal model.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, 407, Taichung City, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, 407, Taichung City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, 112, Taipei City, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, 420, Taichung City, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, 402, Taichung City, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, 407, Taichung City, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, 402, Taichung City, Taiwan
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, 402, Taichung City, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, 407, Taichung City, Taiwan
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, 433, Taichung City, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, 407, Taichung City, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 404, Taichung City, Taiwan.
| |
Collapse
|
19
|
Chiang MC, Tsai TY, Wang CJ. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms. Int J Mol Sci 2023; 24:6328. [PMID: 37047299 PMCID: PMC10094159 DOI: 10.3390/ijms24076328] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neuroinflammation is a critical factor in developing and progressing numerous brain diseases, including neurodegenerative diseases. Chronic or excessive neuroinflammation can lead to neurotoxicity, causing brain damage and contributing to the onset and progression of various brain diseases. Therefore, understanding neuroinflammation mechanisms and developing strategies to control them is crucial for treating brain diseases. Studies have shown that neuroinflammation plays a vital role in the progression of neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD), and stroke. Additionally, the effects of PM2.5 pollution on the brain, including neuroinflammation and neurotoxicity, are well-documented. Quercetin is a flavonoid, a plant pigment in many fruits, vegetables, and grains. Quercetin has been studied for its potential health benefits, including its anti-inflammatory, antioxidant, and anti-cancer properties. Quercetin may also have a positive impact on immune function and allergy symptoms. In addition, quercetin has been shown to have anti-inflammatory and neuroprotective properties and can activate AMP-activated protein kinase (AMPK), a cellular energy sensor that modulates inflammation and oxidative stress. By reducing inflammation and protecting against neuroinflammatory toxicity, quercetin holds promise as a safe and effective adjunctive therapy for treating neurodegenerative diseases and other brain disorders. Understanding and controlling the mechanisms of NF-κB and NLRP3 inflammasome pathways are crucial for preventing and treating conditions, and quercetin may be a promising tool in this effort. This review article aims to discuss the role of neuroinflammation in the development and progression of various brain disorders, including neurodegenerative diseases and stroke, and the impact of PM2.5 pollution on the brain. The paper also highlights quercetin's potential health benefits and anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
20
|
Zhang Y, Shen L, Xie J, Li L, Xi W, Li B, Bai Y, Yao H, Zhang S, Han B. Pushen capsule treatment promotes functional recovery after ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154664. [PMID: 36682301 DOI: 10.1016/j.phymed.2023.154664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND As a leading cause of long-term disability, ischemic stroke urgently needs further research and drug development. Pushen capsule (Pushen) has been commonly applied in clinical treatment for relieving headaches, dizziness, and numbness. However, the effects of Pushen on ischemic stroke have not been revealed yet. PURPOSE To assess the efficiency of Pushen in ischemic stroke and identify its potential therapeutic targets and active ingredients for treating ischemic stroke. STUDY DESIGN AND METHODS Behavioural experiments, Triphenyltetrazolium chloride (TTC) staining, Magnetic resonance imaging (MRI), and immunofluorescence staining were performed to examine the efficiency of Pushen in stroke model mice. The potential mechanism and active ingredients of Pushen were assessed by transcriptome, 16S rDNA sequencing, metabonomics, and network pharmacology. Finally, the targets were validated by RT-PCR, chromatin immunoprecipitation (ChIP), ELISA, and molecular docking methods. RESULTS Pushen had several effects on stroke model mice, including reducing the infarct volume, improving the blood‒brain barrier (BBB), and promoting functional restoration. Furthermore, the network pharmacology, LC-MS/MS, and molecular docking results revealed that tricin, quercetin, luteolin, kaempferol, and physcion were identified as the key active ingredients in Pushen that treated ischemic stroke. Mechanistically, these key ingredients could bind with the transcription factor c-Myc and thereby regulate the expression of Adora2a, Drd2, and Ppp1r1b, which are enriched in the cAMP signaling pathway. Additionally, Pushen improved the gut microbiota dysbiosis and reduced inosine levels in feces and serum, thereby reducing Adora2a expression in the brain. CONCLUSIONS Our study confirmed that Pushen was effective for treating ischemic stroke and has promising clinical applications.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jian Xie
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lu Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wen Xi
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Bin Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Shenyang Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
21
|
Nalika N, Waseem M, Kaushik P, Salman M, Andrabi SS, Parvez S. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sci 2023:121403. [PMID: 36669677 DOI: 10.1016/j.lfs.2023.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIM Due to the growing commercialization of titanium dioxide nanoparticles (TNPs), it is necessary to use these particles in a manner that is safe, healthy and environmental friendly. Through reactive oxygen species (ROS) generation, it has been discovered that TNPs have a harmful effect on the brain. The aim of this study is to provide valuable insights into the possible mechanisms of TNPs induced mitochondrial dysfunction in brain and its amelioration by nutraceuticals, quercetin (QR) and melatonin (Mel) in in vitro and in vivo conditions. MATERIALS AND METHODS Whole brain mitochondrial sample was used for in-vitro evaluation. Pre-treatment of QR (30 μM) and Mel (100 μM) at 25 °C for 1 h was given prior to TNPs (50 μg/ml) exposure. For in-vivo study, male Wistar rats were divided into four groups. Group I was control and group II was exposed to TNPs (5 mg/kg b.wt., i.v.). QR (5 mg/kg b.wt.) and Mel (5 mg/kg b.wt.) were given orally as pre-treatment in groups III and IV, respectively. Biochemical parameters, neurobehavioural paradigms, mitochondrial respiration, neuronal architecture assessment were assessed. KEY FINDINGS QR and Mel restored the mitochondrial oxidative stress biomarkers in both the studies. Additionally, these nutraceuticals resuscitated the neurobehavioural alterations and restored the neuronal architecture alterations in TNPs exposed rats. The mitochondrial dysfunction induced by TNPs was also ameliorated by QR and Mel by protecting the mitochondrial complex activity and mitochondrial respiration rate. SIGNIFICANCE Results of the study demonstrated that QR and Mel ameliorated mitochondrial mediated neurotoxic effects induced by TNPs exposure.
Collapse
Affiliation(s)
- Nandini Nalika
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammad Waseem
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohd Salman
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Syed Suhail Andrabi
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
22
|
Fideles SOM, de Cássia Ortiz A, Buchaim DV, de Souza Bastos Mazuqueli Pereira E, Parreira MJBM, de Oliveira Rossi J, da Cunha MR, de Souza AT, Soares WC, Buchaim RL. Influence of the Neuroprotective Properties of Quercetin on Regeneration and Functional Recovery of the Nervous System. Antioxidants (Basel) 2023; 12:149. [PMID: 36671011 PMCID: PMC9855066 DOI: 10.3390/antiox12010149] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023] Open
Abstract
Quercetin is a dietary flavonoid present in vegetables, fruits, and beverages, such as onions, apples, broccoli, berries, citrus fruits, tea, and red wine. Flavonoids have antioxidant and anti-inflammatory effects, acting in the prevention of several diseases. Quercetin also has neuroprotective properties and may exert a beneficial effect on nervous tissue. In this literature review, we compiled in vivo studies that investigated the effect of quercetin on regeneration and functional recovery of the central and peripheral nervous system. In spinal cord injuries (SCI), quercetin administration favored axonal regeneration and recovery of locomotor capacity, significantly improving electrophysiological parameters. Quercetin reduced edema, neutrophil infiltration, cystic cavity formation, reactive oxygen species production, and pro-inflammatory cytokine synthesis, while favoring an increase in levels of anti-inflammatory cytokines, minimizing tissue damage in SCI models. In addition, the association of quercetin with mesenchymal stromal cells transplantation had a synergistic neuroprotective effect on spinal cord injury. Similarly, in sciatic nerve injuries, quercetin favored and accelerated sensory and motor recovery, reducing muscle atrophy. In these models, quercetin significantly inhibited oxidative stress and cell apoptosis, favoring Schwann cell proliferation and nerve fiber remyelination, thus promoting a significant increase in the number and diameter of myelinated fibers. Although there is still a lack of clinical research, in vivo studies have shown that quercetin contributed to the recovery of neurological functions, exerting a beneficial effect on the regeneration of the central and peripheral nervous system.
