1
|
Wang X, Ding C, Li HB. The crosstalk between enteric nervous system and immune system in intestinal development, homeostasis and diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:41-50. [PMID: 37672184 DOI: 10.1007/s11427-023-2376-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/19/2023] [Indexed: 09/07/2023]
Abstract
The gut is the largest digestive and absorptive organ, which is essential for induction of mucosal and systemic immune responses, and maintenance of metabolic-immune homeostasis. The intestinal components contain the epithelium, stromal cells, immune cells, and enteric nervous system (ENS), as well as the outers, such as gut microbiota, metabolites, and nutrients. The dyshomeostasis of intestinal microenvironment induces abnormal intestinal development and functions, even colon diseases including dysplasia, inflammation and tumor. Several recent studies have identified that ENS plays a crucial role in maintaining the immune homeostasis of gastrointestinal (GI) microenvironment. The crosstalk between ENS and immune cells, mainly macrophages, T cells, and innate lymphoid cells (ILCs), has been found to exert important regulatory roles in intestinal tissue programming, homeostasis, function, and inflammation. In this review, we mainly summarize the critical roles of the interactions between ENS and immune cells in intestinal homeostasis during intestinal development and diseases progression, to provide theoretical bases and ideas for the exploration of immunotherapy for gastrointestinal diseases with the ENS as potential novel targets.
Collapse
Affiliation(s)
- Xindi Wang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenbo Ding
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Hunter CE, Mesfin FM, Manohar K, Liu J, Shelley WC, Brokaw JP, Pecoraro AR, Hosfield BD, Markel TA. Hydrogen Sulfide Improves Outcomes in a Murine Model of Necrotizing Enterocolitis via the Cys440 Residue on Endothelial Nitric Oxide Synthase. J Pediatr Surg 2023; 58:2391-2398. [PMID: 37684170 PMCID: PMC10841167 DOI: 10.1016/j.jpedsurg.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) has been shown to improve outcomes in a murine model of necrotizing enterocolitis (NEC). There is evidence in humans that H2S relies on endothelial nitric oxide synthase (eNOS) to exert its protective effects, potentially through the persulfidation of eNOS at the Cysteine 443 residue. We obtained a novel mouse strain with a mutation at this residue (eNOSC440G) and hypothesized that this locus would be critical for GYY4137 (an H2S donor) to exert its protective effects. METHODS Necrotizing enterocolitis was induced in 5-day old wild type (WT) and eNOSC440G mice using intermittent exposure to hypoxia and hypothermia in addition to gavage formula feeds. On postnatal day 9, mice were humanely euthanized. Data collected included daily weights, clinical sickness scores, histologic lung injury, intestinal injury (macroscopically and histologically), and intestinal perfusion. During the NEC model, pups received daily intraperitoneal injections of either GYY4137 (50 mg/kg) or PBS (vehicle). Data were tested for normality and compared using t-test or Mann-Whitney, and a p-value <0.05 was considered significant. RESULTS In WT mice, the administration of GYY4137 significantly improved clinical sickness scores, attenuated intestinal and lung injury, and improved mesenteric perfusion compared to vehicle (p < 0.05). In eNOSC440G mice, the treatment and vehicle groups had similar clinical sickness scores, intestinal and lung injury scores, and intestinal perfusion. CONCLUSIONS GYY4137 administration improves clinical outcomes, attenuates intestinal and lung injury, and improves perfusion in a murine model of necrotizing enterocolitis. The beneficial effects of GYY4137 are dependent on the Cys440 residue of eNOS.
Collapse
Affiliation(s)
- Chelsea E Hunter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony R Pecoraro
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brian D Hosfield
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Martins RDS, Kooi EMW, Poelstra K, Hulscher JBF. The role of intestinal alkaline phosphatase in the development of necrotizing enterocolitis. Early Hum Dev 2023; 183:105797. [PMID: 37300991 DOI: 10.1016/j.earlhumdev.2023.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating neonatal disease that affects neonates worldwide and often leads to high morbidity and mortality rates. Despite extensive research, the cause of NEC remains unclear, and current treatment options are limited. An important novel finding is the potential role of intestinal Alkaline Phosphatase (IAP) in both pathogenesis and treatment of NEC. IAP can play a vital role in detoxifying liposaccharides (LPS), a key mediator of many pathological processes, thereby reducing the inflammatory response associated with NEC. Furthermore, IAP can help prevent dysbiosis, improve intestinal perfusion, and promote autophagy. In this comprehensive review, we present evidence of the possible connection between IAP and the LPS/Toll-like receptor 4 (TLR4) pathway, impaired gut immunity, and dysbiosis in the preterm gut. Based on these findings, the administration of exogenous IAP might provide promising preventive and therapeutic avenues for the management of NEC.
Collapse
Affiliation(s)
- Raquel Dos Santos Martins
- Division of Pediatric Surgery, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Elisabeth M W Kooi
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Poelstra
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Jan B F Hulscher
- Division of Pediatric Surgery, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Sildenafil attenuates intestinal injury in necrotizing enterocolitis independently of endothelial nitric oxide synthase. J Pediatr Surg 2022; 57:967-973. [PMID: 35794042 DOI: 10.1016/j.jpedsurg.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a devastating disease that impacts the intestine of premature infants. Sildenafil has shown benefit in colitis and ischemia/reperfusion models but has not been adequately studied in NEC. Sildenafil's best studied mechanism involves augmenting nitric oxide induced vasodilation. We hypothesized that sildenafil would improve outcomes during experimental NEC in an eNOS dependent manner. MATERIALS NEC was induced in five-day old mouse pups with gavage formula feeds plus intermittent hypoxia and hypothermia. Using wild type (WT) mice, the route of sildenafil administration was studied in the following groups: (1) breastfed controls, (2) NEC + oral (PO) sildenafil, (3) NEC + PO vehicle, (4) NEC + intraperitoneal (IP) sildenafil, (5) NEC + IP vehicle. The eNOS KO groups studied included: (1) breastfed controls, (2) NEC + PO sildenafil, (3) NEC + PO vehicle. Data were tested for normality and compared using t-tests or Mann-Whitney with a p-value <0.05 considered significant. RESULTS In WT mice, oral and IP sildenafil resulted in improved clinical outcomes compared to their respective vehicle group. Only orally administered sildenafil significantly improved perfusion to the intestine and protected it from macroscopic and histologic injury. When repeated in eNOS KO mice, oral sildenafil improved clinical scores and attenuated intestinal injury scores, despite no effect on intestinal perfusion. CONCLUSIONS Sildenafil, when administered orally, improves clinical outcomes and protects the intestine in a murine model of experimental necrotizing enterocolitis. While sildenafil requires eNOS to impact mesenteric perfusion, it does not appear to be dependent on eNOS to attenuate intestinal injury.
Collapse
|
5
|
Tian B, Zhang Y, Deng C, Guo C. Efficacy of Probiotic Consortium Transplantation on Experimental Necrotizing Enterocolitis. J Surg Res 2022; 279:598-610. [PMID: 35926310 DOI: 10.1016/j.jss.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/22/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Fecal microbiota transplantation (FMT) is a promising therapy, but it has not been used to treat neonatal necrotizing enterocolitis (NEC) due to reports of adverse side effects. Probiotics are considered relatively safe with practicable administrative procedures; however, no systematic research has compared the results of FMT and probiotic consortium transplantation (PCT) on oxidative stress in the intestines of patients with NEC. We conducted this study to provide a basis for optimizing NEC therapy. METHODS Eight-day-old newborn C57BL/6 mice were randomly divided into the following four groups: the dam-fed group (control group); the NEC induction group (NEC group); the NEC induction and transplantation of Lactobacillus reuteri and Bifidobacterium infantis consortium group (NEC + PCT group); and the NEC induction and the FMT group (NEC + FMT). Intestinal injury, oxidative stress indexes, intestinal barrier function, and inflammatory cytokines were assessed in the terminal ileum. RESULTS FMT more effectively modulates oxidative stress in the intestine than does PCT; however, the difference between the effects of PCT and FMT was not significant. The protective effect was associated with enhanced antioxidant capacity, regulation of the main components of the mucus layer, reduced inflammatory reactions, and improved intestinal integrity. CONCLUSIONS Intestinal dysbiosis affects oxidative stress, inflammatory response, and mucosal integrity. Although FMT is more effective than PCT in regulating oxidative stress, PCT may be preferred in pediatrics because the proportion and dose of transplanted bacteria can be standardized and individualized according to individual conditions.
