1
|
Afhkami F, Ahmadi P, Rostami G. Cytotoxicity of Different Concentrations of Silver Nanoparticles and Calcium Hydroxide for MC3T3-E1 Preosteoblast Cell Line. Clin Exp Dent Res 2025; 11:e70075. [PMID: 39967043 PMCID: PMC11835769 DOI: 10.1002/cre2.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
INTRODUCTION With the advances in nanotechnology, nanomaterials are increasingly used in various fields due to their antibacterial properties; therefore, assessing the benefits and risks associated with the application of medicaments is imperative. This study evaluated the cytotoxicity of different concentrations of silver nanoparticles (AgNPs) and calcium hydroxide (CH) for MC3T3-E1 preosteoblast cell line. MATERIAL AND METHODS The MC3T3-E1 preosteoblast cells were exposed to triple antibiotic paste (TAP), AgNPs, CH, and different concentrations of AgNPs mixed with CH in 1:1, 1:2, and 1:3 ratios for 24, 48, and 72 h. Cytotoxicity was evaluated by the methyl thiazolyl tetrazolium (MTT) assay, and also the colony formation assay (CFA) was performed. RESULTS At 24 h, the TAP and AgNPs groups showed the highest and the CH-AgNPs/1:3 group had the lowest cell viability percentage in comparison to the other experimental groups. At 48 h, the TAP group showed the highest and the CH-AgNPs/1:3 group showed the lowest cell viability. At 72 h, the AgNPs and CH groups showed the highest viability, while the lowest viability was noted in the CH-AgNPs/1:3 and CH-AgNPs/1:2 groups. CONCLUSION AgNPs showed the least cytotoxic effects in all periods. The addition of AgNPs to CH increases the cytotoxic effects of CH on experimental cells. After 48 and 72 h, CH-AgNPs/1:1 showed significantly higher cell viability in comparison to higher concentrations.
Collapse
|
2
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Sharifi R, Vatani A, Sabzi A, Safaei M. A narrative review on application of metal and metal oxide nanoparticles in endodontics. Heliyon 2024; 10:e34673. [PMID: 39145007 PMCID: PMC11320137 DOI: 10.1016/j.heliyon.2024.e34673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
The distinct physicochemical and biological characteristics of metal and metal oxide nanoparticles have attracted considerable interest in various branches of dentistry as potential solutions to the problems associated with conventional dental treatments and to promote human health. Many scientists have been interested in nanoparticles for endodontic applications in the last several decades. Endodontic treatment is more likely to be successful when metal and metal oxide nanoparticles are used. Endodontic therapies often make use of nanoparticles made of metals and metal oxides. The effect of nano metals and metal oxide in endodontic treatments has not been published or is not widely available in the literature. Therefore, this paper aims to review recent studies on the development and application of some important metal and metal oxide nanoparticles such as silver and silver oxide, zinc oxide, zirconium oxide, magnesium oxide, titanium dioxide and other metal oxide nanoparticles in endodontic therapeutic procedures.
Collapse
Affiliation(s)
- Roohollah Sharifi
- Advanced Dental Sciences and Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Vatani
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Sabzi
- Advanced Dental Sciences and Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Safaei
- Advanced Dental Sciences and Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Petcov TE, Straticiuc M, Iancu D, Mirea DA, Trușcă R, Mereuță PE, Savu DI, Mogoșanu GD, Mogoantă L, Popescu RC, Kopatz V, Jinga SI. Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures. J Funct Biomater 2024; 15:169. [PMID: 38921542 PMCID: PMC11204647 DOI: 10.3390/jfb15060169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoparticle (NP)-based solutions for oncotherapy promise an improved efficiency of the anticancer response, as well as higher comfort for the patient. The current advancements in cancer treatment based on nanotechnology exploit the ability of these systems to pass biological barriers to target the tumor cell, as well as tumor cell organelles. In particular, iron oxide NPs are being clinically employed in oncological management due to this ability. When designing an efficient anti-cancer therapy based on NPs, it is important to know and to modulate the phenomena which take place during the interaction of the NPs with the tumor cells, as well as the normal tissues. In this regard, our review is focused on highlighting different approaches to studying the internalization patterns of iron oxide NPs in simple and complex 2D and 3D in vitro cell models, as well as in living tissues, in order to investigate the functionality of an NP-based treatment.
Collapse
Affiliation(s)
- Teodora Eliana Petcov
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| | - Mihai Straticiuc
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Decebal Iancu
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Dragoș Alexandru Mirea
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Roxana Trușcă
- National Research Center for Micro and Nanomaterials, National University for Science and Technology Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Paul Emil Mereuță
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - George Dan Mogoșanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - Verena Kopatz
- Department of Radiation Oncology, Medical University of Vienna, 18–20 Waehringer Guertel Street, 1090 Vienna, Austria;
| | - Sorin Ion Jinga
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| |
Collapse
|
5
|
Shu F, Chen H, Zhang Z, Dun Z, Lv W, Sun W, Liu M. Shear Bond Strength to Enamel, Mechanical Properties and Cellular Studies of Fiber-Reinforced Composites Modified by Depositing SiO 2 Nanofilms on Quartz Fibers via Atomic Layer Deposition. Int J Nanomedicine 2024; 19:2113-2136. [PMID: 38476282 PMCID: PMC10929249 DOI: 10.2147/ijn.s446584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Poor interfacial bonding between the fibers and resin matrix in fiber-reinforced composites (FRCs) is a significant drawback of the composites. To enhance the mechanical properties of FRC, fibers were modified by depositing SiO2 nanofilms via the atomic layer deposition (ALD) technique. This study aims to evaluate the effect of ALD treatment of the fibers on the mechanical properties of the FRCs. Methods The quartz fibers were modified by depositing different cycles (50, 100, 200, and 400) of SiO2 nanofilms via the ALD technique and FRCs were proposed from the modified fibers. The morphologies, surface characterizations of nanofilms, mechanical properties, and cytocompatibility of FRCs were systematically investigated. Moreover, the shear bond strength (SBS) of FRCs to human enamel was also evaluated. Results The SEM and SE results showed that the ALD-deposited SiO2 nanofilms have good conformality and homogeneity. According to the results of FTIR and TGA, SiO2 nanofilms and quartz fiber surfaces had good chemical combinations. Three-point bending tests with FRCs showed that the deposited SiO2 nanofilms effectively improved FRCs' strength and Group D underwent 100 deposition cycles and had the highest flexural strength before and after aging. Furthermore, the strength of the FRCs demonstrated a crescendo-decrescendo tendency with SiO2 nanofilm thickness increasing. The SBS results also showed that Group D had outstanding performance. Moreover, the results of cytotoxicity experiments such as cck8, LDH and Elisa, etc., showed that the FRCs have good cytocompatibility. Conclusion Changing the number of ALD reaction cycles affects the mechanical properties of FRCs, which may be related to the stress relaxation and fracture between SiO2 nanofilm layers and the built-up internal stresses in the nanofilms. Eventually, the SiO2 nanofilms could enhance the FRCs' mechanical properties and performance to enamel by improving the interfacial bonding strength, and have good cytocompatibility.
Collapse
Affiliation(s)
- Fei Shu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Hong Chen
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Zhihao Zhang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Zhiyue Dun
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Weijin Lv
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Wangxinyue Sun
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Mei Liu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Lethongkam S, Glaser J, Ammanath AV, Voravuthikunchai SP, Götz F. In vitro and in vivo comparative analysis of antibacterial activity of green-synthesized silver nanoparticles. Biotechnol J 2023; 18:e2300186. [PMID: 37555361 DOI: 10.1002/biot.202300186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
This study aims to compare antibacterial effects of green-synthesized silver nanoparticles (AgNPs) with silver nitrate (AgNO3 ). AgNPs were successfully synthesized using Eucalyptus camaldulensis leaf extract as a reducing and stabilizing agent. Minimum inhibitory concentrations (MIC) of AgNPs and AgNO3 against Staphylococcus aureus and Pseudomonas aeruginosa ranged between 4.8 and 6.75 µg mL-1 . Growth curves demonstrated that inhibition of P. aeruginosa occurred right after AgNPs were added and throughout the period of the study (72 h). Antibacterial effects of both AgNPs and AgNO3 could be abrogated by cysteine and 2-mercaptoethanol, thiol-containing compounds. Galleria mellonella model revealed relatively low toxic effects of both AgNPs and AgNO3 . At 20MIC of AgNPs (≈137.8 mg kg-1 ), more than 80% survival of G. mellonella was observed. Unexpectedly, silver-containing agents could not rescue larvae after S. aureus infection. Further ex vivo experiments in the presence of coelomic larval fluid demonstrated the reduction of antibacterial activity of both AgNPs and AgNO3 . It was speculated that anionic molecules present in the coelomic fluid might neutralize the action of Ag ions. Binding of AgNPs or AgNO3 to albumin, a major protein in human blood which transport several endogenous compounds was not detected, indicating that the silver-containing agents could be applied as an antimicrobial agent.
