1
|
Li Z, Long C, Tao J, Peng X, Jiang YY, Yue R. Didang decoction improves gut microbiota and cognitive function in TDACD rats: Combined proteomics and 16S rRNA sequencing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156758. [PMID: 40252433 DOI: 10.1016/j.phymed.2025.156758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) significantly elevates the risk of cognitive impairment. Didang Decoction (DDD), a classical Traditional Chinese Medicine (TCM) formula, has shown promise in alleviating diabetic symptoms and improving cognitive performance. Although historical TCM records suggest neuroprotective properties, the mechanistic basis for DDD's therapeutic effects on T2DM-associated cognitive dysfunction (TDACD) remains unexplored. PURPOSE This work sought to clarify the chemical composition and mechanisms of action of DDD by pursuing three primary objectives: (1) identification of the major active constituents of DDD; (2) validating of the hypothesis that DDD ameliorates TDACD via regulation of the gut microbiota; and (3) investigating DDD's regulatory effects on hippocampal lipid metabolism and autophagy pathways. METHODS Ultra-high performance liquid chromatography-Q exactive mass spectrometry (UHPLC-QE-MS/MS) was employed to analyze the chemical composition of DDD. Cognitive function was assessed through behavioral tests. Histopathological examinations and western blotting (WB) were conducted to assess the effects of DDD on the hippocampus of TDACD rats. 16S ribosomal RNA (16S rRNA) sequencing was conducted to characterize gut microbiota, composition, and proteomics was used to evaluate hippocampal proteins expression. RESULTS The major bioactive components of DDD were identified, including dihydrotanshinone I, aloe-emodin, chrysophanol, calycosin, sakuranetin, gallic acid, kaempferol, and rhein, emodin, etc. DDD increased neuronal density and synaptic function in the hippocampus of TDACD rats, hereby improving working memory and long-term memory. DDD boosted the relative abundance of beneficial bacteria, including Roseburia, [Eubacterium] coprostanoligenes group, Christensenellaceae R-7 group, and Alistipes, which were diminished in the TDACD group. Proteomics analysis indicated that DDD enhanced hippocampal energy metabolism and reduced neuronal damage in TDACD rats via pathways related to cholesterol and fatty acid metabolism, as well as autophagy. CONCLUSIONS DDD demonstrates potential as an adjuvant therapeutic agent for TDACD, with dual benefits in ameliorating glucose metabolism and cognitive impairments. Mechanistically, the neuroprotective effects of DDD are attributed to the regulation of hippocampal lipid energy metabolism and autophagic homeostasis, as well as the enhancement of beneficial gut microbes.
Collapse
Affiliation(s)
- Zihan Li
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyi Long
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajing Tao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Peng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-Yi Jiang
- Department of Geriatric Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Yu J, Zhou L, Li G, Chen Z, Mudabbar MS, Li L, Tang X, Jiang M, Zhang G, Liu X. Targeting gut-immune-heart modulate cardiac remodeling after acute myocardial infarction. Life Sci 2025; 371:123606. [PMID: 40189194 DOI: 10.1016/j.lfs.2025.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The gut microbiota interacts with the host to regulate disease and health status. An increasing number of studies have recognized the bidirectional regulation between gut microbiota and immune cells, which plays a significant role in the etiology and prognosis of diseases. Gut microbiota is also a crucial regulatory factor in cardiovascular diseases. After acute myocardial infarction, myocardial and endothelial damage rapidly triggers an inflammatory response, activating the immune system and disrupting the gut microbiota ecology, thereby affecting cardiac remodeling after acute myocardial infarction and potentially leading to heart failure. We have elucidated the regulatory mechanisms of complex intercellular networks in the immune system during cardiac remodeling after acute myocardial infarction. Furthermore, this research examines the roles and mechanisms of gut microbiota, immune cells, and gut metabolites in relation to cardiac remodeling and heart failure after myocardial infarction. Finally, we discuss the potential of targeting gut immune cells as an effective approach to prevent and treat heart failure after acute myocardial infarction in the future, through methods such as dietary regulation, probiotic supplementation, and microbiota transplantation.
Collapse
Affiliation(s)
- Jinmei Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Lin Zhou
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Guo Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zaiyi Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Muhammad Saqib Mudabbar
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Le Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xinyi Tang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Mimi Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Guolan Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xing Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
3
|
Niziński P, Krajewska A, Oniszczuk T, Polak B, Oniszczuk A. Hepatoprotective Effect of Kaempferol-A Review. Molecules 2025; 30:1913. [PMID: 40363718 PMCID: PMC12073652 DOI: 10.3390/molecules30091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
Liver diseases, including chronic inflammation and related metabolic dysfunction-associated steatotic liver disease (MASLD), fibrosis and cirrhosis remain a growing global health burden. Currently, available pharmacotherapy for liver dysfunction has limited efficacy. Kaempferol, a naturally occurring flavonoid, has demonstrated significant hepatoprotective effects in preclinical models. This substance activates the SIRT1/AMPK signalling pathway, improves mitochondrial function, inhibits proinflammatory cytokine production via TLR4/NF-κB suppression and attenuates hepatic stellate cell activation by modulating the TGF-β/Smad pathway. In addition, kaempferol regulates the composition of the gut microbiota, thus improving bile acid metabolism and alleviating steatosis and fibrosis. This review presents an integrated analysis of recent in vitro and in vivo studies on the mode of action and utility of kaempferol in liver disease and hepatoprotection.
Collapse
Affiliation(s)
- Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Anna Krajewska
- Department of Comprehensive Paediatric and Adult Dentistry, Medical University of Lublin, Chodżki 6, 20-093 Lublin, Poland;
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Beata Polak
- Department of Physical Chemistry, Medical University of Lublin, Chodżki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Moon BR, Park JE, Han JS. HM-chromanone attenuates obesity and adipose tissue inflammation by downregulating SREBP-1c and NF-κb pathway in high-fat diet-fed mice. Arch Physiol Biochem 2025; 131:147-155. [PMID: 39359053 DOI: 10.1080/13813455.2024.2399554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Background: Obese adipose tissue produces various pro-inflammatory cytokines that are major contributors to adipose tissue inflammation. Objective: The present study aimed to determine the effects of HM-chromanone (HMC) against obesity and adipose tissue inflammation in high-fat diet-fed mice. Materials and methods: Twenty-four C57BL/6J male mice were divided into three groups: ND (normal diet), HFD (high-fat diet), and HFD + HMC. The ND group was fed a normal diet, whereas the HFD and HFD + HMC groups were fed a high-fat diet. After 10 weeks of feeding, the animals were orally administered the treatments daily for 9 weeks. The ND and HFD group received distilled water as treatment. The HFD+HMC group was treated with HM-chromaone (50 mg/kg). Results: HM-chromanone administration decreased body weight, fat mass, and adipocyte diameter. HM-chromanone also improved plasma lipid profiles, decreased leptin levels, and increased adiponectin levels. The inhibiting effect of HM-chromanone on SREBP-1c, PPARγ, C/EBPα, and FAS decreased adipogenesis, thereby alleviating lipid accumulation. Furthermore, HM-chromanone administration exhibited a reduction in macrophage infiltration and the expression of pro-inflammatory cytokines. HM-chromanone suppressed the phosphorylation of IκBα and NF-κB, leading to the inhibition of iNOS and COX2 expressions, resulting in decreased inflammation in adipose tissue. Discussion and conclusion: These results highlight the anti-obesity and anti-inflammatory properties of HM-chromanone, achieved through the downregulation of the SREBP-1c and NF-κB pathway in high-fat diet-fed mice.
Collapse
Affiliation(s)
- Bo Ra Moon
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jae Eun Park
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Jawad M, Talcott ST, Hillman AR, Brannan RG. A Comprehensive Polyphenolic Characterization of Five Montmorency Tart Cherry ( Prunus cerasus L.) Product Formulations. Foods 2025; 14:1154. [PMID: 40238295 PMCID: PMC11988622 DOI: 10.3390/foods14071154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The Montmorency tart cherry (Prunus cerasus L., MTC) polyphenols may contribute to reduced inflammation and oxidative stress biomarkers in the body. However, a comprehensive polyphenolic profile of MTC products is lacking. This study provides a comparative analysis of the polyphenolic distribution of individual anthocyanins, flavonols, flavanols, hydroxycinnamic acids, and hydroxybenzoic acids in five MTC products (frozen raw fruit, freeze-dried powder, sweet dried fruit, unsweetened dried fruit, juice concentrate). Twenty-three polyphenols were detected, and 21 were positively identified. Results from three replicates indicate that frozen raw MTC has the most total polyphenolics. Juice concentrate, unsweetened dried MTC, freeze-dried MTC powder, and sweet dried MTC contained 26%, 40%, 60%, and 77% fewer total polyphenolics than frozen raw MTC. Hydroxycinnamic acids, flavonols, and anthocyanins predominated, accounting for 87-99% of total polyphenols in MTC products. Chlorogenic acid, rutin, cyanidin-3-sophoroside, feruloquinic acid, ferulic acid, and coumaric acid isomers were noteworthy polyphenolics. Hydroxycinnamic acids predominated in sweet dried (82%), unsweetened dried (74%), juice concentrate (66%), and frozen-raw (54%) MTC. Flavonols predominated in freeze-dried MTC powder (52%). Anthocyanins, particularly cyanidin glycosides, were important polyphenolics in frozen-raw cherries (18%) but less so in other MTC products. These findings highlight the variability in polyphenols in MTC products and emphasize the importance of selecting appropriate MTC products for specific health benefits.