Collapse
Affiliation(s)
- Bing Tian
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China
| | - Yunfei Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital, Chongqing Medical University, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Chun Deng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Children's Hospital, Chongqing Medical University, Chongqing, China.
| | - Chunbao Guo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Children's Hospital, Chongqing Medical University, Chongqing, China; Department of Pediatric Surgery, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Hosfield BD, Hunter CE, Li H, Drucker NA, Pecoraro AR, Manohar K, Shelley WC, Markel TA. A hydrogen-sulfide derivative of mesalamine reduces the severity of intestinal and lung injury in necrotizing enterocolitis through endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2022; 323:R422-R431. [PMID: 35912999 PMCID: PMC9512109 DOI: 10.1152/ajpregu.00229.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Necrotizing enterocolitis (NEC) remains a devastating disease that affects preterm infants. Hydrogen sulfide (H2S) donors have been shown to reduce the severity of NEC, but the optimal compound has yet to be identified. We hypothesized that oral H2S-Mesalamine (ATB-429) would improve outcomes in experimental NEC, and its benefits would be dependent on endothelial nitric oxide synthase (eNOS) pathways. NEC was induced in 5-day-old wild-type (WT) and eNOS knockout (eNOSKO) pups by formula feeding and stress. Four groups were studied in both WT and eNOSKO mice: 1) breastfed controls, 2) NEC, 3) NEC + 50 mg/kg mesalamine, and 4) NEC + 130 mg/kg ATB-429. Mesalamine and ATB-429 doses were equimolar. Pups were monitored for sickness scores and perfusion to the gut was measured by Laser Doppler Imaging (LDI). After euthanasia of the pups, intestine and lung were hematoxylin and eosin-stained and scored for injury in a blind fashion. TLR4 expression was quantified by Western blot and IL-6 expression by ELISA. P < 0.05 was significant. Both WT and eNOSKO breastfed controls underwent normal development and demonstrated milder intestinal and pulmonary injury compared with NEC groups. For the WT groups, ATB-429 significantly improved weight gain, reduced clinical sickness score, and improved perfusion compared with the NEC group. In addition, WT ATB-429 pups had a significantly milder intestinal and pulmonary histologic injury when compared with NEC. ATB-429 attenuated the increase in TLR4 and IL-6 expression in the intestine. When the experiment was repeated in eNOSKO pups, ATB-429 offered no benefit in weight gain, sickness scores, perfusion, intestinal injury, pulmonary injury, or decreasing intestinal inflammatory markers. An H2S derivative of mesalamine improves outcomes in experimental NEC. Protective effects appear to be mediated through eNOS. Further research is warranted to explore whether ATB-429 may be an effective oral therapy to combat NEC.
Collapse
Affiliation(s)
- Brian D Hosfield
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chelsea E Hunter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hongge Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Natalie A Drucker
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anthony R Pecoraro
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Riley Hospital for Children, Indiana University Health, Indianapolis, Indiana
| |
Collapse
|
7
|
Ye C, Zhang Y, Ding X, Guo C. High-Mobility Group Box-1 Is Critical in the Pathogenesis of Mouse Experimental Necrotizing Enterocolitis. J Interferon Cytokine Res 2021; 41:319-328. [PMID: 34543127 DOI: 10.1089/jir.2021.0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although high-mobility group box-1 (HMGB1) is related to the persistent intestinal inflammation in the development of necrotizing enterocolitis (NEC), the role of HMGB1 in the regulation of the intestinal microcirculation in NEC is not well understood. Therefore, we investigated the mechanism(s) by which HMGB1 regulates the generation of the following vasodilatory signals during the development of NEC: endothelial nitric oxide synthase (eNOS) and nitric oxide (NO). Experimental NEC was induced in full-term C57BL/6 mouse pups through the formula gavage and hypoxia technique. The blockade of HMGB1 was achieved with a subcutaneous injection of anti-HMGB1 antibody. Intestinal tissues and blood samples were collected at predetermined time points for the assessment of intestinal microcirculation, lipid peroxidation levels, and evaluation of eNOS activation. We found elevations in HMGB1 expression as early as 12 h after induction of NEC stress, which preceded intestinal injury. Treatment of mouse pups with HMGB1 neutralizing antibody attenuated the intestinal microvascular features and symptoms of NEC, but this improvement was not found in the eNOS knockout mice, suggesting that HMGB1 inhibition increased intestinal microcirculatory perfusion in an eNOS-dependent manner. Moreover, HMGB1 inhibition rescued NO production and eliminated O2•- production in experimental NEC mice through eNOS activation. These data indicate that excessive HMGB1 signaling is associated with the pathogenesis of NEC, suggesting that HMGB1 inhibition might be a promising strategy for NEC treatment.
Collapse
Affiliation(s)
- Cuilian Ye
- The Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, P.R. China.,Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yunfei Zhang
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xionghui Ding
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunbao Guo
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
8
|
de Lange IH, van Gorp C, Eeftinck Schattenkerk LD, van Gemert WG, Derikx JPM, Wolfs TGAM. Enteral Feeding Interventions in the Prevention of Necrotizing Enterocolitis: A Systematic Review of Experimental and Clinical Studies. Nutrients 2021; 13:1726. [PMID: 34069699 PMCID: PMC8161173 DOI: 10.3390/nu13051726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC), which is characterized by severe intestinal inflammation and in advanced stages necrosis, is a gastrointestinal emergency in the neonate with high mortality and morbidity. Despite advancing medical care, effective prevention strategies remain sparse. Factors contributing to the complex pathogenesis of NEC include immaturity of the intestinal immune defense, barrier function, motility and local circulatory regulation and abnormal microbial colonization. Interestingly, enteral feeding is regarded as an important modifiable factor influencing NEC pathogenesis. Moreover, breast milk, which forms the currently most effective prevention strategy, contains many bioactive components that are known to support neonatal immune development and promote healthy gut colonization. This systematic review describes the effect of different enteral feeding interventions on the prevention of NEC incidence and severity and the effect on pathophysiological mechanisms of NEC, in both experimental NEC models and clinical NEC. Besides, pathophysiological mechanisms involved in human NEC development are briefly described to give context for the findings of altered pathophysiological mechanisms of NEC by enteral feeding interventions.
Collapse
Affiliation(s)
- Ilse H. de Lange
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Charlotte van Gorp
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Laurens D. Eeftinck Schattenkerk
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Wim G. van Gemert
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Joep P. M. Derikx
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
9
|
Klerk DH, Plösch T, Verkaik-Schakel RN, Hulscher JBF, Kooi EMW, Bos AF. DNA Methylation of TLR4, VEGFA, and DEFA5 Is Associated With Necrotizing Enterocolitis in Preterm Infants. Front Pediatr 2021; 9:630817. [PMID: 33748044 PMCID: PMC7969816 DOI: 10.3389/fped.2021.630817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Epigenetic changes, such as DNA methylation, may contribute to an increased susceptibility for developing necrotizing enterocolitis (NEC) in preterm infants. We assessed DNA methylation in five NEC-associated genes, selected from literature: EPO, VEGFA, ENOS, DEFA5, and TLR4 in infants with NEC and controls. Methods: Observational cohort study including 24 preterm infants who developed NEC (≥Bell Stage IIA) and 45 matched controls. DNA was isolated from stool samples and methylation measured using pyrosequencing. We investigated differences in methylation prior to NEC compared with controls. Next, in NEC infants, we investigated methylation patterns long before, a short time before NEC onset, and after NEC. Results: Prior to NEC, only TLR4 CpG 2 methylation was increased in NEC infants (median = 75.4%, IQR = 71.3-83.8%) versus controls (median = 69.0%, IQR = 64.5-77.4%, p = 0.025). In NEC infants, VEGFA CpG 3 methylation was 0.8% long before NEC, increasing to 1.8% a short time before NEC and 2.0% after NEC (p = 0.011; p = 0.021, respectively). A similar pattern was found in DEFA5 CpG 1, which increased from 75.4 to 81.4% and remained 85.3% (p = 0.027; p = 0.019, respectively). These changes were not present for EPO, ENOS, and TLR4. Conclusion: Epigenetic changes of TLR4, VEGFA, and DEFA5 are present in NEC infants and can differ in relation to the time of NEC onset. Differences in DNA methylation of TLR4, VEGFA, and DEFA5 may influence gene expression and increase the risk for developing NEC. This study also demonstrates the use of human DNA extraction from stool samples as a novel non-invasive method for exploring the bowel of preterm infants and which can also be used for necrotizing enterocolitis patients.