Collapse
Affiliation(s)
- Sakkarin Lethongkam
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Microbial Genetics, Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jochen Glaser
- Institut für Anorganische Chemie, University of Tübingen, Tübingen, Germany
| | - Aparna Viswanathan Ammanath
- Microbial Genetics, Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Supayang P Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Friedrich Götz
- Microbial Genetics, Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Araujo HC, Pessan JP, Caldeirão ACM, Sampaio C, Oliveira MJDS, Sales DH, Teixeira SR, Constantino CJL, Delbem ACB, Oliveira SHP, Ramage G, Monteiro DR. Dual nanocarrier of chlorhexidine and fluconazole: Physicochemical characterization and effects on microcosm biofilms and oral keratinocytes. J Dent 2023; 138:104699. [PMID: 37716636 DOI: 10.1016/j.jdent.2023.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVES This study assembled and characterized a dual nanocarrier of chlorhexidine (CHX) and fluconazole (FLZ), and evaluated its antibiofilm and cytotoxic effects. METHODS CHX and FLZ were added to iron oxide nanoparticles (IONPs) previously coated by chitosan (CS) and characterized by physical-chemical analyses. Biofilms from human saliva supplemented with Candida species were grown (72 h) on glass discs and treated (24 h) with IONPs-CS carrying CHX (at 39, 78, or 156 µg/mL) and FLZ (at 156, 312, or 624 µg/mL) in three growing associations. IONPs and CS alone, and 156 µg/mL CHX + 624 µg/mL FLZ (CHX156-FLZ624) were tested as controls. Next, microbiological analyses were performed. The viability of human oral keratinocytes (NOKsi lineage) was also determined (MTT reduction assay). Data were submitted to ANOVA or Kruskal-Wallis, followed by Fisher's LSD or Tukey's tests (α=0.05). RESULTS Nanocarriers with spherical-like shape and diameter around 6 nm were assembled, without compromising the crystalline property and stability of IONPs. Nanocarrier at the highest concentrations was the most effective in reducing colony-forming units of Streptococcus mutans, Lactobacillus spp., Candida albicans, and Candida glabrata. The other carriers and CHX156-FLZ624 showed similar antibiofilm effects, and significantly reduced lactic acid production (p<0.001). Also, a dose-dependent cytotoxic effect against oral keratinocytes was observed for the dual nanocarrier. IONPs-CS-CHX-FLZ and CHX-FLZ significantly reduced keratinocyte viability at CHX and FLZ concentrations ≥7.8 and 31.25 µg/mL, respectively (p<0.05). CONCLUSION The nanotherapy developed outperformed the effect of the combination CHX-FLZ on microcosm biofilms, without increasing the cytotoxic effect of the antimicrobials administered. CLINICAL SIGNIFICANCE The dual nanocarrier is a promising topically-applied therapy for the management of oral candidiasis considering that its higher antibiofilm effects allow the use of lower concentrations of antimicrobials than those found in commercial products.
Collapse
Affiliation(s)
- Heitor Ceolin Araujo
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Juliano Pelim Pessan
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Anne Caroline Morais Caldeirão
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil
| | - Caio Sampaio
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Marcelo José Dos Santos Oliveira
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Douglas Henrique Sales
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Silvio Rainho Teixeira
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Carlos José Leopoldo Constantino
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Alberto Carlos Botazzo Delbem
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Basic Sciences, 16015-050 Araçatuba/São Paulo, Brazil
| | - Gordon Ramage
- Safeguarding Health through Infection Prevention (SHIP) Research Group, Research Centre for Health, Glasgow Caledonian University, Glasgow UK
| | - Douglas Roberto Monteiro
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil; School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil; Postgraduate Program in Health Sciences, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| |
Collapse
|
8
|
Gerbolés AG, Galetti M, Rossi S, lo Muzio FP, Pinelli S, Delmonte N, Caffarra Malvezzi C, Macaluso C, Miragoli M, Foresti R. Three-Dimensional Bioprinting of Organoid-Based Scaffolds (OBST) for Long-Term Nanoparticle Toxicology Investigation. Int J Mol Sci 2023; 24:6595. [PMID: 37047568 PMCID: PMC10095512 DOI: 10.3390/ijms24076595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The toxicity of nanoparticles absorbed through contact or inhalation is one of the major concerns for public health. It is mandatory to continually evaluate the toxicity of nanomaterials. In vitro nanotoxicological studies are conventionally limited by the two dimensions. Although 3D bioprinting has been recently adopted for three-dimensional culture in the context of drug release and tissue regeneration, little is known regarding its use for nanotoxicology investigation. Therefore, aiming to simulate the exposure of lung cells to nanoparticles, we developed organoid-based scaffolds for long-term studies in immortalized cell lines. We printed the viscous cell-laden material via a customized 3D bioprinter and subsequently exposed the scaffold to either 40 nm latex-fluorescent or 11-14 nm silver nanoparticles. The number of cells significantly increased on the 14th day in the 3D environment, from 5 × 105 to 1.27 × 106, showing a 91% lipid peroxidation reduction over time and minimal cell death observed throughout 21 days. Administered fluorescent nanoparticles can diffuse throughout the 3D-printed scaffolds while this was not the case for the unprinted ones. A significant increment in cell viability from 3D vs. 2D cultures exposed to silver nanoparticles has been demonstrated. This shows toxicology responses that recapitulate in vivo experiments, such as inhaled silver nanoparticles. The results open a new perspective in 3D protocols for nanotoxicology investigation supporting 3Rs.
Collapse
Affiliation(s)
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority-INAIL, 00078 Rome, Italy
| | - Stefano Rossi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Nicola Delmonte
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy
| | | | - Claudio Macaluso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Humanitas Research Hospital, IRCCS, 20089 Milan, Italy
- CERT, Center of Excellence for Toxicological Research, 43126 Parma, Italy
| | - Ruben Foresti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellence for Toxicological Research, 43126 Parma, Italy
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43124 Parma, Italy
| |
Collapse
|
9
|
Caneschi CDS, Benetti F, de Oliveira LCA, Belchior JC, Ferreira RC, Moreira AN, Dos Santos Alves Morgan LF. Bleaching effectiveness and cytotoxicity of new experimental formulation of niobium-based bleaching gel. Clin Oral Investig 2023; 27:1613-1621. [PMID: 36607491 DOI: 10.1007/s00784-022-04785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/08/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES The development of new bleaching agents with minimum concentration of hydrogen peroxide (HP), without adverse effects, and with bleaching effectiveness, has great clinical relevance. The aim of this study was to evaluate the bleaching efficacy and cytotoxicity of a new niobium-based bleaching gel, compared to already available HP-based gels. MATERIALS AND METHODS For the bleaching efficacy analysis, 40 bovine incisors were randomly divided into 4 groups according to the established bleaching protocol: control, untreated; 35HP, 35% HP bleaching gel; 6HP, 6% HP bleaching gel; NbHP, niobium gel associated with 3% HP gel. The color variation was measured in a spectrophotometer and the values of ΔL, Δa, Δb, and ΔE obtained. For the cell viability assay by MTT, MC3T3 cells were exposed to bleaching gel extracts (1:500, 1:250, 1:125 dilutions; immediately and 24 h). Statistical tests were performed (P < 0.05). RESULTS The color alteration for all bleaching gels was significant compared to control (P < 0.05), but the NbHP gel showed a significant ΔE than other gels, with expressive color alteration at 14 days (P < 0.05). The 35HP showed high cytotoxicity regarding control and the most groups in all periods and extracts analyzed (P < 0.05), while the NbHP showed greater cell viability than control in the immediate period, dilution of the 1:500 and superior to 6HP in the most extracts at 24 h. CONCLUSION The new experimental niobium-based gel has bleaching efficacy similar to that of gels with a high concentration of HP, and it has high cytocompatibility. CLINICAL RELEVANCE The use of this new generation of niobium-based whitening gel associated with a low concentration of hydrogen peroxide represents the possibility of a tooth whitening with lower dentin sensitivity.