Collapse
Affiliation(s)
- Simone Ortiz Moura Fideles
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Adriana de Cássia Ortiz
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | | | | | - Jéssica de Oliveira Rossi
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
- Medical Bill Audit, Holy House of Mercy (Santa Casa de Misericórdia), Marília 17515-900, Brazil
| | - Marcelo Rodrigues da Cunha
- Anatomy Department, Padre Anchieta University Center (UniAnchieta), Jundiai 13210-795, Brazil
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiai 13202-550, Brazil
| | | | - Wendel Cleber Soares
- Department of Exact Sciences, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| |
Collapse
|
23
|
Zhao P, Lu Y, Wang Z. Naringenin attenuates cerebral ischemia/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/FOXO1 signaling pathway in vitro. Acta Cir Bras 2023; 38:e380823. [PMID: 37132753 PMCID: PMC10158850 DOI: 10.1590/acb380823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023] Open
Abstract
PURPOSE To explore the protection of naringenin against oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cell injury, a cell model of cerebral ischemia/reperfusion (I/R) injury in vitro, focusing on SIRT1/FOXO1 signaling pathway. METHODS Cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, malondialdehyde (MDA) content, 4-hydroxynonenoic acid (4-HNE) level, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured by commercial kits. Inflammatory cytokines levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expressions were monitored by Western blot analysis. RESULTS Naringenin significantly ameliorated OGD/R-induced cytotoxicity and apoptosis in HT22 cells. Meanwhile, naringenin promoted SIRT1 and FOXO1 protein expressions in OGD/R-subjected HT22 cells. In addition, naringenin attenuated OGD/R-induced cytotoxicity, apoptosis, oxidative stress (the increased ROS, MDA and 4-HNE levels, and the decreased SOD, GSH-Px and CAT activities) and inflammatory response (the increased tumor necrosis factor-α, interleukin [IL]-1β, and IL-6 levels and the decreased IL-10 level), which were blocked by the inhibition of the SIRT1/FOXO1 signaling pathway induced by SIRT1-siRNA transfection. CONCLUSIONS Naringenin protected HT22 cells against OGD/R injury depending on its antioxidant and anti-inflammatory activities via promoting the SIRT1/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Peng Zhao
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Yi Lu
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Zhiyun Wang
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| |
Collapse
|
24
|
Involvement of Microbiome Gut–Brain Axis in Neuroprotective Effect of Quercetin in Mouse Model of Repeated Mild Traumatic Brain Injury. Neuromolecular Med 2022:10.1007/s12017-022-08732-z. [DOI: 10.1007/s12017-022-08732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
|
25
|
Xu Z, Wu FW, Niu X, Lu XP, Li YR, Zhang ST, Ou JZ, Wang XM. Integrated strategy of RNA-sequencing and network pharmacology for exploring the protective mechanism of Shen-Shi-Jiang-Zhuo formula in rat with non-alcoholic fatty liver disease. PHARMACEUTICAL BIOLOGY 2022; 60:1819-1838. [PMID: 36124995 PMCID: PMC9518293 DOI: 10.1080/13880209.2022.2106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Shen-Shi-Jiang-Zhuo formula (SSJZF) exhibits a definite curative effect in the clinical treatment of non-alcoholic fatty liver disease (NAFLD). OBJECTIVE To explore the therapeutic effect and mechanism of SSJZF on NAFLD. MATERIALS AND METHODS Sprague Dawley rats were randomly divided into control, NAFLD, positive drug (12 mg/kg/day), SSJZF high-dose (200 mg/kg/day), SSJZF middle-dose (100 mg/kg/day), and SSJZF low-dose (50 mg/kg/day) groups. After daily intragastric administration of NAFLD rats for 8 weeks, lipid metabolism and hepatic fibrosis were evaluated by biochemical indices and histopathology. Then we uncovered the main active compounds and mechanism of SSJZF against NAFLD by integrating RNA-sequencing and network pharmacology, and PI3K/AKT pathway activity was verified by western blot. RESULTS High dose SSJZF had the best inhibitory effect on hepatic lipid accumulation and fibrosis in rats with NAFLD, which significantly down-regulated total triglycerides (58%), cholesterol (62%), aspartate aminotransferase (57%), alanine aminotransferase (41%) andγ-glutamyl transpeptidase (36%), as well as the expression of ACC (5.3-fold), FAS (12.1-fold), SREBP1C (2.3-fold), and CD36 (4.4-fold), and significantly reduced collagen deposition (67%). Then we identified 23 compounds of SSJZF that acted on 25 key therapeutic targets of NAFLD by integrating RNA-sequencing and network pharmacology. Finally, we also confirmed that high dose SSJZF increased p-PI3K/PI3K (1.6-fold) and p-AKT/AKT (1.6-fold) in NAFLD rats. DISCUSSION AND CONCLUSION We found for first time that SSJZF improved NAFLD in rats by activating the PI3K/Akt pathway. These findings provide scientific support for SSJZF in the clinical treatment of NAFLD and contribute to the development of new NAFLD drugs.
