1
|
Itakura T, Sasaki H, Hosoya T, Umezawa N, Saito T, Iwai H, Hasegawa H, Sato H, Hirakawa A, Imai K, Morio T, Kimura N, Yasuda S. The role of TRECs/KRECs as immune indicators that reflect immunophenotypes and predict the risk of infection in systemic autoimmune diseases. Immunol Med 2025:1-12. [PMID: 39895338 DOI: 10.1080/25785826.2025.2460275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025] Open
Abstract
T cell receptor rearrangement excision circles (TRECs) and immunoglobulin κ-deleting recombination excision circles (KRECs) represent the lymphopoiesis capacity, widely used for newborn screening of inborn errors of immunity. To clarify the significance of TRECs and KRECs as immune indicators in patients with systemic autoimmune diseases, we prospectively evaluated TREC and KREC levels with qPCR, lymphocyte phenotypes with flow cytometry, along with lymphocyte counts and serum immunoglobulin levels in peripheral blood samples from newly diagnosed patients. Each variable was assessed before immunosuppressive treatments (baseline), 3-, 6-, and 12-months after the treatment. Severe infections were recorded until 6 months after treatment. Among 35 patients, TREC and KREC levels were associated positively with the proportion of recent thymic emigrants, naïve T and B cells at all the timepoints. TREC and KREC levels decreased after treatment. The ratios of TREC and KREC levels under treatment to baseline were significantly lower in patients with severe infection than those without. In conclusion, TREC and KREC levels reflect peripheral blood immunophenotypes, specifically recent-emigrated T and B cells, in patients under treatment-naïve and immunosuppressive conditions. The longitudinal changes in TREC and KREC levels were beneficial markers for predicting the risk of severe infection during immunosuppressive treatments.
Collapse
Affiliation(s)
- Takuji Itakura
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Hirokazu Sasaki
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Natsuka Umezawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Tetsuya Saito
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Hideyuki Iwai
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | | | - Hiroyuki Sato
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Naoki Kimura
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Klippel C, Park J, Sandin S, Winstone TML, Chen X, Orton D, Singh A, Hill JD, Shahbal TK, Hamacher E, Officer B, Thompson J, Duong P, Grotzer T, Hahn SH. Advancing Newborn Screening in Washington State: A Novel Multiplexed LC-MS/MS Proteomic Assay for Wilson Disease and Inborn Errors of Immunity. Int J Neonatal Screen 2025; 11:6. [PMID: 39846592 PMCID: PMC11755445 DOI: 10.3390/ijns11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
For many genetic disorders, there are no specific metabolic biomarkers nor analytical methods suitable for newborn population screening, even where highly effective preemptive treatments are available. The direct measurement of signature peptides as a surrogate marker for the protein in dried blood spots (DBSs) has been shown to successfully identify patients with Wilson Disease (WD) and three life-threatening inborn errors of immunity, X-linked agammaglobulinemia (XLA), Wiskott-Aldrich syndrome (WAS), and adenosine deaminase deficiency (ADAD). A novel proteomic-based multiplex assay to detect these four conditions from DBS using high-throughput LC-MS/MS was developed and validated. The clinical validation results showed that the assay can accurately identify patients of targeted disorders from controls. Additionally, 30,024 newborn DBS samples from the Washington State Department of Health Newborn Screening Laboratory have been screened from 2022 to 2024. One true presumptive positive case of WD was found along with three false positive cases. Five false positives for WAS were detected, but all of them were premature and/or low-birth-weight babies and four of them had insufficient DNA for confirmation. The pilot study demonstrates the feasibility and effectiveness of utilizing this multiplexed proteomic assay for newborn screening.
Collapse
Affiliation(s)
- Claire Klippel
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
| | - Jiwoon Park
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
| | - Sean Sandin
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
| | - Tara M. L. Winstone
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada; (T.M.L.W.); (X.C.); (D.O.)
| | - Xue Chen
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada; (T.M.L.W.); (X.C.); (D.O.)
| | - Dennis Orton
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada; (T.M.L.W.); (X.C.); (D.O.)
| | - Aranjeet Singh
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Jonathan D. Hill
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Tareq K. Shahbal
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Emily Hamacher
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Brandon Officer
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - John Thompson
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Phi Duong
- Seattle Children’s Research Institute, Seattle, WA 98105, USA; (P.D.); (T.G.)
| | - Tim Grotzer
- Seattle Children’s Research Institute, Seattle, WA 98105, USA; (P.D.); (T.G.)
| | - Si Houn Hahn
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
- Seattle Children’s Research Institute, Seattle, WA 98105, USA; (P.D.); (T.G.)