Collapse
Affiliation(s)
- Camila de Sousa Caneschi
- Department of Restorative Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627 - Bairro Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Francine Benetti
- Department of Restorative Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627 - Bairro Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luiz Carlos Alves de Oliveira
- Department of Chemistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627 - Bairro Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Jadson Cláudio Belchior
- Department of Chemistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627 - Bairro Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Raquel Conceição Ferreira
- Department of Social and Preventive Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627 - Bairro Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Allyson Nogueira Moreira
- Department of Restorative Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627 - Bairro Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Luís Fernando Dos Santos Alves Morgan
- Department of Restorative Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627 - Bairro Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
10
|
Zhang OL, Niu JY, Yin IX, Yu OY, Mei ML, Chu CH. Bioactive Materials for Caries Management: A Literature Review. Dent J (Basel) 2023; 11:dj11030059. [PMID: 36975556 PMCID: PMC10047026 DOI: 10.3390/dj11030059] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Researchers have developed novel bioactive materials for caries management. Many clinicians also favour these materials, which fit their contemporary practice philosophy of using the medical model of caries management and minimally invasive dentistry. Although there is no consensus on the definition of bioactive materials, bioactive materials in cariology are generally considered to be those that can form hydroxyapatite crystals on the tooth surface. Common bioactive materials include fluoride-based materials, calcium- and phosphate-based materials, graphene-based materials, metal and metal-oxide nanomaterials and peptide-based materials. Silver diamine fluoride (SDF) is a fluoride-based material containing silver; silver is antibacterial and fluoride promotes remineralisation. Casein phosphopeptide-amorphous calcium phosphate is a calcium- and phosphate-based material that can be added to toothpaste and chewing gum for caries prevention. Researchers use graphene-based materials and metal or metal-oxide nanomaterials as anticaries agents. Graphene-based materials, such as graphene oxide-silver, have antibacterial and mineralising properties. Metal and metal-oxide nanomaterials, such as silver and copper oxide, are antimicrobial. Incorporating mineralising materials could introduce remineralising properties to metallic nanoparticles. Researchers have also developed antimicrobial peptides with mineralising properties for caries prevention. The purpose of this literature review is to provide an overview of current bioactive materials for caries management.
Collapse
Affiliation(s)
| | - John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Faculty of Dentistry, The University of Otago, Dunedin 9054, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
11
|
Afkhami F, Forghan P, Gutmann JL, Kishen A. Silver Nanoparticles and Their Therapeutic Applications in Endodontics: A Narrative Review. Pharmaceutics 2023; 15:715. [PMID: 36986576 PMCID: PMC10052550 DOI: 10.3390/pharmaceutics15030715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The efficient elimination of microorganisms and their byproducts from infected root canals is compromised by the limitations in conventional root canal disinfection strategies and antimicrobials. Silver nanoparticles (AgNPs) are advantageous for root canal disinfection, mainly due to their wide-spectrum anti-microbial activity. Compared to other commonly used nanoparticulate antibacterials, AgNPs have acceptable antibacterial properties and relatively low cytotoxicity. Owing to their nano-scale, AgNPs penetrate deeper into the complexities of the root canal systems and dentinal tubules, as well as enhancing the antibacterial properties of endodontic irrigants and sealers. AgNPs gradually increase the dentin hardness in endodontically treated teeth and promote antibacterial properties when used as a carrier for intracanal medication. The unique properties of AgNPs make them an ideal additive for different endodontic biomaterials. However, the possible side effects of AgNPs, such as cytotoxicity and tooth discoloration potential, merits further research.
Collapse
Affiliation(s)
- Farzaneh Afkhami
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran 1439955991, Iran
| | - Parisa Forghan
- School of Dentistry, Tehran University of Medical Sciences, Tehran 1894787545, Iran
| | - James L. Gutmann
- Department of Endodontics, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
12
|
Rücker VB, Balbinot GDS, Collares FM, de Araújo Neto VG, Giannini M, Leitune VCB. Synthesis of silver core-shell nanoparticles and their influence on an experimental resin endodontic sealer: An in vitro analysis. Int Endod J 2023; 56:289-303. [PMID: 36314859 DOI: 10.1111/iej.13859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
AIM To avoid root canal recontamination and endodontic treatment failure, endodontic sealers with antibacterial activity could be an alternative. Silver nanoparticles have antibacterial activity and this study aimed to synthesize Ag@SiO2 nanoparticles, incorporate them into an experimental endodontic resin sealer and evaluate their influence on physicochemical and biological properties. METHODOLOGY Ag@SiO2 nanoparticles were produced using the sol-gel process, based on the Stöber method. The particles were characterized in terms of their chemical structure by Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-Vis spectral analysis, scanning electron microscopy, and transmission electron microscopy, where the particle morphology and diameter were analysed. A dual-cured experimental endodontic resin sealer was formulated using 70 wt% UDMA, 15 wt% GDMA, and 15 wt% BisEMA. The photoinitiators were added separately in two pastes. The Ag@SiO2 nanoparticles were incorporated into the endodontic sealer at the concentrations of 2.5 wt%, 5 wt%, and 10 wt%, and a control group without nanoparticles was also formulated. The endodontic sealers were evaluated for their flow, film thickness, degree of conversion, softening in solvent, radiopacity, cytotoxicity and antibacterial activity immediately and after 9 months in water storage. RESULTS Silver was detected in the chemical characterization of Ag@SiO2 that presented a spheric regular shape and average 683.51 nm ± 93.58 diameter. Sealers presented adequate flow and film thickness while radiopacity values were below the ones required by ISO 6876. All groups underwent softening after immersion in a solvent. The 10 wt% groups showed a higher loss of subsurface hardness (∆KHN%). No reduction in cell viability was observed. Enterococcus faecalis viability in biofilm was reduced in 10 wt% groups after 24 h and 9 months. CONCLUSION The addition of 10 wt% Ag@SiO2 reduced E. faecalis viability at immediate and longitudinal analysis while maintaining the physicochemical properties of developed sealers.
Collapse
Affiliation(s)
- Victória Britz Rücker
- Dental Materials Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela de Souza Balbinot
- Dental Materials Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício Mezzomo Collares
- Dental Materials Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vitaliano Gomes de Araújo Neto
- Operative Dentistry Division, Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Campinas, Brazil
| | - Marcelo Giannini
- Operative Dentistry Division, Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
13
|
Lei T, Fan J, Wang Y, Cao F, Yang Q, Tian F, Li B, Su Z, Chen R, Liu Y. The fabrication and evaluation of silver nanoparticle-based keratin scaffolds. J Biomater Appl 2023; 37:1071-1085. [PMID: 36602444 DOI: 10.1177/08853282221150685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biotoxicity caused by focus releasing of Ag, which associated with the Ag loading mode, is a problematic issue that need to be solved for practical utilization of the keratin based wound dressing. In this study, keratin/AgNPs blend scaffolds (Ker/Ag) and keratin scaffolds with AgNPs attached on the scaffold's wall surface (Ag@Ker) were prepared. Structure and physical properties of the scaffolds were tested and investigated. In comparison to the Ag@Ker scaffolds, the Ker/Ag scaffolds with uniform dispersion of AgNPs have larger tensile strength and slower degradation rate. Both kind of scaffolds present excellent antibacterial property with 10 μg mL-1 AgNPs addition, while the Ker/Ag displayed a linear Ag releasing ratio in the first 5-7 days, which is beneficial for obtaining a continuous antibacterial property and avoiding the biotoxicity caused by focus release of Ag. Correspondingly, cytotoxicity assay further reveals that the continuously slow release of Ag of the Ker/Ag scaffolds accelerated the proliferation of cell. Infectious animal models and histological studies showed that the Ker/Ag scaffolds can effectively inhibit the inflammatory response and accelerate epithelialization. Thus, it can be concluded that the Ker/Ag scaffolds with uniform dispersion of AgNPs are more attractive as wound repair materials.