Collapse
Affiliation(s)
- Zheng Xu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fan-Wei Wu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xuan Niu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiao-Peng Lu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yan-Rong Li
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu-Ting Zhang
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Guangdong Agriculture and Reclamation Central Hospital, Zhanjiang, Guangdong
| | - Jun-Zhao Ou
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Mei Wang
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Liu Y, Li S, Liu D, Wei H, Wang X, Yan F. Exploration of the potential mechanism of Pushen capsule in the treatment of vascular dementia based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115632. [PMID: 35964821 DOI: 10.1016/j.jep.2022.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Pushen capsule is a traditional Chinese medicine compound functioning as 'stimulating blood circulation to remove blood stasis', which widely used to treat hyperlipidemia. Recent clinical research showed that Pushen capsule ameliorated cognitive function in patients with vascular mild cognitive impairment. AIM OF THE STUDY Explore the potential mechanism of Pushen capsule in vascular dementia (VaD) using network pharmacology analysis and experimental verification. MATERIALS AND METHODS Active ingredients and their related targets of Pushen capsule, and VaD-related targets were searched in public databases. Core targets, potential functions and mechanisms of Pushen capsule on VaD were predicted by protein-protein interaction (PPI), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. In vivo experiments were conducted to demonstrate the potential mechanisms of Pushen capsule in the treatment of VaD. RESULTS In total, 155 active ingredients, 273 related targets of Pushen capsule, and 1035 VaD-related targets were selected from the public databases. 147 common targets of Pushen capsule against VaD were obtained. The PPI network, GO and KEGG enrichment analyses revealed that some core targets and signaling pathways are related to inflammation. The experimental results showed that Pushen capsule treatment largely alleviated hippocampal glial activation, accelerated the polarization of activated microglia from the M1 to the M2 phenotype and reduced associated inflammatory factor expression to protect against VaD-induced neuronal loss, synaptic protein reduction and cognitive defects in a dose-dependent manner. Moreover, Pushen capsule reduced the mRNA expression of NF-κB p65; and STAT1. CONCLUSION Our study demonstrates that Pushen capsule alleviates hippocampal neuroinflammation to protect against VaD-induced cognitive impairment in a dose-dependent manner. The neuroprotective effect of Pushen capsule on VaD might be regulated by the NF-κB; and JAK-STAT pathway.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shuo Li
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Dandan Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China; The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Jiangsu, 212300, China
| | - Hong Wei
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xingzhi Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fuling Yan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
27
|
Riche K, Lenard NR. Quercetin's Effects on Glutamate Cytotoxicity. Molecules 2022; 27:7620. [PMID: 36364448 PMCID: PMC9657878 DOI: 10.3390/molecules27217620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
The potentially therapeutic effects of the naturally abundant plant flavonoid quercetin have been extensively studied. An extensive body of literature suggests that quercetin's powerful antioxidant effects may relate to its ability to treat disease. Glutamate excitotoxicity occurs when a neuron is overstimulated by the neurotransmitter glutamate and causes dysregulation of intracellular calcium concentrations. Quercetin has been shown to be preventative against many forms of neuronal cell death resulting from glutamate excitotoxicity, such as oncosis, intrinsic apoptosis, mitochondrial permeability transition, ferroptosis, phagoptosis, lysosomal cell death, parthanatos, and death by reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation. The clinical importance for the attenuation of glutamate excitotoxicity arises from the need to deter the continuous formation of tissue infarction caused by various neurological diseases, such as ischemic stroke, seizures, neurodegenerative diseases, and trauma. This review aims to summarize what is known concerning glutamate physiology and glutamate excitotoxic pathophysiology and provide further insight into quercetin's potential to hinder neuronal death caused by cell death pathways activated by glutamate excitotoxicity. Quercetin's bioavailability may limit its use clinically, however. Thus, future research into ways to increase its bioavailability are warranted.
Collapse
Affiliation(s)
| | - Natalie R. Lenard
- Department of Biology, School of Arts and Sciences, Franciscan Missionaries of Our Lady University, 5414 Brittany Drive, Baton Rouge, LA 70808, USA
| |
Collapse
|
28
|
Xu H, You M, Xiang X, Zhao J, Yuan P, Chu L, Xie C. Molecular Mechanism of Epimedium Extract against Ischemic Stroke Based on Network Pharmacology and Experimental Validation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3858314. [PMID: 36338345 PMCID: PMC9633197 DOI: 10.1155/2022/3858314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2024]
Abstract
Ischemic stroke exhibits high morbidity, disability, and mortality, and treatments for ischemic stroke are limited despite intensive research. The potent neuroprotective benefits of Epimedium against ischemic stroke have gained lots of interest. Nevertheless, systematic research on the direct role and mechanisms of Epimedium in ischemic stroke is still lacking. Network pharmacology analysis coupled with experimental verification was utilized to systematically evaluate the potential pharmacological mechanism of Epimedium against ischemic stroke. The TCMSP database was used to mine the bioactive ingredients and Epimedium's targets. The DrugBank, OMIM, and GeneCards databases were employed to identify potential targets of ischemic stroke. GO and KEGG pathway analyses were also carried out. The interaction between active components and hub targets was confirmed via molecular docking. An experimental ischemic stroke model was used to evaluate the possible therapeutic mechanism of Epimedium. As a result, 23 bioactive compounds of Epimedium were selected, and 30 hub targets of Epimedium in its function against ischemic stroke were identified, and molecular docking results demonstrated good binding. The IL-17 signaling pathway was revealed as a potentially significant pathway, with the NF-κB and MAPK/ERK signaling pathways being involved. Furthermore, in vivo experiments demonstrated that Epimedium treatment could improve neurological function and reduce infarct volume. Additionally, Epimedium reduced the activation of microglia and astrocytes in both the ischemic penumbra of the hippocampus and cerebral cortex following ischemic stroke. Western blot and RT-qPCR analyses demonstrated that Epimedium not only depressed the expression of IL-1β, TNF-α, IL-6, and IL-4 but also inhibited the NF-κB and MAPK/ERK signaling pathways. This study applied network pharmacology and in vivo experiment to explore possible mechanism of Epimedium's role against ischemic stroke, which provides insight into the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Mingyao You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Xiang Xiang
- Neurosurgery Department of Chongqing University, Three Gorges Hospital, Chongqing 400010, China
| | - Jun Zhao
- Department of Neurosurgery, Dazhou Hospital of Integrated Traditional and Western Medicine, 635000, China
| | - Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
29
|
Ma S, Fan W, Zhang J. Network pharmacology study on the potential effect mechanism of Chuanzhi Tongluo Capsule in the treatment of cerebral infarction. Medicine (Baltimore) 2022; 101:e30916. [PMID: 36254030 PMCID: PMC9575740 DOI: 10.1097/md.0000000000030916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Chuanxiong Tongluo capsules have been widely used to treat recovered stroke and cerebral infarction, but their specific therapeutic mechanism is not well understood. METHODS This study aims to investigate the mechanism of action for Chuanzhi Tongluo capsule on cerebral infarction based on a network pharmacology approach. The TCMSP platform collected the chemical composition of Chuanzhi Tongluo capsules. Its potential targets were predicted by Swiss target prediction and standardized using the Uniprot database for gene normalization. Meanwhile, the OMIM, Genecards, and TTD databases were used to obtain the targets related to cerebral infarction. The standard targets of Chuanzhi Tongluo capsule and cerebral infarction were uploaded to the STRING database to construct protein-protein interaction networks. Topological methods analyzed the key targets and components in the drug-component-disease-target network. Gene ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the shared targets were performed using the DAVID database. RESULTS A total of 105 active ingredients and 427 targets were associated with Chuanzhi Tongluo capsule, and there were 3055 targets related to cerebral infarction disease and 240 common targets between the two keywords. The key targets included INS, ALB, IL-6, VEGFA, TNF, and TP53. The conduction pathways involved include the calcium signaling pathway, cAMP signaling pathway, cGMP-PKG signaling pathway, and TNF signaling pathway. CONCLUSION The active ingredients in Chuanzhi Tongluo capsule may participate in the therapeutic process of cerebral infarction by regulating the calcium, cAMP, cGMP-PKG, and TNF signaling pathway through critical targets such as INS, ALB, IL-6, VEGFA, TNF, and TP53.