Collapse
Affiliation(s)
- Daphne H Klerk
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan B F Hulscher
- Division of Pediatric Surgery, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elisabeth M W Kooi
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arend F Bos
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Martini S, Spada C, Aceti A, Rucci P, Gibertoni D, Battistini B, Arcuri S, Faldella G, Corvaglia L. Red blood cell transfusions alter splanchnic oxygenation response to enteral feeding in preterm infants: an observational pilot study. Transfusion 2020; 60:1669-1675. [PMID: 32358809 DOI: 10.1111/trf.15821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/17/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Preterm infants often require red blood cell (RBC) transfusions, which may impair splanchnic hemodynamics, thus predisposing to necrotizing enterocolitis (NEC). The aim of this study was to evaluate whether RBC transfusions alter splanchnic oxygenation patterns in response to enteral feeding in this population. MATERIALS AND METHODS Preterm neonates (gestational age < 32 weeks and/or birth weight < 1500 g) requiring RBC transfusions for anemia underwent a 12-hour Near Infrared Spectroscopy monitoring of splanchnic (SrSO2 ) and cerebral (CrSO2 ) oxygenation, including the transfusion period, one feed before and one after. Splanchnic-cerebral oxygenation ratio (SCOR) was also calculated. Patterns of CrSO2 , SrSO2 , and SCOR changes from baseline (Δ) in response to feed before and after transfusion were analyzed. RESULTS Twenty neonates were enrolled; none of them developed any gastrointestinal complication within 48 hours after transfusion. Pre-transfusion ΔSrSO2 and ΔSCOR increased significantly in response to feeding; on the contrary, a significant post-prandial decrease of ΔSrSO2 and ΔSCOR occurred after transfusion (p < 0.05). No difference in pre- and post-transfusion ΔCrSO2 patterns was observed. CONCLUSIONS In preterm infants, RBC transfusions may alter splanchnic oxygenation response to enteral feeds. Whether these changes are involved in the pathogenesis of transfusion-associated NEC has to be evaluated in further larger trials.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Caterina Spada
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, Post Graduate School of Pediatrics, University of Modena & Reggio Emilia, Modena, Italy
| | - Arianna Aceti
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paola Rucci
- Department of Biomedical and Neuromotor Sciences, Unit of Hygiene and Biostatistics, University of Bologna, Bologna, Italy
| | - Dino Gibertoni
- Department of Biomedical and Neuromotor Sciences, Unit of Hygiene and Biostatistics, University of Bologna, Bologna, Italy
| | | | - Santo Arcuri
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Faldella
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Burrin D, Sangild PT, Stoll B, Thymann T, Buddington R, Marini J, Olutoye O, Shulman RJ. Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models. Annu Rev Anim Biosci 2020; 8:321-354. [PMID: 32069436 DOI: 10.1146/annurev-animal-020518-115142] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pigs are increasingly important animals for modeling human pediatric nutrition and gastroenterology and complementing mechanistic studies in rodents. The comparative advantages in size and physiology of the neonatal pig have led to new translational and clinically relevant models of important diseases of the gastrointestinal tract and liver in premature infants. Studies in pigs have established the essential roles of prematurity, microbial colonization, and enteral nutrition in the pathogenesis of necrotizing enterocolitis. Studies in neonatal pigs have demonstrated the intestinal trophic effects of akey gut hormone, glucagon-like peptide 2 (GLP-2), and its role in the intestinal adaptation process and efficacy in the treatment of short bowel syndrome. Further, pigs have been instrumental in elucidating the physiology of parenteral nutrition-associated liver disease and the means by which phytosterols, fibroblast growth factor 19, and a new generation of lipid emulsions may modify disease. The premature pig will continue to be a valuable model in the development of optimal infant diets (donor human milk, colostrum), specific milk bioactives (arginine, growth factors), gut microbiota modifiers (pre-, pro-, and antibiotics), pharmaceutical drugs (GLP-2 analogs, FXR agonists), and novel diagnostic tools (near-infrared spectroscopy) to prevent and treat these pediatric diseases.
Collapse
Affiliation(s)
- Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, University of Copenhagen, DK-1870 Frederiksberg C., Copenhagen, Denmark
| | - Barbara Stoll
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, University of Copenhagen, DK-1870 Frederiksberg C., Copenhagen, Denmark
| | - Randal Buddington
- College of Nursing, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Juan Marini
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
- Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Oluyinka Olutoye
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robert J Shulman
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
12
|
Gentle SJ, Tipple TE, Patel R. Neonatal comorbidities and gasotransmitters. Nitric Oxide 2020; 97:27-32. [PMID: 32014495 DOI: 10.1016/j.niox.2020.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/10/2019] [Accepted: 01/29/2020] [Indexed: 01/28/2023]
Abstract
Hydrogen sulfide, nitric oxide, and carbon monoxide are endogenously produced gases that regulate various signaling pathways. The role of these transmitters is complex as constitutive production of these molecules may have anti-inflammatory, anti-microbial, and/or vasodilatory effects whereas induced production or formation of secondary metabolites may lead to cellular death. Given this fine line between friend and foe, therapeutic attenuation of these molecules' production has involved both inhibition of endogenous formation and therapeutic supplementation. All three gases have been implicated as regulators of critical aspects of neonatal physiology, and in turn, comorbidities including necrotizing enterocolitis, hypoxic ischemic encephalopathy, and pulmonary hypertension. In this review, we present current perspectives on these associations, highlight areas where insights remain sparse, and identify areas for potential for future investigations.
Collapse
Affiliation(s)
- Samuel J Gentle
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trent E Tipple
- Section of Neonatal-Perinatal Medicine, University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| | - Rakesh Patel
- Department of Pathology and Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Ayuso M, Van Cruchten S, Van Ginneken C. Birthweight determines intestinal microvasculature development and alters endothelial nitric oxide synthase density in young piglets. Anat Histol Embryol 2020; 49:627-634. [PMID: 31995241 DOI: 10.1111/ahe.12534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/04/2019] [Accepted: 01/11/2020] [Indexed: 12/14/2022]
Abstract
Blood supply to enterocytes dictates intestinal health and nutrient absorption. These two aspects are impaired in low birthweight (LBW) piglets, but whether the perfusion to intestinal tissues is implicated as well is still unknown. Thus, structural changes in the microvasculature of LBW and normal birthweight (NBW) piglets were investigated during early postnatal development. Additionally, the presence of endothelial nitric oxide synthase (eNOS) in the intestinal mucosa was assessed given its important role to assure perfusion. A total of 22 pigs (11 LBW and 11 NBW) were sacrificed at days 0, 3, 8 and 19 of life. Body weight and intestinal length were recorded and a piece of the small intestine was sampled for immunohistochemical analysis of von Willebrand Factor (vWF, an endothelial cell marker) and eNOS. LBW piglets had a relatively (to body weight) longer intestine than their NBW counterparts. Age did not affect microvasculature, which was more abundant (85% larger vWF-positive area) in NBW than LBW pigs. However, an interaction age*BW was observed for eNOS-IR, showing that eNOS presence peaked in NBW piglets on the first day of life and subsequently decreased. This pattern was not observed in LBW piglets. The less abundant intestinal endothelial mass and the different pattern of eNOS expression observed in LBW piglets suggests microcirculation as a contributing factor in the impaired digestive functioning and gut health of LBW pigs. However, revealing whether the origin of this alteration is prenatal or postnatal, for example due to a lower milk intake, needs further study.
Collapse
Affiliation(s)
- Miriam Ayuso
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Chris Van Ginneken
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
14
|
Dotinga BM, Mintzer JP, Moore JE, Hulscher JBF, Bos AF, Kooi EMW. Maturation of Intestinal Oxygenation: A Review of Mechanisms and Clinical Implications for Preterm Neonates. Front Pediatr 2020; 8:354. [PMID: 32719756 PMCID: PMC7347753 DOI: 10.3389/fped.2020.00354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Nutrient requirements of preterm neonates may be substantial, to support growth and maturation processes in the presence of challenging post-natal circumstances. This may be accompanied by substantial intestinal oxygen requirements. Preterm neonates may not be able to meet these oxygen requirements, due to a developmental delay in intestinal oxygenation regulation mechanisms. This review summarizes the available literature on post-natal maturation of intestinal oxygenation mechanisms and translates these changes into clinical observations and potential implications for preterm neonates. The different mechanisms that may be involved in regulation of intestinal oxygenation, regardless of post-natal age, are first discussed. The contribution of these mechanisms to intestinal oxygenation regulation is then evaluated in newborn and mature intestine. Finally, the course of clinical observations is used to translate these findings to potential implications for preterm neonates.
Collapse
Affiliation(s)
- Baukje M Dotinga
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jonathan P Mintzer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Mountainside Medical Center, Montclair, NJ, United States
| | - James E Moore
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Connecticut Children's Medical Center, University of Connecticut School of Medicine, Hartford, CT, United States
| | - Jan B F Hulscher
- Division of Pediatric Surgery, Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Arend F Bos
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elisabeth M W Kooi
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Schneider S, Wright CM, Heuckeroth RO. Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function. Annu Rev Physiol 2019; 81:235-259. [DOI: 10.1146/annurev-physiol-021317-121515] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At the most fundamental level, the bowel facilitates absorption of small molecules, regulates fluid and electrolyte flux, and eliminates waste. To successfully coordinate this complex array of functions, the bowel relies on the enteric nervous system (ENS), an intricate network of more than 500 million neurons and supporting glia that are organized into distinct layers or plexi within the bowel wall. Neuron and glial diversity, as well as neurotransmitter and receptor expression in the ENS, resembles that of the central nervous system. The most carefully studied ENS functions include control of bowel motility, epithelial secretion, and blood flow, but the ENS also interacts with enteroendocrine cells, influences epithelial proliferation and repair, modulates the intestinal immune system, and mediates extrinsic nerve input. Here, we review the many different cell types that communicate with the ENS, integrating data about ENS function into a broader view of human health and disease. In particular, we focus on exciting new literature highlighting relationships between the ENS and its lesser-known interacting partners.