Collapse
Affiliation(s)
- Tongda Lei
- School of Textiles Science and Engineering, 47847Tiangong University, Tianjin, China
| | - Jie Fan
- School of Textiles Science and Engineering, 47847Tiangong University, Tianjin, China
| | - Yongheng Wang
- Medical Experimental Center, 128790North China University of Science and Technology, Tangshan, China
| | - Fuyuan Cao
- Laboratory Animal Center, 128790North China University of Science and Technology, Tangshan, China
| | - Qingqi Yang
- Dermatological Department, 117983Air Force General Hospital PAL, Beijing, China
| | - Faming Tian
- Medical Research Center, 128790North China University of Science and Technology, Tangshan, China
| | - Bo Li
- DongGuan Beyclean Environmental Protection Technology Co., LTD, Dongguan, China
| | - Zhibo Su
- DongGuan Beyclean Environmental Protection Technology Co., LTD, Dongguan, China
| | - Rouxi Chen
- Academy for Advanced Interdisciplinary Studies, 255310Southern University of Science and Technology, Shenzhen, China
| | - Yong Liu
- School of Textiles Science and Engineering, 47847Tiangong University, Tianjin, China
| |
Collapse
|
14
|
Algazlan AS, Almuraikhi N, Muthurangan M, Balto H, Alsalleeh F. Silver Nanoparticles Alone or in Combination with Calcium Hydroxide Modulate the Viability, Attachment, Migration, and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Int J Mol Sci 2022; 24:702. [PMID: 36614148 PMCID: PMC9821315 DOI: 10.3390/ijms24010702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to evaluate the effect of silver nanoparticles (AgNPs) alone or in combination with calcium hydroxide (Ca(OH)2) on the proliferation, viability, attachment, migration, and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Different concentrations of AgNPs alone or mixed with Ca(OH)2 were prepared. Cell proliferation was measured using AlamarBlue, and hMSCs attachment to dentin disks was evaluated using scanning electron microscopy. Live-dead imaging was performed to assess apoptosis. Wound healing ability was determined using the scratch-migration assay. To evaluate osteogenic differentiation, the expression of Runt-related transcription factor (RUNX2), Transforming growth factor beta-1 (TGF-β1), Alkaline Phosphatase (ALP), and Osteocalcin (OCN) were measured using real-time reverse transcriptase polymerase chain reaction. ALP staining and activity were also performed as indicators of osteogenic differentiation. AgNPs alone seemed to favor cell attachment. Lower concentrations of AgNPs enhanced cell proliferation. AgNP groups showed markedly less apoptosis. None of the medicaments had adverse effects on wound closure. The expression of TGF-β1 was significantly upregulated in all groups, and OCN was highly expressed in the AgNP groups. AgNPs 0.06% showed the most enhanced ALP gene expression levels, activity, and marked cytochemical staining. In conclusion, AgNPs positively affect hMSCs, making them a potential biomaterial for various clinical applications.
Collapse
Affiliation(s)
- Almaha S. Algazlan
- Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11461, Saudi Arabia
| | - Nihal Almuraikhi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Manikandan Muthurangan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hanan Balto
- Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11461, Saudi Arabia
| | - Fahd Alsalleeh
- Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
15
|
Ahmed O, Sibuyi NRS, Fadaka AO, Madiehe MA, Maboza E, Meyer M, Geerts G. Plant Extract-Synthesized Silver Nanoparticles for Application in Dental Therapy. Pharmaceutics 2022; 14:380. [PMID: 35214112 PMCID: PMC8875651 DOI: 10.3390/pharmaceutics14020380] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 12/22/2022] Open
Abstract
Oral diseases are the most common non-communicable diseases in the world, with dental caries and periodontitis causing major health and social problems. These diseases can progress to systematic diseases and cause disfigurement when left untreated. However, treatment of oral diseases is among the most expensive treatments and often focus on restoration of form and function. Caries prevention has traditionally relied on oral hygiene and diet control, among other preventive measures. In this paper, these measures are not disqualified but are brought into a new context through the use of nanotechnology-based materials to improve these conventional therapeutic and preventive measures. Among inorganic nanomaterials, silver nanoparticles (AgNPs) have shown promising outcomes in dental therapy, due to their unique physicochemical properties and enhanced anti-bacterial activities. As such, AgNPs may provide newer strategies for treatment and prevention of dental infections. However, numerous concerns around the chemical synthesis of nanomaterials, which are not limited to cost and use of toxic reducing agents, have been raised. This has inspired the green synthesis route, which uses natural products as reducing agents. The biogenic AgNPs were reported to be biocompatible and environmentally friendly when compared to the chemically-synthesized AgNPs. As such, plant-synthesized AgNPs can be used as antimicrobial, antifouling, and remineralizing agents for management and treatment of dental infections and diseases.
Collapse
Affiliation(s)
- Omnia Ahmed
- Department of Restorative Dentistry, University of the Western Cape, Bellville 7535, South Africa;
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI), Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.); (M.A.M.)
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI), Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.); (M.A.M.)
| | - Madimabe Abram Madiehe
- Department of Science and Innovation (DSI), Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.); (M.A.M.)
| | - Ernest Maboza
- Oral and Dental Research Laboratory, University of the Western Cape, Bellville 7535, South Africa;
| | - Mervin Meyer
- Department of Science and Innovation (DSI), Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.); (M.A.M.)
| | - Greta Geerts
- Department of Restorative Dentistry, University of the Western Cape, Bellville 7535, South Africa;
| |
Collapse
|
16
|
Li B, Pan L, Zhang H, Xie L, Wang X, Shou J, Qi Y, Yan X. Recent Developments on Using Nanomaterials to Combat Candida albicans. Front Chem 2022; 9:813973. [PMID: 35004630 PMCID: PMC8733329 DOI: 10.3389/fchem.2021.813973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Vaginal candidiasis (VC) is a common disease of women and the main pathogen is Candida albicans (C. albicans). C. albicans infection incidence especially its drug resistance have become a global health threat due to the existence of C. albicans biofilms and the low bioavailability of traditional antifungal drugs. In recent years, nanomaterials have made great progresses in the field of antifungal applications. Some researchers have treated fungal infections with inorganic nanoparticles, represented by silver nanoparticles (AgNPs) with antifungal properties. Liposomes, polymeric nanoparticles, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs) were also used to improve the bioavailability of antifungal drugs. Herein, we briefly introduced the recent developments on using above nanomaterials to combat C. albicans in antifungal applications.
Collapse
Affiliation(s)
- Bingxin Li
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luyao Pan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haofeng Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingping Xie
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahui Shou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Qi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xiaojian Yan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Fahim MM, Saber SEM, Elkhatib WF, Nagy MM, Schafer E. The antibacterial effect and the incidence of post-operative pain after the application of nano-based intracanal medications during endodontic retreatment: a randomized controlled clinical trial. Clin Oral Investig 2021; 26:2155-2163. [PMID: 34697657 DOI: 10.1007/s00784-021-04196-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This clinical trial aimed to evaluate the effect of nano-silver and nano-calcium hydroxide intracanal medicaments (ICM) during retreatment regarding their antibacterial effect and their effect on post-operative pain and flare-ups. MATERIALS AND METHODS Sixty-nine patients scheduled for endodontic retreatment were included in this randomized clinical trial and randomly allocated to 3 equal groups (n = 23) according to the type of ICM used. The first microbial sampling (S1) representing the original microbiota was obtained after the removal of the old canal filling. After chemo-mechanical debridement, another sample (S2) was obtained representing the microbial state before ICM application. Patients were randomly allocated to receive either nano-silver (nano-Ag), nano-calcium hydroxide (nano-CH), or calcium hydroxide (CH) as ICM. Patients rated their pain pre-operatively and then after 6, 12, 24, 48, and 72 h. During the second visit (7 days later), the last microbial sample (S3) was obtained after removal of the ICM. Reduction of total bacterial and total E. faecalis counts and the biofilm-forming capability of the existing microbiota were determined. RESULTS Results showed reduction in total bacterial count, total E. faecalis count and the biofilm-forming,capability of the existing microbiota after chemo-mechanical debridement (S1-S2) and after the application of ICM (S3-S2). However, the reduction after cleaning and shaping was significantly more pronounced (p < 0.001) compared to the effect of ICM application, with no difference between the 3 ICM (p > 0.05). Post-operative pain was significantly reduced at the 48- and 72-h intervals after the application of nano-Ag and nano-CH only (p < 0.001), with no significant difference between these two ICM (p > 0.05). The incidence of flare-ups in all groups was similar (p > 0.05). CONCLUSIONS The antibacterial effect of the nano-Ag and nano-CH was equivalent to that of CH, but they contributed to better pain control. CLINICAL RELEVANCE Nanoparticles may have a positive impact on post-endodontic pain.