Collapse
Affiliation(s)
- Shan Ma
- Department of Traditional Chinese Medicine, the Second Hospital of Shandong University, Jinan, China
| | - Wenhui Fan
- Department of Traditional Chinese Medicine, the Second Hospital of Shandong University, Jinan, China
| | - Jianxin Zhang
- Department of Traditional Chinese Medicine, the Second Hospital of Shandong University, Jinan, China
- *Correspondence: Jianxin Zhang, Department of Traditional Chinese Medicine, the Second Hospital of Shandong University, No.247, Beiyuan Road, Tianqiao District, Jinan, Shandong 250014, China (e-mail: )
| |
Collapse
|
30
|
Wang S, Chen Y, Xia C, Yang C, Chen J, Hai L, Wu Y, Yang Z. Synthesis and evaluation of glycosylated quercetin to enhance neuroprotective effects on cerebral ischemia-reperfusion. Bioorg Med Chem 2022; 73:117008. [PMID: 36126445 DOI: 10.1016/j.bmc.2022.117008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Quercetin (Que), a polyphenolic flavonoid compound with antioxidant properties has been explicated to have neuroprotective effects on neuronal injury/neurodegenerative diseases. However, low water-solubility, instability and inability to cross the blood-brain barrier (BBB) imped its application. To enhance the neuroprotective effects and improve the potential application of quercetins as a nutraceutical or medicine, we designed and synthesized two types of glycosylated quercetins--Glu-Que and 2Glu-Que through click reaction. Glu-Que and 2Glu-Que improved the water solubility and stability of quercetin, as well as alleviating H2O2-induced neurotoxicity by increasing the cell viability of PC12 cells and reducing the ROS generation. What's more, glycosylated quercetins enhanced neuroprotective effects on cerebral ischemia-reperfusion (I/R). Among the two types of glycosylated quercetin, 2Glu-Que displayed higher neuroprotective potential than Glu-Que. In conclusion, the glycosylated quercetin 2Glu-Que, with better water solubility, bioavailability and brain-targeting ability, significantly enhanced the neuroprotective effects of quercetin, making it a promising nutraceutical or candidate drug in neuroprotection.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuting Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Xia
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Chunyan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Chen
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhongzheng Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
31
|
Wang X, Wang T, Wang Y, Li X, Chen Q, Wang Y, Zhang X, Wang H, Zhao H, Mou Y, Xia L, Zhang Y. Research progress on classical traditional Chinese medicine Taohong Siwu decoction in the treatment of coronary heart disease. Biomed Pharmacother 2022; 152:113249. [PMID: 35700678 DOI: 10.1016/j.biopha.2022.113249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
The pathogenesis of coronary heart disease is closely related to blood stasis. Taohong Siwu decoction (THSW for short) is one of the most widely used prescriptions for activating blood and removing stasis. Clinical research has confirmed its curative effect on coronary heart disease. However, its underlying mechanism remains unclear. Therefore, this paper reviewed the clinical efficacy of THSW and determine its effective components based on a comprehensive literature review. Furthermore, the core components and targets of THSW in treating coronary heart disease using molecular docking were verified, and the interaction sites were predicted to construct a theoretical basis for the clinical application of THSW.
Collapse
Affiliation(s)
- XueZhen Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - YingZheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Xiao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Xiaoyu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - HuaXin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - HaiJun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yue Mou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Lei Xia
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| |
Collapse
|
32
|
Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights. Molecules 2022; 27:molecules27134181. [PMID: 35807426 PMCID: PMC9268254 DOI: 10.3390/molecules27134181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow to prevent the transition of the penumbra to the infarct core. However, due to various limitations and complications, including the narrow time window in which this approach is effective, less than 10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic strategies, with neuroprotection against the ischemic cascade response after IS being one of the most promising options. In the past few decades, polyphenolic compounds have shown great potential in animal models of IS because of their high biocompatibility and ability to target multiple ischemic cascade signaling pathways, although low bioavailability is an issue that limits the applications of several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia and summarize the research progress regarding the applications of polyphenolic compounds in the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for improving the bioavailability of polyphenolic compounds as well as some essential issues that remain to be addressed for the translation of the related therapies to the clinic.
Collapse
|
33
|
Zhang L, Ma J, Yang F, Li S, Ma W, Chang X, Yang L. Neuroprotective Effects of Quercetin on Ischemic Stroke: A Literature Review. Front Pharmacol 2022; 13:854249. [PMID: 35662707 PMCID: PMC9158527 DOI: 10.3389/fphar.2022.854249] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke (IS) is characterized by high recurrence and disability; however, its therapies are very limited. As one of the effective methods of treating acute attacks of IS, intravenous thrombolysis has a clear time window. Quercetin, a flavonoid widely found in vegetables and fruits, inhibits immune cells from secreting inflammatory cytokines, thereby reducing platelet aggregation and limiting inflammatory thrombosis. In pre-clinical studies, it has been shown to exhibit neuroprotective effects in patients with ischemic brain injury. However, its specific mechanism of action remains unknown. Therefore, this review aims to use published data to elucidate the potential value of quercetin in patients with ischemic brain injury. This article also reviews the plant sources, pharmacological effects, and metabolic processes of quercetin in vivo, thus focusing on its mechanism in inhibiting immune cell activation and inflammatory thrombosis as well as promoting neuroprotection against ischemic brain injury.
Collapse
Affiliation(s)
- Leilei Zhang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jingying Ma
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Sishi Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wangran Ma
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiang Chang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Lin Yang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
34
|
Wang X, Fu Y, Botchway BOA, Zhang Y, Zhang Y, Jin T, Liu X. Quercetin Can Improve Spinal Cord Injury by Regulating the mTOR Signaling Pathway. Front Neurol 2022; 13:905640. [PMID: 35669881 PMCID: PMC9163835 DOI: 10.3389/fneur.2022.905640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of spinal cord injury (SCI) is complex. At present, there is no effective treatment for SCI, with most current interventions focused on improving the symptoms. Inflammation, apoptosis, autophagy, and oxidative stress caused by secondary SCI may instigate serious consequences in the event of SCI. The mammalian target of rapamycin (mTOR), as a key signaling molecule, participates in the regulation of inflammation, apoptosis, and autophagy in several processes associated with SCI. Quercetin can reduce the loss of myelin sheath, enhance the ability of antioxidant stress, and promote axonal regeneration. Moreover, quercetin is also a significant player in regulating the mTOR signaling pathway that improves pathological alterations following neuronal injury. Herein, we review the therapeutic effects of quercetin in SCI through its modulation of the mTOR signaling pathway and elaborate on how it can be a potential interventional agent for SCI.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yuke Fu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | | | - Yufeng Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Tian Jin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| |
Collapse
|
35
|
Wang X, Zhao DX, Kan JM, Wang J, Chen X, Yu ZQ, Zhao WS, Han MX, Li J. Uncovering the Mechanism of Chuanhong Stroke Capsule in the Treatment of Stroke Based on Network Pharmacology and Molecular Docking Technology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background and Objective: Chuanhong Stroke Capsule (CHSC) has good clinical efficacy in the treatment of cerebral ischemic stroke (CIS) patients. This study aimed to investigate the pharmacological mechanisms of CHSC in treating CIS using bioinformatics. Methods: The active compounds of CHSC were screened by searching Traditional Chinese Medicine System Pharmacological Database and Analysis Platform (TCMSP), Swiss absorption, distribution, metabolism, and excretion (ADME), PubMed, and China National Knowledge Infrastructure (CNKI) databases. Besides, the potential targets of active compounds were obtained through TCMSP and Swiss Target Prediction databases. CIS targets were obtained from GeneCards, Online Mendelian Inheritance in Man (OMIM), and Gene Expression Omnibus (GEO) databases. CHSC-CIS intersection targets were identified by matching the two, and prediction and analysis of biological functions and pathways of intersection targets was used the enrichments of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, protein–protein interaction (PPI) network, herb-target, and compound-target network of CHSC-CIS were constructed by Cytoscape3.7.2, and herb-compound-pathway network was drawn with Sankey diagram. Finally, AutoDock was used for molecular docking verification, and identifying the active binding sites in target proteins. Results: A total of 293 putative targets were obtained from 62 active compounds in CHSC. Among them, 209 targets were related to CIS. PPI network showed that the top 16 key targets were RELA, JUN, FOS, MAPK1, AKT1, etc. KEGG pathway enrichment analysis demonstrated that CHSC was enriched in PI3K-Akt, MAPK, and TNF signaling pathways. In addition, GO enrichment analysis showed the significant enrichment of CHSC in the following categories: kinase binding, cellular response to nitrogen compound, etc. Network topology analysis showed that quercetin, luteolin, kaempferol, etc., were the key components in CHSC. Finally, molecular docking studies suggested that the active components in CHSC had a good binding ability with the key targets. Conclusions: Our study demonstrated that CHSC exerted the effect in treating CIS by the characteristics of multi-target and multi-pathway, thereby providing a theoretical basis for further study of the effective components and mechanism of CHSC in the treatment of CIS.