Collapse
Affiliation(s)
- Sabine Schneider
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christina M. Wright
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert O. Heuckeroth
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Research Center, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Hackam DJ, Sodhi CP. Toll-Like Receptor-Mediated Intestinal Inflammatory Imbalance in the Pathogenesis of Necrotizing Enterocolitis. Cell Mol Gastroenterol Hepatol 2018; 6:229-238.e1. [PMID: 30105286 PMCID: PMC6085538 DOI: 10.1016/j.jcmgh.2018.04.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023]
Abstract
Necrotizing enterocolitis (NEC) remains the leading cause of death from gastrointestinal disease in premature infants and attacks the most fragile patients at a time when they appear to be the most stable. Despite significant advances in our overall care of the premature infant, NEC mortality remains stubbornly high. There is no specific treatment for NEC beyond broad-spectrum antibiotics and intestinal resection, and current efforts have focused on preventive strategies. Over the past decade, we have proposed a unifying hypothesis to explain the pathogenesis of NEC in premature infants that suggests that NEC develops in response to an imbalance between exaggerated proinflammatory signaling in the mucosa of the premature gut leading to mucosal injury, which is not countered effectively by endogenous repair processes, and in the setting of impaired mesenteric perfusion leads to intestinal ischemia and disease development. One of the most important pathways that mediates the balance between injury and repair in the premature intestine, and that plays a key role in NEC pathogenesis, is Toll-like receptor 4 (TLR4), which recognizes lipopolysaccharide on gram-negative bacteria. This review focuses on the role that the TLR4-mediated imbalance between proinflammatory and anti-inflammatory signaling in the premature intestinal epithelium leads to the development of NEC, and will explore how an understanding of the role of TLR4 in NEC pathogenesis has led to the identification of novel preventive or treatment approaches for this devastating disease.
Collapse
MESH Headings
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/microbiology
- Enterocolitis, Necrotizing/pathology
- Humans
- Infant
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/metabolism
- Infant, Premature, Diseases/microbiology
- Infant, Premature, Diseases/pathology
- Inflammation/metabolism
- Inflammation/microbiology
- Inflammation/pathology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/pathology
- Milk, Human/metabolism
- Mortality, Premature
- Risk Factors
- Toll-Like Receptor 4/metabolism
Collapse
Affiliation(s)
- David J. Hackam
- Division of General Pediatric Surgery, Johns Hopkins University, Johns Hopkins Hospital, Baltimore, Maryland
- Johns Hopkins Children’s Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Chhinder P. Sodhi
- Division of General Pediatric Surgery, Johns Hopkins University, Johns Hopkins Hospital, Baltimore, Maryland
- Johns Hopkins Children’s Center, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
17
|
Contribution of glutaredoxin-1 to S-glutathionylation of endothelial nitric oxide synthase for mesenteric nitric oxide generation in experimental necrotizing enterocolitis. Transl Res 2017; 188:92-105. [PMID: 26845626 DOI: 10.1016/j.trsl.2016.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/09/2016] [Indexed: 01/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) is critical for intestinal microcirculatory perfusion and therefore plays a key role in the development of necrotizing enterocolitis (NEC). eNOS-derived nitric oxide (NO) is inhibited by S-glutathionylation of eNOS (eNOS-SSG), which can be reversed by glutaredoxin-1 (Grx1). Therefore, the objective of this study was to investigate the interplay between Grx1 and eNOS in regulating the following inflammation signal during the development of NEC. Primary mouse intestinal microvascular endothelial cells (MIMECs) and peritoneal macrophages were subjected to lipopolysaccharide treatment, and Grx1-/- mice were subjected to an NEC-inducing regimen of formula feeding in combination with hypoxia and hypothermia. The eNOS-SSG level and its activity were assessed using immunoprecipitated assay and NO production evaluation. NO-mediated Toll-like receptor 4 (TLR4) signaling and inflammation injury were further defined. NEC severity was significantly increased in Grx1-/- mice. Grx1-/- mice with NEC showed significantly decreased NO and increased O2•- production with increases in eNOS-SSG. Furthermore, TLR4 signaling, which is required for the development of NEC, was enhanced in the Grx1-deficient mice. These results suggest that eNOS-SSG within the MIMECs inhibited NO production and enhanced TLR4 activity, which were implicated in the pathogenesis of NEC. Grx1 deficiency increases the severity of NEC in association with eNOS-SSG.
Collapse
|
18
|
Weismann CG, Asnes JD, Bazzy-Asaad A, Tolomeo C, Ehrenkranz RA, Bizzarro MJ. Pulmonary hypertension in preterm infants: results of a prospective screening program. J Perinatol 2017; 37:572-577. [PMID: 28206997 DOI: 10.1038/jp.2016.255] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 11/02/2016] [Accepted: 12/13/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Determine prevalence and associations with pulmonary hypertension (PH) in preterm infants. STUDY DESIGN Prospective institutional echocardiographic PH screening at 36 to 38 weeks' corrected gestational age (GA) for infants born <32 weeks' GA who had bronchopulmonary dysplasia (BPD; group BPD), and infants without BPD who had a birth weight (BW) <750 g, or clinical suspicion for PH (group NoBPD). RESULTS Two hundred and four infants were screened (GA 25.9±2 weeks, BW 831±286 g). The PH prevalence in group BPD was higher than in group NoBPD (44/159 (28%) vs 5/45 (11%); P=0.028). In group BPD, BW and GA were lower in infants with PH compared with NoPH. Following correction for BW and GA, necrotizing enterocolitis (NEC), severe intraventricular hemorrhage (IVH), atrial septal defect (ASD), and mortality were independently associated with PH in infants with BPD. In group NoBPD, NEC was the only identified factor associated with PH. Altogether, screening only those infants with NEC and infants with BPD who also had a BW <840 g would have yielded a 84% sensitivity for detecting PH, and reduced the number of screening echocardiograms by 43%. CONCLUSIONS PH in prematurity is associated with NEC in infants with and without BPD. In infants with BPD, smaller GA and BW, severe IVH, ASD and mortality are also associated with PH. Infants without identified PH-associated factors may not require routine echocardiographic PH screening.
Collapse
Affiliation(s)
- C G Weismann
- Department of Pediatrics, Division of Pediatric Cardiology, Section of Pediatric Cardiology, Yale University School of Medicine, New Haven, CT, USA.,Pediatric Heart Center, Skåne Universitetssjukhus, Lasarettgatan 48, Lund, Sweden
| | - J D Asnes
- Department of Pediatrics, Division of Pediatric Cardiology, Section of Pediatric Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - A Bazzy-Asaad
- Department of Pediatrics, Section of Pediatric Respiratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - C Tolomeo
- Department of Pediatrics, Section of Pediatric Respiratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - R A Ehrenkranz
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - M J Bizzarro
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Abstract
Necrotizing enterocolitis is a devastating disease afflicting premature infants, though after 50 years of investigation, the pathophysiology remains elusive. This report describes the possible etiologic factors from a historical perspective, and outlines the importance of human milk, intestinal blood flow, and intestinal blood flow changes from a developmental perspective over the last 40-50 years.
Collapse
Affiliation(s)
- Michael S Caplan
- Department of Pediatrics, Chief Scientific Officer, Northshore University, Healthsystem, Clinical Professor of Pediatrics, University of Chicago, Pritzker School of Medicine.
| | - Avroy Fanaroff
- Eliza Henry Barnes chair in Neonatology, Rainbow Babies and Children's Hospital
| |
Collapse
|
20
|
García-González M, Pita-Fernández S, Caramés-Bouzán J. [Analysis of population characteristics of infants affected by necrotizing enterocolitis in a tertiary centre in the last 12 years]. CIR CIR 2016; 85:411-418. [PMID: 27955855 DOI: 10.1016/j.circir.2016.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Necrotizing enterocolitis is the most lethal gastrointestinal emergency in the neonatal period. Incidence and mortality have remained stable in recent years despite advances in neonatal intensive care. The aim of this study is to show the general characteristics of patients diagnosed with necrotizing enterocolitis at Teresa Herrera's Hospital (La Coruna, Spain) in the last 12years. MATERIAL AND METHODS This study makes a retrospective and prospective descriptive analysis, evaluating the medical records and collecting radiological demographic variables, gestational data, perinatal history, clinical, analytical and perinatal therapeutic management and events in patients diagnosed with and treated for necrotizing enterocolitis between 2003 and 2015. RESULTS A total of 124 patients met the criteria for inclusion in the study. The mean gestational age of our patients was 33 weeks and remained stable compared with other studies. The average weight of our patients was 1,873g. In our series of cases there was a progressive and significant increase in maternal age and the rate of artificial pregnancies and multiple births. In our series 38.7% of our patients required surgical treatment and the fatality rate was 11.4%. DISCUSSION Despite advances in pre- and perinatal care necrotizing enterocolitis represents the leading cause of premature mortality. Incidence has remained unchanged in recent decades. More studies are required to identify both, risk and protective factors to reduce the morbidity and mortality of this entity.
