1
|
Tůma P. Advances in capillary electrophoresis for plant analysis. Talanta 2025; 293:128171. [PMID: 40252503 DOI: 10.1016/j.talanta.2025.128171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Capillary and microchip electrophoresis plays an important role in the analysis of the chemical composition of plants and nutrient soils, which finds applications in plant physiology, agrochemistry, medicine, toxicology and food science. Electrophoretic methods are used to determine minerals such as nutrients, heavy metal ions, primary and secondary metabolites, herbicides, phytohormones, peptides, proteins and extracellular vesicles. Progress is particularly evident in the following topics: i) development of mobile electrophoretic analysers for field-based monitoring of soil mineral supply, ii) direct analysis of xylem sap without sample treatment, iii) coupling of capillary and microchip electrophoresis with mass spectrometry for comprehensive metabolome and proteome characterization, iv) determination of secondary metabolites as biologically active compounds with a range of therapeutic and toxicological effects, v) monitoring of herbicides and their degradation dynamics, vi) research on plant exudates, extracellular vesicles and specific protein interactions.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czechia.
| |
Collapse
|
2
|
Lu Y, Qin Q, Pan J, Deng S, Wang S, Li Q, Cao J. Advanced applications of two-dimensional liquid chromatography in quantitative analysis of natural products. J Chromatogr A 2025; 1743:465662. [PMID: 39808906 DOI: 10.1016/j.chroma.2025.465662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Two-dimensional liquid chromatography (2D-LC) separation systems, based on two independent columns with different separation mechanisms, have exhibited strong resolving power for complex samples. Therefore, in recent years, the exceptional resolution of 2D-LC has significantly advanced the chemical separation of natural products, such as complex herbs, greatly facilitating their qualitative and quantitative analysis. This paper aims to review the latest strategies of 2D-LC in the quantitative analysis of complex chemical compositions in natural products. To this end, the major advantages and disadvantages of various column couplings in 2D-LC are discussed based on specific studies, along with suggested solutions to address the identified drawbacks. Moreover, the applications of different detectors combined with the latest chemometrics in 2D-LC for accurate quantitative analysis of natural products are reviewed and discussed.
Collapse
Affiliation(s)
- Yang Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Qiubing Qin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Juan Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Shuqi Deng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China.
| | - Jiliang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China.
| |
Collapse
|
3
|
Hao L, Shi X, Wen S, Yang C, Chen Y, Yue S, Chen J, Luo K, Liu B, Sun Y, Zhang Y. Single nucleotide polymorphism-based visual identification of Rhodiola crenulata using the loop-mediated isothermal amplification technique. FRONTIERS IN PLANT SCIENCE 2025; 15:1492083. [PMID: 39886689 PMCID: PMC11779703 DOI: 10.3389/fpls.2024.1492083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025]
Abstract
Introduction Rhodiola crenulata (Hook.f. & Thomson) H.Ohba, a member of the Crassulaceae family, is a traditional Chinese medicine recognized as the original source of Rhodiolae Crenulatae Radix et Rhizoma in the 2020 edition of the China Pharmacopoeia. It has been widely used in both Asia and Europe to enhance stress resistance and reduce fatigue. However, the classification of Rhodiola species can lead to confusion, raising safety concerns in the herbal medicine market. Methods The cleaved amplified polymorphic sequence (CAPS) RT-PCR was used to identify the single nucleotide polymorphism (SNP) sites, based on which the loop-mediated isothermal amplification (LAMP) was employed to develop the method in Rh. crenulata identification. The specific loop backward primers, reaction temperature, reaction time, and color indicators were screened and optimized. Results Single nucleotide polymorphism (SNP) sites were identified between Rh. crenulata and two closely related species. Based on the identified SNP sites, the optimal real-time fluorescence LAMP system to identify Rh. crenulata was constructed with the most efficient specific loop backward primers, reaction temperature. The final detection system exhibited a sensitivity of up to 1,000 copies of the target DNA, maintaining a constant reaction temperature of 62°C within 35 minutes. To facilitate visualization, we incorporated two color indicators, hydroxy naphthol blue (HNB) and neutral red (N-red), into the reaction system. Discussion Collectively, we developed a simple, rapid, specific, sensitive, and visible method to distinguish Rh. crenulata from other two Rhodiola species and Rh. crenulata hybrids. This approach has significant potential for applications in pharmaceutical industry.
Collapse
Affiliation(s)
- Li Hao
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xin Shi
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Shiyu Wen
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Caiye Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yaqi Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Samo Yue
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiaqiang Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Kexin Luo
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bingliang Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yanxia Sun
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
4
|
Du R, Xu F, Wei D, Wei Y, Wang Z, Wang Z. Pharmacokinetics of two triterpenoid saponins and three flavonoids in Astragalus membranaceus leaves by UHPLC-MS/MS. J Pharm Biomed Anal 2024; 251:116419. [PMID: 39154580 DOI: 10.1016/j.jpba.2024.116419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Astragalus membranaceus (A. membranaceus) leaves can be used both as a medicine and food material. Their main chemical components are flavonoids and triterpenoid saponins. The pharmacokinetics of A. membranaceus leaves are rarely reported in the literature. This study aimed to investigate the pharmacokinetics of five major bioactive components of A. membranaceus leaves [rhamnocitrin 3-glucoside (RCG), tiliroside (TIL), rhamnocitrin 3-neohesperidoside (RNH), huangqiyenin R (HuR), and huangqiyenin I (HuI)]. Simultaneously using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The extract of A. membranaceus leaves was administered orally to rats, and the rat plasma was subjected to a fast, sensitive, and specific UHPLC-MS/MS method. Butylparaben served as the internal standard. The plasma samples were pretreated using isopropanol/ethyl acetate (1:1, v/v) liquid-liquid extraction. Chromatographic separations were performed at a flow rate of 0.3 mL/min on a Waters ACQUITY HSS T3 Column (2.1 mm × 100 mm, 1.8 μm) using mobile phases of 0.1 % formic acid/water and 0.1 % formic acid/acetonitrile. Mass spectrometry detection was performed using an electrospray ionization ion source in the negative-ion mode and the multiple reaction monitoring mode. All analytes had an intraday and interday relative standard deviation of less than 14.10 %. The range of accuracy was -11.94-6.920 % and -15.22-5.800 %. The lower limits of quantification for RCG, TIL, RNH, HuR, HuI was 10.24, 10.27, 10.12, 5.137, and 5.841 ng/mL, respectively. The criteria were met by stability, matrix effects, and extraction recovery. The pharmacokinetic parameters of A. membranaceus leaf extract were ultimately obtained using this analytical method. The study provides a theoretical basis for future pharmacological research, clinical application, and development of healthy food from A. membranaceus leaves.
Collapse
Affiliation(s)
- Ruitong Du
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Feng Xu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Deshu Wei
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yuxin Wei
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhenyue Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
5
|
Faleva AV, Ulyanovskii NV, Onuchina AA, Kosyakov DS. Polyphenolic Antioxidants in Bilberry Stems and Leaves: A Non-Targeted Analysis by Two-Dimensional NMR Spectroscopy and Liquid Chromatography-High-Resolution Mass Spectrometry. Antioxidants (Basel) 2024; 13:1409. [PMID: 39594551 PMCID: PMC11591115 DOI: 10.3390/antiox13111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Compared with those of berries, the stems and leaves of the genus Vaccinium are important and underestimated sources of polyphenols with high antioxidant activity. In the course of this work, aqueous methanol extracts of the aerial parts of common bilberry (Vaccinium myrtillus L.) and bog bilberry (Vaccinium uliginosum L.) were studied to analyze the component compositions of their biologically active polyphenolic compounds. The aqueous methanol fractions of the stems and leaves of the studied samples contained 8.7 and 4.6% extractives, respectively, and were comparable in total polyphenol content, but presented significant differences in antioxidant activity. The identification of polyphenolic compounds was carried out via the following two-stage analytical procedure: (1) non-targeted screening of dominant structures via the 2D NMR method and (2) analysis of HPLC-HRMS data via the scanning of precursor ions for a specific ion. A total of 56 phenolic compounds were identified, including the glycosides quercetin, proanthocyanidins, and catechins, as well as various conjugates of caffeic and p-coumaric acids, including iridoids. Some of the latter, such as caffeoyl and p-coumaroyl hydroxydihydromonotropein, as well as a number of lignan glycosides, were described for the first time in V. uliginósum and V. myrtillus.
Collapse
Affiliation(s)
- Anna V. Faleva
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (N.V.U.); (A.A.O.); (D.S.K.)
| | | | | | | |
Collapse
|
6
|
Oubohssaine M, Hnini M, Rabeh K. Exploring lipid signaling in plant physiology: From cellular membranes to environmental adaptation. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154295. [PMID: 38885581 DOI: 10.1016/j.jplph.2024.154295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Lipids have evolved as versatile signaling molecules that regulate a variety of physiological processes in plants. Convincing evidence highlights their critical role as mediators in a wide range of plant processes required for survival, growth, development, and responses to environmental conditions such as water availability, temperature changes, salt, pests, and diseases. Understanding lipid signaling as a critical process has helped us expand our understanding of plant biology by explaining how plants sense and respond to environmental cues. Lipid signaling pathways constitute a complex network of lipids, enzymes, and receptors that coordinate important cellular responses and stressing plant biology's changing and adaptable traits. Plant lipid signaling involves a wide range of lipid classes, including phospholipids, sphingolipids, oxylipins, and sterols, each of which contributes differently to cellular communication and control. These lipids function not only as structural components, but also as bioactive molecules that transfer signals. The mechanisms entail the production of lipid mediators and their detection by particular receptors, which frequently trigger downstream cascades that affect gene expression, cellular functions, and overall plant growth. This review looks into lipid signaling in plant physiology, giving an in-depth look and emphasizing its critical function as a master regulator of vital activities.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| | - Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
7
|
Lis-Cieplak A, Trześniowska K, Stolarczyk K, Stolarczyk EU. Pyrrolizidine Alkaloids as Hazardous Toxins in Natural Products: Current Analytical Methods and Latest Legal Regulations. Molecules 2024; 29:3269. [PMID: 39064851 PMCID: PMC11279032 DOI: 10.3390/molecules29143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are toxic compounds that occur naturally in certain plants, however, there are many secondary pathways causing PA contamination of other plants, including medicinal herbs and plant-based food products, which pose a risk of human intoxication. It is proven that chronic exposure to PAs causes serious adverse health consequences resulting from their cytotoxicity and genotoxicity. This review briefly presents PA occurrence, structures, chemistry, and toxicity, as well as a set of analytical methods. Recently developed sensitive electrochemical and chromatographic methods for the determination of PAs in honey, teas, herbs, and spices were summarized. The main strategies for improving the analytical efficiency of PA determination are related to the use of mass spectrometric (MS) detection; therefore, this review focuses on advances in MS-based methods. Raising awareness of the potential health risks associated with the presence of PAs in food and herbal medicines requires ongoing research in this area, including the development of sensitive methods for PA determination and rigorous legal regulations of PA intake from herbal products. The maximum levels of PAs in certain products are regulated by the European Commission; however, the precise knowledge about which products contain trace but significant amounts of these alkaloids is still insufficient.