Collapse
Affiliation(s)
- Xu Wang
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
- Jilin University, Changchun, Jilin, China
| | - De-xi Zhao
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jun-Ming Kan
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jun Wang
- Jilin University, Changchun, Jilin, China
| | - Xin Chen
- Jilin University, Changchun, Jilin, China
| | - Zi-Qiao Yu
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | | | - Mo-Xuan Han
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jinhua Li
- Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Guo Y, Mao M, Li Q, Yu X, Zhou L. Extracts of Ginkgo flavonoids and ginkgolides improve cerebral ischaemia-reperfusion injury through the PI3K/Akt/Nrf2 signalling pathway and multicomponent in vivo processes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154028. [PMID: 35279613 DOI: 10.1016/j.phymed.2022.154028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cerebral ischaemia-reperfusion injury (CIRI) is a common disease characterized by severe attacks and a high disabling rate worldwide. Oxidative stress injury has been proposed as a major risk factor for CIRI. Ginkgo biloba extract (GBE) has been shown to elicit vascular protective effects, the main components of which are Ginkgo flavonoids (GF) and ginkgolides (GL). Our previous study showed that GF and GL played a central role in protecting CIRI, but the mechanism remains unclear. This study aimed to further reveal the protective effect mechanism of GF and GL in rats with CIRI. METHODS The antioxidant activity in vitro was assessed by the DPPH method. The model used in this study was established by middle cerebral artery occlusion (MCAO) and reperfusion; the level of CIRI was assessed by nerve function score and TTC staining; we measured the oxidative stress indices in the brain cortex, including LDH, GSH-Px, and the protein contents of Akt, p-Akt, Nrf2, and HO-1; HPLC-MS was used to detect drug concentrations in rat plasma at different times after administration of GF and GL; and the pharmacokinetic parameters of each component were calculated by Drug and Statistic Version 3.2.6 (DAS 3.2.6) software and SPSS 17.0. RESULTS Regarding the DPPH free radical scavenging ability, GF performed better free radical scavenging ability than GL. In terms of the nerve function score and TTC staining, there were no statistically significant differences among the GF, GL and combined groups; however, there were significant differences in reducing the activity of LDH and increasing the activity of GSH-Px in the three administration groups. For the expression of Akt, p-Akt, Nrf2, and HO-1, the combined group had a significant effect compared with that in the GF or GL group. In addition, there was a significant multicomponent interaction in vivo in the combined group compared with the GF or GL group. CONCLUSION After GF and GL were used in combination, the effect of anti-CIRI was more pronounced. This result indicated that GF and GL might improve CIRI by activating the PI3K/Akt/Nrf2 signalling pathway and promoting multicomponent interactions in vivo.
Collapse
Affiliation(s)
- Ying Guo
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Mingjiang Mao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiuying Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiahui Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Liping Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
37
|
Biological Effect of Quercetin in Repairing Brain Damage and Cerebral Changes in Rats: Molecular Docking and In Vivo Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8962149. [PMID: 35528172 PMCID: PMC9071882 DOI: 10.1155/2022/8962149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023]
Abstract
This study examined the protective effect of quercetin against high-altitude-induced brain damage in rats. A molecular docking study was performed to investigate the potential effect of quercetin in reducing brain damages through its ability to target the oxidative stress enzymes. Biomarker assessment screening assays were also performed then followed by in vivo studies. Three groups of rats were divided into the control group, an untreated animal model group with induced brain damage, and finally, the quercetin treated group that received quercetin dose equal to 20 mg/kg of their body weights. Molecular docking studies and biomarker assessment screening assays proved the potential effect of quercetin to affect the level of representative biomarkers glutathione (GSH), glutathione reductase (GR), glutathione-S-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA). Additionally, the protective effect of quercetin against high altitude, low pressure, and low oxygen was also investigated by exploring the brain histopathology of experimental rats. Brain damage was observed in the untreated animal model group. After treatment with quercetin, the cerebral edema in the brain tissues was improved significantly, confirming the protective effects of quercetin. Therefore, quercetin can be used as a natural food additive to protect from the highaltitude-induced brain damage.
Collapse
|
38
|
Study on the Mechanism of Üstikuddus Sherbiti in Ischemic Cerebrovascular Diseases: Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5581864. [PMID: 35432563 PMCID: PMC9012636 DOI: 10.1155/2022/5581864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
This paper aims to study the potential biological mechanism of Üstikuddus Sherbiti (ÜS) in the treatment of ischemic cerebrovascular diseases (ICVD) by the network pharmacology method. Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to obtain effective constituents of ÜS by screening eligible oral utilization, drug similarity, and blood-brain barrier permeability threshold. By drug target prediction and stroke treatment target mining, 2 target data sets were analyzed to find intersection targets and the corresponding constituents were used as active constituents. An active constituent target network and an effective constituent target network were constructed by using Cytoscape 3.7.2 software. Degree parameters of the effective constituent target network were analyzed to find important effective constituents and targets. Through protein-protein interaction (PPI) analysis/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, potential signaling pathways of ÜS in ischemic stroke were found out. AutoDock was used for molecular docking verification. A total of 90 active constituents of ÜS were screened out. There were 10 active constituents against ICVD, including quercetin, luteolin, kaempferol, and naringenin, and 10 important targets for anticerebral ischemia, namely, PIK3CA, APP, PIK3R1, MAPK1, MAPK3, AKT1, PRKCD, Fyn, RAC1, and NF-κB1. Based on the protein interaction network, the important targets of ÜS were significantly enriched in PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction pathway, Ras signaling pathway, etc. ÜS in ICVD has characteristics like multiple targets, multiple approaches, and multiple pathways. Results of molecular docking showed that the active components in ICVD had a good binding ability with the key targets. Its main biological mechanism may be related to the PI3K-Akt and Ras-MAPK centered signaling pathway. Our study demonstrated that ÜS exerted the effect of treating ICVD by regulating multiple targets and multiple channels with multiple components through the method of network pharmacology and molecular docking.