Collapse
Affiliation(s)
- Miriam García-González
- Servicio de Cirugía Pediátrica, Complejo Hospitalario Universitario de A Coruña, A Coruña, España.
| | - Salvador Pita-Fernández
- Unidad de Epidemiología Clínica y Bioestadística, Complejo Hospitalario Universitario de A Coruña, A Coruña, España
| | - Jesús Caramés-Bouzán
- Servicio de Cirugía Pediátrica, Complejo Hospitalario Universitario de A Coruña, A Coruña, España
| |
Collapse
|
21
|
Yan X, Managlia E, Liu SX, Tan XD, Wang X, Marek C, De Plaen IG. Lack of VEGFR2 signaling causes maldevelopment of the intestinal microvasculature and facilitates necrotizing enterocolitis in neonatal mice. Am J Physiol Gastrointest Liver Physiol 2016; 310:G716-25. [PMID: 26950855 PMCID: PMC4867326 DOI: 10.1152/ajpgi.00273.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
The pathogenesis of necrotizing enterocolitis (NEC), a common gastrointestinal disease affecting premature infants, remains poorly understood. We previously found that intestinal VEGF-A expression is decreased in human NEC samples and in a neonatal mouse NEC model prior to detectable histological injury. Therefore, we hypothesized that lack of VEGF receptor 2 (VEGFR2) signaling facilitates neonatal intestinal injury by impairing intestinal microvasculature development. Here, we found that intestinal VEGF-A and its receptor, VEGFR2, were highly expressed at the end of fetal life and significantly decreased after birth in mice. Furthermore, selective inhibition of VEGFR2 kinase activity and exposure to a neonatal NEC protocol significantly decreased the density of the intestinal microvascular network, which was further reduced when both interventions were provided together. Furthermore, VEGFR2 inhibition resulted in greater mortality and incidence of severe injury in pups submitted to the NEC model. The percentage of lamina propria endothelial cells was decreased during NEC induction, and further decreased when VEGFR2 signaling was inhibited. This was associated with decreased endothelial cell proliferation rather than apoptosis. In conclusion, we found that VEGF-A and VEGFR2 proteins are highly expressed in the intestine before birth, and are significantly downregulated in the immediate neonatal period. Furthermore, VEGFR2 signaling is necessary to maintain the integrity of the intestinal mucosal microvasculature during the postnatal period and lack of VEGFR2 signaling predisposes to NEC in neonatal mice.
Collapse
Affiliation(s)
- Xiaocai Yan
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Elizabeth Managlia
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Shirley Xl Liu
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Xiao-Di Tan
- Division of Gastroenterology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; and Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Xiao Wang
- Division of Gastroenterology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; and Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Catherine Marek
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Isabelle G De Plaen
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
22
|
Zamora IJ, Stoll B, Ethun CG, Sheikh F, Yu L, Burrin DG, Brandt ML, Olutoye OO. Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis. PLoS One 2015; 10:e0125437. [PMID: 26061399 PMCID: PMC4465330 DOI: 10.1371/journal.pone.0125437] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/23/2015] [Indexed: 12/20/2022] Open
Abstract
To identify early markers of necrotizing enterocolitis (NEC), we hypothesized that continuous abdominal near-infrared spectroscopy (A-NIRS) measurement of splanchnic tissue oxygen saturation and intermittent plasma intestinal fatty-acid binding protein (pI-FABP) measured every 6 hours can detect NEC prior to onset of clinical symptoms. Premature piglets received parenteral nutrition for 48-hours after delivery, followed by enteral feeds every three hours until death or euthanasia at 96-hours. Continuous A-NIRS, systemic oxygen saturation (SpO2), and heart rate were measured while monitoring for clinical signs of NEC. Blood samples obtained at 6-hour intervals were used to determine pI-FABP levels by ELISA. Piglets were classified as fulminant-NEC (f-NEC), non-fulminant-NEC (nf-NEC) and No-NEC according to severity of clinical and histologic features. Of 38 piglets, 37% (n=14) developed nf-NEC, 18% (n=7) developed f-NEC and 45% (n=17) had No-NEC. There were significant differences in baseline heart rate (p=0.008), SpO2 (p<0.001) and A-NIRS (p<0.001) among the three groups. A-NIRS values of NEC piglets remained lower throughout the study with mean for f-NEC of 69±3.8%, 71.9±4.04% for nf-NEC, and 78.4±1.8% for No-NEC piglets (p<0.001). A-NIRS <75% predicted NEC with 97% sensitivity and 97% specificity. NEC piglets demonstrated greater variability from baseline in A-NIRS than healthy piglets (10.1% vs. 6.3%; p=0.04). Mean pI-FABP levels were higher in animals that developed NEC compared to No-NEC piglets (0.66 vs. 0.09 ng/mL;p<0.001). In f-NEC piglets, pI-FABP increased precipitously after feeds (0.04 to 1.87 ng/mL;p<0.001). pI-FABP levels increased in parallel with disease progression and a value >0.25ng/mL identified animals with NEC (68% sensitivity and 90% specificity). NIRS is a real-time, non-invasive tool that can serve as a diagnostic modality for NEC. In premature piglets, low A-NIRS in the early neonatal period and increased variability during initial feeds are highly predictive of NEC, which is then confirmed by rising plasma I-FABP levels. These modalities may help identify neonates with NEC prior to clinical manifestations of disease.
Collapse
Affiliation(s)
- Irving J. Zamora
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Barbara Stoll
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, Texas, United States of America
| | - Cecilia G. Ethun
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Fariha Sheikh
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ling Yu
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Douglas G. Burrin
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, Texas, United States of America
| | - Mary L. Brandt
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Oluyinka O. Olutoye
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Necrotizing Enterocolitis in Preterm Infants is Related to Enteral Feeding, But the Mechanisms Remain Uncertain and Have Changed Over Time. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Ou Y, Liu R, Wei N, Li X, Qiang O, Huang W, Tang C. Effects of octreotide on nitric oxide synthase expression in the small intestine of high fat diet-induced obese rats. Obes Res Clin Pract 2013; 6:e263-346. [PMID: 24331588 DOI: 10.1016/j.orcp.2011.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/31/2011] [Accepted: 11/22/2011] [Indexed: 02/06/2023]
Abstract
SUMMARY OBJECTIVE To investigate whether obesity induced by high fat diet is associated with expression of neuronal, endothelial, and inducible nitric oxide synthase (nNOS, eNOS, and iNOS) in the intestine, and to test the effects of the somatostatin analog octreotide on this expression. METHODS The study included high fat diet-induced obese and normal control rats. The obese rats were further separated into an obese control group and an octreotide intervention group. Rats in the intervention group were injected with 40 μg/kg octreotide every 12 h for 8 days. Expressions of nNOS, eNOS, and iNOS in the small intestine were analyzed by RT-PCR and immunohistochemistry. The NO level of small intestinal homogenate was measured with an ELISA kit. RESULTS The body weight; Lee's index; small intestinal eNOS and iNOS mRNA and protein expression levels; nNOS protein expression levels; and small intestinal homogenate NO levels were all significantly higher in the obese control group than in the normal controls (p < 0.01); nNOS mRNA expression was also higher in the obese control group, but not significantly so. Octreotide intervention significantly reduced the body weight and small intestinal homogenate NO level of the obese rats relative to the obese control group (p < 0.05). The mRNA and protein expression levels of eNOS and iNOS; the protein expression level of nNOS in the small intestine were also significantly lower in the octreotide intervention group than in the obese control group (p < 0.01), while nNOS mRNA expression was lower but not significantly so. CONCLUSION High fat diet-induced obesity is associated with elevated small intestinal nNOS, eNOS, and iNOS expression levels. Octreotide treatment can inhibit nNOS, eNOS, and iNOS expression and lead to weight loss.
Collapse
Affiliation(s)
- Yan Ou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Liu
- Division of Peptides Related to Human Disease, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Na Wei
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xian Li
- Division of Peptides Related to Human Disease, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ou Qiang
- Division of Peptides Related to Human Disease, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengwei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
25
|
Yang J, Su Y, Zhou Y, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) therapy for intestinal injury: Application and future prospects. ACTA ACUST UNITED AC 2013; 21:95-104. [PMID: 24345808 DOI: 10.1016/j.pathophys.2013.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Throughout the past 20 years, we have been investigating the potential therapeutic roles of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor family, in various models of intestinal injury including necrotizing enterocolitis (NEC), intestinal ischemia/reperfusion (I/R) injury, and hemorrhagic shock and resuscitation (HS/R). Our studies have demonstrated that HB-EGF acts as an effective mitogen, a restitution-inducing reagent, a cellular trophic factor, an anti-apoptotic protein and a vasodilator, via its effects on various cell types in the intestine. In the current paper, we have reviewed the application and therapeutic effects of HB-EGF in three classic animal models of intestinal injury, with particular emphasis on its protection of the intestines from NEC. Additionally, we have summarized the protective functions of HB-EGF on various target cells in the intestine. Lastly, we have provided a brief discussion focusing on the future development of HB-EGF clinical applications for the treatment of various forms of intestinal injury including NEC.