Collapse
Affiliation(s)
- Agnieszka Lis-Cieplak
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | - Katarzyna Trześniowska
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | | | - Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| |
Collapse
|
8
|
Li J, Chen Y, Yu K, Zhang M, Li Q, Tang S, Liu Y, Li H, Zhang Z. Rapid chemical characterization and pharmacological mechanism of Fining Granules in the treatment of chronic bronchitis based on UHPLC-Q-exactive orbitrap mass spectrometer and network pharmacology. Heliyon 2024; 10:e31804. [PMID: 38845898 PMCID: PMC11154603 DOI: 10.1016/j.heliyon.2024.e31804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Background Senecio cannabifolius Less. is a perennial herb belonging to the Compositae family that has been used in traditional medicine as an antitussive and expectorant for treating chronic bronchitis and acute respiratory infections. Traditionally, Feining Granules are prepared from water extracts of the raw plant material. However, the chemical composition and pharmacological mechanisms of Feining Granules have not been thoroughly investigated. Methods A systematic strategy for the rapid detection and identification of the constituents of Feining Granules was developed using ultrahigh-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry (MS) with parallel reaction monitoring. Results Overall, 162 compounds, including flavonoids, alkaloids, organic acids, and others, were identified unambiguously and tentatively by comparing the retention times and MS fragmentation with reference standards and literature data. Ninety-nine of these were reported for the first time to the best of our knowledge. Network pharmacology suggests that Feining Granules can be used to treat chronic bronchitis as they contain active components associated with the ALB, VEGFA, and SRC target genes influenced by HIF-1, VEGF, and other signaling pathways. Conclusion These results provide information that can help understand the effective substances of S. cannabifolius Less. and improve quality control.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Yuqi Chen
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Kaiquan Yu
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Min Zhang
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Qing Li
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Yanlan Liu
- Nursing School, Hunan University of Medicine, Huaihua, Hunan Province, 418000, China
| | - Hui Li
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Zaiqi Zhang
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
9
|
El-Deeb EM, Elsayed HE, Ateya HB, Taha HS, Elgindi MR, Abouelenein D, Caprioli G, Lai KH, Mustafa AM, Moharram FA. Phenolic profiling and bioactivity assessment of in vitro propagated Psidium cattleianum Sabine: A promising study. Heliyon 2024; 10:e29379. [PMID: 38644814 PMCID: PMC11033136 DOI: 10.1016/j.heliyon.2024.e29379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Psidium cattleianum Sabine (strawberry guava) is an evergreen shrub that is grown as a fruiting hedge and has received significant consideration in the food and pharmaceutical disciplines. This study aims to set a promising protocol for in vitro propagation of P. cattleianum, along with profiling the phenolic content of the original plant (OP), induced callus (IC), and regenerated plantlets (RP) extracts, ultimately, evaluating their anti-inflammatory, antioxidant, and anticancer potential. Seeds were treated with commercial bleaching, HCl, and H2O2 to enhance the germination percentage and minimize the contamination percentage. Culturing sterilized leaf explants onto Murashige and Skoog (MS) medium supplemented with benzyl adenine (BA), 2,4-dichloro phenoxy acetic acid, and kinetin showed the best callus induction, while supplementation of MS media with BA, adenine sulfate, naphthalene acetic acid, and gibberellic acid activated regeneration. Augmentation of MS media with indol-3-butyric acid recorded the maximum rooting percentage. Finally, the obtained rooted shoots were successfully acclimatized in sand and peat moss soil. HPLC-MS/MS profiles of OP, RP, and IC showed a variety of phenolic metabolites. IC extract decreased the viability of MCF-7, HepG2, and K-562 cancer cell lines. Also, OP exhibits strong antioxidant activity. P. cattleianum and its RP are profound sources of phenolic compounds promoted for promising applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Eman M. El-Deeb
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Heba E. Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hanaa B. Ateya
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hussein S. Taha
- Department of Plant Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed R. Elgindi
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Doaa Abouelenein
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ahmed M. Mustafa
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
10
|
Plachká K, Pilařová V, Kosturko Š, Škop J, Svec F, Nováková L. Ultrahigh-Performance Supercritical Fluid Chromatography-Multimodal Ionization-Tandem Mass Spectrometry as a Universal Tool for the Analysis of Small Molecules in Complex Plant Extracts. Anal Chem 2024; 96. [PMID: 38300751 PMCID: PMC10882571 DOI: 10.1021/acs.analchem.3c03599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Complex analysis of plant extracts usually requires a combination of several analytical approaches. Therefore, in this study, we developed a holistic two-injection approach for plant extract analysis, which is carried out within one instrument without the need for any manual intervention during the analysis. Ultrahigh-performance supercritical fluid chromatography (UHPSFC) was employed for the analysis of 17 volatile terpenes on a porous graphitic carbon column within 7.5 min, followed by analysis on short diol column where flavonoids, phenolic acids, and terpenoic acids were analyzed within 15.5 min. A multimodal ionization source combining electrospray and atmospheric pressure chemical ionization (ESCi) was selected for mass spectrometry detection as a simultaneous ionization of both lipophilic and polar compounds was required. The quantitative aspects of the final UHPSFC-ESI/ESCi-MS/MS two-injection approach were determined, and it was applied to the analysis of Eucalyptus sp. extracts prepared by supercritical fluid extraction. Current methods reported in the literature typically require a labor-intensive combination of liquid and gas chromatography for the complex analysis of plant extracts. We present for the first time a new UHPSFC approach requiring only a single instrument that provides an alternative approach to the analysis of complex plant extracts.
Collapse
Affiliation(s)
- Kateřina Plachká
- Department of Analytical
Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Veronika Pilařová
- Department of Analytical
Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Štefan Kosturko
- Department of Analytical
Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jan Škop
- Department of Analytical
Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Frantisek Svec
- Department of Analytical
Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical
Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Shah SA, Rana SL, Mohany M, Milošević M, Al-Rejaie SS, Farooq MA, Faisal MN, Aleem A. Fumaria indica (Hausskn.) Pugsley Hydromethanolic Extract: Bioactive Compounds Identification, Hypotensive Mechanism, and Cardioprotective Potential Exploration. ACS OMEGA 2024; 9:3642-3668. [PMID: 38284069 PMCID: PMC10809708 DOI: 10.1021/acsomega.3c07655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Fumaria indica (Hausskn.) Pugsley (FIP), a member of the Papaveraceae family, has a documented history of use in traditional medicine to treat cardiovascular ailments, particularly hypertension, and has shown substantial therapeutic efficacy among native cultures worldwide. However, the identification of bioactive compounds and the mechanism of hypotensive effect with the cardioprotective potential investigations are yet to be determined. The study aimed to identify bioactive compounds, explore the hypotensive mechanism and cardioprotective potential, and assess the safety of Fumaria indica (Hausskn.) Pugsley hydromethanolic extract (Fip.Cr). LC ESI-MS/MS analysis was performed to identify the bioactive compounds. In vitro experiments were conducted on isolated rat aorta and atria, and an in vivo invasive BP measurement model was used. Acute and subacute toxicities were assessed for 14 and 28 days, respectively. Isoproterenol (ISO) was used to develop the rats' myocardial infarction damage model. The mRNA levels of NLRP3 inflammasome and the abundance level of Firmicutes and Lactobacillus were measured by qRT-PCR. The hypotensive effect of FIP bioactive compounds was also investigated using in silico methods. Fip. Cr LC ESI-MS/MS analysis discovered 33 bioactive compounds, including alkaloids and flavonoids. In isolated rat aorta, Fip.Cr reversed contractions induced by K+ (80 mM), demonstrating a calcium entry-blocking function, and had a vasorelaxant impact on phenylephrine (PE) (1 μM)-induced contractions unaffected by L-NAME, ruling out endothelial NO participation. Fip.Cr caused negative chronotropic and inotropic effects in isolated rat atria unaffected by atropine pretreatment, eliminating cardiac muscarinic receptor involvement. Safety evaluation showed no major adverse effects. In vivo, invasive BP measurement demonstrated a hypotensive effect comparable to verapamil. Fip.Cr protected the rats from ISO-induced MI interventions significantly in biometrical and cardiac serum biochemical indicators and histological examinations by reducing inflammation via inhibiting NLRP3 inflammasome and elevating Firmicutes and Lactobacillus levels. The network pharmacology study revealed that the FIP hypotensive mechanism might involve MMP9, JAK2, HMOX1, NOS2, NOS3, TEK, SERPINE1, CCL2, and VEGFA. The molecular docking study revealed that FIP bioactive compounds docked better with CAC1C_ HUMAN than verapamil. These findings demonstrated that Fip.Cr's hypotensive mechanism may include calcium channel blocker activity. Fip.Cr ameliorated ISO-induced myocardial infarction in rats by attenuating inflammation, which might be via inhibiting NLRP3 inflammasome and may prove beneficial for treating MI.
Collapse
Affiliation(s)
- Syed Adil
Hussain Shah
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Samia Latif Rana
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Mohamed Mohany
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Marija Milošević
- Department
of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Salim S. Al-Rejaie
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | | | - Muhammad Naeem Faisal
- Institute
of Physiology and Pharmacology, University
of Agriculture, Faisalabad 60800, Pakistan
| | - Ambreen Aleem
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
12
|
Liu T, Xia Q, Lv Y, Wang Z, Zhu S, Qin W, Yang Y, Liu T, Wang X, Zhao Z, Ma H, Jia L, Zhang H, Xu Z, Li N. ErZhiFormula prevents UV-induced skin photoaging by Nrf2/HO-1/NQO1 signaling: An in vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:115935. [PMID: 36414213 DOI: 10.1016/j.jep.2022.115935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE ErZhiFormula (EZF) is a classical traditional Chinese medicinal formulation. It can be used to treat liver and kidney yin deficiency, dizziness, lumbar debility, insomnia, nocturnal emission, lower extremity weakness, and other aging-related diseases. However, the protective effect of EZF in skin photoaging and its potential mechanism has not been clarified. AIM OF THE STUDY This study aims to explore the role of EZF in the skin photoaging mechanism induced by UV radiation. MATERIALS AND METHODS Ultra Performance Liquid Chromatography (UPLC) was used to identify the fingerprint of EZF. The mice were irradiated with UVA and UVB to establish the photoaging model in vivo. Human immortalized keratinocytes (HaCaT) were irradiated with UVB to establish the photoaging model in vitro. The activity of cells was detected by CCK-8 and LDH kits, the level of reactive oxygen species was detected by DCF fluorescent probe, and the apoptosis was detected by PE annexin V and 7-Amino-Actinomycin (7-AAD) staining. Comet assay was used to detect cell DNA damage. The antioxidant enzyme levels in cell and mouse serum were detected by antioxidant kit, and Western blot was used to detect protein expression. RESULTS We found that EZF contain many active ingredients, including salidroside, specnuezhenide, isoquercitrin, etc. EZF can improve the photoaging of HaCaT cells and mouse skin caused by UV radiation. The results of animal experiments are consistent with those of cell experiments. Combined with Western blot analysis, we found that EZF finally played an anti-skin photoaging role by regulating the Nrf2/HO-1/NQO1 pathway. CONCLUSIONS EZF can protect skin from UV-induced photoaging by regulating the Nrf2/HO-1/NQO1 signal pathway. EZF may become a traditional Chinese medicine with the potential to prevent skin photoaging.