Collapse
Affiliation(s)
- Mahmoud M Fahim
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Shehab Eldin Mohamed Saber
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
- Department of Endodontics, Faculty of Dentistry, The British University, Cairo, Egypt.
| | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Galala City, Egypt
| | - Mohamed Mokhtar Nagy
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Edgar Schafer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Afhkami F, Ahmadi P, Chiniforush N, Sooratgar A. Effect of different activations of silver nanoparticle irrigants on the elimination of Enterococcus faecalis. Clin Oral Investig 2021; 25:6893-6899. [PMID: 34476616 DOI: 10.1007/s00784-021-03979-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 05/04/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES This study aimed to compare the efficacy of silver nanoparticles (AgNPs) irrigating solution alone and following activation with photon-induced photoacoustic streaming (PIPS), photodynamic therapy (PDT) with indocyanine green (ICG), passive ultrasonic irrigation (PUI), and manual dynamic activation (MDA) method for elimination of Enterococcus faecalis (E. faecalis) from the root canal system. MATERIALS AND METHODS A total of 59 extracted human single-rooted teeth were collected and prepared. E. faecalis was inoculated into the root canals and incubated for 4 weeks. The teeth were then randomly divided into five experimental groups (n = 10): the AN group, irrigation with AgNPs alone; the AN/ICG/DL group, irrigation with AgNPs and ICG, then activation with diode laser; the AN/PIPS group, irrigation with AgNPs and activation with 0.3 W Er: YAG laser; the AN/MDA group, irrigation with AgNPs and activation with tapered gutta-percha; and the AN/PUI group, irrigation with AgNPs and activation with ultrasonic. Also, two control groups of irrigation with 2.5% sodium hypochlorite (n = 5) and no intervention (n = 4) were also used. Samples were collected from the dentinal chips before and after the intervention, and the percentage of reduction in colony count was calculated. RESULTS A significant reduction in E. faecalis colony count was noted in all groups (P < 0.05). Maximum reduction in colony count was noted in AN/PIPS and AN/PUI groups by 91.03 and 91.29%, respectively. Minimum reduction was noted in the AN group alone. CONCLUSION Activation with PUI and PIPS enhanced the efficacy of AgNPs irrigating solution for elimination of E. faecalis from the root canal system. CLINICAL RELEVANCE AgNPs activated by ultrasound or PIPS can be used as an adjunct for disinfection of the root canal system in endodontic treatment.
Collapse
Affiliation(s)
- Farzaneh Afhkami
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, End of North Kargar Street, Tehran, 1439955991, Iran
| | - Paniz Ahmadi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Science, Tehran, 1441987566, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Science, Tehran, 1441987566, Iran
| | - Aidin Sooratgar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, End of North Kargar Street, Tehran, 1439955991, Iran.
| |
Collapse
|
19
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
20
|
Caldeirão ACM, Araujo HC, Arias LS, Ramírez Carmona W, Miranda GP, Oliveira SHP, Pessan JP, Monteiro DR. Nanocarriers of Miconazole or Fluconazole: Effects on Three-Species Candida Biofilms and Cytotoxic Effects In Vitro. J Fungi (Basel) 2021; 7:jof7070500. [PMID: 34201635 PMCID: PMC8305882 DOI: 10.3390/jof7070500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
The contribution of different Candida species in oral fungal infections has stimulated the search for more effective therapies. This study assessed the antibiofilm effects of nanocarriers of miconazole (MCZ) or fluconazole (FLZ) on Candida biofilms, and their cytotoxic effects on murine fibroblasts. Three-species biofilms (Candida albicans/Candida glabrata/Candida tropicalis) were formed on 96-well plates, and they were treated with nanocarriers (iron oxide nanoparticles coated with chitosan—“IONPs-CS”) of MCZ or FLZ at 39/78/156 µg/mL; antifungals alone at 156 µg/mL and artificial saliva were tested as positive and negative controls, respectively. Biofilms were analyzed by colony forming units (CFU), biomass, metabolic activity, and structure/viability. The cytotoxicity (L929 cells) of all treatments was determined via 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Data were submitted to one- or two-way ANOVA, followed by Tukey’s or Fisher LSD’s tests (p < 0.05). IONPs-CS-MCZ at 78 µg/mL promoted similar antibiofilm and cytotoxic effects compared with MCZ at 156 µg/mL. In turn, IONPs-CS-FLZ at 156 µg/mL was overall the most effective FLZ antibiofilm treatment, surpassing the effects of FLZ alone; this nanocarrier was also less cytotoxic compared with FLZ alone. It can be concluded that both nanocarriers are more effective alternatives to fight Candida biofilms compared with their respective positive controls in vitro, being a promising alternative for the treatment of oral fungal infections.
Collapse
Affiliation(s)
| | - Heitor Ceolin Araujo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil; (H.C.A.); (L.S.A.); (W.R.C.); (J.P.P.)
| | - Laís Salomão Arias
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil; (H.C.A.); (L.S.A.); (W.R.C.); (J.P.P.)
| | - Wilmer Ramírez Carmona
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil; (H.C.A.); (L.S.A.); (W.R.C.); (J.P.P.)
| | - Gustavo Porangaba Miranda
- School of Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil;
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil;
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil; (H.C.A.); (L.S.A.); (W.R.C.); (J.P.P.)
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil;
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil; (H.C.A.); (L.S.A.); (W.R.C.); (J.P.P.)
- School of Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil;
- Correspondence: or ; Tel.: +55-18-3229-1000
| |
Collapse
|
21
|
Govula K, Prasad G, Anumula L, Kumar P. Evaluation of the biocompatibility of silver nanoparticles, ascertaining their safety in the field of endodontic therapy. JOURNAL OF THE INTERNATIONAL CLINICAL DENTAL RESEARCH ORGANIZATION 2021. [DOI: 10.4103/jicdro.jicdro_22_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Almeida e Silva T, Gorup LF, de Araújo RP, Fonseca GG, Martelli SM, de Oliveira KMP, Faraoni LH, de Arruda EGR, Gomes RAB, da Silva CHM, de Arruda EJ. Synergy of Biodegradable Polymer Coatings with Quaternary Ammonium Salts Mediating Barrier Function Against Bacterial Contamination and Dehydration of Eggs. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02545-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Araujo HC, Arias LS, Caldeirão ACM, Assumpção LCDF, Morceli MG, de Souza Neto FN, de Camargo ER, Oliveira SHP, Pessan JP, Monteiro DR. Novel Colloidal Nanocarrier of Cetylpyridinium Chloride: Antifungal Activities on Candida Species and Cytotoxic Potential on Murine Fibroblasts. J Fungi (Basel) 2020; 6:jof6040218. [PMID: 33053629 PMCID: PMC7712500 DOI: 10.3390/jof6040218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Nanocarriers have been used as alternative tools to overcome the resistance of Candida species to conventional treatments. This study prepared a nanocarrier of cetylpyridinium chloride (CPC) using iron oxide nanoparticles (IONPs) conjugated with chitosan (CS), and assessed its antifungal and cytotoxic effects. CPC was immobilized on CS-coated IONPs, and the nanocarrier was physico-chemically characterized. Antifungal effects were determined on planktonic cells of Candida albicans and Candida glabrata (by minimum inhibitory concentration (MIC) assays) and on single- and dual-species biofilms of these strains (by quantification of cultivable cells, total biomass and metabolic activity). Murine fibroblasts were exposed to different concentrations of the nanocarrier, and the cytotoxic effect was evaluated by MTT reduction assay. Characterization methods confirmed the presence of a nanocarrier smaller than 313 nm. IONPs-CS-CPC and free CPC showed the same MIC values (0.78 µg mL−1). CPC-containing nanocarrier at 78 µg mL−1 significantly reduced the number of cultivable cells for all biofilms, surpassing the effect promoted by free CPC. For total biomass, metabolic activity, and cytotoxic effects, the nanocarrier and free CPC produced statistically similar outcomes. In conclusion, the IONPs-CS-CPC nanocarrier was more effective than CPC in reducing the cultivable cells of Candida biofilms without increasing the cytotoxic effects of CPC, and may be a useful tool for the treatment of oral fungal infections.