Collapse
Affiliation(s)
- Jixin Yang
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Yanwei Su
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Yu Zhou
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Gail E Besner
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| |
Collapse
|
26
|
Walker SK, Matheson PJ, Schreiner MT, Smith JW, Garrison RN, Downard CD. Intraperitoneal 1.5% Delflex improves intestinal blood flow in necrotizing enterocolitis. J Surg Res 2013; 184:358-64. [DOI: 10.1016/j.jss.2013.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 12/22/2022]
|
27
|
Chatterton DE, Nguyen DN, Bering SB, Sangild PT. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int J Biochem Cell Biol 2013; 45:1730-47. [DOI: 10.1016/j.biocel.2013.04.028] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 01/04/2023]
|
28
|
Abstract
Necrotizing enterocolitis (NEC) continues to be a devastating inflammatory disease of the newborn intestine. Despite advances in management, morbidity and mortality remain high. While it is clear that intestinal ischemia plays a large role in disease pathogenesis, attempts to link NEC to intestinal macrovascular derangement have been largely unsuccessful. More recently, there has been a concerted effort to characterize the pathologic changes of the intestinal microcirculation in response to intestinal injury, including NEC. This microcirculatory regulation is controlled by a balance of vasoconstrictor and vasodilator forces. Vasoconstriction is mediated primarily by endothelin-1 (ET-1), while vasodilation is mediated primarily by nitric oxide (NO). These chemical mediators have been implicated in many aspects of intestinal ischemic injury and NEC, with the balance shifting toward increased vasoconstriction associated with intestinal injury. With a proper understanding of these antagonistic forces, potential therapeutic avenues may result from improving this pathologic microcirculatory dysregulation.
Collapse
|
29
|
Abstract
Necrotizing enterocolitis (NEC) primarily affects premature infants. It is less common in term and late preterm infants. The age of onset is inversely related to the postmenstrual age at birth. In term infants, NEC is commonly associated with congenital heart diseases. NEC has also been associated with other anomalies. More than 85% of all NEC cases occur in very low birth weight infants or in very premature infants. Despite incremental advances in our understanding of the clinical presentation and pathophysiology of NEC, universal prevention of this disease continues to elude us even in the twenty-first century.
Collapse
MESH Headings
- Age of Onset
- Disease Management
- Enterocolitis, Necrotizing/diagnosis
- Enterocolitis, Necrotizing/epidemiology
- Enterocolitis, Necrotizing/therapy
- Humans
- Infant, Newborn
- Infant, Premature/physiology
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/epidemiology
- Infant, Premature, Diseases/therapy
- Intestinal Perforation/diagnosis
- Intestines/diagnostic imaging
- Intestines/microbiology
- Intestines/physiopathology
- Pneumoperitoneum/diagnosis
- Prevalence
- Radiography
- Risk
Collapse
Affiliation(s)
- Renu Sharma
- Division of Neonatology, Department of Pediatrics, University of Florida College of Medicine at Jacksonville, 655 West 8th Street, Jacksonville, FL 32209, USA.
| | | |
Collapse
|
30
|
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory intestinal disease of premature newborns, thought to result in part from overactivity of the innate immune system. NEC has been well-studied from the perspective of prevention; however, after the disease onset, there are limited treatment options to control its progression. This review discusses four potential therapies that target the overactive immune response in NEC: pentoxifylline, platelet activating factor modulators, glucocorticoids, and vasoactive substances. In addition, given the similar pathogenesis of NEC and inflammatory bowel disease (IBD), we propose that IBD therapies could provide promising leads for novel strategies with which to treat NEC.
Collapse
Affiliation(s)
- Sanjiv Harpavat
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, USA.
| | | | | |
Collapse
|
31
|
Zhang HY, Wang F, Feng JX. Intestinal microcirculatory dysfunction and neonatal necrotizing enterocolitis. Chin Med J (Engl) 2013; 126:1771-1778. [PMID: 23652066 DOI: 10.3760/cma.j.issn.0366-6999.20121741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE Based on the observation that coagulation necrosis occurs in the majority of neonatal necrotizing enterocolitis (NEC) patients, it is clear that intestinal ischemia is a contributing factor to the pathogenesis of NEC. However, the published studies regarding the role of intestinal ischemia in NEC are controversial. The aim of this paper is to review the current studies regarding intestinal microcirculatory dysfunction and NEC, and try to elucidate the exact role of intestinal microcirculatory dysfunction in NEC. DATA SOURCES The studies cited in this review were mainly obtained from articles listed in Medline and PubMed. The search terms used were "intestinal microcirculatory dysfunction" and "neonatal necrotizing enterocolitis". STUDY SELECTION Mainly original milestone articles and critical reviews written by major pioneer investigators in the field were selected. RESULTS Immature regulatory control of mesentery circulation makes the neonatal intestinal microvasculature vulnerable. When neonates are subjected to stress, endothelial cell dysfunction occurs and results in vasoconstriction of arterioles, inflammatory cell infiltration and activation in venules, and endothelial barrier disruption in capillaries. The compromised vasculature increases circulation resistance and therefore decreases intestinal perfusion, and may eventually progress to intestinal necrosis. CONCLUSION Intestinal ischemia plays an important role through the whole course of NEC. New therapeutic agents targeting intestinal ischemia, like HB-EGF, are promising therapeutic agents for the treatment of NEC.
Collapse
Affiliation(s)
- Hong-yi Zhang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College and Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | |
Collapse
|
32
|
Rivilla F, Vallejo S, Peiró C, Sánchez-Ferrer CF. Characterization of endothelium-dependent relaxations in the mesenteric vasculature: a comparative study with potential pathophysiological relevance. J Pediatr Surg 2012; 47:2044-9. [PMID: 23163996 DOI: 10.1016/j.jpedsurg.2012.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/15/2012] [Accepted: 05/22/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Endothelium-dependent relaxations in human adult mesenteric microvessels involve 3 different main mechanisms: cyclooxygenase (COX)-derived prostanoids, nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF), which elicits vascular smooth muscle hyperpolarization and relaxation. There are some pathological conditions with an abnormal balance between mesenteric vasoconstriction and vasodilatation inputs leading to endothelial dysfunction and tissue injury. PURPOSE The purpose was to characterize the mechanisms mediating endothelium-dependent relaxation and differences in children and adult mesenteric microvessels. METHODS Microvessels were dissected from omentum obtained from children (3-6 years old) and adults (25-41 years old) and mounted as ring preparations in a small vessel myograph. RESULTS In microvessels precontracted with a thromboxane analogue, the endothelium-dependent relaxations to bradykinin (10 nmol/L to 30 μmol/L) mediated by EDHF, that is, nonsensitive to COX (10 μmol/L indomethacin) and NO synthase blockade (100 μmol/L N-nitro-L-arginine methyl ester), were higher in children than in adults. When EDHF was blunted by a depolarizing precontraction with KCl, the remaining COX- and NO-dependent relaxations were significantly lower in children. CONCLUSIONS The EDHF's role in the endothelium-dependent relaxations is higher in children's vasculature. This suggests that endothelial dysfunction in mesenteric microvessels in children is likely more dependent on EDHF-related mechanisms rather than on NO- or COX-derived prostanoids.
Collapse
Affiliation(s)
- Fernando Rivilla
- Division of Pediatric Surgery, San Carlos University Hospital, Madrid 28040, Spain.
| | | | | | | |
Collapse
|
33
|
Abstract
The neonatal gastrointestinal tract is a site of intense anabolic and metabolic activity, as it is responsible for the assimilation of nutritional intake and exhibits accelerated growth shortly after birth. The hypermetabolic state of the gastrointestinal tract requires sufficient blood flow and oxygen delivery to sustain adequate oxygen consumption to meet these metabolic needs. Therefore, an understanding of the mechanisms regulating intestinal vascular perfusion in the normal state and during pathophysiological conditions in the perinatal period is important to elucidate potential contributions to the development of intestinal pathologies in the neonate. The goal of this review is to summarize the available literature on the regulation of intestinal blood flow and oxygenation in the fetus and newborn in normal states and during pathological stress.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | | |
Collapse
|
34
|
Maki AC, Matheson PJ, Shepherd JA, Garrison RN, Downard CD. Intestinal Microcirculatory Flow Alterations in Necrotizing Enterocolitis are Improved by Direct Peritoneal Resuscitation. Am Surg 2012. [DOI: 10.1177/000313481207800722] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vasoconstriction of the neonatal intestinal microvasculature is a central mechanistic event in development of necrotizing enterocolitis. We hypothesized that topical treatment of the intestine with dialysate fluid would ameliorate the vasoconstriction in necrotizing enterocolitis (NEC). NEC was induced in experimental groups. Control animals were delivered vaginally and dam-fed (control group). Neonatal pups underwent laser Doppler flow study of the terminal ileum to determine real-time blood flow in the intestinal microvasculature. After baseline flow was determined, dialysis solution was added to the peritoneal cavity and alterations in microcirculation were recorded. Baseline ileal blood flow in the control group was significantly higher than in NEC rat pups at 48 hours post delivery ( P < 0.05), but not at 24 hours ( P = NS). Ileal blood flow increased in all groups after adding dialysate ( P < 0.05), improving ileal blood flow in the 48-hour NEC group and reaching the baseline level of the 48-hour control group ( P < 0.05). Our data shows blood flow to be higher in 48-hour controls as compared with 24-hour controls suggesting a time-dependency in the development of intestinal vasoregulatory processes. All groups had an increase in blood flow with dialysate treatment. This may represent a novel initial therapy to improve intestinal ischemia in human necrotizing enterocolitis.