Collapse
Affiliation(s)
- Tao Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - QingMei Xia
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingshuang Lv
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zijing Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shan Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenxiao Qin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhiyue Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongfei Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Linlin Jia
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zongpei Xu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Nan Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
13
|
Dresler S, Strzemski M, Baczewska I, Koselski M, Hassanpouraghdam MB, Szczepanek D, Sowa I, Wójciak M, Hanaka A. Extraction of Isoflavones, Alpha-Hydroxy Acids, and Allantoin from Soybean Leaves-Optimization by a Mixture Design of the Experimental Method. Molecules 2023; 28:molecules28093963. [PMID: 37175385 PMCID: PMC10179801 DOI: 10.3390/molecules28093963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Soybeans are commonly known as a valuable source of biologically active compounds including isoflavones as well as allantoin and alpha-hydroxy acids. Since these compounds exhibit skin therapeutic effects, they are widely used in the cosmetic and pharmaceutical industries. The presented paper shows the optimization of three solvent systems (ethanol, water, and 1,3-propanediol) to increase the extraction efficiency of isoflavones (daidzin, genistin, 6″-O-malonyldaidzin, 6″-O-malonylglycitin, 6″-O-malonylgenistin), allantoin, and alpha-hydroxy acids (citric acid, malic acid) from soybean leaves. A simplex centroid mixture design for three solvents with interior points was applied for the experimental plan creation. Based on the obtained results of metabolite extraction yield in relation to solvent composition, polynomial regression models were developed. All models were significant, with predicted R-squared values between 0.77 and 0.99, while in all cases the model's lack of fit was not significant. The optimal mixture composition enabling the maximization of extraction efficiency was as follows: 32.9% ethanol, 53.9% water, and 13.3% propanediol (v/v/v). Such a mixture composition provided the extraction of 99%, 91%, 100%, 92%, 99%, 70%, 92%, and 69% of daidzin, genistin, 6″-O-malonyldaidzin, 6″-O-malonylglycitin, 6″-O-malonylgenistin, allantoin, citric acid, and malic acid, respectively. The solvent mixture composition developed provides a good extraction efficiency of the metabolites from soybean leaves and high antioxidant properties.
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Izabela Baczewska
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Mateusz Koselski
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | - Dariusz Szczepanek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
14
|
Suroowan S, Llorent-Martínez EJ, Zengin G, Dall’Acqua S, Sut S, Buskaran K, Fakurazi S, Le Van B, Abdalla M, Abdalla AN, Khalid A, Mahomoodally MF. Above the Invasive and Ornamental Attributes of the Traveler's Palm: An In Vitro and In Silico Insight into the Anti-Oxidant, Anti-Enzymatic, Cytotoxic and Phytochemical Characterization of Ravenala madagascariensis. Antioxidants (Basel) 2023; 12:antiox12010184. [PMID: 36671049 PMCID: PMC9854482 DOI: 10.3390/antiox12010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Ravenala madagascariensis is a widely known ornamental and medicinal plant, but with a dearth of scientific investigations regarding its phytochemical and pharmacological properties. Hence, these properties were appraised in this study. The DPPH (154.08 ± 2.43 mgTE/g), FRAP (249.40 ± 3.01 mgTE/g), CUPRAC (384.57 ± 1.99 mgTE/g), metal chelating (29.68 ± 0.74 mgEDTAE/g) and phosphomolybdenum assay (2.38 ± 0.07 mmolTE/g) results demonstrated that the aqueous extract had the most prominent antioxidant activity, while the methanolic extract displayed the best antioxidant potential in the ABTS assay (438.46 ± 1.69 mgTE/g). The HPLC-ESI-Q-TOF-MS-MS analysis allowed the characterization of 41 metabolites. The methanolic extract was the most active against acetylcholinesterase. All extracts were active against the alpha-amylase and alpha-glucosidase enzymes, with the ethyl acetate extract being the most active against the alpha-amylase enzyme, while the methanolic extract showed the best alpha-glucosidase inhibition. A plethora of metabolites bonded more energetically with the assayed enzymes active sites based on the results of the in silico studies. R. madagascariensis extracts used in this study exhibited cytotoxicity against HT29 cells. The IC50 of the methanolic extract was lower (506.99 ug/mL). Based on the heat map, whereby flavonoids were found to be in greater proportion in the extracts, it can be concluded that the flavonoid portion of the extracts contributed to the most activity.
Collapse
Affiliation(s)
- Shanoo Suroowan
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
- Correspondence: (S.D.); (B.L.V.)
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Kalaivani Buskaran
- Laboratory of Natural Medicine and Product Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| | - Sharida Fakurazi
- Laboratory of Natural Medicine and Product Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| | - Bao Le Van
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (S.D.); (B.L.V.)
| | - Mohnad Abdalla
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jinan 250022, China
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum P.O. Box 2404, Sudan
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 600077, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
15
|
Yang X, Xiong Y, Wang H, Jiang M, Xu X, Mi Y, Lou J, Li X, Sun H, Zhao Y, Li X, Yang W. Multicomponent Characterization of the Flower Bud of Panax notoginseng and Its Metabolites in Rat Plasma by Ultra-High Performance Liquid Chromatography/Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249049. [PMID: 36558182 PMCID: PMC9786607 DOI: 10.3390/molecules27249049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The flower bud of Panax notoginseng (PNF) consumed as a tonic shows potential in the prevention and treatment of cardiovascular diseases. To identify the contained multi-components and, in particular, to clarify which components can be absorbed and what metabolites are transformed, unveiling the effective substances of PNF is of vital significance. A unique ultrahigh-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) profiling approach and efficient data processing by the UNIFITM bioinformatics platform were employed to comprehensively identify the multi-components of PNF and the related metabolites in the plasma of rats after oral administration (at a dose of 3.6 g/kg). Two MS2 data acquisition modes operating in the negative electrospray ionization mode, involving high-definition MSE (HDMSE) and data-dependent acquisition (DDA), were utilized aimed to extend the coverage and simultaneously ensure the quality of the MS2 spectra. As a result, 219 components from PNF were identified or tentatively characterized, and 40 thereof could be absorbed. Moreover, 11 metabolites were characterized from the rat plasma. The metabolic pathways mainly included the phase I (deglycosylation and oxidation). To the best of our knowledge, this is the first report that systematically studies the in vivo metabolites of PNF, which can assist in better understanding its tonifying effects and benefit its further development.
Collapse
Affiliation(s)
- Xiaonan Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ying Xiong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yueguang Mi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jia Lou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaohang Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - He Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuying Zhao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Correspondence: (X.L.); (W.Y.); Tel.: +86-022-5979-1833 (W.Y.)
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Correspondence: (X.L.); (W.Y.); Tel.: +86-022-5979-1833 (W.Y.)
| |
Collapse
|
16
|
Li H, Gao L, Shao H, Li B, Zhang C, Sheng H, Zhu L. Elucidation of active ingredients and mechanism of action of hawthorn in the prevention and treatment of atherosclerosis. J Food Biochem 2022; 46:e14457. [PMID: 36200679 DOI: 10.1111/jfbc.14457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Hawthorn (HT), a functional food and medicinal herb for centuries in China, has potential preventive and therapeutic effects on atherosclerosis (AS). However, the mechanisms and active ingredients of HT in the prevention and treatment of AS are unclear. This study aimed to reveal active components and mechanism of HT in the prevention and treatment of AS using UHPLC-Q-Exactive Orbitrap MS and network pharmacology. A total of 50 compounds were identified by UHPLC-Q-Exactive Orbitrap MS. Six core targets and six active compounds were obtained by network pharmacology. Apigenin, luteolin, chrysin, quercetin, oleanic acid, and corosolic acid were the active components in the prevention and treatment of AS, and core targets included SRC, HSP90AA1, MAPK3, EGFR, HRAS, and AKT1. The key signaling pathways involved are MAPK, HIF-1, NF-kappa B, PI3K-Akt, TNF, Rap1, Ras, and VEGF signaling pathways. Further molecular docking results indicated that the six active compounds had strong hydrogen bonding ability with the six core targets. On the molecular level, HT may regulate AS by controlling cell survival and proliferation, reducing the levels of enzymes HMG-CoA reductase and lipoprotein lipase and inhibiting inflammatory response. PRACTICAL APPLICATIONS: HT can serve as "medicine-food homology" for dietary supplement and exert potential preventive and therapeutic effects on AS. However, the mechanisms of HT in the prevention and treatment of AS are unclear. This study describes a rapid method of detecting and identifying the components and mechanism of HT based on LC-MS and network pharmacology, which provides a theoretical and scientific support for further application of HT and guidance for the research of other herbal medicines.