Collapse
|
39
|
Niewiadomska J, Gajek-Marecka A, Gajek J, Noszczyk-Nowak A. Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. BIOLOGY 2022; 11:biology11040559. [PMID: 35453758 PMCID: PMC9029039 DOI: 10.3390/biology11040559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
Metabolic syndrome (MetS) is a disease that has a complex etiology. It is defined as the co-occurrence of several pathophysiological disorders, including obesity, hyperglycemia, hypertension, and dyslipidemia. MetS is currently a severe problem in the public health care system. As its prevalence increases every year, it is now considered a global problem among adults and young populations. The treatment of choice comprises lifestyle changes based mainly on diet and physical activity. Therefore, researchers have been attempting to discover new substances that could help reduce or even reverse the symptoms when added to food. These attempts have resulted in numerous studies. Many of them have investigated the bioactive potential of polyphenols as a "possible remedy", stemming from their antioxidative and anti-inflammatory effects and properties normalizing carbohydrate and lipid metabolism. Polyphenols may be supportive in preventing or delaying the onset of MetS or its complications. Additionally, the consumption of food rich in polyphenols should be considered as a supplement for antidiabetic drugs. To ensure the relevance of the studies on polyphenols' properties, mechanisms of action, and potential human health benefits, researchers have used laboratory animals displaying pathophysiological changes specific to MetS. Polyphenols or their plant extracts were chosen according to the most advantageous mitigation of pathological changes in animal models best reflecting the components of MetS. The present paper comprises an overview of animal models of MetS, and promising polyphenolic compounds whose bioactive potential, effect on metabolic pathways, and supplementation-related benefits were analyzed based on in vivo animal models.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Doctoral School of Wroclaw, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence:
| | | | - Jacek Gajek
- Department of Emergency Medical Service, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
40
|
Yang R, Shen YJ, Chen M, Zhao JY, Chen SH, Zhang W, Song JK, Li L, Du GH. Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:278-289. [PMID: 34292112 DOI: 10.1080/10286020.2021.1949302] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 05/25/2023]
Abstract
The purpose of the present study was to examine the protective action and mechanisms of quercetin on the blood-brain barrier (BBB) in rats subjected to transient middle cerebral artery occlusion (tMCAO) and reperfusion. Quercetin (10, 30, 50 mg/kg) was intraperitoneally administered at the onset of reperfusion. The results showed that quercetin significantly reduced cerebral infarct volume, neurological deficit, BBB permeability and ROS generation via Sirt1/Nrf2/HO-1 signaling pathway. Moreover, EX527, a selective inhibitor of Sirt1, reversed these neuroprotective effects. Our findings indicate that quercetin has neuroprotective effects against cerebral ischemia-reperfusion injury by protecting BBB through Sirt1 signaling pathway in MCAO rats.
Collapse
Affiliation(s)
- Ran Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan-Jia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Miao Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Ying Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shu-Han Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun-Ke Song
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
41
|
Effect and Mechanisms of Quercetin for Experimental Focal Cerebral Ischemia: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9749461. [PMID: 35251482 PMCID: PMC8896934 DOI: 10.1155/2022/9749461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
Quercetin, a naturally occurring flavonoid, is mainly extracted from tea, onions, and apples. It has the underlying neuroprotective effect on experimental ischemic stroke. A systematic review and meta-analysis were used to assess quercetin’s efficacy and possible mechanisms in treating focal cerebral ischemia. Compared with the control group, twelve studies reported a remarkable function of quercetin in improving the neurological function score (NFS) (
), and twelve studies reported a significant effect on reducing infarct volume (
). Moreover, two and three studies showed that quercetin could alleviate blood-brain barrier (BBB) permeability and brain water content, respectively. The mechanisms of quercetin against focal cerebral ischemia are diverse, involving antioxidation, antiapoptotic, anti-inflammation, and calcium overload reduction. On the whole, the present study suggested that quercetin can exert a protective effect on experimental ischemic stroke. Although the effect size may be overestimated because of the quality of studies and possible publication bias, these results indicated that quercetin might be a promising neuroprotective agent for human ischemic stroke. This study is registered with PROSPERO, number CRD 42021275656.
Collapse
|
42
|
Wang C, Chen H, Jiang HH, Mao BB, Yu H. Total Flavonoids of Chuju Decrease Oxidative Stress and Cell Apoptosis in Ischemic Stroke Rats: Network and Experimental Analyses. Front Neurosci 2021; 15:772401. [PMID: 34955724 PMCID: PMC8695723 DOI: 10.3389/fnins.2021.772401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Pharmacological research results showed that total flavonoids of Chuju (TFCJ) could be used to treat acute myocardial ischemia and myocardial ischemia-reperfusion injury. In this study, we explored the protective effect of TFCJ on ischemic stroke (IS) in the IS rat model. We hypothesized that TFCJ might exert its neuroprotective effects by suppressing apoptosis and oxidative stress that are closely related to PI3K/Akt/mTOR signaling pathway. Method: TFCJ (10, 20, and 40 mg/kg) was administered for 7 days. Rats (260 ± 20 g) were subjected to middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 24 h. The neuroprotective effect of TFCJ was substantiated in terms of neurological deficits, oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and malondialdehyde), pathomorphological changes (HE staining and TUNEL staining), and neurobehavioral functions in the rats. Then, we employed network pharmacology to reveal the potential mechanism of TFCJ against IS. Western blot was used to determine the levels of PI3K/AKT/mTOR pathway proteins. The expression of BCL-2, BAX, and cleaved-Caspase-3 was also measured by Western blots and RT-PCR. Results: The histopathological assessment showed that TFCJ reduced MCAO-induced brain damage. Besides, TFCJ exerted a protective role in MCAO rats by alleviating cell apoptosis and oxidative stress. Network pharmacology showed that TFCJ might be used against IS through the PI3K/AKT signaling pathway. TFCJ reduced cell apoptosis and oxidative stress by increasing the level of p-AKT and p-mTOR in MCAO rats, while the effect of TFCJ was significantly reversed when applying LY294002 (PI3k inhibitor). Conclusion: These results indicated that TFCJ might decrease oxidative stress and apoptosis that are closely related to PI3K/Akt/mTOR pathway in IS. TFCJ is a promising authentic traditional Chinese medicine for the management of IS.