Collapse
Affiliation(s)
- Alexandra C. Maki
- Robley Rex Veterans Affairs Medical Center, and the Department of Surgery, and Division of Pediatric Surgery, University of Louisville, Louisville, Kentucky
| | - Paul J. Matheson
- Robley Rex Veterans Affairs Medical Center, and the Department of Surgery, and Division of Pediatric Surgery, University of Louisville, Louisville, Kentucky
| | - Jessica A. Shepherd
- Robley Rex Veterans Affairs Medical Center, and the Department of Surgery, and Division of Pediatric Surgery, University of Louisville, Louisville, Kentucky
| | - R. Neal Garrison
- Robley Rex Veterans Affairs Medical Center, and the Department of Surgery, and Division of Pediatric Surgery, University of Louisville, Louisville, Kentucky
| | - Cynthia D. Downard
- Robley Rex Veterans Affairs Medical Center, and the Department of Surgery, and Division of Pediatric Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
35
|
Direct peritoneal resuscitation augments ileal blood flow in necrotizing enterocolitis via a novel mechanism. J Pediatr Surg 2012; 47:1128-34. [PMID: 22703782 DOI: 10.1016/j.jpedsurg.2012.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022]
Abstract
PURPOSE Endothelin-1, prostaglandins (PGs), and nitric oxide (NO) have been implicated in the intestinal microvascular dysfunction of necrotizing enterocolitis (NEC). We hypothesized that direct peritoneal resuscitation (DPR) dilates the intestinal microvasculature and improves blood flow independent of these mechanisms. METHODS Rat pups were assigned by litter to experimental NEC or CONTROL groups. Laser Doppler flowmetry evaluation of intestinal microvascular blood flow was studied at baseline, with mediator blockade (endothelin-A receptor, endothelin-B receptor, PG synthesis, or NO synthase) and with DPR. Repeated-measures analysis of variance test was applied with Tukey-Kramer honestly significant difference test (P < .05). RESULTS At baseline, NEC animals demonstrated significantly decreased ileal blood flow as compared with CONTROLs (P < .05). Endothelin-A receptor and PG inhibition increased flow in the intestinal microvasculature, but this was significantly augmented by the addition of DPR (P < .05). Blockade of NO synthase decreased intestinal blood flow, which was overcome with addition of DPR (P < .05). CONCLUSION Ileal blood flow was significantly reduced in NEC animals as compared with CONTROLs. The addition of DPR to the peritoneum increased ileal blood flow significantly in all groups in spite of blockade of these known vasoactive mechanisms. Direct peritoneal resuscitation may be a novel strategy to improve intestinal blood flow in NEC.
Collapse
|
36
|
Abstract
Necrotizing enterocolitis (NEC) is the most common acquired gastrointestinal disease of premature neonates and is a serious cause of morbidity and mortality. NEC is one of the leading causes of death in neonatal intensive care units. Surgical treatment is necessary in patients whose disease progresses despite medical therapy. Surgical options include peritoneal drainage and laparotomy, with studies showing no difference in outcome related to approach. Survivors, particularly those requiring surgery, face serious sequelae.
Collapse
|
37
|
|
38
|
Downard CD, Grant SN, Matheson PJ, Guillaume AW, Debski R, Fallat ME, Garrison RN. Altered intestinal microcirculation is the critical event in the development of necrotizing enterocolitis. J Pediatr Surg 2011; 46:1023-8. [PMID: 21683192 DOI: 10.1016/j.jpedsurg.2011.03.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/26/2011] [Indexed: 12/21/2022]
Abstract
PURPOSE The pathophysiology of necrotizing enterocolitis (NEC) includes prematurity, enteral feeds, hypoxia, and hypothermia. We hypothesized that vasoconstriction of the neonatal intestinal microvasculature is the essential mechanistic event in NEC and that these microvascular changes correlate with alterations in mediators of inflammation. METHODS Sprague-Dawley rat pups were separated into groups by litter. Necrotizing enterocolitis was induced in experimental groups, whereas control animals were delivered vaginally and dam fed. Neonatal pups underwent intravital videomicroscopy of the terminal ileum with particular attention to the inflow and premucosal arterioles. Reverse transcriptase-polymerase chain reaction was performed to evaluate for messenger RNA of mediators of inflammation. RESULTS Necrotizing enterocolitis animals demonstrated statistically significant smaller inflow and premucosal arterioles than control animals (P < .05). Necrotizing enterocolitis animals had an altered intestinal arteriolar flow with a distinct "stop-and-go" pattern, suggesting severe vascular dysfunction. Reverse transcriptase-polymerase chain reaction confirmed elevation of Toll-like receptor 4 (P = .01) and high-mobility group box protein 1 (P = .001) in the ileum of animals with NEC. CONCLUSION Intestinal arterioles were significantly smaller at baseline in animals with NEC compared with controls, and expression of inflammatory mediators was increased in animals with NEC. This represents a novel method of defining the pathophysiology of NEC and allows real-time evaluation of novel vasoactive strategies to treat NEC.
Collapse
Affiliation(s)
- Cynthia D Downard
- Pediatric Surgery, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Endothelial dysfunction can develop at an early age in children with risk factors for cardiovascular disease. A clear understanding of the nature of this dysfunction and how it can worsen over time requires detailed information on the normal growth-related changes in endothelial function on which the pathological changes are superimposed. This review summarizes our current understanding of these normal changes, as derived from studies in four different mammalian species. Although the endothelium plays an important role in controlling vascular tone from birth onward, the vasoactive molecules that mediate this control often change during postnatal or juvenile growth. The specifics of this transition to an adult endothelial cell phenotype can vary depending on the vascular bed. During growth, the contribution of nitric oxide to endothelium-dependent dilation generally increases in the lung, cerebral cortex, and skeletal muscle, but decreases in the intestine. Endothelial capacity for release of other vasoactive factors (e.g., cyclooxygenase products, hydrogen peroxide, carbon monoxide) can also increase or decrease during growth. Although these changes have been well documented, there is less information on their underlying cellular or molecular events. Further research is required to clarify these mechanisms, and to evaluate the functional significance of such shifts in endothelial phenotype.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/physiopathology
- Cerebrovascular Circulation/physiology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/physiology
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/physiopathology
- Humans
- Infant, Newborn
- Intestines/blood supply
- Models, Animal
- Muscle, Skeletal/blood supply
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide/physiology
- Persistent Fetal Circulation Syndrome/etiology
- Persistent Fetal Circulation Syndrome/physiopathology
- Pulmonary Circulation/physiology
- Rats
- Risk Factors
- Sheep
- Swine
- Vascular Resistance/physiology
Collapse
Affiliation(s)
- Matthew A Boegehold
- Department of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV 26505-9105, USA.
| |
Collapse
|
40
|
Mesenteric nitric oxide and superoxide production in experimental necrotizing enterocolitis. J Surg Res 2009; 161:1-8. [PMID: 19922948 DOI: 10.1016/j.jss.2009.07.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 07/13/2009] [Accepted: 07/16/2009] [Indexed: 01/17/2023]
Abstract
BACKGROUND A proposed mechanism of intestinal injury in necrotizing enterocolitis (NEC) involves vascular dysfunction through altered nitric oxide synthase (NOS) activity. We hypothesize that this dysfunction results in an imbalance in nitric oxide (*NO) and superoxide (O(2)(*-)) production by the intestinal vascular endothelium, which contributes to the intestinal injury seen in NEC. MATERIALS AND METHODS Neonatal rat pups were divided into two groups. Control pups were breast fed and housed with their mother. Experimental NEC pups were housed separately and either exposed to formula feeding and 5% to 10% hypoxia alone (FF/H) or with the addition of lipopolysaccharide (FF/H/LPS). Mesenteries from each group were analyzed for *NO and O(2)(*-) production with and without NOS inhibition by N(G)-monomethyl-L-arginine (L-NMMA). Western blot analysis for eNOS, phosphorylated eNOS (phospho-eNOS), and inducible NOS (iNOS) was performed, and each terminal ileum was graded for intestinal injury by histology. RESULTS Histology revealed mild intestinal injury (grade 1-2 on a 4-point scale) in the FF/H group and severe injury (grade 3-4) in the FF/H/LPS group. The FF/H cohort had significantly increased *NO and lower O(2)(*-) production, while the FF/H/LPS group shifted to significantly decreased *NO and increased O(2)(*-) production. L-NMMA inhibited >50% of O(2)(*-) production in all three groups but only inhibited *NO production in control and FF/H pups. Western blot analysis revealed increased levels of phospho-eNOS in FF/H pups and increased iNOS in FF/H/LPS pups. CONCLUSIONS This study demonstrates in the progression of NEC, intestinal ischemia is associated with a shift from *NO to O(2)(*-) production, which is NOS-dependent. Potentially greater injury results from impaired vasodilatation and over-production of reactive oxygen species.