Collapse
Affiliation(s)
- Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
17
|
Chen Y, Xie Y, Li L, Wang Z, Yang L. Advances in mass spectrometry imaging for toxicological analysis and safety evaluation of pharmaceuticals. MASS SPECTROMETRY REVIEWS 2022:e21807. [PMID: 36146929 DOI: 10.1002/mas.21807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Safety issues caused by pharmaceuticals have frequently occurred worldwide, posing a tremendous threat to human health. As an essential part of drug development, the toxicological analysis and safety evaluation is of great significance. In addition, the risk of pharmaceuticals accumulation in the environment and the monitoring of the toxicity from natural medicines have also received ongoing concerns. Due to a lack of spatial distribution information provided by common analytical methods, analyses that provide spatial dimensions could serve as complementary safety evaluation methods for better prediction and evaluation of drug toxicity. With advances in technical solutions and software algorithms, mass spectrometry imaging (MSI) has received increasing attention as a popular analytical tool that enables the simultaneous implementation of qualitative, quantitative, and localization without complex sample pretreatment and labeling steps. In recent years, MSI has become more attractive, powerful, and sensitive and has been applied in several scientific fields that can meet the safety assessment requirements. This review aims to cover a detailed summary of the various MSI technologies utilized in the biomedical and pharmaceutical area, including technical principles, advantages, current status, and future trends. Representative applications and developments in the safety-related issues of different pharmaceuticals and natural medicines are also described to provide a reference for pharmaceutical research, improve rational clinical medicine use, and ensure public safety.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
You H, Abraham EJ, Mulligan J, Zhou Y, Montoya M, Willig J, Chen BK, Wang CK, Wang LS, Dong A, Shamtsyan M, Nguyen H, Wong A, Wallace TC. Label compliance for ingredient verification: regulations, approaches, and trends for testing botanical products marketed for "immune health" in the United States. Crit Rev Food Sci Nutr 2022; 64:2441-2460. [PMID: 36123797 DOI: 10.1080/10408398.2022.2124230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the COVID-19 pandemic, the botanical product market saw a consumer interest increase in immune health supplements. While data are currently insufficient to support public health guidance for using foods and dietary supplements to prevent or treat COVID-19 and other immune disorders, consumer surveys indicate that immune support is the second-most cited reason for supplement use in the United States. Meanwhile, consumers showed increased attention to dietary supplement ingredient labels, especially concerning authenticity and ingredient claims. Top-selling botanical ingredients such as elderberry, turmeric, and functional mushrooms have been increasingly marketed toward consumers to promote immune health, but these popular products succumb to adulteration with inaccurate labeling due to the intentional or unintentional addition of lower grade ingredients, non-target plants, and synthetic compounds, partially due to pandemic-related supply chain issues. This review highlights the regulatory requirements and recommendations for analytical approaches, including chromatography, spectroscopy, and DNA approaches for ingredient claim verification. Demonstrating elderberry, turmeric, and functional mushrooms as examples, this review aims to provide industrial professionals and scientists an overview of current United States regulations, testing approaches, and trends for label compliance verification to ensure the safety of botanical products marketed for "immune health."
Collapse
Affiliation(s)
- Hong You
- Eurofins Botanical Testing, US, Inc., Brea, California, USA
- Eurofins US Food, Des Moines, Iowa, USA
| | | | - Jason Mulligan
- Eurofins Botanical Testing, US, Inc., Brea, California, USA
| | - Yucheng Zhou
- Eurofins Botanical Testing, US, Inc., Brea, California, USA
| | | | | | - Bo-Kai Chen
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Athena Dong
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | - Andrea Wong
- Council for Responsible Nutrition, Washington, DC, USA
| | - Taylor C Wallace
- Think Healthy Group, LLC, Washington, DC, USA
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
19
|
Phytochemical Characterization, Anti-Oxidant, Anti-Enzymatic and Cytotoxic Effects of Artemisia verlotiorum Lamotte Extracts: A New Source of Bioactive Agents. Molecules 2022; 27:molecules27185886. [PMID: 36144622 PMCID: PMC9500874 DOI: 10.3390/molecules27185886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant’s biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.
Collapse
|
20
|
Yang Y, Zhu J, Yao CL, Guo DA, He N, Mei QX, Feng GJ, Chen QH, Yang GY. Determination of six core components from Mahuang Xuanfei Zhike syrup in rat plasma and tissues by UPLC-MS/MS: Application to the pharmacokinetics and tissue distribution study. Biomed Chromatogr 2022; 36:e5496. [PMID: 36047933 DOI: 10.1002/bmc.5496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/07/2022]
Abstract
Mahuang Xuanfei Zhike (MXZ) syrup, a Chinese patent medicine, has been widely used in clinical treatment of cough. However, there is no reported method for quantitative analysis of the effective components of MXZ syrup in biological samples. In this study, the effective components of MXZ syrup were screened by network pharmacology and molecular docking technology, a sensitive and rapid method of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established to test the active components of MXZ syrup in rat plasma and tissue homogenates, including ephedrine, amygdalin, chlorogenic acid, harpagoside, forsythin and forsythoside A. Chromatographic separation was performed on a Waters Acquity UPLC HSS T3 column (2.1 × 50 mm, 1.8 μm) and the mass analysis was conducted in a Waters Xevo TQ mass spectrometer using multiple reaction positive and negative ion simultaneous monitoring mode (MRM). The results expounded that the linearity ranged from 0.3 ng/mL to 409.4 ng/mL, The extraction recoveries were all less than 8.33%, and the matrix effects were all less than 8.45, which met the requirements. The pharmacokinetic and tissue distribution results indicated that the main active components of MXZ syrup were absorbed quickly and eliminated slowly in vivo, and there may be a reabsorption process.
Collapse
Affiliation(s)
- Yang Yang
- Shenzhen Bao'an Authentic TCM Therapy Hospital
| | - Jing Zhu
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine
| | - Chang-Liang Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences
| | - De-An Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences
| | - Na He
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine
| | - Quan-Xi Mei
- Shenzhen Bao'an Authentic TCM Therapy Hospital
| | | | | | - Guang-Yi Yang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine
| |
Collapse
|
21
|
Ji D, Li Q, Yang H, Fan Y, Wang T, Chen Y. Determination of Five Coumarins in Angelicae Pubescentis Radix from Different Origins by HPTLC-Scanning. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:3415938. [PMID: 36072919 PMCID: PMC9444472 DOI: 10.1155/2022/3415938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/05/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The HPTLC method is widely used in the field of quality evaluation and component analysis of traditional Chinese medicine (TCM). This work developed an HPTLC method to determine the five effective components of osthole, columbianadin, isoimperatorin, oxypeucedanin, and imperatorin in Angelicae Pubescentis Radix (APR) from twelve different origins, and the quality difference was analyzed by comprehensive factor analysis and cluster analysis. The results showed that the calibration curves of five components exhibited good linearity within the linear ranges (0.8-4.0 μg). The RSD of precision was 1.06%-1.21%, and the repeatability and stability tests were good. The results of cluster analysis showed that the APR from 12 different areas was divided into two categories, and at the same time, it was found that the quality of Dazhou in Sichuan and Huating in Gansu was better than in other areas. In this study, a simple, rapid, and efficient method for quality evaluation of TCM was established by the HPTLC method.
Collapse
Affiliation(s)
- Dangtong Ji
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Hanting Yang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yue Fan
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ting Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuying Chen
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
22
|
Hou Y, Zou L, Li Q, Chen M, Ruan H, Sun Z, Xu X, Yang J, Ma G. Supramolecular assemblies based on natural small molecules: Union would be effective. Mater Today Bio 2022; 15:100327. [PMID: 35757027 PMCID: PMC9214787 DOI: 10.1016/j.mtbio.2022.100327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
Natural products have been used to prevent and treat human diseases for thousands of years, especially the extensive natural small molecules (NSMs) such as terpenoids, steroids and glycosides. A quantity of studies are confined to concern about their chemical structures and pharmacological activities at the monomolecular level, whereas the spontaneous assemblies of them in liquids yielding supramolecular structures have not been clearly understood deeply. Compared to the macromolecules or synthetic small molecular compounds, NSMs have the inherent advantages of lower toxicity, better biocompatibility, biodegradability and biological activity. Self-assembly of single component and multicomponent co-assembly are unique techniques for designing supramolecular entities. Assemblies are of special significance due to their range of applications in the areas of drug delivery systems, pollutants capture, materials synthesis, etc. The assembled mechanism of supramolecular NSMs which are mainly driven by multiple non-covalent interactions are summarized. Furthermore, a new hypothesis aimed to interpret the integration effects of multi-components of traditional Chinese medicines (TCMs) inspired on the theory of supramolecular assembly is proposed. Generally, this review can enlighten us to achieve the qualitative leap for understanding natural products from monomolecule to supramolecular structures and multi-component interactions, which is valuable for the intensive research and application.
Collapse
Affiliation(s)
- Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Haonan Ruan
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Junshan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
23
|
Zhang C, Liu M, Xu X, Wu J, Li X, Wang H, Gao X, Guo D, Tian X, Yang W. Application of Large-Scale Molecular Prediction for Creating the Preferred Precursor Ions List to Enhance the Identification of Ginsenosides from the Flower Buds of Panax ginseng. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5932-5944. [PMID: 35503923 DOI: 10.1021/acs.jafc.2c01435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work was designed to evaluate the coverage of data-dependent acquisition (DDA) extensively utilized in the untargeted metabolite/component identification in the food sciences and pharmaceutical analysis. Using saponins from the flower buds of Panax ginseng (PGF) as an example, precursor ions list (PIL)-including DDA on a Q-Orbitrap mass spectrometer could enable higher coverage than the other four MS2 acquisition approaches in characterizing PGF ginsenosides. A "Virtual Library of Ginsenoside" containing 13,536 ginsenoside molecules was established by C-language-programmed large-scale molecular prediction, which in combination with mass defect filtering could create a new PIL involving 1859 PGF saponin precursors. We could newly obtain the MS2 spectra of at least 17 components and characterize 36 ginsenosides with unknown masses, among the 164 compounds identified from PGF. Conclusively, a molecular-prediction-oriented PIL in DDA can assist to discover more potentially novel molecules benefiting to the development of functional foods and new drugs.
Collapse
Affiliation(s)
- Chunxia Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Meiyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Jia Wu
- Shanghai Standard Technology Co., Ltd., 58 Xinhao Road, Shanghai 201314, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xiaoxuan Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| |
Collapse
|
24
|
Stefova E, Cvetanoska M, Bogdanov J, Matevski V, Stanoeva JP. Assessment of Distribution and Diversity of Pyrrolizidine Alkaloids in the Most Prevalent Boraginaceae Species in Macedonia. Chem Biodivers 2022; 19:e202200066. [PMID: 35581149 DOI: 10.1002/cbdv.202200066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022]
Abstract
Systematic study of extraction efficiency of pyrrolizidine alkaloids (PAs) and corresponding pyrrolizidine alkaloid N-oxides (PANOs) from plant material for subsequent LC/MS analysis was carried out. The optimal extraction was achieved with methanol and one clean up step using SPE C18 column. With the optimized LC-ESI-MS/MS method using ion trap, the distribution and diversity of PAs and PANOs in plant material (leaves, flowers and stems) obtained from wild-growing E. vulgare, E. italicum, S. officinale L., C. creticum and O. heterophylla species from Macedonia was assessed. These widespread Boraginaceae species contain various PAs and PANOs and 25 of them were identified. Based on these qualitative and quantitative analyses, the profiles of 1,2-unsaturated PAs for each sample were obtained and their toxic potential was estimated. The toxic potential of O. heterophylla and C. creticum were assumed to be highest (containing up to 4753 mg/kg and 3507 mg/kg), followed by E. vulgare (up to 1340 mg/kg), S. officinale L. (up to 479 mg/kg) and E. italicum (up to 16 mg/kg). This method can be used for monitoring the inclusion of these secondary metabolites in the food chain in order to contribute in their risk management.