Collapse
Affiliation(s)
- Cong Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Hao Chen
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Hui-hui Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Bin-bin Mao
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Hao Yu
- School of Chinese Medicine, Bozhou University, Bozhou, China
- Department of Pharmacy, College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
43
|
Tang X, Lu J, Chen H, Zhai L, Zhang Y, Lou H, Wang Y, Sun L, Song B. Underlying Mechanism and Active Ingredients of Tianma Gouteng Acting on Cerebral Infarction as Determined via Network Pharmacology Analysis Combined With Experimental Validation. Front Pharmacol 2021; 12:760503. [PMID: 34867377 PMCID: PMC8635202 DOI: 10.3389/fphar.2021.760503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Cerebral infarction (CI), a common cerebrovascular disease worldwide, is caused by unknown factors common to many diseases, including hypokalemia, respiratory diseases, and lower extremity venous thrombosis. Tianma Gouteng (TMGT), a traditional Chinese Medicine (TCM) prescription, has been used for the clinical treatment of CI. In this study, high-performance liquid chromatography (HPLC) fingerprint analysis was used to detect and identify major chemical constituents of TMGT. TCMSP and BATMAN-TCM databases were used to screen for active TMGT constituent compounds, while the GeneCards database was used to screen for protein targets associated with CI. Next, GO and KEGG enrichment analysis of these core nodes were performed to determine the identities of key associated biological processes and signal pathways. Meanwhile, a total of six possible gene targets of TMGT, including NFKBIA, PPARG, IL6, IL1B, CXCL8, and HIF1A, were selected for further study using two cellular models of CI. For one model, PC12 cells were treated under oxygen and glucose deprivation (OGD) conditions to generate an OGD cellular model of CI, while for the other model, BV2 cells were stimulated with lipopolysaccharide (LPS) to generate a cellular model of CI-associated inflammation. Ultimately TMGT treatment increased PPARγ expression and downregulated the expression of p-P65, p-IκBα, and HIF-1α in both OGD-induced and LPS-induced cell models of CI. In addition, molecular docking analysis showed that one TMGT chemical constituent, quercetin, may be a bioactive TMGT compound with activity that may be associated with the alleviation of neuronal damage and neuroinflammation triggered by CI. Moreover, additional data obtained in this work revealed that TMGT could inhibit neuroinflammation and protect brain cells from OGD-induced and LPS-induced damage by altering HIF-1α/PPARγ/NF-κB pathway functions. Thus, targeting this pathway through TMGT administration to CI patients may be a strategy for alleviating nerve injury and neuroinflammation triggered by CI.
Collapse
Affiliation(s)
- Xiaolei Tang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.,College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyuan Chen
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yuxin Zhang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Huijuan Lou
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Yufeng Wang
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Bailin Song
- Northeast Asian Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
44
|
Praveen Kumar P, D. M, Siva Sankar Reddy L, Dastagiri Reddy Y, Somasekhar G, Sirisha N, Nagaraju K, Shouib M, Rizwaan A. A new cerebral ischemic injury model in rats, preventive effect of gallic acid and in silico approaches. Saudi J Biol Sci 2021; 28:5204-5213. [PMID: 34466098 PMCID: PMC8381014 DOI: 10.1016/j.sjbs.2021.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Current study was designed multiple occlusions and reperfusion of bilateral carotid arteries induced cerebral injury model and evaluated the protective effect of gallic acid on it. In silico study was involved to study gallic acid binding affinity on cerebrotonic proteins compared with standard drugs using Autodoc vina tool. Cerebral ischemia was induced by occlusion of bilateral common carotid arteries for 10 mins followed by 10 reperfusions (1 cycle), cycle was continued to 3 cycles (MO/RCA), then pathological changes were observed by estimation of brain antioxidants as superoxide dismutase, glutathione, catalase, oxidants like malonaldehyde, cerebral infarction area, histopathology, and study gallic acid treatment against cerebral injury. Gallic acid exhibited a strong binding affinity on targeted cerebrotoxic proteins. MO/RCA rat brain antioxidant levels were significantly decreased and increased MDA levels (p < 0.0001), Infarction size compared to sham rats. Gallic acid treatment rat brain MDA levels significantly decreased (p < 0.4476) and increased SOD (p < 0.0001), CAT (p < 0.0001), GSH (p < 0.0001), cerebral infarction area when compared to MO/RCA group. Developed model showed significant cerebral ischemic injury in rats, injury was ameliorated by Gallic acid treatment and in silico approaches also inhibit the cerebrotoxic protein function by targeting on active sites.
Collapse
Affiliation(s)
- P. Praveen Kumar
- Santhiram College of Pharmacy, Nandyal, Kurnool, Andhra Pradesh, India
| | - Madhuri D.
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | | | | | - G. Somasekhar
- SKU College of Pharmaceutical Sciences, Anantapur, Andhra Pradesh, India
| | - N.V.L. Sirisha
- Nitte College of Pharmaceutical Sciences, Banglaore, Karnataka, India
| | - K. Nagaraju
- C.R Reddy College of Pharmacy, Eluru, West Godavari, Andhra Pradesh, India
| | - M.S. Shouib
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | - A.S. Rizwaan
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| |
Collapse
|
45
|
Ko E, Poon MLS, Park E, Cho Y, Shin JH. Engineering 3D Cortical Spheroids for an In Vitro Ischemic Stroke Model. ACS Biomater Sci Eng 2021; 7:3845-3860. [PMID: 34275269 DOI: 10.1021/acsbiomaterials.1c00406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) spheroids composed of brain cells have shown great potential to mimic the pathophysiology of the brain. However, a 3D spheroidal brain-disease model for cerebral ischemia has not been reported. This study investigated an ultralow attachment (ULA) surface-mediated formation of 3D cortical spheroids using primary rat cortical cells to recapitulate the cerebral ischemic responses in stroke by oxygen-glucose deprivation-reoxygenation (OGD-R) treatment. Comparison between two-dimensional (2D) and 3D cell culture models confirmed the better performance of the 3D cortical spheroids as normal brain models. The cortical cells cultured in 3D maintained their healthy physiological morphology of a less activated state and suppressed mRNA expressions of pathological stroke markers, S100B, IL-1β, and MBP, selected based on in vivo stroke model. Interestingly, the spheroids formed on the ULA surface exhibited striking aggregation dynamics involving active cell-substrate interactions, whereas those formed on the agarose surface aggregated passively by the convective flow of the media. Accordingly, ULA spheroids manifested a layered arrangement of neurons and astrocytes with higher expressions of integrin β1, integrin α5, N-cadherin, and fibronectin than the agarose spheroids. OGD-R-induced stroke model of the ULA spheroids successfully mimicked the ischemic response as evidenced by the upregulated mRNA expressions of the key markers for stroke, S100B, IL-1β, and MBP. Our study suggested that structurally and functionally distinct cortical spheroids could be generated by simply tuning the cell-substrate binding activities during dynamic spheroidal formation, which should be an essential factor to consider in establishing a brain-disease model.
Collapse
Affiliation(s)
- Eunmin Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Mong Lung Steve Poon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Eunyoung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
46
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
47
|
Role of Polyphenols as Antioxidant Supplementation in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5471347. [PMID: 34257802 PMCID: PMC8253632 DOI: 10.1155/2021/5471347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Stroke is the second most common cause of death globally and the leading cause of death in China. The pathogenesis of cerebral ischemia injury is complex, and oxidative stress plays an important role in the fundamental pathologic progression of cerebral damage in ischemic stroke. Previous studies have preliminarily confirmed that oxidative stress should be a potential therapeutic target and antioxidant as a treatment strategy for ischemic stroke. Emerging experimental studies have demonstrated that polyphenols exert the antioxidant potential to play the neuroprotection role after ischemic stroke. This comprehensive review summarizes antioxidant effects of some polyphenols, which have the most inhibition effects on reactive oxygen species generation and oxidative stress after ischemic stroke.