Collapse
Affiliation(s)
- Muhammad Jawad
- Department of Translational Biomedical Sciences, Ohio University, Athens, OH 45701, USA;
| | - Stephen T. Talcott
- Department of Food Science & Technology, Texas A&M University, College Station, TX 77845, USA;
| | - Angela R. Hillman
- Department of Exercise Physiology, Ohio University, Athens, OH 45701, USA;
| | - Robert G. Brannan
- Department of Food and Nutrition Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
6
|
Li Z, Chu T, Sun X, Zhuang S, Hou D, Zhang Z, Sun J, Liu Y, Li J, Bian Y. Polyphenols-rich Portulaca oleracea L. (purslane) alleviates ulcerative colitis through restiring the intestinal barrier, gut microbiota and metabolites. Food Chem 2025; 468:142391. [PMID: 39675274 DOI: 10.1016/j.foodchem.2024.142391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Ulcerative colitis (UC) is a recurrent intestinal disease caused by a complex of factors, and there are serious adverse effects and tolerance problems associated with the current long-term use of therapeutic drugs. The development of natural food sources and multi-targeted drugs for the treatment of UC is imminent. Portulaca oleracea L. (PO), as a vegetable, has been shown in studies to have an anti-UC effects. However, the relationship between the abundant active ingredients contained in Portulaca oleracea L. and the improvement of intestinal barrier, gut microbiota and metabolites is unclear. In the present study, Portulaca oleracea L. which was found to be rich in phenolic acid-based active ingredients, were effective in alleviating dextran sulfate sodium (DSS)-induced body weight loss, disease activity index (DAI) score and colon length in mice. It also decreased C-reactive protein (CRP) and myeloperoxidase (MPO) responses, reduced the permeation of fluorescein isothiocyanate (FITC)-dextran, lipopolysaccharide (LPS) and evans blue (EB), and improved histopathological scores. Meanwhile, in vitro and in vivo validation revealed the protective effects of purslane on the intestinal barrier indicators ZO-1, Occludin and Claudin-1, and inhibited the expression of inflammation-associated iNOS and NLRP3 proteins through the NF-κB signaling pathway. In addition, purslane increased the diversity of the intestinal flora, enhancing the proportion of the genera Butyricoccus, Dorea and Bifidobacterium and decreasing the percentage of Bacteroides, Turicibacter and Parabacteroides. Serum metabolomics analysis showed that the imbalance of 39 metabolites was significantly reversed after PO deployment. Enrichment analysis showed that Pentose phosphate pathway and Pyruvate metabolism pathway were the key pathways of PO against UC. Overall, purslane effectively improved the intestinal barrier disruption and intestinal inflammation by inhibiting the NF-κB signaling pathway, and adjusted the disorder of gut microbiota and metabolites to exert anti-UC effects.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Sun
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shen Zhuang
- College of Veterinary Medicine & Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dianbo Hou
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhaohan Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jialu Sun
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yifei Bian
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
7
|
Zhao L, Yu J, Liu Y, Liu Y, Zhao Y, Li MY. The major roles of intestinal microbiota and TRAF6/NF-κB signaling pathway in acute intestinal inflammation in mice, and the improvement effect by Hippophae rhamnoides polysaccharide. Int J Biol Macromol 2025; 296:139710. [PMID: 39793780 DOI: 10.1016/j.ijbiomac.2025.139710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Acute enteritis, an intestinal disease with intestinal inflammation and injury as the main pathological manifestations. Inhibiting the inflammatory response is critical to the treatment of acute enteritis. Previous studies have shown that the Hippophae rhamnoides polysaccharide (HRP) has strong immune-enhancing effects. However, their functions regarding the intestines and the underlying mechanism are still unclear. In this study, the role of HRP in lipopolysaccharide (LPS)-induced acute enteritis in mice and its related mechanisms are discussed from two aspects: intestinal inflammation and intestinal microbiota. Kunming mice were inoculated with LPS to establish animal models of acute enteritis. The results showed that HRP attenuated the histological damage and maintained the intestine mucosal barrier via up-regulating the expression of occludin, claudin-1, and zona occludens-1 (ZO-1), and suppressing the levels of pro-inflammatory cytokines (tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)). The relative mRNA and protein levels of nuclear factor-kappa B p65 (NF-κBp65) and tumor necrosis factor-receptor-associated factor 6 (TRAF6) in the intestine tissues of LPS-induced acute enteritis mice significantly increased, whereas these adverse changes were alleviated in the HRP intervention groups. Notably, HRP may regulate the expression of the TRAF6/NF-κB signaling pathway by affecting the diversity of the intestinal microbiota. Microbiota analysis showed that HRP promoted the proliferation of beneficial bacteria, including Clostridia_UCG-014, Candidatus_Saccharimonas, Lachnospiraceae_NK4A136_group, Bacteroidota, Deferribacterota, and reduced the abundance of Atopostipes, Corynebacterium, Actinobacteriota, and Desulfobacterota. The studies conformed that the gut microbiota is crucial in HRP-mediated immunity regulation. HRP shows great potential as an immune enhancer and a natural medicine for treating intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, Heilongjiang 163319, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs PR China, Daqing, Heilongjiang 163319, China
| | - Jie Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yunzhuo Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yihan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yiran Zhao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Mu-Yang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, Heilongjiang 163319, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs PR China, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
8
|
Wang J, Zhang L, Fu L, Pang Z. Kaempferol Mitigates Pseudomonas aeruginosa-Induced Acute Lung Inflammation Through Suppressing GSK3β/JNK/c-Jun Signaling Pathway and NF-κB Activation. Pharmaceuticals (Basel) 2025; 18:322. [PMID: 40143103 PMCID: PMC11944347 DOI: 10.3390/ph18030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Pseudomonas aeruginosa, one of the common bacterial pathogens causing nosocomial pneumonia, is characterized as highly pathogenic and multidrug-resistant. Kaempferol (KP), a natural flavonoid, has been shown to exhibit effectiveness in treating infection-induced lung injury. Methods: We applied network pharmacology to explore the underlying mechanisms of KP in treating P. aeruginosa pneumonia and further validated them through a mouse model of acute bacterial lung infection and an in vitro macrophage infection model. Results: The in vivo studies demonstrated that treatment with KP suppressed the production of proinflammatory cytokines, including TNF, IL-1β, IL-6, and MIP-2, and attenuated the neutrophil infiltration and lesions in lungs, leading to an increased survival rate of mice. Further studies revealed that KP treatment enhanced the phosphorylation of GSK3β at Ser9 and diminished the phosphorylation of JNK, c-Jun, and NF-κB p65 in lungs in comparison to the mice without drug treatment. Consistently, the in vitro studies showed that pretreatment with KP reduced the activation of GSK3β, JNK, c-Jun, and NF-κB p65 and decreased the levels of the proinflammatory cytokines in macrophages during P. aeruginosa infection. Conclusions: KP reduced the production of proinflammatory cytokines by inhibiting GSK3β/JNK/c-Jun signaling pathways and NF-κB activation, which effectively mitigated the P. aeruginosa-induced acute lung inflammation and injury, and elevated the survival rates of mice.
Collapse
Affiliation(s)
- Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Linlin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Lu Fu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| |
Collapse
|
9
|
Yuan Y, Zhang Y, Hu C, Wang Z, Xu Q, Pan R, Li X, Christian M, Zhu P, Zhao J. Chrysanthemum extract mitigates high-fat diet-induced inflammation, intestinal barrier damage and gut microbiota disorder. Food Funct 2025; 16:1347-1359. [PMID: 39873557 DOI: 10.1039/d4fo04889j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
An effective intervention for obesity without side effects is needed. Chrysanthemum may be the preferred choice due to its influence in the improvement of glycolipid metabolism. This study assessed the efficacy of chrysanthemum and its flavonoids in mitigating high-fat diet (HFD) induced obesity, focusing on the integrity of the intestinal barrier, inflammation, and gut microbiota. Fifty male C57BL/6J mice were divided into 5 groups randomly: normal control (NC), HFD, HFD with chrysanthemum aqueous extract (CM), HFD with a low-dose flavonoid extract of chrysanthemum (FLL), and HFD with a high-dose flavonoid extract of chrysanthemum (FLH). The results showed that after 9 weeks of intervention with CM, FLL and FLH, the body weight and blood lipid levels of mice were reduced. The chrysanthemum treatment regimens down-regulated the gene expression and protein levels of TLR4, MyD88, TRAF6 and NF-κB, upregulated the gene expression levels of ZO-1 and occludin, and decreased the levels of LPS and diamine oxidase (DAO) in the serum. With CM, FLL and FLH, the levels of the inflammatory factors IL-1β, TNF-α, and IL-6 were decreased, and the abundance of pernicious bacteria Lachnoclostridium, Streptococcus and Enterococcus was decreased. Notably, the purified chrysanthemum flavonoid extract showed greater effects as compared to the CM. The study demonstrated that chrysanthemum extracts could achieve anti-obesity effects by strengthening the intestinal barrier function, relieving inflammation and modulating the gut microbial composition.
Collapse
Affiliation(s)
- Yiwei Yuan
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| | - Yu Zhang
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| | - Chunli Hu
- Food and Drug Inspection and Testing Center, Chunan, Zhejiang, 311700, China
| | - Zhenyu Wang
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| | - Qianqian Xu
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| | - Ruili Pan
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| | - Xiaojun Li
- Doctor Innovation Workstation of Zhejiang Yifutang Tea Industry Co., Ltd, Tonglu, Zhejiang, 311500, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Peinan Zhu
- Qiandao Lake Pure Zhejiang Agricultural Development Co., Ltd, Chunan, Zhejiang, 311701, China
| | - Jin Zhao
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
- Doctor Innovation Workstation of Zhejiang Yifutang Tea Industry Co., Ltd, Tonglu, Zhejiang, 311500, China
| |
Collapse
|
10
|
Xian J, Huang Y, Bai J, Liao Q, Chen Q, Cheng W, Su Z, Li S, Wu Y, Li J, Zhang J. Recent Advances in the Anti-Obesity Benefits of Phytoconstituents: From Phytochemistry to Targeting Novel-Systems. Phytother Res 2025; 39:630-660. [PMID: 39629748 DOI: 10.1002/ptr.8400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/19/2025]
Abstract
Obesity is a metabolic disorder that has become a global health concern. The existing pharmaceutical drugs for treating obesity have some side effects. Compounds from natural sources are prospective substitutes for treating chronic diseases such as obesity, with the added advantages of being safe and cost-effective. However, due to factors such as poor solubility, low bioavailability, and instability in the physiological environment, the therapeutic efficacy of phytoconstituents is limited. Nowadays, developing nanoscaled systems has emerged as a vital strategy for enhancing the delivery and therapeutic effect of phytoconstituents. The present study discusses and categorizes phytoconstituents with anti-obesity effects and concludes the main mechanisms underlying their effects. Importantly, strategies used to develop phytoconstituent-based nano-drug delivery systems (NDDS) for obesity treatment that show improved efficacy relative to traditional administration routes are reviewed. Finally, the progress of research on phytoconstituent-based NDDS for obesity treatment is summarized to provide a reference for the development of safe and effective treatment strategies for obesity.
Collapse
Affiliation(s)
- Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qiyan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Weijian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziye Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Fu Y, Wang C, Gao Z, Liao Y, Peng M, Fu F, Li G, Su D, Guo J, Shan Y. Microbes: Drivers of Chenpi manufacturing, biotransformation, and physiological effects. Food Chem 2025; 464:141631. [PMID: 39454433 DOI: 10.1016/j.foodchem.2024.141631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Chenpi holds a rich history of both edible and medicinal applications worldwide, garnering increased attention from researchers in recent years due to its diverse physiological effects. While current research predominantly exploresed its chemical composition and physiological effects, there remains a notable gap in knowledge concerning its manufacturing, characteristic chemical substances, and the underlying mechanisms driving its physiological effects. In this review, the impacts of microbes on the manufacturing, biotransformation, and physiological effects of Chenpi were summarized, as well as the present status of product development. Furthermore, this review engaged in an in-depth discussion highlighting the challenges and shortcomings in recent research, while proposing potential directions and prospects. Additionally, the claim that "The longer the aging, the better the quality" of Chenpi was scientifically evaluated for the first time, providing a solid theoretical foundation for advancing the Chenpi industry.
Collapse
Affiliation(s)
- Yanjiao Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chao Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yanfang Liao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingfang Peng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Donglin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
12
|
Park JE, Park HY, Kim YS, Park M. The Role of Diet, Additives, and Antibiotics in Metabolic Endotoxemia and Chronic Diseases. Metabolites 2024; 14:704. [PMID: 39728485 DOI: 10.3390/metabo14120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Dietary patterns, including high-fat and high-carbohydrate diets (HFDs and HCDs), as well as non-dietary factors such as food additives and antibiotics, are strongly linked to metabolic endotoxemia, a critical driver of low-grade chronic inflammation. This review explores the mechanisms through which these factors impair intestinal permeability, disrupt gut microbial balance, and facilitate lipopolysaccharide (LPS) translocation into the bloodstream, contributing to metabolic disorders such as obesity, type 2 diabetes mellitus, and inflammatory bowel disease. Methods: The analysis integrates findings from recent studies on the effects of dietary components and gut microbiota interactions on intestinal barrier function and systemic inflammation. Focus is given to experimental designs assessing gut permeability using biochemical and histological methods, alongside microbiota profiling in both human and animal models. Results: HFDs and HCDs were shown to increase intestinal permeability and systemic LPS levels, inducing gut dysbiosis and compromising barrier integrity. The resulting endotoxemia promoted a state of chronic inflammation, disrupting metabolic regulation and contributing to the pathogenesis of various metabolic diseases. Food additives and antibiotics further exacerbated these effects by altering microbial composition and increasing gut permeability. Conclusions: Diet-induced alterations in gut microbiota and barrier dysfunction emerge as key mediators of metabolic endotoxemia and related disorders. Addressing dietary patterns and their impact on gut health is crucial for developing targeted interventions. Further research is warranted to standardize methodologies and elucidate mechanisms for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Ji-Eun Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
| |
Collapse
|
13
|
Lee KW, Xu G, Paik DH, Shim YY, Reaney MJT, Park I, Lee SH, Park JY, Park E, Lee SB, Kim IA, Hong JY, Kim YJ. Clinical Evaluation of Hovenia dulcis Extract Combinations for Effective Hangover Relief in Humans. Foods 2024; 13:4021. [PMID: 39766963 PMCID: PMC11675335 DOI: 10.3390/foods13244021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Alcohol consumption is associated with both short- and long-term adverse effects, including hangover symptoms. The objective of this study was to examine the potential benefits of traditional beverages containing a combination of Hovenia dulcis extract (HD) with either Pueraria lobata extract (HDPB) or glutathione yeast extract (HDGB) in abbreviating alcohol intoxication and mitigating hangover symptoms. A total of 25 participants between the ages of 19 and 40 who had previously experienced a hangover were evaluated in a randomized, double-blind, crossover, placebo (PLA)-controlled clinical trial. Results showed that lower blood alcohol concentrations in the HDPB and HDGB groups were significantly lower than in the PLA group at 0.25 and 0.5 h, suggesting that HD aids in early alcohol metabolism (0 h, p < 0.05). Analysis of the hourly Acute Hangover Scale (AHS) showed that all treatment groups had significantly reduced gastrointestinal disorder symptoms compared to the PLA group (p < 0.05). It can be confirmed that hangover symptoms can be significantly improved by consuming HD combination drinks, apart from the effect of reducing blood alcohol and acetaldehyde concentrations. Therefore, it is predicted that the consumption of natural phytochemicals added to HD is safe for humans and may help accelerate recovery from hangover symptoms.