| |
Collapse
|
3
|
Hiroki H, Moriya K, Uchiyama T, Hirose F, Endo A, Sato I, Tomaru Y, Sawakami K, Shimizu N, Ohnishi H, Morio T, Imai K. A high-throughput TREC- and KREC-based newborn screening for severe inborn errors of immunity. Pediatr Int 2025; 67:e15872. [PMID: 40121561 DOI: 10.1111/ped.15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 09/16/2024] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Severe combined immunodeficiency (SCID) due to T-cell deficiency is the most severe form of inborn error of immunity (IEI). It frequently leads to severe and recurrent infections and the first infection or live vaccines can sometimes be fatal. Patients with B-cell deficiency (BCD), such as X-linked agammaglobulinaemia (XLA), also suffer from severe or recurrent infections. Thus, early diagnosis via newborn screening (NBS) is suitable for these types of diseases. We developed a lyophylized TaqMan-based quantitative polymerase chain reaction (qPCR) kit with primers and probes for the simultaneous detection of T-cell receptor excision circles (TREC) and κ-deleting recombination excision circles (KREC). We also developed a fully automated DNA extraction and purification process using Magtration technology from dried blood spots (DBS), enabling high-throughput analysis METHODS: We examined 15,258 stored DBS collected from 2014 to 2015 by this method. Newborn screening samples from children with a known SCID, XLA or ataxia-telangiectasia (AT) were also examined as positive controls. RESULTS RPPH1 (internal control), TREC, and KREC all had near-normal distributions. One specimen was below the cut-off for TREC (0.00657%) after exclusion of 36 specimens due to the failure of DNA extraction (0.23%). The TREC levels in the patients with AT and SCID, and KREC levels in the patients with AT and XLA were all below cut-off or absent. CONCLUSIONS This assay would allow the establishment of qPCR-based NBS in unfamiliar laboratories leading to the early diagnosis of SCID and BCD.
Collapse
Affiliation(s)
- Haruka Hiroki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kunihiko Moriya
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Fumi Hirose
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Akifumi Endo
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Iori Sato
- Shimadzu Diagnostics Co., Ltd., Yuki-shi, Ibaraki, Japan
| | - Yasuhiro Tomaru
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Tsukuba Oligo Service Co., Ltd, Ushiku, Ibaraki, Japan
| | | | - Norio Shimizu
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu-Shi, Gifu, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| |
Collapse
|
4
|
Kimizu T, Nozaki M, Okada Y, Sawada A, Morisaki M, Fujita H, Irie A, Matsuda K, Hasegawa Y, Nishi E, Okamoto N, Kawai M, Imai K, Suzuki Y, Wada K, Mitsuda N, Ida S. Multiplex Real-Time PCR-Based Newborn Screening for Severe Primary Immunodeficiency and Spinal Muscular Atrophy in Osaka, Japan: Our Results after 3 Years. Genes (Basel) 2024; 15:314. [PMID: 38540372 PMCID: PMC10970021 DOI: 10.3390/genes15030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 06/14/2024] Open
Abstract
In newborn screening (NBS), it is important to consider the availability of multiplex assays or other tests that can be integrated into existing systems when attempting to implement NBS for new target diseases. Recent developments in innovative testing technology have made it possible to simultaneously screen for severe primary immunodeficiency (PID) and spinal muscular atrophy (SMA) using quantitative real-time polymerase chain reaction (qPCR) assays. We describe our experience of optional NBS for severe PID and SMA in Osaka, Japan. A multiplex TaqMan qPCR assay was used for the optional NBS program. The assay was able to quantify the levels of T-cell receptor excision circles and kappa-deleting recombination excision circles, which is useful for severe combined immunodeficiency and B-cell deficiency screening, and can simultaneously detect the homozygous deletion of SMN1 exon 7, which is useful for NBS for SMA. In total, 105,419 newborns were eligible for the optional NBS program between 1 August 2020 and 31 August 2023. A case each of X-linked agammaglobulinemia and SMA were diagnosed through the optional NBS and treated at early stages (before symptoms appeared). Our results show how multiplex PCR-based NBS can benefit large-scale NBS implementation projects for new target diseases.
Collapse
Affiliation(s)
- Tomokazu Kimizu
- Department of Pediatric Neurology, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Masatoshi Nozaki
- Department of Neonatal Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
- Department of Perinatal and Pediatric Infectious Diseases, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan
| | - Yousuke Okada
- Department of Hematology/Oncology, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (Y.O.); (A.S.)
| | - Akihisa Sawada
- Department of Hematology/Oncology, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (Y.O.); (A.S.)
| | - Misaki Morisaki
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (M.M.); (H.F.); (A.I.); (S.I.)
| | - Hiroshi Fujita
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (M.M.); (H.F.); (A.I.); (S.I.)
| | - Akemi Irie
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (M.M.); (H.F.); (A.I.); (S.I.)
| | - Keiko Matsuda
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (K.M.); (Y.H.); (E.N.); (N.O.)
| | - Yuiko Hasegawa
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (K.M.); (Y.H.); (E.N.); (N.O.)
| | - Eriko Nishi
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (K.M.); (Y.H.); (E.N.); (N.O.)