Collapse
Affiliation(s)
- Elena Stefova
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Marinela Cvetanoska
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Jane Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Vlado Matevski
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia.,Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000, Skopje, R. N. Macedonia
| | - Jasmina Petreska Stanoeva
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| |
Collapse
|
25
|
Guo J, Zhao J, Zhang M, Sun Z, Liu L. Optimization of the ultrasonic-assisted extraction of trans-resveratrol and its glucoside from grapes followed by UPLC-MS/MS using the response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022; 16:1124-1136. [DOI: 10.1007/s11694-021-01236-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
|
26
|
The importance of method validation in herbal drug research. J Pharm Biomed Anal 2022; 214:114735. [PMID: 35344789 DOI: 10.1016/j.jpba.2022.114735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
There are countless scientific publications on herbal drugs, but unfortunately many of them do not correctly report their chemical, biological and pharmacological aspects, including the composition and stability of the herbal/extract preparations, therefore their safety, efficacy and consistency could not be proven. For developing a modern drug from herbal drug(s), complete chemical and pharmacological characterizations of their bioactive metabolites need to be well established. Reproducible results require the development, assessment, and standardization of the chemical, biological and pharmacological methods based on the current state of the art. Therefore, all methods used in research must be properly validated before its routine applications. This present review will describe and discuss the important aspects of method validation (chemical, biological and pharmacological) in herbal drug research according to the newest current Pharmacopeia, official Guidelines and related recent publications.
Collapse
|
27
|
Secondary or Specialized Metabolites, or Natural Products: A Case Study of Untargeted LC–QTOF Auto-MS/MS Analysis. Cells 2022; 11:cells11061025. [PMID: 35326473 PMCID: PMC8963255 DOI: 10.3390/cells11061025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
The large structural diversity of specialized metabolites represents a substantial challenge in untargeted metabolomics. Modern LC–QTOF instruments can provide three- to four-digit numbers of auto-MS/MS spectra from sample sets. This case study utilizes twelve structurally closely related flavonol glycosides, characteristic specialized metabolites of plant tissues, some of them isomeric and isobaric, to illustrate the possibilities and limitations of their identification. This process requires specific software tools that perform peak picking and feature alignment after spectral deconvolution and facilitate molecular structure base searching with subsequent in silico fragmentation to obtain initial ideas about possible structures. The final assignment of a putative identification, so long as spectral databases are not complete enough, requires structure searches in a chemical reference database, such as SciFindern, in attempts to obtain additional information about specific product ions of a metabolite candidate or check its feasibility. The highlighted problems in this process not only apply to specialized metabolites in plants but to those occurring in other organisms as well. This case study is aimed at providing guidelines for all researchers who obtain data from such analyses but are interested in deeper information than just Venn diagrams of the feature distribution in their sample groups.
Collapse
|
28
|
Cruz-Salas CN, Prieto C, Calderón-Santoyo M, Lagarón JM, Ramos-Hernández JA, Ragazzo-Sánchez JA. Antimutagenic and Antiproliferative Activity of the Coccoloba uvifera L. Extract Loaded in Nanofibers of Gelatin/Agave Fructans Elaborated by Electrospinning. Anticancer Agents Med Chem 2022; 22:2788-2798. [PMID: 35297353 DOI: 10.2174/1871520622666220316161957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Coccoloba uvifera L. species is currently considered an important source of compounds of high biological value such as lupeol, this is related to different biological activities of importance to human health. OBJECTIVE The objective of this study was to encapsulate the C. uvifera extract in nanofibers made with the biopolymers gelatin (G)/high-grade polymerization agave fructans (HDPAF) in the proportions 1:0, 1:1, 1:2, 1:3 and 0:1, through the electrospinning process, in addition to evaluating the antimutagenic and antiproliferative properties of the encapsulated extract. METHOD The physicochemical characteristics of the nanofibers were evaluated, as well as the antiproliferative and antimutagenic activities of the encapsulated and unencapsulated extract. SEM evaluation shows nanofibers of smooth, continuous morphology and nanometric size (50-250 nm). The TGA, FTIR-ATR, HPLC-MS analyzes reveal the presence of the extract in the nanofibers. RESULTS The extract did not show a mutagenic effect during the development of the Ames test, on the other hand, the MTT test showed the antiproliferative effect at the concentrations of 50 and 100 µg/mL of extract. CONCLUSION the extract of C. uvifera loaded in nanofibers elaborated by electrospinning with the G/HDPAF biopolymers, conserves its antimutagenic and antiproliferative properties.
Collapse
Affiliation(s)
- Carla N Cruz-Salas
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| | - José M Lagarón
- Novel Materials and Nanotechnology Group, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Jorge Alberto Ramos-Hernández
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| |
Collapse
|
29
|
Qian YX, Zhao DX, Wang HD, Sun H, Xiong Y, Xu XY, Hu WD, Liu MY, Chen BX, Hu Y, Li X, Jiang MT, Yang WZ, Gao XM. An ion mobility-enabled and high-efficiency hybrid scan approach in combination with ultra-high performance liquid chromatography enabling the comprehensive characterization of the multicomponents from Carthamus tinctorius. J Chromatogr A 2022; 1667:462904. [DOI: 10.1016/j.chroma.2022.462904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/09/2023]
|
30
|
Identification and Analysis of Chemical Constituents and Rat Serum Metabolites in Gushuling Using UPLC-Q-TOF/MS Coupled with Novel Informatics UNIFI Platform. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2894306. [PMID: 35003296 PMCID: PMC8741369 DOI: 10.1155/2021/2894306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Gushuling (GSL), a well-known hospital preparation composed of traditional Chinese medicine (TCM), has been widely used in the clinical treatment of osteoporosis (OP) for decades due to its remarkable therapeutic effect. However, the chemical constituents of GSL are still unclear so far, which limits the in-depth study of its pharmacodynamic material basis and further restricts its clinical application. In this study, we developed a strategy for qualitative analysis of the chemical constituents of GSL in vitro and in vivo. Based on the results of ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS) and the UNIFI informatics platform, the chemical constituents of GSL can be determined quickly and effectively. By comparing the retention time, accurate mass, and fragmentation spectrum of the compounds in GSL, a total of 93 compounds were identified or preliminarily identified, including flavonoids, terpenoids, phenylpropanoids, steroids, etc. Among them, nine compounds have been confirmed by standard substances, namely epimedin A, epimedin B, epimedin C, icariin, ecdysterone, calycosin, calycosin-7-glucoside, ononin, and ginsenoside Ro. Fragment patterns and characteristic ions of representative compounds with different chemical structure types were analyzed. At the same time, 20 prototype compounds and 42 metabolites were detected in rat serum. Oxidation, hydration, reduction, dehydration, glutathione S-conjugation, and acetylcysteine conjugation were the main transformation reactions of GSL in rat serum. In this research, the rapid method to characterize the in vitro and in vivo chemical constituents of GSL can not only be used for the standardization and quality control of GSL but also be helpful for further research on its pharmacodynamic material basis.
Collapse
|
31
|
Li W, Yang X, Chen B, Zhao D, Wang H, Sun M, Li X, Xu X, Liu J, Wang S, Mi Y, Wang H, Yang W. Ultra-high performance liquid chromatography/ion mobility time-of-flight mass spectrometry-based untargeted metabolomics combined with quantitative assay unveiled the metabolic difference among the root, leaf, and flower bud of Panax notoginseng. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
32
|
Stempfer M, Reinstadler V, Lang A, Oberacher H. Analysis of cannabis seizures by non-targeted liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2021; 205:114313. [PMID: 34474231 DOI: 10.1016/j.jpba.2021.114313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Due to the popularity of recreational cannabis use, contamination of this drug with diverse classes of chemicals, including pesticides, mycotoxins, and synthetic cannabinoids, has been identified as major threat for public health. For the detection of these compounds in seized cannabis, a screening workflow involving non-targeted liquid chromatography-tandem mass spectrometry (LCMS/MS) was developed. A Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method was used for the extraction of small bioorganic molecules from ground dried material. Instrumental analysis involved chromatographic separation of compounds and subsequent mass spectrometric detection. Collection of MS and MS/MS information was accomplished by data-dependent acquisition. Compound identification was primarily based on matching acquired MS/MS-spectra to several thousands of reference spectra stored in multiple libraries. Additionally, for selected cannabinoid and pesticide standards, a retention time library was developed. Performance of the workflow was evaluated for 182 pesticides. All tested pesticides were detectable at 5000 μg/kg, 94 % at 500 μg/kg, and 50 % at 50 μg/kg. The workflow was applied to the screening of seized cannabis samples. 41 out of 93 analysed samples (44 %) were tested positive for one or more contaminants impairing quality and/or safety of the material. The detected contaminants included a synthetic cannabinoid (5F-MDMB-PINACA), fifteen pesticide residues (boscalid, carbendazim, chlorantraniliprole, chlorpyrifos, chlorotoluron, cyprodinil, diflubenzuron, ethiofencarb sulfoxide, hexythiazox, iprodione, metalaxyl, pyrimethanil, terbutryn, thiophanate methyl, and trifloxystrobin), and a mycotoxin (sterigmatocystin).
Collapse
Affiliation(s)
- Miriam Stempfer
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Mullerstrasse 44, 6020, Innsbruck, Austria
| | - Vera Reinstadler
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Mullerstrasse 44, 6020, Innsbruck, Austria
| | - Anna Lang
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Mullerstrasse 44, 6020, Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Mullerstrasse 44, 6020, Innsbruck, Austria.
| |
Collapse
|
33
|
van Dinteren S, Araya-Cloutier C, de Bruijn WJC, Vincken JP. A targeted prenylation analysis by a combination of IT-MS and HR-MS: Identification of prenyl number, configuration, and position in different subclasses of (iso)flavonoids. Anal Chim Acta 2021; 1180:338874. [PMID: 34538332 DOI: 10.1016/j.aca.2021.338874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/27/2022]
Abstract
Prenylated (iso)flavonoids are potent bioactive compounds found in the Fabaceae family. Analysis and quantification of this type of phytochemicals is challenging due to their large structural diversity. In this study, the fragmentation of prenylated (iso)flavonoids was investigated using electrospray ionization ion trap mass spectrometry (ESI-IT-MSn) with fragmentation by collision induced dissociation (CID) in combination and Orbitrap-MS (ESI-FT-MS2) with fragmentation by higher energy C-trap dissociation (HCD). With this combination of IT-MSn and high resolution MS (FT-MSn), it was possible to determine the fragmentation pathways and characteristic spectral features of different subclasses of prenylated (iso)flavonoid standards, as well as characteristic fragmentations and neutral losses of different prenyl configurations. Based on our findings, a decision guideline was developed to (i) identify (iso)flavonoid backbones, (ii) annotate prenyl number, (iii) configuration, and (iv) position of unknown prenylated (iso)flavonoids, in complex plant extracts. In this guideline, structural characteristics were identified based on: (i) UV absorbance of the compound, (ii) mass-to-charge (m/z) ratio of the parent compound; (iii) ratio of relative abundances between neutral losses 42 and 56 u in MSn; (iv) retro-Diels-Alder (RDA) fragments, neutral losses 54 and 68 u, and the ratio [M+H-C4H8]+/[M+H]+. Using this guideline, 196 prenylated (iso)flavonoids were annotated in a Glycyrrhiza glabra root extract. In total, 75 skeletons were single prenylated, 104 were double prenylated, and for merely 17 skeletons prenyl number could not unambiguously be annotated. Our prenylation guideline allows rapid screening for identification of prenylated (iso)flavonoids, including prenyl number, configuration, and position, in complex plant extracts. This guideline supports research on these bioactive compounds in the areas of plant metabolomics and natural products.