Collapse
Affiliation(s)
- Ki Won Lee
- Natural Products Convergence R&D Division, Kwangdong Pharmaceutical Co., Ltd., Gwacheon 13840, Republic of Korea (I.P.); (S.-H.L.); (J.-Y.P.); (E.P.)
| | - Guangpeng Xu
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea;
| | - Dong Hyun Paik
- Natural Products Convergence R&D Division, Kwangdong Pharmaceutical Co., Ltd., Gwacheon 13840, Republic of Korea (I.P.); (S.-H.L.); (J.-Y.P.); (E.P.)
| | - Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
| | - Martin J. T. Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
| | - Ilbum Park
- Natural Products Convergence R&D Division, Kwangdong Pharmaceutical Co., Ltd., Gwacheon 13840, Republic of Korea (I.P.); (S.-H.L.); (J.-Y.P.); (E.P.)
| | - Sang-Hun Lee
- Natural Products Convergence R&D Division, Kwangdong Pharmaceutical Co., Ltd., Gwacheon 13840, Republic of Korea (I.P.); (S.-H.L.); (J.-Y.P.); (E.P.)
| | - Jong-Yul Park
- Natural Products Convergence R&D Division, Kwangdong Pharmaceutical Co., Ltd., Gwacheon 13840, Republic of Korea (I.P.); (S.-H.L.); (J.-Y.P.); (E.P.)
| | - Euddeum Park
- Natural Products Convergence R&D Division, Kwangdong Pharmaceutical Co., Ltd., Gwacheon 13840, Republic of Korea (I.P.); (S.-H.L.); (J.-Y.P.); (E.P.)
| | - Sung-Bum Lee
- Department of Family Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 22972, Republic of Korea
| | - In Ah Kim
- Global Medical Research Center, Seoul 06526, Republic of Korea
| | - Ji Youn Hong
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea;
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea;
| |
Collapse
|
14
|
Munkong N, Jantarach N, Yoysungnoen B, Lonan P, Makjaroen J, Pearngam P, Kumpunya S, Ruxsanawet K, Nanthawong S, Somparn P, Thim-Uam A. Elaeagnus latifolia Fruit Extract Ameliorates High-Fat Diet-Induced Obesity in Mice and Alleviates Macrophage-Induced Inflammation in Adipocytes In Vitro. Antioxidants (Basel) 2024; 13:1485. [PMID: 39765814 PMCID: PMC11673262 DOI: 10.3390/antiox13121485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Elaeagnus latifolia (EL) is a wild fruit known for containing several health-promoting compounds. This study aimed to evaluate the effects of EL fruit extract on high-fat diet (HFD)-induced obesity and lipopolysaccharide (LPS)-activated macrophages. Mice fed an HFD and given EL fruit extract for 10 weeks exhibited significantly lower body weight, reduced lipid accumulation, diminished oxidative stress in adipocytes, and decreased macrophage infiltration compared to those not receiving the EL extract. Moreover, the EL fruit extract activated the transcription factors Pparg and Cebpa, initiating adipogenesis and modulating the expression of NF-κB/Nrf-2-induced target genes. This resulted in smaller adipocyte size, reduced inflammation, and less oxidative stress in HFD-fed mice. In vitro, the EL extract induced a shift in macrophage phenotype from M1 to M2, reduced IκBα/NF-κB phosphorylation, and effectively decreased energy production in macrophages by downregulating the expression of several proteins involved in glycolysis and the tricarboxylic acid cycle. This mechanistic study suggests that administering EL fruit extract could be an effective strategy for managing obesity and its associated pathologies.
Collapse
Affiliation(s)
- Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Phayao 56000, Thailand;
| | - Nattanida Jantarach
- Applied Thai Traditional Medicine Program, School of Public Health, University of Phayao, Phayao 56000, Thailand; (N.J.); (K.R.)
| | - Bhornprom Yoysungnoen
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand;
| | - Piyanuch Lonan
- Traditional Chinese Medicine Program, School of Public Health, University of Phayao, Phayao 56000, Thailand;
| | - Jiradej Makjaroen
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.N.); (P.S.)
| | - Phorutai Pearngam
- International College, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Sarinya Kumpunya
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand;
| | - Kingkarnonk Ruxsanawet
- Applied Thai Traditional Medicine Program, School of Public Health, University of Phayao, Phayao 56000, Thailand; (N.J.); (K.R.)
| | - Saharat Nanthawong
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.N.); (P.S.)
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.N.); (P.S.)
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
15
|
Intharuksa A, Kuljarusnont S, Sasaki Y, Tungmunnithum D. Flavonoids and Other Polyphenols: Bioactive Molecules from Traditional Medicine Recipes/Medicinal Plants and Their Potential for Phytopharmaceutical and Medical Application. Molecules 2024; 29:5760. [PMID: 39683916 DOI: 10.3390/molecules29235760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Currently, natural bioactive ingredients and/or raw materials are of significant interest to scientists around the world. Flavonoids and other polyphenols are a major group of phytochemicals that have been researched and noted as bioactive molecules. They offer several pharmacological and medical benefits. This current review aims to (1) illustrate their benefits for human health, such as antioxidant, anti-aging, anti-cancer, anti-inflammatory, anti-microbial, cardioprotective, neuroprotective, and UV-protective effects, and also (2) to perform a quality evaluation of traditional medicines for future application. Consequently, keywords were searched on Scopus, Google Scholar, and PubMed so as to search for related publications. Then, those publications were carefully checked in order to find current and non-redundant studies that matched the objective of this review. According to this review, researchers worldwide are very interested in discovering the potential of flavonoids and other polyphenols, used in traditional medicines and taken from medicinal plants, in relation to medical and pharmaceutical applications. Many studies focus on the health benefits of flavonoids and other polyphenols have been tested using in silico, in vitro, and in vivo models. However, few studies have been carried out using clinical trials that have trustworthy subject sizes and are in accordance with clinical practice guidelines. Additionally, interesting research directions and perspectives for future studies are highlighted in this work.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sompop Kuljarusnont
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yohei Sasaki
- Division of Pharmaceutical Sciences, Graduate School of Medical Plant Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Le Studium Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| |
Collapse
|
16
|
Meng X, Xia C, Wu H, Gu Q, Li P. Metabolism of quercitrin in the colon and its beneficial regulatory effects on gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9255-9264. [PMID: 39043159 DOI: 10.1002/jsfa.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Quercitrin is a dietary flavonoid widely found in plants with various physiological activities. However, whether quercitrin alters gut microbiota in vivo is not well understood. The aim of this study was to investigate metabolism of quercitrin in the colon and its regulation on gut microbiota in mice. RESULTS Herein, 22 flavonoids related to quercitrin metabolism were identified based on ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). Gas chromatography and 16S rDNA gene sequencing were used to investigate short-chain fatty acid (SCFA) content and diversity of composition of gut microbiota, respectively. The results showed that quercitrin significantly alters the beta-diversity of the gut microbiota, probiotics such as Akkermansia and Lactococcus were significantly increased, and the production of propanoate, isovalerate and hexanoate of the quercitrin group were enhanced significantly. The Spearman's association analysis provided evidence that Gardnerella and Akkermansia have obvious correlations with most of quercitrin metabolites and SCFAs. CONCLUSION Quercitrin and its metabolites in the colon altered the structure of the mice gut microbiota and increased the content of SCFAs. Our experiments provide valuable insights into quercitrin research and application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xia Meng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hongchen Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
17
|
El-Seedi HR, El-Wahed AAA, Salama S, Agamy N, Altaleb HA, Du M, Saeed A, Di Minno A, Wang D, Daglia M, Guo Z, Zhang H, Khalifa SAM. Natural Remedies and Health; A Review of Bee Pollen and Bee Bread Impact on Combating Diabetes and Obesity. Curr Nutr Rep 2024; 13:751-767. [PMID: 39302593 DOI: 10.1007/s13668-024-00567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF THE REVIEW Diabetes and obesity are complicated multifactorial conditions that have been highlighted as a significant global burden for both health care and national budgets and their complications are considered a substantial public health concern. This review focuses on the potential anti-diabetic and anti-obesity properties of bee pollen (BP) and bee bread (BB), two bee products with a long history of use in traditional medicine and supplemental nutrition. RECENT FINDINGS Recent studies, encompassing cellular models, experimental models, and clinical trials, have shed light on the therapeutic potential of these bee products. BP and BB are rich in phytochemical constituents like flavonoids and phenolic acids, which are believed to confer their anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-obesity properties. These bee products have shown promising results in the treatment of diabetes and obesity, underscoring their potential as natural therapeutic tools. BP and BB possess properties that aid in decreasing blood glucose levels and body weight. BP and BB have been found to enhance insulin sensitivity, alleviate oxidative stress, regulate appetite, adjust levels of hormones linked to obesity, while bolstering anti-oxidant defense systems. BP and BB nutritional qualities and health benefits make them promising candidates for further research towards diabetes and obesity treatment strategies.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | - Aida A Abd El-Wahed
- Department of Bee Research, Agricultural Research Centre, Plant Protection Research Institute, Giza, 12627, Egypt
| | - Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish, Sudan
| | - Neveen Agamy
- Nutrition Department, Food Analysis Division, High Institute of Public Health, Alexandria University, Alexandria, 21561, Egypt
| | - Hamud A Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116024, China
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Daijie Wang
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- Neurology and Psychiatry Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden.
| |
Collapse
|
18
|
Lamichhane G, Olawale F, Liu J, Lee DY, Lee SJ, Chaffin N, Alake S, Lucas EA, Zhang G, Egan JM, Kim Y. Curcumin Mitigates Gut Dysbiosis and Enhances Gut Barrier Function to Alleviate Metabolic Dysfunction in Obese, Aged Mice. BIOLOGY 2024; 13:955. [PMID: 39765622 PMCID: PMC11726832 DOI: 10.3390/biology13120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/15/2025]
Abstract
The gut microbiome plays a critical role in maintaining gut and metabolic health, and its composition is often altered by aging and obesity. This study aimed to investigate the protective effects of curcumin on gut dysbiosis, gut barrier integrity, and bile acid homeostasis in aged mice fed a high-fat, high-sugar diet (HFHSD). Eighteen- to twenty-one-month-old male C57BL/6 mice were divided into groups fed a normal chow diet or HFHSD, with or without curcumin supplementation (0.4% w/w) for 8 and 15 weeks. We assessed body weight, food intake, insulin sensitivity, gut microbiota composition, and gene expression in the gut and liver and performed histological analysis of gut tissues. Curcumin supplementation prevented HFHSD-induced weight gain and metabolic disturbances. In the gut, curcumin-treated mice showed a higher abundance of beneficial bacterial genera, such as Lachnospiraceae, Akkermansia, Mucispirillum, and Verrucomicrobiota, alongside a lower abundance of harmful bacterial genera like Desulfobacteria, Alistipes, and Muribaculaceae compared to control. This shift in gut microbiota was associated with improved gut integrity, as demonstrated by increased expression of the tight junction protein occludin and reduced levels of the pro-inflammatory marker interleukin-1β in the ileum. Additionally, curcumin modulated hepatic gene expression involved in bile acid homeostasis, suggesting a positive effect on liver health. Curcumin supplementation can alleviate the negative effects of aging and an HFHSD on the gut microbiome, improve gut barrier integrity, and maintain bile acid homeostasis. These findings highlight curcumin's potential as a dietary intervention for managing obesity- and age-associated gut health issues.
Collapse
Affiliation(s)
- Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (F.O.); (D.-Y.L.); (S.-J.L.); (N.C.); (S.A.); (E.A.L.)
| | - Femi Olawale
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (F.O.); (D.-Y.L.); (S.-J.L.); (N.C.); (S.A.); (E.A.L.)
| | - Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (G.Z.)
| | - Da-Yeon Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (F.O.); (D.-Y.L.); (S.-J.L.); (N.C.); (S.A.); (E.A.L.)
| | - Su-Jeong Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (F.O.); (D.-Y.L.); (S.-J.L.); (N.C.); (S.A.); (E.A.L.)
| | - Nathan Chaffin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (F.O.); (D.-Y.L.); (S.-J.L.); (N.C.); (S.A.); (E.A.L.)
| | - Sanmi Alake
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (F.O.); (D.-Y.L.); (S.-J.L.); (N.C.); (S.A.); (E.A.L.)
| | - Edralin A. Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (F.O.); (D.-Y.L.); (S.-J.L.); (N.C.); (S.A.); (E.A.L.)
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (G.Z.)