Collapse
Affiliation(s)
- Heitor Ceolin Araujo
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Laís Salomão Arias
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Anne Caroline Morais Caldeirão
- Graduate Program in Dentistry (GPD—Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil;
| | - Lanay Caroline de Freitas Assumpção
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
| | - Marcela Grigoletto Morceli
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
| | - Francisco Nunes de Souza Neto
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | | | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil;
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD—Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil;
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
- Correspondence: or ; Tel.: +55-18-3229-1000
| |
Collapse
|
24
|
Bodó K, Baranzini N, Girardello R, Kokhanyuk B, Németh P, Hayashi Y, Grimaldi A, Engelmann P. Nanomaterials and Annelid Immunity: A Comparative Survey to Reveal the Common Stress and Defense Responses of Two Sentinel Species to Nanomaterials in the Environment. BIOLOGY 2020; 9:biology9100307. [PMID: 32977601 PMCID: PMC7598252 DOI: 10.3390/biology9100307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary Nanotechnology is a dynamically developing field producing large amounts of nanocompounds that are applied in industry, daily life, and health care. During production, use, and waste these materials could end up in water or soil. Large scale contaminations of our environment are a threat to public health. Pollution can have harmful effects on the immune system, as revealed by numerous studies in humans and other vertebrates. The relative simplicity of invertebrate immune functions offers potentially sensitive and accessible means of monitoring the effects and complex interactions of nanoparticles which ultimately affect host resistance. Among terrestrial and freshwater invertebrates, earthworms and leeches are the “keystone” species to evaluate the health of our ecosystems. In this review we compare the conserved stress and immune responses of these invertebrate model organisms toward nanoparticles. The obtained knowledge provides exciting insights into the conserved molecular and cellular mechanisms of nanomaterial-related toxicity in invertebrates and vertebrates. Understanding the unique characteristics of engineered nanoproducts and their interactions with biological systems in our environment is essential to the safe realization of these materials in novel biomedical applications. Abstract Earthworms and leeches are sentinel animals that represent the annelid phylum within terrestrial and freshwater ecosystems, respectively. One early stress signal in these organisms is related to innate immunity, but how nanomaterials affect it is poorly characterized. In this survey, we compare the latest literature on earthworm and leeches with examples of their molecular/cellular responses to inorganic (silver nanoparticles) and organic (carbon nanotubes) nanomaterials. A special focus is placed on the role of annelid immunocytes in the evolutionarily conserved antioxidant and immune mechanisms and protein corona formation and probable endocytosis pathways involved in nanomaterial uptake. Our summary helps to realize why these environmental sentinels are beneficial to study the potential detrimental effects of nanomaterials.
Collapse
Affiliation(s)
- Kornélia Bodó
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
| | - Nicoló Baranzini
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (N.B.); (R.G.)
| | - Rossana Girardello
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (N.B.); (R.G.)
- Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Bohdana Kokhanyuk
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
| | - Yuya Hayashi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark;
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (N.B.); (R.G.)
- Correspondence: (A.G.); (P.E.); Tel.: +39-0332-421-325 (A.G.); +36-72-536-288 (P.E.); Fax: +39-0332-421-326 (A.G.); +36-72-536-289 (P.E.)
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
- Correspondence: (A.G.); (P.E.); Tel.: +39-0332-421-325 (A.G.); +36-72-536-288 (P.E.); Fax: +39-0332-421-326 (A.G.); +36-72-536-289 (P.E.)
| |
Collapse
|
25
|
Combined Effect of a Mixture of Silver Nanoparticles and Calcium Hydroxide against Enterococcus faecalis Biofilm. J Endod 2020; 46:1689-1694. [PMID: 32679241 DOI: 10.1016/j.joen.2020.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate the antibiofilm effectiveness of calcium hydroxide (Ca[OH]2) mixed with 0.02% silver nanoparticles (AgNPs) in comparison with 1 mg/mL triple antibiotic paste (TAP), Ca(OH)2, and 0.02% AgNPs against Enterococcus faecalis using confocal laser scanning microscopy. METHODS Ninety dentin disks were prepared, sterilized, and inoculated with E. faecalis to establish a 3-week-old biofilm model. The samples received 1 mg/mL TAP, a mixture of Ca(OH)2 + 0.02% AgNPs, Ca(OH)2, or 0.02% AgNPs (n = 20/group). Specimens in each group were equally subdivided into 2 groups and incubated for 2 and 4 weeks. Untreated dentin disks (n = 10) were exposed to sterile saline solution and acted as a positive control. Sterile dentin disks (n = 10) were incubated anaerobically in brain-heart infusion broth and served as a negative control. At the end of each observation period, the specimens were stained with LIVE/DEAD BacLight dye (Molecular Probes, Eugene, OR) and analyzed with confocal laser scanning microscopy to determine the proportion of dead cells in the biofilm. Statistical analysis was performed using the generalized linear model repeated measure and Tukey tests (P < .05). RESULTS A significantly greater proportion of dead cells was observed in the samples treated with 1 mg/mL TAP (90.39% and 99.41%) and a mixture of Ca(OH)2 + AgNPs (90.85% and 98.49%) than those in the samples treated with Ca(OH)2 (76.14% and 91.71%) and AgNPs (62.83% and 88.07%) at 2 and 4 weeks, respectively. A significant difference in the antibiofilm effectiveness was observed among the groups (P < .05), except for 1 mg/mL TAP and the mixture of Ca(OH)2 + AgNPs (P > .05). All medicaments showed a significant difference in antibiofilm efficacy at the 2 time points. CONCLUSIONS The mixture of Ca(OH)2 + AgNPs showed a high antibiofilm effect and was not significantly different from 1 mg/mL TAP. Furthermore, long-term contact between intracanal medicaments and bacterial cells achieved significant antibiofilm efficacy.
Collapse
|
26
|
The Impact of Engineered Silver Nanomaterials on the Immune System. NANOMATERIALS 2020; 10:nano10050967. [PMID: 32443602 PMCID: PMC7712063 DOI: 10.3390/nano10050967] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Over the last decades there has been a tremendous volume of research efforts focused on engineering silver-based (nano)materials. The interest in silver has been mostly driven by the element capacity to kill pathogenic bacteria. In this context, the main area of application has been medical devices that are at significant risk of becoming colonized by bacteria and subsequently infected. However, silver nanomaterials have been incorporated in a number of other commercial products which may or may not benefit from antibacterial protection. The rapid expansion of such products raises important questions about a possible adverse influence on human health. This review focuses on examining currently available literature and summarizing the current state of knowledge of the impact of silver (nano)materials on the immune system. The review also looks at various surface modification strategies used to generate silver-based nanomaterials and the immunomodulatory potential of these materials. It also highlights the immune response triggered by various silver-coated implantable devices and provides guidance and perspective towards engineering silver nanomaterials for modulating immunological consequences.
Collapse
|
27
|
Luo Z, Liu J, Lin H, Ren X, Tian H, Liang Y, Wang W, Wang Y, Yin M, Huang Y, Zhang J. In situ Fabrication of Nano ZnO/BCM Biocomposite Based on MA Modified Bacterial Cellulose Membrane for Antibacterial and Wound Healing. Int J Nanomedicine 2020; 15:1-15. [PMID: 32021161 PMCID: PMC6954087 DOI: 10.2147/ijn.s231556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background Developing an ideal wound dressing that meets the multiple demands of safe and practical, good biocompatibility, superior mechanical property and excellent antibacterial activity is highly desirable for wound healing. Bacterial cellulose (BC) is one of such promising class of biopolymers since it can control wound exudates and can provide moist environment to a wound resulting in better wound healing. However, the lack of antibacterial activity has limited its application. Methods and Results We prepared a flexible dressing based on a bacterial cellulose membrane and then modified it by chemical crosslinking to prepare in situ synthesis of nZnO/BCM via a facile and eco-friendly approach. Scanning electron microscopy (SEM) results indicated that nZnO/BCM membranes were characterized by an ideal porous structure (pore size: 30~ 90 μm), forming a unique string-beaded morphology. The average water vapor transmission of nZnO/BCM was 2856.60 g/m2/day, which improved the moist environment of nZnO/BCM. ATR-FITR further confirmed the stepwise deposition of nano-zinc oxide. Tensile testing indicated that our nanocomposites were flexible, comfortable and resilient. Bacterial suspension assay and plate counting methods demonstrated that 5wt. % nZnO/BCM possessed excellent antibacterial activity against S.aureus and E. coli, while MTT assay demonstrated that they had no measurable cytotoxicity toward mammalian cells. Moreover, skin irritation test and histocompatibility examination supported that 5wt. % nZnO/BCM had no stimulation to skin and had acceptable biocompatibility with little infiltration of the inflammatory cells. Finally, by using a bacteria-infected (S. aureus and E. coli) murine wound model, we found that nZnO/BCM could prevent in vivo bacterial infections and promote wound healing via accelerating the re-epithelialization and wound contraction, and these membranes had no obvious toxicity toward normal tissues. Conclusion Therefore, the constructed nZnO/BCM has great potential for biomedical applications as an efficient antibacterial wound dressing.