Collapse
Affiliation(s)
- Sarah van Dinteren
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
34
|
Klein-Junior LC, de Souza MR, Viaene J, Bresolin TMB, de Gasper AL, Henriques AT, Heyden YV. Quality Control of Herbal Medicines: From Traditional Techniques to State-of-the-art Approaches. PLANTA MEDICA 2021; 87:964-988. [PMID: 34412146 DOI: 10.1055/a-1529-8339] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herbal medicines are important options for the treatment of several illnesses. Although their therapeutic applicability has been demonstrated throughout history, several concerns about their safety and efficacy are raised regularly. Quality control of articles of botanical origin, including plant materials, plant extracts, and herbal medicines, remains a challenge. Traditionally, qualitative (e.g., identification and chromatographic profile) and quantitative (e.g., content analyses) markers are applied for this purpose. The compound-oriented approach may stand alone in some cases (e.g., atropine in Atropa belladonna). However, for most plant materials, plant extracts, and herbal medicines, it is not possible to assure quality based only on the content or presence/absence of one (sometimes randomly selected) compound. In this sense, pattern-oriented approaches have been extensively studied, introducing the use of multivariate data analysis on chromatographic/spectroscopic fingerprints. The use of genetic methods for plant material/plant extract authentication has also been proposed. In this study, traditional approaches are reviewed, although the focus is on the applicability of fingerprints for quality control, highlighting the most used approaches, as well as demonstrating their usefulness. The literature review shows that a pattern-oriented approach may be successfully applied to the quality assessment of articles of botanical origin, while also providing directions for a compound-oriented approach and a rational marker selection. These observations indicate that it may be worth considering to include fingerprints and their data analysis in the regulatory framework for herbal medicines concerning quality control since this is the foundation of the holistic view that these complex products demand.
Collapse
Affiliation(s)
- Luiz C Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - Maira R de Souza
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| | - Tania M B Bresolin
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - André L de Gasper
- Herbarium Dr. Roberto Miguel Klein, Department of Natural Sciences, Universidade Regional de Blumenau - FURB, Blumenau/SC, Brazil
| | - Amélia T Henriques
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| |
Collapse
|
35
|
Antioxidant Activity, α-Glucosidase Inhibition and UHPLC-ESI-MS/MS Profile of Shmar ( Arbutus pavarii Pamp). PLANTS 2021; 10:plants10081659. [PMID: 34451703 PMCID: PMC8398081 DOI: 10.3390/plants10081659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 01/09/2023]
Abstract
The genus Arbutus (Ericaceae) has been traditionally used in folk medicine due to its phytomedicinal properties, especially Arbutus pavarii Pamp. However, this plant has not been evaluated for its efficacy, quality, and consistency to support the traditional uses, potentially in treating diabetes. Despite previous studies that revealed the biological activities of A. pavarii as antioxidant and α-glucosidase inhibitory agents, scientific reports on the bioactive compounds that contribute to its health benefits are still scarce. Therefore, this research focused on the evaluation of antioxidant and α-glucosidase inhibitory activities of the methanol crude extracts and various fractions of the leaf and stem bark, as well as on metabolite profiling of the methanol crude extracts. The extracts and fractions were evaluated for total phenolic (TPC) and total flavonoid (TFC) contents, as well as the DPPH free radical scavenging, ferric reducing antioxidant power (FRAP), and α-glucosidase inhibitory activities. Methanol crude extracts of the leaf and stem bark were then subjected to UHPLC-ESI-MS/MS. To the best of our knowledge, the comparative evaluation of the antioxidant and α-glucosidase inhibitory activities of the leaf and stem bark of A. pavarii, as well as of the respective solvent fractions, is reported herein for the first time. Out of these extracts, the methanolic crude extracts and polar fractions (ethyl acetate and butanol fractions) showed significant bioactivities. The DPPH free radical and α-glucosidase inhibitions was highest in the leaf ethyl acetate fraction, with IC50 of 6.39 and 4.93 µg/mL, respectively, while the leaf methanol crude extract and butanol fraction exhibited the highest FRAP with 82.95 and 82.17 mmol Fe (II)/g extract. The UHPLC-ESI-MS/MS analysis resulted in the putative identification of a total of 76 compounds from the leaf and stem bark, comprising a large proportion of plant phenolics (flavonoids and phenolic acids), terpenoids, and fatty acid derivatives. Results from the present study showed that the different parts of A. pavarii had potent antioxidant and α-glucosidase inhibitory activities, which could potentially prevent oxidative damage or diabetes-related problems. These findings may strengthen the traditional claim on the medicinal value of A. pavarii.
Collapse
|
36
|
Yu Y, Yao C, Guo DA. Insight into chemical basis of traditional Chinese medicine based on the state-of-the-art techniques of liquid chromatography-mass spectrometry. Acta Pharm Sin B 2021; 11:1469-1492. [PMID: 34221863 PMCID: PMC8245813 DOI: 10.1016/j.apsb.2021.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been an indispensable source of drugs for curing various human diseases. However, the inherent chemical diversity and complexity of TCM restricted the safety and efficacy of its usage. Over the past few decades, the combination of liquid chromatography with mass spectrometry has contributed greatly to the TCM qualitative analysis. And novel approaches have been continuously introduced to improve the analytical performance, including both the data acquisition methods to generate a large and informative dataset, and the data post-processing tools to extract the structure-related MS information. Furthermore, the fast-developing computer techniques and big data analytics have markedly enriched the data processing tools, bringing benefits of high efficiency and accuracy. To provide an up-to-date review of the latest techniques on the TCM qualitative analysis, multiple data-independent acquisition methods and data-dependent acquisition methods (precursor ion list, dynamic exclusion, mass tag, precursor ion scan, neutral loss scan, and multiple reaction monitoring) and post-processing techniques (mass defect filtering, diagnostic ion filtering, neutral loss filtering, mass spectral trees similarity filter, molecular networking, statistical analysis, database matching, etc.) were summarized and categorized. Applications of each technique and integrated analytical strategies were highlighted, discussion and future perspectives were proposed as well.
Collapse
Key Words
- BS, background subtraction
- CCS, collision cross section
- CE, collision energy
- CID, collision-induced dissociation
- DDA, data-dependent acquisition
- DE, dynamic exclusion
- DIA, data-independent acquisition
- DIF, diagnostic ion filtering
- DM, database matching
- Data acquisition
- Data post-processing
- EL, exclusion list
- EMS, enhanced mass spectrum
- EPI, enhanced product ion
- FS, full scan
- HCD, high-energy C-trap dissociation
- IDA, information dependent acquisition
- IM, ion mobility
- IPF, isotope pattern filtering
- ISCID, in-source collision-induced dissociation
- LC, liquid chromatography
- LTQ-Orbitrap, linear ion-trap/orbitrap
- Liquid chromatography−mass spectrometry
- MDF, mass defect filtering
- MIM, multiple ion monitoring
- MN, molecular networking
- MRM, multiple reaction monitoring
- MS, mass spectrometry
- MTSF, mass spectral trees similarity filter
- NL, neutral loss
- NLF, neutral loss filtering
- NLS, neutral loss scan
- NRF, nitrogen rule filtering
- PCA, principal component analysis
- PIL, precursor ion list
- PIS, precursor ion scan
- PLS-DA, partial least square-discriminant analysis
- Q-TRAP, hybrid triple quadrupole-linear ion trap
- QSRR, quantitative structure retention relationship
- QqQ, triple quadrupole
- Qualitative analysis
- RT, retention time
- SA, statistical analysis
- TCM, traditional Chinese medicine
- Traditional Chinese medicine
- UHPLC, ultra-high performance liquid chromatography
- cMRM, conventional multiple reaction monitoring
- sMRM, scheduled multiple reaction monitoring
Collapse
Affiliation(s)
- Yang Yu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Wang ZY, Chu FH, Gu NN, Wang Y, Feng D, Zhao X, Meng XD, Zhang WT, Li CF, Chen Y, Wei SS, Ma ZQ, Lin RC, Zhao CJ, Zou DX. Integrated strategy of LC-MS and network pharmacology for predicting active constituents and pharmacological mechanisms of Ranunculus japonicus Thunb. for treating rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113818. [PMID: 33465444 DOI: 10.1016/j.jep.2021.113818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ranunculus japonicus Thunb. (short for R. japonicus) is a topically applied herb with the activities of removing jaundice, nebula and edema, preventing malaria, stopping asthma, promoting diuresis and relieving pain. It was firstly recorded in Zhouhou Beiji Fang and has been used for the treatment of malaria, ulcers, carbuncle, jaundice, migraine, stomachache, toothache and arthritis for over 1800 years. AIM OF THE STUDY This study aimed to uncover the potentially effective components of R. japonicus and the pharmacological mechanisms against rheumatoid arthritis (RA) by combing LC-MS and network pharmacology. MATERIALS AND METHODS Firstly, the chemical constituents of R. japonicus were qualitatively identified by UPLC-ESI-LTQ-Orbitrap MS. Then we performed target prediction by PharmMapper, protein-protein interaction (PPI) analysis via String, GO and KEGG pathway enrichment analysis by DAVID and constructed the compound-target-pathway network using Cytoscape. Thirdly, crucial compounds in the network were quantitatively analyzed to achieve quality control of R. japonicus. Finally, the pharmacological activities of R. japonicus and two potentially bioactive ingredients were validated in RA-FLSs (Rheumatoid Arthritis Fibroblast-like Synoviocytes) in vitro. RESULTS Overall fifty-four ingredients of R. japonicus were identified and forty-five components were firstly discovered in R. japonicus. Among them, twenty-seven validated compounds were predicted to act on twenty-five RA-related targets and they might exhibit therapeutic effects against RA via positive regulation of cell migration, etc. Nine potentially bioactive components of R. japonicus which played important roles in the compound-target-pathway network were simultaneously quantified by an optimized UPLC-ESI-Triple Quad method. In vitro, compared to control group, R. japonicus extract, berberine and yangonin significantly inhibited the migration capacity of RA-FLSs after 24 h treatment. CONCLUSION This study clarified that R. japonicus and the bioactive ingredients berberine and yangonin might exert therapeutic actions for RA via suppressing the aggressive phenotypes of RA-FLSs through combined LC-MS technology and network pharmacology tools for the first time. The present research provided deeper understanding into the chemical profiling, pharmacological activities and quality control of R. japonicus and offered reference for further scientific research and clinical use of R. japonicus in treating RA.