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (F.O.); (D.-Y.L.); (S.-J.L.); (N.C.); (S.A.); (E.A.L.)
| |
Collapse
|
19
|
Atak M, Yigit E, Huner Yigit M, Topal Suzan Z, Yilmaz Kutlu E, Karabulut S. Synthetic and non-synthetic inhibition of ADAM10 and ADAM17 reduces inflammation and oxidative stress in LPS-induced acute kidney injury in male and female mice. Eur J Pharmacol 2024; 983:176964. [PMID: 39218341 DOI: 10.1016/j.ejphar.2024.176964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Acute kidney injury (AKI) is a severe medical condition that can lead to illness and death. A disintegrin and metalloprotease (ADAM) protein family is a potential treatment target for AKI due to its involvement in inflammation, growth, and differentiation. While ADAM10 and ADAM17 have been identified as significant contributors to inflammation, it is unclear whether they play a critical role in AKI. In this study, we induced AKI in male and female mice using lipopolysaccharide, a bacterial endotoxin that causes inflammation and oxidative stress. The role of kaempferol, which is found in many natural products and known to have antioxidant and anti-inflammatory activity in many pre-clinical studies, was investigated through ADAM10/17 enzymes in AKI. We also investigated the efficacy of a selective synthetic inhibitor named GW280264X for ADAM10/17 inhibition in AKI. Blood urea nitrogen and creatinine levels were measured in serum, while tumor necrosis factor-α, vascular adhesion molecule, interleukin (IL)-1β, glucose regulatory protein-78, IL-10, nuclear factor κ-B, thiobarbituric acid reactive substances, total thiol, ADAM10, and ADAM17 levels were measured in kidney tissue. We also evaluated kidney tissue histologically using hematoxylin and eosin, periodic acid-schiff, and caspase-3 staining. This research demonstrates that GW280264X and kaempferol reduces inflammation and oxidative stress, as evidenced by biochemical and histopathological results in AKI through ADAM10/17 inhibition. These findings suggest that inhibiting ADAM10/17 may be a promising therapeutic approach for treating acute kidney injury.
Collapse
Affiliation(s)
- Mehtap Atak
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey.
| | - Ertugrul Yigit
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Merve Huner Yigit
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Zehra Topal Suzan
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Histology and Embryology, Rize, Turkey
| | - Eda Yilmaz Kutlu
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Soner Karabulut
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biology, Trabzon, Turkey
| |
Collapse
|
20
|
Ai Z, Yuan D, Cai J, Dong R, Liu W, Zhou D. Mechanism of medical hemorrhoid gel in relieving pruritus ani via inhibiting the activation of JAK2/STAT3 pathway. Front Med (Lausanne) 2024; 11:1487531. [PMID: 39606625 PMCID: PMC11600105 DOI: 10.3389/fmed.2024.1487531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background Pruritus ani (PA), a neurofunctional dermatosis, is one of the most common complications of hemorrhoids, which seriously affects the quality of life of patients. Medical hemorrhoid gel (MHG), a product mainly composed of herbal medicine, is widely used for treatment of PA clinically. This study aim to assess the alleviating effect and mechanism of MHG on PA based on rectal epidermis-spinal cord-brain axis using animal models. Methods A chloroquine-induced mouse itching model and a croton oil preparation-induced rat hemorrhoid model were established to evaluate anti-PA effect of MHG. Scratching behaviors of mice were recorded, and histopathology of mice skin and rat ano-rectal tissues was observed through H&E staining. Network pharmacology and western blotting were employed to explore potential mechanism of MHG. Results The study indicated that MHG significantly alleviated chloroquine-induced skin itching and improved pathological injuries in mice skin and rat ano-rectal tissues. Network pharmacology suggested that MHG might regulate the JAK/STAT signaling pathway. Experimental findings showed that MHG significantly downregulated TRPV1 and TRPA1 in rectal tissue, c-Fos and GRPR in spinal cord tissue, and 5-HT1a protein in brain tissue, while upregulating TRPM8 protein in rectal tissue. Furthermore, MHG inhibited the activation of the JAK2/STAT3 signaling pathway in the rectal epidermis-spinal cord-brain axis. Conclusion MHG improves PA by inhibiting the transmission of itching signals in rectal epidermis-spinal cord-brain axis via the JAK2/STAT3 signaling pathway, providing experimental evidence for its clinical application.
Collapse
Affiliation(s)
- Zhongzhu Ai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Dongfeng Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingyi Cai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ruotong Dong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wei Liu
- Mayinglong Pharmaceutical Group Co., Ltd, Wuhan, China
| | - Daonian Zhou
- Mayinglong Pharmaceutical Group Co., Ltd, Wuhan, China
| |
Collapse
|
21
|
Zhu Z, Zhu Z, Shi Z, Wang C, Chen F. Kaempferol Remodels Liver Monocyte Populations and Treats Hepatic Fibrosis in Mice by Modulating Intestinal Flora and Metabolic Reprogramming. Inflammation 2024:10.1007/s10753-024-02184-2. [PMID: 39531210 DOI: 10.1007/s10753-024-02184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Changes in gut flora are associated with liver fibrosis. The interactions of host with intestinal flora are still unknown, with little research investigating such interactions with comprehensive multi-omics data. The present work analyzed and integrated large-scale multi-omics transcriptomics, microbiome, metabolome, and single-cell RNA-sequencing datasets from Kaempferol-treated and untreated control groups by advanced bioinformatics methods. This study concludes that kaempferol dose-dependently improved serum markers (like AST, ALT, TBil, Alb, and PT) and suppressed fibrosis markers (including HA, PC III, LN, α-SMA, and Collagen I), while kaempferol also increased body weight. Mechanistically, kaempferol improved the metabolic levels of intestinal flora dysbiosis and associated lipids. This was achieved by increasing the abundance of g__Robinsoniella, g__Erysipelotrichaceae_UCG-003, g__Coriobacteriaceae_UCG-002, and 5-Methylcytidine, all-trans-5,6- Epoxyretinoic acid, LPI (18:0), LPI (20:4), etc. to achieve this. Kaemferol exerts anti-inflammatory and immune-enhancing effects by down-regulating the Th17/IL-17 signaling pathway in PDGF-induced LX2 cells. In addition, kaempferol administration remarkably elevated CD4 + T and CD8 + T cellular proportions, thereby activating immune cells for protecting the body and controlling inflammatory conditions. The combined interaction of multiple data may explain how Kaempferol modulates the intestinal flora thereby remodeling the hepatocyte population and alleviating liver fibrosis.
Collapse
Affiliation(s)
- Zhiqin Zhu
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Zhiqi Zhu
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Zhenyi Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical & Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, 10 Southern Medical University, Guangzhou, China
| | - Chen Wang
- The Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Fengsheng Chen
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
22
|
Chae YR, Lee HB, Lee YR, Yoo G, Lee E, Park M, Choi SY, Park HY. Ameliorating effects of Orostachys japonica against high-fat diet-induced obesity and gut dysbiosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118443. [PMID: 38909828 DOI: 10.1016/j.jep.2024.118443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Orostachys japonica (rock pine) has been used as a folk remedy to treat inflammation, hepatitis, and cancer in East Asia. AIM OF THE STUDY The aim of this study was to investigate the effect of rock pine extract (RPE) on high-fat diet-induced obesity in mice and to examine its effects on gut dysbiosis. MATERIALS AND METHODS The characteristic compound of RPE, kaempferol-3-O-rutinoside, was quantified using high-performance liquid chromatography. The prebiotic potential of RPE was evaluated by assessing the prebiotic activity score obtained using four prebiotic strains and high-fat (HF)-induced obesity C57BL/6 mice model. Analysis included examining the lipid metabolism and inflammatory proteins and evaluating the changes in gut permeability and metabolites to elucidate the potential signaling pathways involved. RESULTS In vitro, RPE enhanced the proliferation of beneficial probiotic strains, including Lactiplantibacillus and Bifidobacterium. HF-induced model showed that the administration of 100 mg/kg/day of RPE for 8 weeks significantly (p < 0.05) reduced the body weight, serum lipid levels, and insulin resistance, which were associated with notable changes in lipid metabolism and inflammation-related markers. CONCLUSIONS Our results demonstrate that rock pine consumption could mitigate obesity and metabolic endotoxemia in HF-fed mice through enhancing intestinal environment.
Collapse
Affiliation(s)
- Yu-Rim Chae
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea.
| | - Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea.
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea.
| | - Guijae Yoo
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea.
| | - Eunjung Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea.
| | - Sang Yoon Choi
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea.
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
23
|
De Cecco F, Franceschelli S, Panella V, Maggi MA, Bisti S, Bravo Nuevo A, D’Ardes D, Cipollone F, Speranza L. Biological Response of Treatment with Saffron Petal Extract on Cytokine-Induced Oxidative Stress and Inflammation in the Caco-2/Human Leukemia Monocytic Co-Culture Model. Antioxidants (Basel) 2024; 13:1257. [PMID: 39456510 PMCID: PMC11504373 DOI: 10.3390/antiox13101257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The pathogenesis of Inflammatory Bowel Disease (IBD) involves complex mechanisms, including immune dysregulation, gut microbiota imbalances, oxidative stress, and defects in the gastrointestinal mucosal barrier. Current treatments for IBD often have significant limitations and adverse side effects, prompting a search for alternative therapeutic strategies. Natural products with anti-inflammatory and antioxidant properties have demonstrated potential for IBD management. There is increasing interest in exploring food industry waste as a source of bioactive molecules with healthcare applications. In this study, a co-culture system of Caco-2 cells and PMA-differentiated THP-1 macrophages was used to simulate the human intestinal microenvironment. Inflammation was induced using TNF-α and IFN-γ, followed by treatment with Saffron Petal Extract (SPE). The results demonstrated that SPE significantly attenuated oxidative stress and inflammation by downregulating the expression of pro-inflammatory mediators such as iNOS, COX-2, IL-1β, and IL-6 via modulation of the NF-κB pathway. Given that NF-κB is a key regulator of macrophage-driven inflammation, our findings support further investigation of SPE as a potential complementary therapeutic agent for IBD treatment.
Collapse
Affiliation(s)
- Federica De Cecco
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.C.); (V.P.); (D.D.); (F.C.)
| | - Sara Franceschelli
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.C.); (V.P.); (D.D.); (F.C.)
- Uda-TechLab, Research Center, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Valeria Panella
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.C.); (V.P.); (D.D.); (F.C.)
| | | | - Silvia Bisti
- National Institute of Biostructure and Biosystem (INBB), V. le Medaglie D’Oro 305, 00136 Roma, Italy;
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine (PCOM), 4170 City Ave, Philadelphia, PA 19131, USA;
| | - Damiano D’Ardes
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.C.); (V.P.); (D.D.); (F.C.)
| | - Francesco Cipollone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.C.); (V.P.); (D.D.); (F.C.)
| | - Lorenza Speranza
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.C.); (V.P.); (D.D.); (F.C.)
- Uda-TechLab, Research Center, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
24
|
Jovanović M, Vunduk J, Mitić-Ćulafić D, Svirčev E, Vojvodić P, Tomić N, Ismi LN, Tenji D. New Perspectives on the Old Uses of Traditional Medicinal and Edible Herbs: Extract and Spent Material of Persicaria hydropiper (L.) Delarbre. Nutrients 2024; 16:3368. [PMID: 39408335 PMCID: PMC11478433 DOI: 10.3390/nu16193368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives:Persicaria hydropiper (L.) Delarbre, commonly known as water pepper, possesses multifunctional potential. Our research focuses on its complex phenolic composition, bioactivity, safety evaluation and utilization in a sustainable manner. Moreover, a survey was conducted among the Serbian population to gain insight into the attitude towards traditional wild-growing herbs (i.e., P. hydropiper), the level of familiarity with their zero-waste culture, and to assess eating behaviors. Methods: A survey was conducted with 168 participants to assess attitudes towards traditional herbs, zero-waste culture, and eating behaviors, while cytotoxicity, in vivo toxicity, chemical analysis of secondary metabolites, and probiotic viability assays were performed to evaluate the effects of the PH extract. Results: Notably, P. hydropiper extract (PH) exhibits a diverse phenolic profile, including quinic acid (3.68 ± 0.37 mg/g DW), gallic acid (1.16 ± 0.10 mg/g DW), quercetin (2.34 ± 0.70 mg/g DW) and kaempferol-3-O-glucoside (4.18 ± 0.17 mg/g DW). These bioactive compounds have been linked to anticancer effects. The tested extract demonstrated a cytotoxic effect on the human neuroblastoma cell line, opening questions for the further exploration of its mechanisms for potential therapeutic applications. Based on the toxicity assessment in the Artemia salina model, the PH could be characterized with good safety, especially for the lower concentrations (LC50 = 0.83 mg/mL, 24 h). The utilization of the spent PH material supports the viability of psychobiotic strains (up to 9.26 ± 0.54 log CFU/mL). Based on the conducted survey, 63.7% (n = 107) of respondents mainly prefer traditional instead of imported herbs. The respondents were skeptical about zero-waste edibles; 51.2% (n = 86) would not try them, and a bit more than half were not familiar with zero-waste culture (57.7%; n = 97). Only 8.3% (n = 14) followed a flexitarian diet as a dietary pattern. Conclusions: The use of underutilized traditional plants and their spent material could potentially contribute to the acceptance of a zero-waste culture in Serbia. Reinventing the use of neglected traditional plants and addressing ways for spent material valorization could contribute to the acceptance of a zero-waste strategy and encourage healthier eating behavior.