Collapse
Affiliation(s)
- Zhenghui Luo
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jie Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Hai Lin
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xi Ren
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Hao Tian
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yi Liang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Weiyi Wang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yuan Wang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Meifang Yin
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yuesheng Huang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| |
Collapse
|
28
|
Pem B, Pongrac IM, Ulm L, Pavičić I, Vrček V, Domazet Jurašin D, Ljubojević M, Krivohlavek A, Vinković Vrček I. Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1802-1817. [PMID: 31579097 PMCID: PMC6753685 DOI: 10.3762/bjnano.10.175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
This study was designed to evaluate the nano-bio interactions between endogenous biothiols (cysteine and glutathione) with biomedically relevant, metallic nanoparticles (silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs)), in order to assess the biocompatibility and fate of nanoparticles in biological systems. A systematic and comprehensive analysis revealed that the preparation of AgNPs and AuNPs in the presence of biothiols leads to nanoparticles stabilized with oxidized forms of biothiols. Their safety was tested by evaluation of cell viability, reactive oxygen species (ROS) production, apoptosis induction and DNA damage in murine fibroblast cells (L929), while ecotoxicity was tested using the aquatic model organism Daphnia magna. The toxicity of these nanoparticles was considerably lower compared to their ionic metal forms (i.e., Ag+ and Au3+). The comparison with data published on polymer-coated nanoparticles evidenced that surface modification with biothiols made them safer for the biological environment. In vitro evaluation on human cells demonstrated that the toxicity of AgNPs and AuNPs prepared in the presence of cysteine was similar to the polymer-based nanoparticles with the same core material, while the use of glutathione for nanoparticle stabilization was considerably less toxic. These results represent a significant contribution to understanding the role of biothiols on the fate and behavior of metal-based nanomaterials.
Collapse
Affiliation(s)
- Barbara Pem
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Igor M Pongrac
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Šalata 12, 10000 Zagreb, Croatia
| | - Lea Ulm
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Valerije Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | | | - Marija Ljubojević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Adela Krivohlavek
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Ontong JC, Paosen S, Shankar S, Voravuthikunchai SP. Eco-friendly synthesis of silver nanoparticles using Senna alata bark extract and its antimicrobial mechanism through enhancement of bacterial membrane degradation. J Microbiol Methods 2019; 165:105692. [PMID: 31437555 DOI: 10.1016/j.mimet.2019.105692] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/24/2023]
Abstract
Biological synthesis of nanomaterials has been increasingly gaining popularity due to its eco-friendly nature and cost-effectiveness. This study aimed to synthesize silver nanoparticles (AgNPs) using Senna alata bark extract as reducing and capping agents, and to evaluate their antimicrobial activities. AgNPs was characterized using UV-vis spectrophotometry, transmission electron microscopy, and Fourier transform infrared spectroscopy (FTIR). The formation of AgNPs was monitored by recording the surface plasmon resonance peak observed at 425 nm. High-resolution TEM images elucidated the formation of spherical AgNPs with an average diameter of 10-30 nm. Energy dispersive spectroscopy (EDS) revealed the presence of silver. The functional groups of biomolecules present in the extract and their interaction with AgNPs were identified through FTIR analysis. Biosynthesized AgNPs displayed antimicrobial activity against different microorganisms, including Gram-positive and Gram-negative bacteria as well as fungi, as indicated by the diameter of inhibition zones between 11.37 and 14.87 mm. Minimum inhibitory concentration of AgNPs for the tested microorganisms was in the range from 31.25 to 125 μg/mL. Potassium leakage is a primary indicator of membrane damage which is a significant mode of action of AgNPs against the tested microorganisms. The amount of potassium ions leaked from the microbial cells after 4 h contact time ranged between 0.97 and 3.05 ppm. Morphological changes were observed in all AgNPs-treated microorganisms. The green synthesized AgNPs with high antimicrobial activity has potential to be used in food packaging and biomedical research areas.
Collapse
Affiliation(s)
- Julalak C Ontong
- Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supakit Paosen
- Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Microbiology, Faculty of Science and Excellence Research Laboratory on Natural Products, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Shiv Shankar
- Center for Humanities and Sciences, BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Supayang P Voravuthikunchai
- Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Microbiology, Faculty of Science and Excellence Research Laboratory on Natural Products, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
30
|
Antimicrobial Activity of Compounds Containing Silver Nanoparticles and Calcium Glycerophosphate in Combination with Tyrosol. Indian J Microbiol 2019; 59:147-153. [PMID: 31031428 DOI: 10.1007/s12088-019-00797-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/11/2019] [Indexed: 01/22/2023] Open
Abstract
Nanocomposites containing antimicrobial agents and calcium phosphates have been developed. Thus, this study assessed the effects of two compounds containing silver nanoparticles (AgNPs) and β-calcium glycerophosphate (CaGP), associated or not with tyrosol (TYR), against planktonic cells and biofilms of Candida albicans and Streptococcus mutans. The nanocompounds were synthesized through chemical and 'green' processes and characterized by scanning electron microscopy. The minimum and fractional inhibitory concentrations of each compound were determined for planktonic cells. Next, 24-h single biofilms of C. albicans and S. mutans were treated for 24 h with the nanocompounds alone or in combination with TYR, and the antibiofilm effect was assessed through enumeration of colony forming units. Biofilm data were statistically examined using one-way ANOVA and the Kruskal-Wallis test (α = 0.05). The chemically synthesized nanocompound in combination with TYR demonstrated a synergistic effect against planktonic cells of C. albicans and S. mutans. For the nanocompound obtained through the 'green' route associated with TYR, a synergistic effect was observed only against C. albicans. For biofilms, only the combination obtained through the 'green' route + TYR demonstrated a synergistic effect against C. albicans. Our results may contribute to the development of oral care products containing AgNPs-CaGP and TYR to combat oral infections.
Collapse
|
31
|
Patel E, Pradeep P, Kumar P, Choonara YE, Pillay V. Oroactive dental biomaterials and their use in endodontic therapy. J Biomed Mater Res B Appl Biomater 2019; 108:201-212. [PMID: 30957440 DOI: 10.1002/jbm.b.34379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023]
Abstract
Dental biomaterials have revolutionized modern therapies. Untreated dental caries remains the major etiological factor for endodontic treatment, and together with a decreasing rate of tooth loss escalates the importance of continuously improving the materials used for endodontic therapies. Endodontic biomaterials are used for vital pulp therapies, irrigation, intracanal medicaments, obturation and regenerative procedures. These materials offer several functions including: antimicrobial activity, mechanical reinforcement, aesthetics, and therapeutic effects. Vital pulp therapies have seen an improvement in clinical results with an incremental approach to build on the strengths of past materials such as calcium hydroxide and calcium silicates. While sodium hypochlorite remains the gold standard for canal irrigation, numerous nanoparticle formulations have been developed to promote sustained antimicrobial action. Gutta-percha based bulk fillers remain the most common materials for root filling. However, while multiple studies focus on the development of novel formulations containing drugs, glass derivatives or ionic-, polymeric-, or drug- loaded nanoparticles, a lack of reliable and long-term clinical evidence obligates further study as experienced clinicians prefer to use what has worked for decades. This review delves in to the biochemistry of the materials to scrutinize their shortcomings, and where opportunity lies to further enhance their efficacy in endodontic practice. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:201-212, 2020.