Collapse
Affiliation(s)
- Zhao-Yi Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fu-Hao Chu
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Nian-Nian Gu
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Wang
- Xi' an Manareco New Materials Co. Ltd., Xi' An, 710077, China
| | - Dan Feng
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xia Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xue-Dan Meng
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wen-Ting Zhang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chao-Feng Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yang Chen
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuang-Shuang Wei
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhi-Qiang Ma
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Rui-Chao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chong-Jun Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Di-Xin Zou
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
38
|
Lu JZ, Ye D, Ma BL. Constituents, Pharmacokinetics, and Pharmacology of Gegen-Qinlian Decoction. Front Pharmacol 2021; 12:668418. [PMID: 34025427 PMCID: PMC8139575 DOI: 10.3389/fphar.2021.668418] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Gegen-Qinlian decoction (GQD) is a classic traditional Chinese medicine (TCM) formula. It is composed of four TCMs, including Puerariae Lobatae Radix, Scutellariae Radix, Coptidis Rhizoma, and Glycyrrhizae Radix et Rhizoma Praeparata cum Melle. GQD is traditionally and clinically used to treat both the "external and internal symptoms" of diarrhea with fever. In this review, key words related to GQD were searched in the Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), and other databases. Literature published mainly from 2000 to 2020 was screened and summarized. The main constituents of GQD could be classified into eight groups according to their structures: flavonoid C-glycosides, flavonoid O-glucuronides, benzylisoquinoline alkaloids, free flavonoids, flavonoid O-glycosides, coumarins, triterpenoid saponins, and others. The parent constituents of GQD that enter circulation mainly include puerarin and daidzein from Puerariae Lobatae Radix, baicalin and wogonoside from Scutellariae Radix, berberine and magnoflorine from Coptidis Rhizoma, as well as glycyrrhetinic acid and glycyrrhizic acid from Glycyrrhizae Radix et Rhizoma Praeparata cum Melle. GQD is effective against inflammatory intestinal diseases, including diarrhea, ulcerative colitis, and intestinal adverse reactions caused by chemotherapeutic agents. Moreover, GQD has significant effects on metabolic diseases, such as nonalcoholic fatty liver and type 2 diabetes. Furthermore, GQD can be used to treat lung injury. In brief, the main constituents, the pharmacokinetic and pharmacological profiles of GQD were summarized in this review. In addition, several issues of GQD including effective constituents, interactions between the constituents, pharmacokinetics, interaction potential with drugs and pharmacological effects were discussed, and related future researches were prospected in this review.
Collapse
Affiliation(s)
- Jing-Ze Lu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Ye
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Fernández-Ochoa Á, Leyva-Jiménez FJ, De la Luz Cádiz-Gurrea M, Pimentel-Moral S, Segura-Carretero A. The Role of High-Resolution Analytical Techniques in the Development of Functional Foods. Int J Mol Sci 2021; 22:ijms22063220. [PMID: 33809986 PMCID: PMC8004826 DOI: 10.3390/ijms22063220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The approaches based on high-resolution analytical techniques, such as nuclear magnetic resonance or mass spectrometry coupled to chromatographic techniques, have a determining role in several of the stages necessary for the development of functional foods. The analyses of botanical extracts rich in bioactive compounds is one of the fundamental steps in order to identify and quantify their phytochemical composition. However, the compounds characterized in the extracts are not always responsible for the bioactive properties because they generally undergo metabolic reactions before reaching the therapeutic targets. For this reason, analytical techniques are also applied to analyze biological samples to know the bioavailability, pharmacokinetics and/or metabolism of the compounds ingested by animal or human models in nutritional intervention studies. In addition, these studies have also been applied to determine changes of endogenous metabolites caused by prolonged intake of compounds with bioactive potential. This review aims to describe the main types and modes of application of high-resolution analytical techniques in all these steps for functional food development.
Collapse
Affiliation(s)
- Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Berlin Institute of Health Metabolomics Platform, 10178 Berlin, Germany
- Correspondence: (Á.F.-O.); (M.D.l.L.C.-G.)
| | - Francisco Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
| | - María De la Luz Cádiz-Gurrea
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
- Correspondence: (Á.F.-O.); (M.D.l.L.C.-G.)
| | - Sandra Pimentel-Moral
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
| |
Collapse
|
40
|
Abstract
Plants, through the photosynthesis process, produce the substances necessary for all the life cycles of nature, which are called "primary metabolites." Moreover, there are some plants that synthesize, in addition to these, other substances with more specific functions, which are known as "secondary metabolites." It is inside this group that flavonoids are located, whose main function is to protect organisms from damage caused by different oxidizing agents. Luteolin (3,4,5,7-tetrahydroxy-flavone) belongs to the sub-class of flavonoids known as flavones and is one of 10,000 flavonoids currently known, being one of the most bio-active flavonoids. Its various beneficial properties for health, together with the increasing reduction in the use of synthetic antioxidants, make the study of luteolin a very active field. Within this, the quantification of this molecule has become a subject of very special interest given that it is transversal to all fields. In this review article, we aim to give the reader a broad and deep vision of this topic, focusing on the events reported in the last 5 years and covering all possible techniques related to analytical determinations. We will discuss in terms of advantages and disadvantages between techniques, selectivity, sensitivity, costs, time consumption, and reagents as well as in the complexity of operations.
Collapse
Affiliation(s)
- Alvaro Y Tesio
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CIDMEJu), Centro de Desarrollo Tecnológico General Savio, Palpalá, Jujuy, Argentina
| | - Sebastian N Robledo
- Departamento de Tecnología Química, Grupo GEANA, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
41
|
Moreno KGT, Gasparotto Junior A, Dos Santos AC, Palozi RAC, Guarnier LP, Marques AAM, Romão PVM, Lorençone BR, Cassemiro NS, Silva DB, Tirloni CAS, de Barros ME. Nephroprotective and antilithiatic activities of Costus spicatus (Jacq.) Sw.: Ethnopharmacological investigation of a species from the Dourados region, Mato Grosso do Sul State, Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113409. [PMID: 32979411 DOI: 10.1016/j.jep.2020.113409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Costus spicatus (Jacq.) Sw., also known as "cana-do-brejo," is a species that is widely used in Brazilian traditional medicine for the treatment of kidney diseases. However, no studies have evaluated its nephroprotective and antilithiatic effects. AIM To investigate nephroprotective and antilithiatic effects of C. spicatus in a preclinical model of acute kidney injury (AKI) and in vitro nephrolithiasis. MATERIALS AND METHODS C. spicatus leaves were collected directly from the natural environment in the Dourados region, Mato Grosso do Sul State, Brazil. The ethanol-soluble fraction of C. spicatus (ESCS) was obtained by infusion. Phytochemical characterization was performed by liquid chromatography coupled to diode array detector and mass spectrometer (LC-DAD-MS). We assessed whether ESCS has acute or prolonged diuretic activity. The nephroprotective effects of ESCS were evaluated in a model of AKI that was induced by glycerol (10 ml/kg, intramuscularly) in Wistar rats. Different doses of ESCS (30, 100, and 300 mg/kg) were administered orally for 5 days before the induction of AKI. Urinary parameters were measured on days 1, 3, 5, and 7. Twenty-four hours after the last urine collection, blood samples were obtained for the biochemical analysis. Blood pressure levels, renal vascular reactivity, renal tissue redox status, and histopathological changes were measured. Antilithiatic effects were evaluated by in vitro crystallization. Calcium oxalate precipitation was induced by sodium oxalate in urine samples with ESCS at 0.05, 0.5, and 5 mg/ml. RESULTS From LC-DAD-MS analyses, flavonoids, saponins and other phenolic compounds were determined in the composition of ESCS. Significant reductions of the excretion of urinary total protein, creatinine, sodium, and potassium were observed in the AKI group, with significant histopathological damage (swelling, vacuolization, necrosis, and inflammatory infiltration) in the proximal convoluted tubule. Treatment with ESCS exerted a significant nephroprotective effect by increasing the urinary excretion of total protein, urea, creatinine, sodium, potassium, calcium, and chloride. All of the groups that were treated with ESCS exhibited a reduction of histopathological lesions and significant modulation of the tissue redox state. We also observed a concentration-dependent effect of ESCS on the crystallization of urinary crystals, with reductions of the size and proportion of monohydrated crystals. CONCLUSION The data suggest that C. spicatus has nephroprotective and antilithiatic effects, suggesting possible effectiveness in its traditional use.
Collapse
Affiliation(s)
- Karyne Garcia Tafarelo Moreno
- Laboratório de Urinálise, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
| | - Ariany Carvalho Dos Santos
- Laboratório de Histopatologia, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Rhanany Alan Calloi Palozi
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Lucas Pires Guarnier
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Aline Aparecida Macedo Marques
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Paulo Vitor Moreira Romão
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Bethânia Rosa Lorençone
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Nadla Soares Cassemiro
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal Do Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal Do Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Cleide Adriane Signor Tirloni
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Márcio Eduardo de Barros
- Laboratório de Urinálise, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
42
|
Qian Y, Li W, Wang H, Hu W, Wang H, Zhao D, Hu Y, Li X, Gao X, Yang W. A four-dimensional separation approach by offline 2D-LC/IM-TOF-MS in combination with database-driven computational peak annotation facilitating the in-depth characterization of the multicomponents from Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala). ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
43
|
"Force iteration molecular designing" strategy for the systematic characterization and discovery of new protostane triterpenoids from Alisma Rhizoma by UHPLC/LTQ-Orbitrap-MS. Anal Bioanal Chem 2021; 413:1749-1764. [PMID: 33527181 DOI: 10.1007/s00216-020-03145-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Comprehensive analysis and identification of chemical components are of great significance for evaluating the efficacy and safety of herbal medicines, as well as for drug exploitation and development. Here we developed a "force iteration molecular designing" strategy, by combing a database-based in-house software for a precursor ion list (PIL) and PIL-triggered collision-induced dissociation-MS2 and high-energy C-trap dissociation-MS2 (PIL-CID/MS2-HCD/MS2) on an LTQ-Orbitrap mass spectrometer, aiming for the systematic characterization and discovery of new protostane triterpenoids (PTs) from Alisma Rhizoma (AR). AR was a well-known herbal remedy widely used for diarrhea, but its systematic characterization and comparison between two botanical origins have not been reported. Firstly, in-house software was developed based on force iteration, to generate a PIL that contains 483 accurate precursor ions. Secondly, to facilitate the acquisition of rich fragments and diagnostic ions sufficient for the structural elucidation of different types of PTs, a hybrid data acquisition method, namely PIL-CID/MS2-HCD/MS2, was generated. Thirdly, a total of 473 PTs were rapidly characterized from two botanical origins of AR according to an established four-step interpretation method, and the common constituents were 277 with ratio 70% (277/395) and 78% (277/355) in the rhizome of Alisma plantago-aquatica and A. orientale, respectively. Finally, two new PTs were isolated and unambiguously identified by NMR verifying the feasibility of this combined data acquisition strategy. This integrated strategy could improve the efficiency in the detection of new compounds in a single run and is practical to comprehensively characterize the complex components in herbal medicines.