Collapse
Affiliation(s)
- Marina Jovanović
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia;
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia;
| | - Dragana Mitić-Ćulafić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (D.M.-Ć.); (L.N.I.)
| | - Emilija Svirčev
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (E.S.); (D.T.)
| | - Petar Vojvodić
- Private Psychiatric Practice Psihocentrala Belgrade, Crnogorska 2, 11000 Belgrade, Serbia;
| | - Nina Tomić
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia;
| | - Laksmi Nurul Ismi
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (D.M.-Ć.); (L.N.I.)
| | - Dina Tenji
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (E.S.); (D.T.)
| |
Collapse
|
25
|
Singh AK, Kumar P, Mishra SK, Rajput VD, Tiwari KN, Singh AK, Minkina T, Pandey AK, Upadhyay P. A Dual Therapeutic Approach to Diabetes Mellitus via Bioactive Phytochemicals Found in a Poly Herbal Extract by Restoration of Favorable Gut Flora and Related Short-Chain Fatty Acids. Appl Biochem Biotechnol 2024; 196:6690-6715. [PMID: 38393580 DOI: 10.1007/s12010-024-04879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Diabetes mellitus (DM), a metabolic and endocrine condition, poses a serious threat to human health and longevity. The emerging role of gut microbiome associated with bioactive compounds has recently created a new hope for DM treatment. UHPLC-HRMS methods were used to identify these compounds in a poly herbal ethanolic extract (PHE). The effects of PHE on body weight (BW), fasting blood glucose (FBG) level, gut microbiota, fecal short-chain fatty acids (SCFAs) production, and the correlation between DM-related indices and gut microbes, in rats were investigated. Chebulic acid (0.368%), gallic acid (0.469%), andrographolide (1.304%), berberine (6.442%), and numerous polysaccharides were the most representative constituents in PHE. A more significant BW gain and a reduction in FBG level towards normal of PHE 600 mg/kg treated rats group were resulted at the end of 28th days of the study. Moreover, the composition of the gut microbiota corroborated the study's hypothesis, as evidenced by an increased ratio of Bacteroidetes to Firmicutes and some beneficial microbial species, including Prevotella copri and Lactobacillus hamster. The relative abundance of Bifidobacterium pseudolongum, Ruminococcus bromii, and Blautia producta was found to decline in PHE treatment groups as compared to diabetic group. The abundance of beneficial bacteria in PHE 600 mg/kg treatment group was concurrently associated with increased SCFAs concentrations of acetate and propionate (7.26 nmol/g and 4.13 nmol/g). The findings of this study suggest a promising approach to prevent DM by demonstrating that these naturally occurring compounds decreased FBG levels by increasing SCFAs content and SCFAs producing gut microbiota.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Singh
- Department of Chemistry, Mariahu PG College, VBS Purvanchal University, Jaunpur, Uttar Pradesh, 222161, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Ajay Kumar Pandey
- Department of Kaychikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prabhat Upadhyay
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
26
|
Fu Y, Wang Q, Tang Z, Liu G, Guan G, Lyu J. Cordycepin Ameliorates High Fat Diet-Induced Obesity by Modulating Endogenous Metabolism and Gut Microbiota Dysbiosis. Nutrients 2024; 16:2859. [PMID: 39275176 PMCID: PMC11396883 DOI: 10.3390/nu16172859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Numerous metabolic illnesses have obesity as a risk factor. The composition of the gut microbiota and endogenous metabolism are important factors in the onset and progression of obesity. Recent research indicates that cordycepin (CRD), derived from fungi, exhibits anti-inflammatory and antioxidant properties, showing potential in combating obesity. However, further investigation is required to delineate its precise impacts on endogenous metabolism and gut microbiota. METHODS In this work, male C57BL/6J mice were used as models of obesity caused by a high-fat diet (HFD) and given CRD. Mice's colon, liver, and adipose tissues were stained with H&E. Serum metabolome analysis and 16S rRNA sequencing elucidated the effects of CRD on HFD-induced obese mice and identified potential mediators for its anti-obesity effects. RESULTS CRD intervention alleviated HFD-induced intestinal inflammation, improved blood glucose levels, and reduced fat accumulation. Furthermore, CRD supplementation demonstrated the ability to modulate endogenous metabolic disorders by regulating the levels of key metabolites, including DL-2-aminooctanoic acid, inositol, and 6-deoxyfagomine. CRD influenced the abundance of important microbiota such as Parasutterella, Alloprevotella, Prevotellaceae_NK3B31_group, Alistipes, unclassified_Clostridia_vadinBB60_group, and unclassified_Muribaculaceae, ultimately leading to the modulation of endogenous metabolism and the amelioration of gut microbiota disorders. CONCLUSIONS According to our research, CRD therapies show promise in regulating fat accumulation and stabilizing blood glucose levels. Furthermore, through the modulation of gut microbiota composition and key metabolites, CRD interventions have the dual capacity to prevent and ameliorate obesity.
Collapse
Affiliation(s)
- Yifeng Fu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qiangfeng Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zihan Tang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guiping Guan
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jin Lyu
- Department of Pathology, The First People's Hospital of Foshan, Foshan 528000, China
| |
Collapse
|
27
|
Winiarska-Mieczan A, Jachimowicz-Rogowska K, Kwiecień M, Borsuk-Stanulewicz M, Tomczyk-Warunek A, Stamirowska-Krzaczek E, Purwin C, Stryjecka M, Tomaszewska M. Regular Consumption of Green Tea as an Element of Diet Therapy in Drug-Induced Liver Injury (DILI). Nutrients 2024; 16:2837. [PMID: 39275155 PMCID: PMC11396919 DOI: 10.3390/nu16172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The liver is a highly metabolically active organ, and one of the causes of its dysfunction is the damage caused by drugs and their metabolites as well as dietary supplements and herbal preparations. A common feature of such damage is drugs, which allows it to be defined as drug-induced liver injury (DILI). In this review, we analysed available research findings in the global literature regarding the effects of green tea and/or its phenolic compounds on liver function in the context of protective action during prolonged exposure to xenobiotics. We focused on the direct detoxifying action of epigallocatechin gallate (EGCG) in the liver, the impact of EGCG on gut microbiota, and the influence of microbiota on liver health. We used 127 scientific research publications published between 2014 and 2024. Improving the effectiveness of DILI detection is essential to enhance the safety of patients at risk of liver damage and to develop methods for assessing the potential hepatotoxicity of a drug during the research phase. Often, drugs cannot be eliminated, but appropriate nutrition can strengthen the body and liver, which may mitigate adverse changes resulting from DILI. Polyphenols are promising owing to their strong antioxidant and anti-inflammatory properties as well as their prebiotic effects. Notably, EGCG is found in green tea. The results of the studies presented by various authors are very promising, although not without uncertainties. Therefore, future research should focus on elucidating the therapeutic and preventive mechanisms of polyphenols in the context of liver health through the functioning of gut microbiota affecting overall health, with particular emphasis on epigenetic pathways.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Marta Borsuk-Stanulewicz
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor Systems Research, Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Ewa Stamirowska-Krzaczek
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Cezary Purwin
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Małgorzata Stryjecka
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Marzena Tomaszewska
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| |
Collapse
|
28
|
Zhang W, Wang X, Yin S, Wang Y, Li Y, Ding Y. Improvement of functional dyspepsia with Suaeda salsa (L.) Pall via regulating brain-gut peptide and gut microbiota structure. Eur J Nutr 2024; 63:1929-1944. [PMID: 38703229 DOI: 10.1007/s00394-024-03401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE The traditional Chinese herbal medicine Suaeda salsa (L.) Pall (S. salsa) with a digesting food effect was taken as the research object, and its chemical composition and action mechanism were explored. METHODS The chemical constituents of S. salsa were isolated and purified by column chromatography, and their structures were characterized by nuclear magnetic resonance. The food accumulation model in mice was established, and the changes of the aqueous extract of S. salsa in gastric emptying and intestinal propulsion rate, colonic tissue lesions, serum brain-gut peptide hormone, colonic tissue protein expression, and gut microbiota structure were compared. RESULTS Ten compounds were isolated from S. salsa named as naringenin (1), hesperetin (2), baicalein (3), luteolin (4), isorhamnetin (5), taxifolin (6), isorhamnetin-3-O-β-D-glucoside (7), luteolin-3'-D-glucuronide (8), luteolin-7-O-β-D-glucuronide (9), and quercetin-3-O-β-D-glucuronide (10), respectively. The aqueous extract of S. salsa can improve the pathological changes of the mice colon and intestinal peristalsis by increasing the rate of gastric emptying and intestinal propulsion. By adjusting the levels of 5-HT, CCK, NT, SS, VIP, GT-17, CHE, MTL, and ghrelin, it can upregulate the levels of c-kit, SCF, and GHRL protein, and restore the imbalanced structure of gut microbiota, further achieve the purpose of treating the syndrome of indigestion. The effect is better with the increase of dose. CONCLUSION S. salsa has a certain therapeutic effect on mice with the syndrome of indigestion. From the perspective of "brain-gut-gut microbiota", the mechanism of digestion and accumulation of S. salsa was discussed for the first time, which provided an experimental basis for further exploring the material basis of S. salsa.
Collapse
Affiliation(s)
- Wenjun Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Shuanghui Yin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| |
Collapse
|
29
|
Zhi K, Gong F, Chen L, Li Z, Li X, Mei H, Fu C, Zhao Y, Liu Z, He J. Effects of Sea-Buckthorn Flavonoids on Growth Performance, Serum Inflammation, Intestinal Barrier and Microbiota in LPS-Challenged Broilers. Animals (Basel) 2024; 14:2073. [PMID: 39061535 PMCID: PMC11274335 DOI: 10.3390/ani14142073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The experiment investigated the effects of sea-buckthorn flavonoids (SF) on lipopolysaccharide (LPS)-challenged broilers. A total of 288 one-day-old male broilers were randomly assigned to 4 groups, with 6 replicates of 12 broilers each. The experiment lasted for 20 days. The diet included two levels of SF (0 or 1000 mg/kg) and broilers intraperitoneally injected with 500 μg/kg LPS on 16, 18, and 20 days, or an equal amount of saline. LPS challenge decreased final body weight, average daily gain, and average daily feed intake, increased feed-to-gain ratio, and elevated serum IL-1β, IL-2, TNF-α, D-LA, and endotoxin levels. Moreover, it resulted in a reduction in the IL-10 level. LPS impaired the intestinal morphology of the duodenum, jejunum, and ileum, down-regulated the mRNA relative expression of Occludin, ZO-1, and MUC-2 in the jejunum mucosa, up-regulated the mRNA relative expression of TLR4, MyD88, NF-κB, and IL-1β, and increased the relative abundance of Erysipelatoclostridium in broilers (p < 0.05). However, SF supplementation mitigated the decrease in growth performance, reduced serum IL-1β, IL-2, and D-LA levels, increased IL-10 levels, alleviated intestinal morphological damage, up-regulated mRNA expression of Occludin and ZO-1, down-regulated the mRNA expression of TLR4, NF-κB, and IL-lβ in jejunum mucosal (p < 0.05), and SF supplementation presented a tendency to decrease the relative abundance of proteobacteria (0.05 < p < 0.1). Collectively, incorporating SF can enhance the growth performance, alleviate serum inflammation, and improve the intestinal health of broilers, effectively mitigating the damage triggered by LPS-challenges.