Collapse
Affiliation(s)
- Ebrahim Patel
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
32
|
Abstract
At nanoscale, man-made materials may show unique properties that differ from bulk and dissolved counterparts. The unique properties of engineered nanomaterials not only impart critical advantages but also confer toxicity because of their unwanted interactions with different biological compartments and cellular processes. In this review, we discuss various entry routes of nanomaterials in the human body, their applications in daily life, and the mechanisms underlying their toxicity. We further explore the passage of nanomaterials into air, water, and soil ecosystems, resulting in diverse environmental impacts. Briefly, we probe the available strategies for risk assessment and risk management to assist in reducing the occupational risks of potentially hazardous engineered nanomaterials including the control banding (CB) approach. Moreover, we substantiate the need for uniform guidelines for systematic analysis of nanomaterial toxicity, in silico toxicological investigations, and obligation to ensure the safe disposal of nanowaste to reduce or eliminate untoward environmental and health impacts. At the end, we scrutinize global regulatory trends, hurdles, and efforts to develop better regulatory sciences in the field of nanomedicines.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Huan Xie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| |
Collapse
|
33
|
An overview of application of silver nanoparticles for biomaterials in dentistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:881-898. [PMID: 30033323 DOI: 10.1016/j.msec.2018.05.069] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 11/23/2022]
Abstract
Oral cavity is a gateway to the entire body and protection of this gateway is a major goal in dentistry. Plaque biofilm is a major cause of majority of dental diseases and although various biomaterials have been applied for their cure, limitations pertaining to the material properties prevent achievement of desired outcomes. Nanoparticle applications have become useful tools for various dental applications in endodontics, periodontics, restorative dentistry, orthodontics and oral cancers. Off these, silver nanoparticles (AgNPs) have been used in medicine and dentistry due to its antimicrobial properties. AgNPs have been incorporated into biomaterials in order to prevent or reduce biofilm formation. Due to greater surface to volume ratio and small particle size, they possess excellent antimicrobial action without affecting the mechanical properties of the material. This unique property of AgNPs makes these materials as fillers of choice in different biomaterials whereby they play a vital role in improving the properties. This review aims to discuss the influence of addition of AgNPs to various biomaterials used in different dental applications.
Collapse
|
34
|
Rodrigues CT, de Andrade FB, de Vasconcelos LRSM, Midena RZ, Pereira TC, Kuga MC, Duarte MAH, Bernardineli N. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis
biofilm and infected dentinal tubules. Int Endod J 2018; 51:901-911. [DOI: 10.1111/iej.12904] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/29/2018] [Indexed: 01/11/2023]
Affiliation(s)
- C. T. Rodrigues
- Department of Dentistry, Endodontics and Dental Materials; Bauru School of Dentistry; University of São Paulo; Bauru Brazil
| | - F. B. de Andrade
- Department of Dentistry, Endodontics and Dental Materials; Bauru School of Dentistry; University of São Paulo; Bauru Brazil
| | - L. R. S. M. de Vasconcelos
- Department of Dentistry, Endodontics and Dental Materials; Bauru School of Dentistry; University of São Paulo; Bauru Brazil
| | - R. Z. Midena
- Department of Dentistry, Endodontics and Dental Materials; Bauru School of Dentistry; University of São Paulo; Bauru Brazil
| | - T. C. Pereira
- Department of Dentistry, Endodontics and Dental Materials; Bauru School of Dentistry; University of São Paulo; Bauru Brazil
| | - M. C. Kuga
- Department of Restorative Dentistry; Araraquara Dental School; UNESP - Paulista State University; Araraquara Brazil
| | - M. A. H. Duarte
- Department of Dentistry, Endodontics and Dental Materials; Bauru School of Dentistry; University of São Paulo; Bauru Brazil
| | - N. Bernardineli
- Department of Dentistry, Endodontics and Dental Materials; Bauru School of Dentistry; University of São Paulo; Bauru Brazil
| |
Collapse
|
35
|
Cintra LTA, Benetti F, de Azevedo Queiroz ÍO, Ferreira LL, Massunari L, Bueno CRE, de Oliveira SHP, Gomes-Filho JE. Evaluation of the Cytotoxicity and Biocompatibility of New Resin Epoxy–based Endodontic Sealer Containing Calcium Hydroxide. J Endod 2017; 43:2088-2092. [DOI: 10.1016/j.joen.2017.07.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 10/18/2022]
|
36
|
|
37
|
Shao J, Yu N, Kolwijck E, Wang B, Tan KW, Jansen JA, Walboomers XF, Yang F. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes. Nanomedicine (Lond) 2017; 12:2771-2785. [PMID: 28967828 DOI: 10.2217/nnm-2017-0172] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. MATERIALS & METHODS Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and cytotoxicity in vitro and for tissue response in a rabbit subcutaneous model. RESULTS The nanoparticles displayed dose-dependent antibacterial properties against Porphyromonas gingivalis and Fusobacterium nucleatum, without showing noticeable cytotoxicity. The membranes with silver nanoparticles evoked a similar inflammatory response compared with the membranes without silver nanoparticles. CONCLUSION The antibacterial effect, combined with the findings on cyto- and biocompatibility warrants further investigation to the usefulness of chitosan/poly(ethylene oxide) membranes with silver nanoparticles, for clinical applications like guided tissue regeneration.
Collapse
Affiliation(s)
- Jinlong Shao
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Na Yu
- National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore.,Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Eva Kolwijck
- Department of Medical Microbiology, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Bing Wang
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Ke Wei Tan
- National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Viola KS, Rodrigues EM, Tanomaru-Filho M, Carlos IZ, Ramos SG, Guerreiro-Tanomaru JM, Faria G. Cytotoxicity of peracetic acid: evaluation of effects on metabolism, structure and cell death. Int Endod J 2017; 51 Suppl 4:e264-e277. [DOI: 10.1111/iej.12750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/26/2017] [Indexed: 11/28/2022]
Affiliation(s)
- K. S. Viola
- Department of Restorative Dentistry; Araraquara School of Dentistry; UNESP Univ Estadual Paulista; Araraquara SP Brazil
| | - E. M. Rodrigues
- Department of Restorative Dentistry; Araraquara School of Dentistry; UNESP Univ Estadual Paulista; Araraquara SP Brazil
| | - M. Tanomaru-Filho
- Department of Restorative Dentistry; Araraquara School of Dentistry; UNESP Univ Estadual Paulista; Araraquara SP Brazil
| | - I. Z. Carlos
- Department of Clinical Analysis; Araraquara School of Pharmaceutical Sciences; UNESP Univ Estadual Paulista; Araraquara SP Brazil
| | - S. G. Ramos
- Department of Pathology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto SP Brazil
| | - J. M. Guerreiro-Tanomaru
- Department of Restorative Dentistry; Araraquara School of Dentistry; UNESP Univ Estadual Paulista; Araraquara SP Brazil
| | - G. Faria
- Department of Restorative Dentistry; Araraquara School of Dentistry; UNESP Univ Estadual Paulista; Araraquara SP Brazil
| |
Collapse
|
39
|
Kurtjak M, Vukomanović M, Kramer L, Suvorov D. Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:170. [PMID: 27704374 DOI: 10.1007/s10856-016-5777-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Intensive research in the area of medical nanotechnology, especially to cope with the bacterial resistance against conventional antibiotics, has shown strong antimicrobial action of metallic and metal-oxide nanomaterials towards a wide variety of bacteria. However, the important remaining problem is that nanomaterials with highest antibacterial activity generally express also a high level of cytotoxicity for mammalian cells. Here we present gallium nanoparticles as a new solution to this problem. We developed a nanocomposite from bioactive hydroxyapatite nanorods (84 wt %) and antibacterial nanospheres of elemental gallium (16 wt %) with mode diameter of 22 ± 11 nm. In direct comparison, such nanocomposite with gallium nanoparticles exhibited better antibacterial properties against Pseudomonas aeruginosa and lower in-vitro cytotoxicity for human lung fibroblasts IMR-90 and mouse fibroblasts L929 (efficient antibacterial action and low toxicity from 0.1 to 1 g/L) than the nanocomposite of hydroxyapatite and silver nanoparticles (efficient antibacterial action and low toxicity from 0.2 to 0.25 g/L). This is the first report of a biomaterial composite with gallium nanoparticles. The observed strong antibacterial properties and low cytotoxicity make the investigated material promising for the prevention of implantation-induced infections that are frequently caused by P. aeruginosa.
Collapse
Affiliation(s)
- Mario Kurtjak
- Jožef Stefan Institute, Advanced Materials Department, Jamova cesta 39, Ljubljana, 1000, Slovenia.
- Jozef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000, Slovenia.
| | - Marija Vukomanović
- Jožef Stefan Institute, Advanced Materials Department, Jamova cesta 39, Ljubljana, 1000, Slovenia
| | - Lovro Kramer
- Jozef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000, Slovenia
- Jožef Stefan Institute, Department of Biochemistry and Molecular Biology, Jamova cesta 39, Ljubljana, 1000, Slovenia
| | - Danilo Suvorov
- Jožef Stefan Institute, Advanced Materials Department, Jamova cesta 39, Ljubljana, 1000, Slovenia
| |
Collapse
|