Collapse
|
44
|
Masike K, Stander MA, de Villiers A. Recent applications of ion mobility spectrometry in natural product research. J Pharm Biomed Anal 2021; 195:113846. [PMID: 33422832 DOI: 10.1016/j.jpba.2020.113846] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique capable of extracting complementary structural information to chromatography and mass spectrometry (MS). IMS, especially in combination with MS, has experienced inordinate growth in recent years as an analytical technique, and elicited intense interest in many research fields. In natural product analysis, IMS shows promise as an additional tool to enhance the performance of analytical methods used to identify promising drug candidates. Potential benefits of the incorporation of IMS into analytical workflows currently used in natural product analysis include the discrimination of structurally similar secondary metabolites, improving the quality of mass spectral data, and the use of mobility-derived collision cross-section (CCS) values as an additional identification criterion in targeted and untargeted analyses. This review aims to provide an overview of the application of IMS to natural product analysis over the last six years. Instrumental aspects and the fundamental background of IMS will be briefly covered, and recent applications of the technique for natural product analysis will be discussed to demonstrate the utility of the technique in this field.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Maria A Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
45
|
He M, Zhou Y. How to identify “Material basis–Quality markers” more accurately in Chinese herbal medicines from modern chromatography-mass spectrometry data-sets: Opportunities and challenges of chemometric tools. CHINESE HERBAL MEDICINES 2021; 13:2-16. [PMID: 36117762 PMCID: PMC9476807 DOI: 10.1016/j.chmed.2020.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
|
46
|
Holistic quality evaluation of Saposhnikoviae Radix (Saposhnikovia divaricata) by reversed-phase ultra-high performance liquid chromatography and hydrophilic interaction chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry-based untargeted metabolomics. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Zuo T, Zhang C, Li W, Wang H, Hu Y, Yang W, Jia L, Wang X, Gao X, Guo D. Offline two-dimensional liquid chromatography coupled with ion mobility-quadrupole time-of-flight mass spectrometry enabling four-dimensional separation and characterization of the multicomponents from white ginseng and red ginseng. J Pharm Anal 2020; 10:597-609. [PMID: 33425454 PMCID: PMC7775852 DOI: 10.1016/j.jpha.2019.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/05/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification. A dimension-enhanced strategy, by offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS) enabling four-dimensional separations (2D-LC, IM, and MS), is proposed. In combination with in-house database-driven automated peak annotation, this strategy was utilized to characterize ginsenosides simultaneously from white ginseng (WG) and red ginseng (RG). An offline 2D-LC system configuring an Xbridge Amide column and an HSS T3 column showed orthogonality 0.76 in the resolution of ginsenosides. Ginsenoside analysis was performed by data-independent high-definition MSE (HDMSE) in the negative ESI mode on a Vion™ IMS-QTOF hybrid high-resolution mass spectrometer, which could better resolve ginsenosides than MSE and directly give the CCS information. An in-house ginsenoside database recording 504 known ginsenosides and 58 reference compounds, was established to assist the identification of ginsenosides. Streamlined workflows, by applying UNIFI™ to automatedly annotate the HDMSE data, were proposed. We could separate and characterize 323 ginsenosides (including 286 from WG and 306 from RG), and 125 thereof may have not been isolated from the Panax genus. The established 2D-LC/IM-QTOF-HDMSE approach could also act as a magnifier to probe differentiated components between WG and RG. Compared with conventional approaches, this dimension-enhanced strategy could better resolve coeluting herbal components and more efficiently, more reliably identify the multicomponents, which, we believe, offers more possibilities for the systematic exposure and confirmative identification of plant metabolites.
Collapse
Affiliation(s)
- Tiantian Zuo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
| | - Chunxia Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
| | - Weiwei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
| | - Hongda Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
| | - Ying Hu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
| | - Wenzhi Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
| | - Li Jia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
| | - Xiaoyan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
| | - Dean Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| |
Collapse
|
48
|
Nazlić M, Kremer D, Grubešić RJ, Soldo B, Vuko E, Stabentheiner E, Ballian D, Bogunić F, Dunkić V. Endemic Veronica saturejoides Vis. ssp. saturejoides-Chemical Composition and Antioxidant Activity of Free Volatile Compounds. PLANTS 2020; 9:plants9121646. [PMID: 33255775 PMCID: PMC7760375 DOI: 10.3390/plants9121646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
Chemical profile and antioxidant activity of the species Veronica saturejoides Vis. ssp. saturejoides (Plantaginaceae)-which is endemic to Croatia, Bosnia and Herzegovina and Montenegro -were investigated. Volatile compounds produced by glandular trichomes (composed of one stalk cell and two elliptically formed head cells according to scanning electron microscope investigation) were isolated from the plants collected in two locations. Additionally, as a part of specialized metabolites, total polyphenols, total tannins, total flavonoids and total phenolic acids were determined spectrophotometrically. In the lipophilic volatile fractions-essential oils, the most abundant compounds identified were hexahydrofarnesyl acetone, caryophyllene oxide and hexadecanoic acid. In total, the class of oxygenated sesquiterpenes and the group of fatty aldehydes, acids and alcoholic compounds dominated in the essential oils. In the hydrophilic volatile fractions-hydrosols, the most abundant compounds identified were trans-p-mentha-1(7),8-dien-2-ol, allo-aromadendrene and (E)-caryophyllene. A group of oxygenated monoterpenes and the sesquiterpene hydrocarbons dominated in the hydrosols. Antioxidant activity of essential oils and hydrosols was tested with two methods: 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC). Essential oils showed higher antioxidant activity than hydrosols and showed similar antioxidant activity to Rosmarinus officinalis essential oil. Obtained results demonstrate that this genus is a potential source of volatiles with antioxidant activity.
Collapse
Affiliation(s)
- Marija Nazlić
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia; (M.N.); (B.S.); (E.V.)
| | - Dario Kremer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia; (D.K.); (R.J.G.)
| | - Renata Jurišić Grubešić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia; (D.K.); (R.J.G.)
| | - Barbara Soldo
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia; (M.N.); (B.S.); (E.V.)
| | - Elma Vuko
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia; (M.N.); (B.S.); (E.V.)
| | - Edith Stabentheiner
- Institute of Biology, Karl-Franzens University, Schubertstrasse 51, A-8010 Graz, Austria;
| | - Dalibor Ballian
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, BIH-71000 Sarajevo, Bosnia and Herzegovina; (D.B.); (F.B.)
- Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia
| | - Faruk Bogunić
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, BIH-71000 Sarajevo, Bosnia and Herzegovina; (D.B.); (F.B.)
| | - Valerija Dunkić
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia; (M.N.); (B.S.); (E.V.)
- Correspondence: ; Tel.: +38-521-619-296
| |
Collapse
|
49
|
Jimenez-Lopez C, Pereira AG, Lourenço-Lopes C, Garcia-Oliveira P, Cassani L, Fraga-Corral M, Prieto MA, Simal-Gandara J. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food Chem 2020; 341:128262. [PMID: 33038800 DOI: 10.1016/j.foodchem.2020.128262] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022]
Abstract
Given the growing tendency of consumers to choose products with natural ingredients, food industries have directed scientific research in this direction. In this regard, algae are an attractive option for the research, since they can synthesize a group of secondary metabolites, called phenolic compounds, associated with really promising properties and bioactivities. The objective of this work was to classify the major phenolic compounds, compare the effectiveness of the different extractive techniques used for their extraction, from traditional systems (like heat assisted extraction) to the most advance ones (such as ultrasound, microwave or supercritical fluid extraction); the available methods for identification and quantification; the stability of the enriched extract in phenolic compounds and the main bioactivities described for these secondary metabolites, to offer an overview of the situation to consider if it is possible and/or convenient an orientation of phenolic compounds from algae towards an industrial application.
Collapse
Affiliation(s)
- C Jimenez-Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - A G Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - C Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - P Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - L Cassani
- Research Group of Food Engineering, Faculty of Engineering, National University of Mar del Plata, RA7600 Mar del Plata, Argentina
| | - M Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - M A Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
50
|
Miklavčič Višnjevec A, Schwarzkopf M. Phenolic Compounds in Poorly Represented Mediterranean Plants in Istria: Health Impacts and Food Authentication. Molecules 2020; 25:E3645. [PMID: 32785191 PMCID: PMC7466117 DOI: 10.3390/molecules25163645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Phenolic compounds are well-known bioactive compounds in plants that can have a protective role against cancers, cardiovascular diseases and many other diseases. To promote local food development, a comprehensive overview of the phenolic compounds' composition and their impact on human health from typical Mediterranean plants such as Punica granatum L., Ziziphus jujuba Mill., Arbutus unedo L., Celtis australis L., Ficus carica L., Cynara cardunculus var. Scolymus L. is provided. Moreover, the potential use of these data for authenticity determination is discussed. Some of the plants' phenolic compounds and their impact to human health are very well determined, while for others, the data are scarce. However, in all cases, more data should be available about the content, profile and health impacts due to a high variation of phenolic compounds depending on genetic and environmental factors. Quantifying variation in phenolic compounds in plants relative to genetic and environmental factors could be a useful tool in food authentication control. More comprehensive studies should be conducted to better understand the importance of phenolic compounds on human health and their variation in certain plants.
Collapse
Affiliation(s)
- Ana Miklavčič Višnjevec
- Natural Sciences and Information Technologies, Glagoljaška 8, Faculty of Mathematics, University of Primorska, SI-6000 Koper, Slovenia;
| | - Matthew Schwarzkopf
- Natural Sciences and Information Technologies, Glagoljaška 8, Faculty of Mathematics, University of Primorska, SI-6000 Koper, Slovenia;
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia
| |
Collapse
|