Collapse
Affiliation(s)
- Kexin Zhi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Fanwen Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Lele Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Zezheng Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Xiang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Huadi Mei
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Chenxing Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Yurong Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Zhuying Liu
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| |
Collapse
|
30
|
Ulusoy Ş, İnal E, Küpeli Akkol E, Çiçek M, Kartal M, Sobarzo-Sánchez E. Evaluation of the anti-obesity effect of Sambucus nigra L. (elderberry) and Vitex agnus-castus L. (chasteberry) extracts in high-fat diet-induced obese rats. Front Pharmacol 2024; 15:1410854. [PMID: 39055496 PMCID: PMC11269222 DOI: 10.3389/fphar.2024.1410854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
The aim of this study was to investigate the effects of S. nigra L. and V. agnus-castus L. plants on obesity in vivo. Extracts were prepared from S. nigra leaves, flowers, fruits and from V. agnus-castus leaves, flowers, and fruits using 100% water and 70% ethanol. The total phenol and flavonoid contents of the extracts were quantified spectrophotometrically. The findings revealed that the ethanol extracts of V. agnus-castus and S. nigra flowers had the highest phenolic content, while the ethanol extracts of S. nigra flowers and V. agnus-castus leaves had the highest flavonoid content. Qualification and quantification of the phenolic contents of the extracts were carried out using liquid chromatography-high resolution mass spectrometry (LC-HRMS) analyses. The study investigated the effects of various extracts on plasma levels of leptin, insulin, triiodothyronine (T3), thyroxine (T4), triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and lipase enzyme in obesity-induced rats. The results showed that the ethanol extract of V. agnus-castus flowers, as well as the ethanol and water extracts of V. agnus-castus leaves, resulted in body weight reduction in rats with obesity. Additionally, these extracts were found to decrease serum levels of LDL, triglycerides, leptin, lipase, TNF-α, and IL-1β while increasing levels of HDL and adiponectin. The LC-HRMS results demonstrated that all three extracts exhibited relatively high concentrations of luteolin-7-glycoside and kaempferol, in comparison to the other extracts. The ethanol extract of V. agnus-castus flowers contained 653.04 mg/100 g of luteolin-7-glycoside and 62.63 mg/100 g of kaempferol. The ethanol extract of V. agnus-castus leaves contained 1,720.26 mg/100 g of luteolin-7-glycoside and 95.85 mg/100 g of kaempferol. The water extract of V. agnus-castus leaves contained 690.49 mg/100 g of luteolin-7-glycoside and 194.41 mg/100 g of kaempferol. The study suggests that the ethanol extract of V. agnus-castus flowers and leaves, as well as the water extract of V. agnus-castus leaves, may have potential benefits in treating obesity. However, further controlled clinical studies are necessary to evaluate the clinical efficacy of V. agnus-castus in treating obesity and investigate the in vivo anti-obesogenic effects of luteolin-7-glycoside and kaempferol separately, both in their pure form and in combination.
Collapse
Affiliation(s)
- Şeyma Ulusoy
- Department of Pharmacognosy and Natural Products Chemistry, Institute of Health Sciences, Bezmialem Vakif University, Istanbul, Türkiye
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Ebrar İnal
- Department of Pharmacognosy and Natural Products Chemistry, Institute of Health Sciences, Bezmialem Vakif University, Istanbul, Türkiye
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Mahmut Çiçek
- Department of Pharmacognosy and Natural Products Chemistry, Institute of Health Sciences, Bezmialem Vakif University, Istanbul, Türkiye
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
- Bezmialem Center of Education, Practice, and Research in Phytotherapy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| |
Collapse
|
31
|
Dmytriv TR, Storey KB, Lushchak VI. Intestinal barrier permeability: the influence of gut microbiota, nutrition, and exercise. Front Physiol 2024; 15:1380713. [PMID: 39040079 PMCID: PMC11260943 DOI: 10.3389/fphys.2024.1380713] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
The intestinal wall is a selectively permeable barrier between the content of the intestinal lumen and the internal environment of the body. Disturbances of intestinal wall permeability can potentially lead to unwanted activation of the enteric immune system due to excessive contact with gut microbiota and its components, and the development of endotoxemia, when the level of bacterial lipopolysaccharides increases in the blood, causing chronic low-intensity inflammation. In this review, the following aspects are covered: the structure of the intestinal wall barrier; the influence of the gut microbiota on the permeability of the intestinal wall via the regulation of functioning of tight junction proteins, synthesis/degradation of mucus and antioxidant effects; the molecular mechanisms of activation of the pro-inflammatory response caused by bacterial invasion through the TLR4-induced TIRAP/MyD88 and TRAM/TRIF signaling cascades; the influence of nutrition on intestinal permeability, and the influence of exercise with an emphasis on exercise-induced heat stress and hypoxia. Overall, this review provides some insight into how to prevent excessive intestinal barrier permeability and the associated inflammatory processes involved in many if not most pathologies. Some diets and physical exercise are supposed to be non-pharmacological approaches to maintain the integrity of intestinal barrier function and provide its efficient operation. However, at an early age, the increased intestinal permeability has a hormetic effect and contributes to the development of the immune system.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
32
|
Sharma K, Sharma V. Allium sativum Essential Oil Supplementation Reverses the Hepatic Inflammation, Genotoxicity and Apoptotic Effects in Swiss Albino Mice Intoxicated with the Lead Nitrate. Biol Trace Elem Res 2024; 202:3258-3277. [PMID: 37964042 DOI: 10.1007/s12011-023-03924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Prolonged lead (Pb) exposure impairs human health due to its interference with physiological and biochemical processes. Therefore, it is necessary to investigate natural therapeutics to alleviate Pb-induced intoxication. In the current investigation, essential oil extracted from the fresh bulbs of Allium sativum was considered as a natural remedy. Initially, in vitro antioxidant and anti-inflammatory activity of A. sativum essential oil (ASEO) were explored. The results reported that ASEO exhibits potent antioxidant and anti-inflammatory potential. Additionally, an in vivo study was conducted to elucidate its preventive role against Lead-nitrate (LN)-induced hepatic damage in Swiss albino mice. The experimental mice were allocated into six groups: Control, LN-intoxicated group (50 mg/kg), LN + ASEO (50 mg/kg), LN + ASEO (80 mg/kg), LN + Silymarin (25 mg/kg), and LN + vehicle oil control group. The entire duration of the study was of 30 days. From the results, it was determined that LN exposure elevated the Pb content in hepatic tissues which subsequently increased the serum biomarkers, inflammatory cytokines (NF-kB, TNF-α, IL-6) as well as apoptotic factors (caspase-3, BAX), all of which contribute to DNA damage. Meanwhile, it reduced anti-inflammatory (IFN-γ and IL-10) and anti-apoptotic factors (Bcl-2). Furthermore, Pb accumulation in hepatic tissues changed the histological architecture, which was linked to necrosis, central vein dilation, inflammatory cell infiltration and Kupffer cell activation. In contrast to this, ASEO administration decreased the Pb content, which in turn reduced the level of serum biomarkers, inflammatory and apoptotic factors. At the same time, it increased the anti-inflammatory and anti-apoptotic factors, thereby reduced DNA damage and restored the hepatic histology. In conclusion, exhaustive research is of the utmost demand to elucidate the precise defense mechanisms of ASEO against LN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kusum Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India
| | - Veena Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India.
| |
Collapse
|
33
|
Leung HKM, Lo EKK, Zhang F, Felicianna, Ismaiah MJ, Chen C, El-Nezami H. Modulation of Gut Microbial Biomarkers and Metabolites in Cancer Management by Tea Compounds. Int J Mol Sci 2024; 25:6348. [PMID: 38928054 PMCID: PMC11203446 DOI: 10.3390/ijms25126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cancers are causing millions of deaths and leaving a huge clinical and economic burden. High costs of cancer drugs are limiting their access to the growing number of cancer cases. The development of more affordable alternative therapy could reach more patients. As gut microbiota plays a significant role in the development and treatment of cancer, microbiome-targeted therapy has gained more attention in recent years. Dietary and natural compounds can modulate gut microbiota composition while providing broader and more accessible access to medicine. Tea compounds have been shown to have anti-cancer properties as well as modulate the gut microbiota and their related metabolites. However, there is no comprehensive review that focuses on the gut modulatory effects of tea compounds and their impact on reshaping the metabolic profiles, particularly in cancer models. In this review, the effects of different tea compounds on gut microbiota in cancer settings are discussed. Furthermore, the relationship between these modulated bacteria and their related metabolites, along with the mechanisms of how these changes led to cancer intervention are summarized.
Collapse
Affiliation(s)
- Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
34
|
Shin SK, Kwon EY. Kaempferol ameliorates metabolic syndrome by inhibiting inflammation and oxidative stress in high-fat diet-induced obese mice. Nutr Res Pract 2024; 18:325-344. [PMID: 38854471 PMCID: PMC11156765 DOI: 10.4162/nrp.2024.18.3.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES Kaempferol (Ka) is one of the most widely occurring flavonoids found in large amounts in various plants. Ka has anti-obesity, antioxidant, and anti-inflammatory effects. Despite the numerous papers documenting the efficacy of Ka, some controversy remains. Therefore, this study examined the impact of Ka using 3T3-L1 and high-fat diet-induced obese mice. MATERIALS/METHODS 3T3-L1 cells were treated with 50 μM Ka from the initiation of 3T3-L1 differentiation at D0 until the completion of differentiation on D8. Thirty male mice (C57BL/6J, 4 weeks old) were divided into 3 groups: normal diet (ND), high-fat diet (HFD), and HFD + 0.02% (w/w) Ka (Ka) group. All mice were fed their respective diets ad libitum for 16 weeks. The mice were sacriced, and the plasma and hepatic lipid levels, white adipose tissue weight, hepatic glucose level, lipid level, and antioxidant enzyme activities were analyzed, and immunohistochemistry staining was performed. RESULTS Ka suppressed the hypertrophy of 3T3-L1 cells, and the Ka-supplemented mice showed a significant decrease in perirenal, retroperitoneal, mesenteric, and subcutaneous fat compared to the HFD group. Ka supplementation in high-fat diet-induced obese mice also improved the overall blood lipid concentration (total cholesterol, non-high-density lipoprotein-cholesterol, phospholipids, and apolipoprotein B). Ka supplementation in high-fat-induced obesity mice reduced hepatic steatosis and insulin resistance by modulating the hepatic lipid (glucose-6-phosphate dehydrogenase, fatty acid synthase, malic enzyme, phosphatidate phosphohydrolase, and β-oxidation) activities and glucose (glucokinase, phosphoenolpyruvate carboxykinase, and G6pase)-regulating enzymes. Ka supplementation ameliorated the erythrocyte and hepatic mitochondrial H2O2 and inflammation levels (plasma tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6, and interferon-gamma and fibrosis of liver and epididymal fat). CONCLUSION Ka may be beneficial for preventing diet-induced obesity, inflammation, oxidative stress, and diabetes.
Collapse
Affiliation(s)
- Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea
- Center for Beautiful Aging, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
35
|
Yao YX, Yu YJ, Dai S, Zhang CY, Xue XY, Zhou ML, Yao CH, Li YX. Kaempferol efficacy in metabolic diseases: Molecular mechanisms of action in diabetes mellitus, obesity, non-alcoholic fatty liver disease, steatohepatitis, and atherosclerosis. Biomed Pharmacother 2024; 175:116694. [PMID: 38713943 DOI: 10.1016/j.biopha.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
The incidence of metabolic diseases has progressively increased, which has a negative impact on human health and life safety globally. Due to the good efficacy and limited side effects, there is growing interest in developing effective drugs to treat metabolic diseases from natural compounds. Kaempferol (KMP), an important flavonoid, exists in many vegetables, fruits, and traditional medicinal plants. Recently, KMP has received widespread attention worldwide due to its good potential in the treatment of metabolic diseases. To promote the basic research and clinical application of KMP, this review provides a timely and comprehensive summary of the pharmacological advances of KMP in the treatment of four metabolic diseases and its potential molecular mechanisms of action, including diabetes mellitus, obesity, non-alcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), and atherosclerosis. According to the research, KMP shows remarkable therapeutic effects on metabolic diseases by regulating multiple signaling transduction pathways such as NF-κB, Nrf2, AMPK, PI3K/AKT, TLR4, and ER stress. In addition, the most recent literature on KMP's natural source, pharmacokinetics studies, as well as toxicity and safety are also discussed in this review, thus providing a foundation and evidence for further studies to develop novel and effective drugs from natural compounds. Collectively, our manuscript strongly suggested that KMP could be a promising candidate for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yu-Xin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yu-Jie Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Chao-Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xin-Yan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Meng-Ling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Chen-Hao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yun-Xia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China.