Collapse
|
48
|
Javadinia SS, Abbaszadeh-Goudarzi K, Mahdian D, Hosseini A, Ghalenovi M, Javan R. A review of the protective effects of quercetin-rich natural compounds for treating ischemia-reperfusion injury. Biotech Histochem 2021; 97:237-246. [PMID: 34157912 DOI: 10.1080/10520295.2021.1937701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ischemia-reperfusion (IR) injury causes dysfunction of tissues and organs, and oxidative stress plays an important role. During IR, reactive oxygen species (ROS) are increased. Antioxidants are used to decrease ROS associated with IR. We review the protective effects of quercetin-rich natural antioxidants against IR. We searched PubMed, ScienceDirect, Scopus and Cochrane databases using the keywords: ischemic reperfusion, quercetin, antioxidant and herbal medicine. The effects of quercetin during IR have been reported for animal models in vitro and in vivo. Quercetin-rich plants including Abelmoschus esculentus, coriander, Hypericum perforatum, onion, Psidium guajava, buckwheat and Rosa laevigata Michx have been used to reduce oxidative stress damage to various organs during IR.
Collapse
Affiliation(s)
- Sara Sadat Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kazem Abbaszadeh-Goudarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Mahdian
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Ghalenovi
- Faculty of Midwifery, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Roghayeh Javan
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
49
|
Liu N, Liu C, Yang Y, Ma G, Wei G, Liu S, Kong L, Du G. Xiao-Xu-Ming decoction prevented hemorrhagic transformation induced by acute hyperglycemia through inhibiting AGE-RAGE-mediated neuroinflammation. Pharmacol Res 2021; 169:105650. [PMID: 33964468 DOI: 10.1016/j.phrs.2021.105650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
Stroke is one of the leading causes of death worldwide. Hemorrhagic transformation (HT) is a common serious complication of ischemic stroke (IS) and is related to poor prognosis. Hyperglycemia after stroke is associated with the occurrence of HT and seriously affects the clinical treatment of stroke. Our previous experiments demonstrated that the Xiao-Xu-Ming decoction effective components group (XXMD), which is a Chinese medicine formula reconstituted by active ingredients, has multiple pharmacological effects in the treatment of IS. However, the effects of XXMD on HT after IS remain unclear. Thus, we investigated the preventive effects of XXMD on hyperglycemia-induced HT and further explored the underlying mechanism. Acute hyperglycemia combined with the electrocoagulation cerebral ischemia model was used to establish the HT model. XXMD (37.5, 75, 150 mg/kg/d) was given by gavage for 5 days. Network pharmacology was used to predict potential targets and pathways of XXMD in HT occurrence, and further studies confirmed the related targets. The results showed that hyperglycemia aggravated neurological deficits and blood-brain barrier (BBB) disruption, leading to intracerebral hemorrhage. Pretreatment with XXMD improved neurological function and BBB integrity and inhibited HT occurrence. Network pharmacology revealed that AGE-RAGE-mediated neuroinflammation may be associated with hyperglycemia-induced HT. Further studies confirmed that hyperglycemia activated the AGE-RAGE signaling pathway, increased the expression of HMGB1, TLR4 and p-p65, and induced the release of inflammatory factors and neutrophil infiltration, leading to HT. XXMD could inhibit AGE-RAGE-mediated neuroinflammation. These findings indicated that pretreatment with XXMD alleviated hyperglycemia-induced HT, which may be associated with the inhibition of AGE-RAGE-mediated neuroinflammation. Therefore, XXMD may be a potential therapeutic drug for HT.
Collapse
Affiliation(s)
- Nannan Liu
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Chengdi Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yujiao Yang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, PR China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Guangyi Wei
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shan Liu
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guanhua Du
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
50
|
Li N, Chen K, Bai J, Geng Z, Tang Y, Hou Y, Fan F, Ai X, Hu Y, Meng X, Wang X, Zhang Y. Tibetan medicine Duoxuekang ameliorates hypobaric hypoxia-induced brain injury in mice by restoration of cerebrovascular function. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113629. [PMID: 33246120 DOI: 10.1016/j.jep.2020.113629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duoxuekang (DXK, ཁྲག་འཕེལ་བདེ་བྱེད།) is a clinical experience prescription of CuoRu-Cailang, a famous Tibetan medicine master, which has effective advantages in the treatment of hypobaric hypoxia (HH)-induced brain injury. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The present study was designed to investigate the effects of DXK on cerebrovascular function of HH-induced brain injury in mice. MATERIALS AND METHODS DSC-MR imaging was used to evaluate the effect of DXK on the brain blood perfusion of patients with hypoxic brain injury. HPLC analysis was used to detect the content of salidroside, gallic acid, tyrosol, corilagin, ellagic acid, isorhamnetin, quercetin and gingerol in DXK. The model of HH-induced brain injury in mice was established by an animal hypobaric and hypoxic chamber. The BABL/c mice were randomly divided into six groups: control group, model group, Hongjingtian oral liquid group (HOL, 3.3 ml/kg) and DXK groups (0.9, 1.8 and 3.6 g/kg). All mice (except the control group) were intragastrically administrated for a continuous 7 days and put into the animal hypobaric and hypoxic chamber after the last intragastric administration. Hematoxylin-eosin staining was employed to evaluate the pathological changes of brain tissue. Masson and Weigert stainings were used to detect the content of collagen fibers and elastic fibers of brain, respectively. Routine blood test and biochemical kits were used to analyze hematological parameters and oxidative stress indices. Immunofluorescence staining was applied to detect the protein levels of VEGF, CD31/vWF and α-SMA. RESULTS The results of DSC-MR imaging confirmed that DXK can increased CBV in the left temporal lobe while decreased MTT in the right frontal lobe, right temporal lobe and right occipital lobe of the brain. DXK contains salidroside, gallic acid, tyrosol, corilagin, ellagic acid, isorhamnetin, quercetin and gingerol. Compared with the model group, DXK can ameliorate the atrophy and deformation, and increase the number of pyramidal neurons in hippocampal CA3 area and cortical neurocytes. Masson and Weigert stainings results revealed that DXK can significantly increase the content of collagen fibers and elastic fibers in brain. Routine blood test results demonstrated that DXK can dramatically decrease the levels of WBC, MCH and MCHC, while increase RBC, HGB, HCT, MCV and PLT in the blood samples. Biochemical results revealed that DXK can markedly increase SOD, CAT and GSH activities, while decrease MDA activity. Immunofluorescence revealed that DXK can notably increase the protein levels of VEGF, CD31/vWF and α-SMA. CONCLUSIONS In conclusion, this study proved that DXK can ameliorate HH-induced brain injury by improving brain blood perfusion, increasing the number of collagen and elastic fibers and inhibiting oxidative stress injury. The underlying mechanisms may be involved in maintaining the integrity of cerebrovascular endothelial cells and vascular function. However, further in vivo and in vitro investigations are still needed to elucidate the mechanisms of DXK on regulating cerebral blood vessels.
Collapse
Affiliation(s)
- Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinrong Bai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zangjia Geng
- School of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yao Hu
- Interdisciplinary Laboratory of Exercise and Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xianli Meng
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|