Collapse
|
41
|
Navarro M, Negre S, Matoses ML, Golombek SG, Vento M. Necrotizing enterocolitis following the use of intravenous immunoglobulin for haemolytic disease of the newborn. Acta Paediatr 2009; 98:1214-7. [PMID: 19397554 DOI: 10.1111/j.1651-2227.2009.01279.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To describe a series of patients who received intravenous immunoglobulin (IVIg) for the treatment of neonatal hyperbilirubinaemia and developed necrotizing enterocolitis (NEC) shortly thereafter. POPULATION AND RESULTS We describe three healthy breastfed newly born infants with isoimmunization-derived hyperbilirubinaemia refractory to phototherapy who were treated with IVIg. Shortly after the perfusion finished they developed clinical and radiological signs compatible with NEC and needed antibiotic therapy, prolonged parenteral nutrition and even surgery in one case. Other conditions such as septicaemia or coagulopathy were ruled out. Microscopic examination of the resected intestine revealed the presence of disseminated thrombi obstructing multiple minor vessels of the mesenteric circulation. CONCLUSION IVIg in the newborn period should be cautiously employed and always administered under strict medical control.
Collapse
Affiliation(s)
- Mariel Navarro
- Division of Neonatology, University Hospital La Fe, Valencia, Spain
| | | | | | | | | |
Collapse
|
42
|
Hetrick EM, Schoenfisch MH. Analytical chemistry of nitric oxide. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2009; 2:409-33. [PMID: 20636069 PMCID: PMC3563389 DOI: 10.1146/annurev-anchem-060908-155146] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) is the focus of intense research primarily because of its wide-ranging biological and physiological actions. To understand its origin, activity, and regulation, accurate and precise measurement techniques are needed. Unfortunately, analytical assays for monitoring NO are challenged by NO's unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span the picomolar-to-micromolar range in physiological milieus, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with a focus on the underlying mechanism of each technique and on approaches that have been coupled with modern analytical measurement tools to create novel NO sensors.
Collapse
Affiliation(s)
- Evan M. Hetrick
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
43
|
The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes. BMC DEVELOPMENTAL BIOLOGY 2008; 8:107. [PMID: 19000307 PMCID: PMC2621195 DOI: 10.1186/1471-213x-8-107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 11/10/2008] [Indexed: 11/19/2022]
Abstract
Background Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS), ornithine aminotransferase (OAT), argininosuccinate synthetase (ASS), arginase-1 (ARG1), arginase-2 (ARG2), and nitric-oxide synthase (NOS) were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Results Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. Conclusion The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants.
Collapse
|
44
|
Wei B, Chen Z, Zhang X, Feldman M, Dong XZ, Doran R, Zhao BL, Yin WX, Kotlikoff MI, Ji G. Nitric oxide mediates stretch-induced Ca2+ release via activation of phosphatidylinositol 3-kinase-Akt pathway in smooth muscle. PLoS One 2008; 3:e2526. [PMID: 18575589 PMCID: PMC2424173 DOI: 10.1371/journal.pone.0002526] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/22/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hollow smooth muscle organs such as the bladder undergo significant changes in wall tension associated with filling and distension, with attendant changes in muscle tone. Our previous study indicated that stretch induces Ca(2+) release occurs in the form of Ca(2+) sparks and Ca(2+) waves in urinary bladder myocytes. While, the mechanism underlying stretch-induced Ca2+ release in smooth muscle is unknown. METHODOLOGY/PRINCIPAL FINDINGS We examined the transduction mechanism linking cell stretch to Ca(2+) release. The probability and frequency of Ca(2+) sparks induced by stretch were closely related to the extent of cell extension and the time that the stretch was maintained. Experiments in tissues and single myocytes indicated that mechanical stretch significantly increases the production of nitric oxide (NO) and the amplitude and duration of muscle contraction. Stretch-induced Ca(2+) sparks and contractility increases were abrogated by the NO inhibitor L-NAME and were also absent in eNOS knockout mice. Furthermore, exposure of eNOS null mice to exogenously generated NO induced Ca(2+) sparks. The soluble guanylyl cyclase inhibitor ODQ did not inhibit SICR, but this process was effectively blocked by the PI3 kinase inhibitors LY494002 and wortmannin; the phosphorylation of Akt and eNOS were up-regulated by 204+/-28.6% and 258+/-36.8% by stretch, respectively. Moreover, stretch significantly increased the eNOS protein expression level. CONCLUSIONS/SIGNIFICANCE Taking together, these results suggest that stretch-induced Ca2+ release is NO dependent, resulting from the activation of PI3K/Akt pathway in smooth muscle.
Collapse
Affiliation(s)
- Bin Wei
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zheng Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Morris Feldman
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Xian-zhi Dong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Robert Doran
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Bao-Lu Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wen-xuan Yin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Michael I. Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (GJ); (MK)
| | - Guangju Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (GJ); (MK)
| |
Collapse
|
45
|
Schnabl KL, Aerde JEV, Thomson ABR, Clandinin MT. Necrotizing enterocolitis: A multifactorial disease with no cure. World J Gastroenterol 2008; 14:2142-61. [PMID: 18407587 PMCID: PMC2703838 DOI: 10.3748/wjg.14.2142] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Necrotizing enterocolitis is an inflammatory bowel disease of neonates with significant morbidity and mortality in preterm infants. Due to the multifactorial nature of the disease and limitations in disease models, early diagnosis remains challenging and the pathogenesis elusive. Although preterm birth, hypoxic-ischemic events, formula feeding, and abnormal bacteria colonization are established risk factors, the role of genetics and vasoactive/inflammatory mediators is unclear. Consequently, treatments do not target the specific underlying disease processes and are symptomatic and surgically invasive. Breast-feeding is the most effective preventative measure. Recent advances in the prevention of necrotizing enterocolitis have focused on bioactive nutrients and trophic factors in human milk. Development of new disease models including the aspect of prematurity that consistently predisposes neonates to the disease with multiple risk factors will improve our understanding of the pathogenesis and lead to discovery of innovative therapeutics.
Collapse
|
46
|
Nankervis CA, Giannone PJ, Reber KM. The neonatal intestinal vasculature: contributing factors to necrotizing enterocolitis. Semin Perinatol 2008; 32:83-91. [PMID: 18346531 DOI: 10.1053/j.semperi.2008.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Based on the demonstration of coagulation necrosis, it is clear that intestinal ischemia plays a role in the pathogenesis of necrotizing enterocolitis (NEC). Intestinal vascular resistance is determined by a dynamic balance between vasoconstrictive and vasodilatory inputs. In the newborn, this balance heavily favors vasodilation secondary to the copious production of endothelium-derived nitric oxide (NO), a circumstance which serves to ensure adequate blood flow and thus oxygen delivery to the rapidly growing intestine. Endothelial cell injury could shift this balance in favor of endothelin (ET)-1-mediated vasoconstriction, leading to intestinal ischemia and tissue injury. Evidence obtained from animal models and from human tissue collected from infants with NEC implicates NO and ET-1 dysregulation in the pathogenesis of NEC. Strategies focused on maintaining the delicate balance favoring vasodilation in the newborn intestinal circulation may prove to be useful in the prevention and treatment of NEC.
Collapse
Affiliation(s)
- Craig A Nankervis
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | |
Collapse
|
47
|
Chokshi NK, Guner YS, Hunter CJ, Upperman JS, Grishin A, Ford HR. The role of nitric oxide in intestinal epithelial injury and restitution in neonatal necrotizing enterocolitis. Semin Perinatol 2008; 32:92-9. [PMID: 18346532 PMCID: PMC2390779 DOI: 10.1053/j.semperi.2008.01.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Necrotizing enterocolitis (NEC) is the most common life-threatening gastrointestinal disease encountered in the premature infant. Although the inciting events leading to NEC remain elusive, various risk factors, including prematurity, hypoxemia, formula feeding, and intestinal ischemia, have been implicated in the pathogenesis of NEC. Data from our laboratory and others suggest that NEC evolves from disruption of the intestinal epithelial barrier, as a result of a combination of local and systemic insults. We postulate that nitric oxide (NO), an important second messenger and inflammatory mediator, plays a key role in intestinal barrier failure seen in NEC. Nitric oxide and its reactive nitrogen derivative, peroxynitrite, may affect gut barrier permeability by inducing enterocyte apoptosis (programmed cell death) and necrosis, or by altering tight junctions or gap junctions that normally play a key role in maintaining epithelial monolayer integrity. Intrinsic mechanisms that serve to restore monolayer integrity following epithelial injury include enterocyte proliferation, epithelial restitution via enterocyte migration, and re-establishment of cell contacts. This review focuses on the biology of NO and the mechanisms by which it promotes epithelial injury while concurrently disrupting the intrinsic repair mechanisms.
Collapse
Affiliation(s)
- Nikunj K Chokshi
- Department of Pediatric Surgery, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | |
Collapse
|
48
|
Giannone PJ, Luce WA, Nankervis CA, Hoffman TM, Wold LE. Necrotizing enterocolitis in neonates with congenital heart disease. Life Sci 2008; 82:341-7. [DOI: 10.1016/j.lfs.2007.09.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/22/2007] [Accepted: 09/22/2007] [Indexed: 10/22/2022]
|
49
|
Higgins RD. The vascular contribution to necrotizing enterocolitis. J Pediatr 2007; 150:5-6. [PMID: 17188603 DOI: 10.1016/j.jpeds.2006.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 10/10/2006] [Indexed: 11/23/2022]
|