| |
Collapse
|
36
|
Jiang C, Wang S, Wang Y, Wang K, Huang C, Gao F, Peng Hu H, Deng Y, Zhang W, Zheng J, Huang J, Li Y. Polyphenols from hickory nut reduce the occurrence of atherosclerosis in mice by improving intestinal microbiota and inhibiting trimethylamine N-oxide production. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155349. [PMID: 38522315 DOI: 10.1016/j.phymed.2024.155349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO), a metabolite produced by intestinal microbiota through metabolizing phosphatidylcholine, choline, l-carnitine and betaine in the diet, has been implicated in the pathogenesis of atherosclerosis (AS). Concurrently, dietary polyphenols have garnered attention for their potential to ameliorate obesity, diabetes and atherosclerosis primarily by modulating the intestinal microbial structure. Hickory (Carya cathayensis) nut, a polyphenol-rich food product favored for its palatability, emerges as a candidate for exploration. HYPOTHESIS/PURPOSE The relationship between polyphenol of hickory nut and atherosclerosis prevention will be firstly clarified, providing theoretical basis for the discovery of natural products counteracting TMAO-induced AS process in hickory nut. STUDY DESIGN AND METHODS Employing Enzyme-linked Immunosorbent Assay (ELISA) and histological examination of aortic samples, the effects of total polyphenol extract on obesity index, inflammatory index and pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high choline diet were evaluated. Further, the composition, abundance, and function of mouse gut microbiota were analyzed through 16srDNA sequencing. Concurrently, the levels of TMAO and the expression of key enzymes (CutC and FMO3) involved in its synthesis are quantified using ELISA, Western Blot and Real-Time Quantitative PCR (RT-qPCR). Additionally, targeted metabolomic profiling of the hickory nut polyphenol extract was conducted, accompanied by molecular docking simulations to predict interactions between candidate polyphenols and the CutC/FMO3 using Autodock Vina. Finally, the docking prediction were verified by microscale thermophoresis (MST) . RESULTS Polyphenol extracts of hickory nut improved the index of obesity and inflammation, and alleviated the pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high-choline diet. Meanwhile, these polyphenol extracts also changed the composition and function of intestinal microbiota, and increased the abundance of microorganisms in mice. Notably, the abundance of intestinal microbiota endowed with CutC gene was significantly reduced, coherent with expression of CutC catalyzing TMA production. Moreover, polyphenol extracts also decreased the expression of FMO3 in the liver, contributing to the reduction of TMAO levels in serum. Furthermore, metabonomic profile analysis of these polyphenol extracts identified 647 kinds of polyphenols. Molecular docking predication further demonstrated that Casuariin and Cinnamtannin B2 had the most potential inhibition on the enzymatic activities of CutC or FMO3, respectively. Notably, MST analysis corroborated the potential for direct interaction between CutC enzyme and available polyphenols such as Corilagin, (-)-Gallocatechin gallate and Epigallocatechin gallate. CONCLUSION Hickory polyphenol extract can mitigate HFD-induced AS by regulating intestinal microflora in murine models. In addition, TMA-FMO3-TMAO pathway may play a key role in this process. This research unveils, for the inaugural time, the complex interaction between hickory nut-derived polyphenols and gut microbial, providing novel insights into the role of dietary polyphenols in AS prevention.
Collapse
Affiliation(s)
- Chenyu Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Song Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Yihan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Fei Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Huang Peng Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Yangyong Deng
- Hangzhou Yaoshengji Food Co., Ltd, Hangzhou, Zhejiang 310052, China
| | - Wen Zhang
- Suichang County Food and Drug Safety Inspection and Testing Center, Suichang, Zhejiang 323300, China
| | - Jian Zheng
- Suichang County Food and Drug Safety Inspection and Testing Center, Suichang, Zhejiang 323300, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China.
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China.
| |
Collapse
|
37
|
Chae YR, Lee YR, Kim YS, Park HY. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J Microbiol Biotechnol 2024; 34:747-756. [PMID: 38321650 DOI: 10.4014/jmb.2312.12031] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.
Collapse
Affiliation(s)
- Yu-Rim Chae
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
38
|
Alrumaihi F, Almatroodi SA, Alharbi HOA, Alwanian WM, Alharbi FA, Almatroudi A, Rahmani AH. Pharmacological Potential of Kaempferol, a Flavonoid in the Management of Pathogenesis via Modulation of Inflammation and Other Biological Activities. Molecules 2024; 29:2007. [PMID: 38731498 PMCID: PMC11085411 DOI: 10.3390/molecules29092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Kaempferol, a flavonoid found in vegetables, fruits, and spices, is recognized for its various beneficial properties, including its antioxidant and anti-inflammatory potential. This molecule has been identified as a potential means of managing different pathogenesis due to its capability to manage various biological activities. Moreover, this compound has a wide range of health-promoting benefits, such as cardioprotective, neuroprotective, hepatoprotective, and anti-diabetic, and has a role in maintaining eye, skin, and respiratory system health. Furthermore, it can also inhibit tumor growth and modulate various cell-signaling pathways. In vivo and in vitro studies have demonstrated that this compound has been shown to increase efficacy when combined with other natural products or drugs. In addition, kaempferol-based nano-formulations are more effective than kaempferol treatment alone. This review aims to provide detailed information about the sources of this compound, its bioavailability, and its role in various pathogenesis. Although there is promising evidence for its ability to manage diseases, it is crucial to conduct further investigations to know its toxicity, safety aspects, and mechanism of action in health management.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fadiyah A. Alharbi
- Department of Obstetrics/Gynecology, Maternity and Children’s Hospital, Buraydah 52384, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
39
|
Xiao H, Yin D, Du L, Li G, Lin J, Fang C, Shen S, Xiao G, Fang R. Effects of pork sausage on intestinal microecology and metabolism in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3413-3427. [PMID: 38111159 DOI: 10.1002/jsfa.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/01/2023] [Accepted: 12/16/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Processed meat, as an important part of the human diet, has been recognized as a carcinogen by the International Agency for Research on Cancer (IARC). Although numerous epidemiological reports supported the IARC's view, the relevant evidence of a direct association between processed meat and carcinogenicity has been insufficient and the mechanism has been unclear. This study aims to investigate the effects of pork sausage (as a representative example of processed meat) intake on gut microbial communities and metabolites of mice. Microbial communities and metabolites from all groups were analyzed using 16S rRNA gene sequencing and Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometer (UPLC-Q-TOF/MS), respectively. RESULTS The levels of Bacteroidetes, Bacteroides, Alloprevotella, Lactobacillus, Prevotella_9, Lachnospiraceae_NK4A136_group, Alistipes, Blautia, Proteobacteria, Firmicutes, Allobaculum, Helicobacter, Desulfovibrio, Clostridium_sensu_stricto_1, Ruminococcaceae_UCG-014, Lachnospiraceae_UCG-006 and Streptococcus (P < 0.05) were obviously altered in the mice fed a pork sausage diet. Twenty-seven metabolites from intestinal content samples and fourteen matabolites from whole blood samples were identified as potential biomarkers from multivariate analysis, including Phosphatidic acid (PA), Sphingomyelin (SM), Lysophosphatidylcholine (LysoPC), Diglyceride (DG), D-maltose, N-acylamides and so forth. The significant changes in these biomarkers demonstrate metabonomic variations in pork sausage treated rats, especially carbohydrate metabolism, lipid metabolism, and amino acid metabolism. CONCLUSION The present study provided evidence that a processed meat diet can increase the risk of colorectal cancer and other diseases significantly by altering the microbial community structure and disrupting the body's metabolic pathways. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hailong Xiao
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Danhan Yin
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Lidan Du
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Gaotian Li
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Jie Lin
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Chenyu Fang
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Shaolin Shen
- Hangzhou Xiaoshan Institute of Measurement for Quality and Technique Supervision, Hangzhou, China
| | - Gongnian Xiao
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ruosi Fang
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
40
|
Xu C, Zhang X, Wang Y, Wang Y, Zhou Y, Li F, Hou X, Xia D. Dietary kaempferol exerts anti-obesity effects by inducing the browing of white adipocytes via the AMPK/SIRT1/PGC-1α signaling pathway. Curr Res Food Sci 2024; 8:100728. [PMID: 38577419 PMCID: PMC10990952 DOI: 10.1016/j.crfs.2024.100728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Browning of white adipose tissue is a novel approach for the management of obesity and obesity-related metabolic disorders. Kaempferol (KPF) is a common dietary nutrient found abundantly in many fruits and vegetables and has been shown to have the potential to regulate lipid metabolism. However, the detailed mechanism by which it affects the browning of white adipose tissue remains unclear. In the present study, we sought to determine how KPF induces adipocytes to undergo a browning transformation by establishing a primary adipocyte model and an obese mouse model. Our results showed that KPF-treated mice were rescued from diet-induced obesity, glucose tolerance and insulin resistance, associated with increased expression of adaptive thermogenesis-related proteins. KPF-promoted white adipose browning correlated with the AMPK/SIRT1/PGC-1α pathway, as the use of an AMPK inhibitor in preadipocytes partially reversed the observed browning phenotype of KPF-treated cells. Taken together, these data suggest that KPF promotes browning of white adipose tissue through activation of the AMPK/SIRT1/PGC-1α pathway. This study demonstrates that KPF is a promising natural product for the treatment of obesity by promoting white fat browning.
Collapse
Affiliation(s)
- Changyu Xu
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoxi Zhang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yihuan Wang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Wang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yixuan Zhou
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fenfen Li
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoli Hou
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Daozong Xia
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
41
|
Baranowska-Wójcik E, Winiarska-Mieczan A, Olcha P, Kwiecień M, Jachimowicz-Rogowska K, Nowakowski Ł, Miturski A, Gałczyński K. Polyphenols Influence the Development of Endometrial Cancer by Modulating the Gut Microbiota. Nutrients 2024; 16:681. [PMID: 38474808 DOI: 10.3390/nu16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Dysbiosis of the microbiota in the gastrointestinal tract can induce the development of gynaecological tumours, particularly in postmenopausal women, by causing DNA damage and alterations in metabolite metabolism. Dysbiosis also complicates cancer treatment by influencing the body's immune response and disrupting the sensitivity to chemotherapy drugs. Therefore, it is crucial to maintain homeostasis in the gut microbiota through the effective use of food components that affect its structure. Recent studies have shown that polyphenols, which are likely to be the most important secondary metabolites produced by plants, exhibit prebiotic properties. They affect the structure of the gut microbiota and the synthesis of metabolites. In this review, we summarise the current state of knowledge, focusing on the impact of polyphenols on the development of gynaecological tumours, particularly endometrial cancer, and emphasising that polyphenol consumption leads to beneficial modifications in the structure of the gut microbiota.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Piotr Olcha
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, Aleje Racławickie 23, 20-049 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Łukasz Nowakowski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Andrzej Miturski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Krzysztof Gałczyński
- Faculty of Medical Sciences and Health Sciences, Siedlce University of Natural Sciences and Humanities, Konarskiego 2, 08-110 Siedlce, Poland
| |
Collapse
|
42
|
Hao J, Zhang J, Wu T. Fucoxanthin extract ameliorates obesity associated with modulation of bile acid metabolism and gut microbiota in high-fat-diet fed mice. Eur J Nutr 2024; 63:231-242. [PMID: 37831134 DOI: 10.1007/s00394-023-03256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Fucoxanthin extract (FX) is a type of carotenoid with a beneficial effect against obesity. The purpose of this study was to explore its precise action mechanism of losing weight. METHODS A high-fat diet induced obesity mouse model was established to study the effects of different doses of FX on C57BL/6J male mice for 12 weeks. Following intervention, serum indices, tissue sections, liver gene expression, and intestinal microorganisms were analyzed. RESULTS FX at low, medium, and high dosages (80, 160, and 320 mg/kg/day, respectively) for 12 weeks was associated with the lower body weight of mice when compared to that of high-fat-diet fed mice. It also improved glucose tolerance as well as serum lipid levels, and reduced fat accumulation. Significant regulation of bile acid metabolism and intestinal microbiota may contribute to the above effects. The bile acids in the FXH group were significantly increased. A low-dose and a medium-dose FX increased the level of transmembrane G protein-coupled receptor 5 (TGR5); a low-dose and high-dose FX increased the farnesoid X receptor (FXR) expression, and a medium-dose had no effect. 16S rRNA sequencing indicated that the Lachnospiraceae and Oscillospiraceae contributed to the beneficial effects of FX. CONCLUSION Our study sheds light on mechanisms behind the weight-lowering of FX, and manifested that bile acid metabolism and gut microbiota may be potential therapies. These results support that FX is a valuable candidate for promoting health and alleviating obesity.
Collapse
Affiliation(s)
- Junyu Hao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jinxuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
43
|
Xiang L, Du T, Zhang J, Zhang Y, Zhou Y, Zhao Y, Zhou Y, Ma L. Vitamin D 3 supplementation shapes the composition of gut microbiota and improves some obesity parameters induced by high-fat diet in mice. Eur J Nutr 2024; 63:155-172. [PMID: 37740812 DOI: 10.1007/s00394-023-03246-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE Individuals with vitamin D (VD) insufficiency have a greater tendency to develop obesity and have increased systemic inflammation. Gut microbiota are involved in the regulation of host inflammation and energy metabolism, which plays a role in the pathogenesis of obesity. Thus, we aimed to evaluate the effects of different doses of VD3 on body weight, serum lipids, inflammatory factors, and intestinal barrier function in obese mice and to explore the regulatory effect of VD3 on gut microbiota in obese mice. METHODS Male C57BL/6 J mice received a normal chow diet (NCD, 10% fat) or high-fat diet (HFD, 60% fat) to induce obesity within 10 weeks. Then, HFD mice were supplemented with 5650, 8475, or 11,300 IU VD3/kg diet for 8 weeks. Finally, 16 s rRNA analysis was performed to analyze gut microbiota composition in cecal contents. In addition, body weight, serum lipids, inflammatory factors, and intestinal barrier function were analyzed. RESULTS VD3 supplementation reduced body weight and the levels of TG, TC, HDL-C, TNF-α, IL-1β and LPS, and increased ZO-1 in HFD-fed mice. Moreover, it increased α-diversity, reduced F/B ratio and altered microbiota composition by increasing relative abundance of Bacteroidetes, Proteobacteria, Desulfovibrio, Dehalobacterium, Odoribacter, and Parabacteroides and reducing relative abundance of Firmicutes and Ruminococcus. There were significant differences between HFD and NCD groups in several metabolic pathways, including endotoxin biosynthesis, tricarboxylic acid cycle, lipid synthesis and metabolism, and glycolysis. CONCLUSIONS Low, medium, and high doses of VD3 inhibited weight gain, reduced levels of blood lipids and inflammatory factors, and improved endotoxemia and gut barrier function in obese mice. It also increased the α-diversity of gut microbiota in obese mice and reduced the relative abundance of some intestinal pathogenic bacteria, increased the relative abundance of some beneficial bacteria, and corrected the intestinal flora disorder of obese mice, with the low- and high-dose groups showing better effects than the medium-dose group.
Collapse
Affiliation(s)
- Lian Xiang
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Tingwan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jingjing Zhang
- Department of Clinical Nutrition, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuanfan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yanqiu Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yueying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Southwest Medical University, Luzhou, China.
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China.
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China.
| |
Collapse
|
44
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Ocampo-Anguiano PV, Victoria-Ruiz LL, Reynoso-Camacho R, Olvera-Ramírez AM, Rocha-Guzmán NE, Ramos-Gómez M, Ahumada-Solórzano SM. Ingestion of Bean Leaves Reduces Metabolic Complications and Restores Intestinal Integrity in C57BL/6 Mice with Obesity Induced by a High-Fat and High-Fructose Diet. Nutrients 2024; 16:367. [PMID: 38337654 PMCID: PMC10856891 DOI: 10.3390/nu16030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Consumption of foods with fiber and compounds can promote gastrointestinal health and reduce obesity complications. Therefore, treatment with common bean leaves (BL) against obesity was evaluated in mice with a high-fat and high-fructose diet (HFFD) for 14 weeks. The bromatological and phytochemical characterization of BL were determined. Afterwards, the animals were supplemented with BL (10%) or a standard diet (SD) as a strategy to encourage a healthy diet for 12 additional weeks. Changes in body composition, lipid profile, and intestinal integrity were analyzed. The characterization of BL stood out for its content of 27.2% dietary fiber, total phenolics (475.04 mg/100 g), and saponins (2.2 mg/100 g). The visceral adipose tissue (VAT) decreased in the BL group by 52% compared to the HFFD group. Additionally, triglyceride levels were 23% lower in the BL consumption group compared to the HFFD group. The improvement in lipid profile was attributed to the 1.77-fold higher fecal lipid excretion in the BL consumption group compared to the HFFD group and the inhibition of pancreatic lipase by 29%. Furthermore, BL supplementation reduced the serum levels of IL-6 (4.4-fold) and FITC-dextran by 50% compared with those in the HFFD group. Metabolic endotoxemia was inhibited after BL supplementation (-33%) compared to the HFFD group. BL consumption as a treatment in obese mice reduces adipose tissue accumulation and improves the lipid profile. Furthermore, we report for the first time that BL consumption improves intestinal integrity.
Collapse
Affiliation(s)
- Perla Viridiana Ocampo-Anguiano
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
- Interdisciplinary Research in Biomedicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico
| | - Laura Lizeth Victoria-Ruiz
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Rosalía Reynoso-Camacho
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Andrea Margarita Olvera-Ramírez
- Department of Veterinary Medicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico;
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Durango 34080, Mexico;
| | - Minerva Ramos-Gómez
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Santiaga Marisela Ahumada-Solórzano
- Interdisciplinary Research in Biomedicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico
| |
Collapse
|
46
|
Zysk W, Mesjasz A, Trzeciak M, Horvath A, Plata-Nazar K. Gastrointestinal Comorbidities Associated with Atopic Dermatitis-A Narrative Review. Int J Mol Sci 2024; 25:1194. [PMID: 38256267 PMCID: PMC10815992 DOI: 10.3390/ijms25021194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The current understanding of atopic dermatitis (AD) seems to be extending beyond a skin-confined condition frequently associated with allergic comorbidities, as in a number of epidemiological studies, the prevalence rate of a range of illnesses has been determined to be greater in patients with AD, or inversely. In most cases, the reasons for this are vague. A subset of these conditions are gastrointestinal disorders, including food sensitization (FS) and food allergy (FA), eosinophilic esophagitis (EoE) (it is of mixed background, both IgE-dependent and independent), food protein-induced enterocolitis syndrome (FPIES) (it exemplifies an IgE-independent food allergy), Crohn's disease (CD), colitis ulcerosa (CU), celiac disease, irritable bowel syndrome (IBS), and gastroesophageal reflux disease (GERD). In this review, we performed a comprehensive search of the literature using the PubMed database. We addressed the epidemiology of the increased co-occurrence of these diseases with AD and discussed potential causes for this subject. Multiple gastroenterological comorbidities appear to be more common in patients with AD, according to our review. The mechanisms that underlie this phenomenon are largely unknown, highlighting the need for further study in this field.
Collapse
Affiliation(s)
- Weronika Zysk
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Alicja Mesjasz
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Andrea Horvath
- Department of Paedistrics, Medical University of Warsaw, Żwirki I Wigury 63a, 02-091 Warszawa, Poland;
| | - Katarzyna Plata-Nazar
- Department of Paediatrics, Gastroenterology, Allergology and Paediatric Nutrition, Faculty of Medicine, Medical University of Gdańsk, Nowe Ogrody 1-6, 80-803 Gdańsk, Poland;
| |
Collapse
|
47
|
Wang H, Yan J, Wang K, Liu Y, Liu S, Wu K, Wang X, Haider A, Liu Y, Zhou Q, Wang X. The gut-liver axis perspective: Exploring the protective potential of polysaccharides from Cistanche deserticola against alcoholic liver disease. Int J Biol Macromol 2024; 256:128394. [PMID: 38013074 DOI: 10.1016/j.ijbiomac.2023.128394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
The primary objective of this study is to investigate the potential mechanism behind the protective effect of Cistanche deserticola polysaccharides (CP) against alcoholic liver disease (ALD). Multiple chromography techniques were employed to characterize CP from polysaccharide, the molecular weight distribution of polysaccharides, monosaccharide composition, isomeric hydrogen and isomeric carbon, in order to clarify the material basis of CP. To create the ALD mouse model, we utilized the well-established Lieber-DeCarli alcoholic liquid feed method. Findings from the study revealed that CP administration resulted in significant improvements in intestinal permeability, upregulation of barrier proteins expression, and reduced levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in mouse liver and serum. Additionally, CP treatment reduced the presence of inflammatory cytokines both in serum and liver while enhancing the activity of antioxidant enzymes in the liver. Furthermore, CP effectively reduced alcohol-induced oxidative damage by downregulating Keap1 protein levels in the liver, leading to increased expression of Nrf2 protein. The 16S rDNA sequencing results revealed that CP significantly restored the intestinal microbiota composition in ALD mice. These findings establish a strong association between gut microbiota and liver injury indicators, highlighting the potential of CP in preventing and treating ALD by modulating the gut-liver axis.
Collapse
Affiliation(s)
- Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Jiajing Yan
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Reyoung Pharmaceutical Co., Ltd. Jinan Branch, Jinan 250014, China
| | - Kai Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yang Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Shan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xumei Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, 50700, Pakistan
| | - Yuhong Liu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| | - Qian Zhou
- Shandong Academy of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
48
|
Chu T, Yu R, Gu Y, Wang Y, Chang H, Li Y, Li J, Bian Y. Kaempferol protects gut-vascular barrier from high glucose-induced disorder via NF-κB pathway. J Nutr Biochem 2024; 123:109496. [PMID: 37871766 DOI: 10.1016/j.jnutbio.2023.109496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Kaempferol is a natural edible flavonoid reported to treat high-fat diet-induced intestinal inflammation; however, the underlying molecular mechanisms remain unclear. This research aims to investigate the protective effect of kaempferol on the gut-vascular barrier (GVB) induced by high glucose and elucidate the underlying mechanism. Evans blue albumin efflux assay was used to test endothelial cell permeability. The results showed that kaempferol (50 μM) significantly reversed the high glucose-induced monolayer barrier permeability of rat intestinal microvascular endothelial cells (RIMVECs), while kaempferol significantly alleviated the high glucose-induced rarefication of the tight junction protein Claudin-5. Moreover, kaempferol also reduced high glucose-induced angiogenesis and cell migration via inhibiting the VEGFR2/p38 pathway. Kaempferol also protected against high glucose-induced overproduction of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 by inhibiting NF-κB p65 nuclear translocation. In addition, kaempferol had similar effects to the NF-κB inhibitor SN50 in reducing high glucose-induced ICAM-1 expression and endothelial barrier permeabilization. Our findings in part reveal the pathological mechanism of hyperglycemia-related gastrointestinal diseases and underlie the molecular mechanism of kaempferol in inhibiting bowel inflammation from a novel perspective.
Collapse
Affiliation(s)
- Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China
| | - Ruyang Yu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Yinping Gu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Yuman Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China
| | - Hongyuan Chang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China
| | - Yaying Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China.
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China.
| |
Collapse
|
49
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
50
|
Tu T, Liu H, Liu Z, Liang Y, Tan C, Feng D, Zou J. Amelioration of Atherosclerosis by lycopene is linked to the modulation of gut microbiota dysbiosis and related gut-heart axis activation in high-fat diet-fed ApoE -/- mice. Nutr Metab (Lond) 2023; 20:53. [PMID: 38041095 PMCID: PMC10691047 DOI: 10.1186/s12986-023-00772-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Interplay between gut microbiota and heart, termed "gut-heart" axis, has a crucial role in the pathogenesis of atherosclerosis. Our previous study showed that lycopene possesses anti-inflammatory and anti-atherosclerotic effects, but its link to the gut microbiota is poorly understood. Herein, we surmised that lycopene could regulate the gut microbiota, exert anti-atherosclerotic effect by regulating the "gut-heart" axis. METHODS Male ApoE-/- mice were fed a high-fat diet (HFD) with or without lycopene (0.1% w/w) for 19 weeks. Gut microbiota was analyzed by 16 S rRNA sequencing, the protein levels of zonula occludens-1 (ZO-1), occludin, toll-like receptor 4 (TLR4) and phospho-nuclear factor-κB (NF-κB) p65 were measured by Western blotting, the levels of serum inflammatory factors including monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 were assayed using ELISA kits. Also, the concentrations of serum lipopolysaccharide (LPS), D-lactic acid (D-LA) and diamine peroxidase (DAO) were measured through ELISA method. RESULTS The aortic sinus sections revealed that lycopene supplementation significantly reduced the extent of atherosclerotic lesions and inhibited atherosclerosis development caused by HFD. The analysis of gut microbiota showed that lycopene reduced the ratio of Firmicutes/Bacteroides and increased the relative abundance of Verrucomicrobia, Akkermansia and Alloprevotella, which were related to elevated intestinal barrier function and reduced inflammation. Moreover, lycopene up-regulated the expression of intestinal ZO-1 and occludin and decreased serum LPS, D-LA and DAO levels. In addition, lycopene inhibited the expression of TLR4 and phospho-NF-κB p65 in aortic sinus plaque, serum MCP-1, TNF-α, IL-1β, and IL-6 levels were also lowered by lycopene treatment. CONCLUSIONS Our results indicated the protective effect of lycopene against atherosclerosis induced by HFD and further revealed that its mechanism might be its prebiotic effect on maintaining gut microbiota homeostasis and improving intestinal barrier function, consequently reducing serum LPS-triggered inflammatory response in the heart.
Collapse
Affiliation(s)
- Tengcan Tu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, 120 Guidan Road, Foshan, 528200, Guangdong Province, China
| | - Hao Liu
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China
| | - Zhenhao Liu
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Yunyi Liang
- Health Management Center, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Chujun Tan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Dan Feng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jun Zou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China.
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, 120 Guidan Road, Foshan, 528200, Guangdong Province, China.
| |
Collapse
|