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (K.M.); (Y.H.); (E.N.); (N.O.)
| | - Masanobu Kawai
- Department of Pediatric Gastroenterology, Nutrition, and Endocrinology, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama 359-0042, Japan;
| | - Yasuhiro Suzuki
- Department of Pediatric Neurology, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Kazuko Wada
- Department of Neonatal Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Nobuaki Mitsuda
- Department of Maternal Fetal Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Shinobu Ida
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (M.M.); (H.F.); (A.I.); (S.I.)
| |
Collapse
|
5
|
Kimizu T, Ida S, Oki K, Shima M, Nishimoto S, Nakajima K, Ikeda T, Mogami Y, Yanagihara K, Matsuda K, Nishi E, Hasegawa Y, Nozaki M, Fujita H, Irie A, Katayama T, Okamoto N, Imai K, Nishio H, Suzuki Y. Newborn screening for spinal muscular atrophy in Osaka -challenges in a Japanese pilot study. Brain Dev 2023:S0387-7604(23)00058-X. [PMID: 36973114 DOI: 10.1016/j.braindev.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE This study aimed to establish an optional newborn screening program for spinal muscular atrophy (SMA-NBS) in Osaka. METHODS A multiplex TaqMan real-time quantitative polymerase chain reaction assay was used to screen for SMA. Dried blood spot samples obtained for the optional NBS program for severe combined immunodeficiency, which covers about 50% of the newborns in Osaka, were used. To obtain informed consent, participating obstetricians provided information about the optional NBS program to all parents by giving leaflets to prospective parents and uploading the information onto the internet. We prepared a workflow so that babies that were diagnosed with SMA through the NBS could be treated immediately. RESULTS From 1 February 2021 to 30 September 2021, 22,951 newborns were screened for SMA. All of them tested negative for survival motor neuron (SMN)1 deletion, and there were no false-positives. Based on these results, an SMA-NBS program was established in Osaka and included in the optional NBS programs run in Osaka from 1 October 2021. A positive baby was found by screening, diagnosed with SMA (the baby possessed 3 copies of the SMN2 gene and was pre-symptomatic), and treated immediately. CONCLUSION The workflow of the Osaka SMA-NBS program was confirmed to be useful for babies with SMA.
Collapse
Affiliation(s)
- Tomokazu Kimizu
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan.
| | - Shinobu Ida
- Department of Laboratory Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Keisuke Oki
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Morimasa Shima
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Shizuka Nishimoto
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Ken Nakajima
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Tae Ikeda
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yukiko Mogami
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Keiko Yanagihara
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Keiko Matsuda
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Eriko Nishi
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuiko Hasegawa
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Masatoshi Nozaki
- Department of Neonatal Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Hiroshi Fujita
- Department of Laboratory Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Akemi Irie
- Department of Laboratory Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toru Katayama
- Department of Laboratory Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Kohsuke Imai
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Yasuhiro Suzuki
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| |
Collapse
|
6
|
Tomomasa D, Isoda T, Mitsuiki N, Inoue K, Nishimura A, Uda K, Uchiyama T, Yamashita M, Kamiya T, Endo A, Takagi M, Imai K, Kajiwara M, Cowan MJ, Morio T, Kanegane H. Successful TCRαβ/CD19-Depleted Hematopoietic Cell Transplantation for a Patient With Artemis Deficiency. J Pediatr Hematol Oncol 2023; 45:e285-e289. [PMID: 36757045 DOI: 10.1097/mph.0000000000002522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/12/2022] [Indexed: 02/10/2023]
Abstract
Artemis deficiency is characterized by DNA double-strand breaks repairing dysfunction and increased sensitivity to ionizing radiation and alkylating reagents. We describe the first successful case of T-cell receptor [TCR]αβ/CD19-depleted hematopoietic cell transplantation [HCT] for Artemis deficiency in Japan. A 6-month-old Korean boy was diagnosed with Artemis-deficient severe combined immunodeficiency. He had no human leukocyte antigen (HLA)-matched sibling or unrelated donor. Therefore, TCRαβ/CD19-depleted HCT from his haploidentical mother was performed. Despite mixed chimerism in whole blood, T cells achieved complete donor chimerism 6 months after HCT. TCRαβ/CD19-depleted HCT could be an effective treatment for patients with radiation-sensitive severe combined immunodeficiency.
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kento Inoue
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuhiro Uda
- Division of Infectious Diseases, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akifumi Endo
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Michiko Kajiwara
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Morton J Cowan
- Allergy Immunology and Blood and Marrow Transplant Division, Benioff Children's Hospital, University of California San Francisco, San Francisco, California
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Deparment of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
7
|
Navigating diagnostic options for inborn errors of immunity in children: a case-based illustration. Curr Opin Pediatr 2022; 34:589-594. [PMID: 36081368 DOI: 10.1097/mop.0000000000001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW In recent years, there has been a dramatic increase in the number of recognized inborn errors of immunity (IEI), many of which present in childhood. This review discusses diagnostic approaches for some of the more common presentations of IEI in childhood. RECENT FINDINGS Implementation of newborn screening (NBS) using the T cell receptor excision circle (TREC) assay has led to the timely identification of patients with severe combined immunodeficiency (SCID) as well as both syndromic and nonsyndromic forms of T cell lymphopenia, including DiGeorge syndrome. Improvements in the availability of immunophenotyping assays, genetic testing and advanced diagnostic techniques such as the artificial thymic organoid system can improve diagnostic clarity and impact management plans. Diagnostic improvements in humoral immunodeficiency include development of novel assays to quantify and functionally evaluate polysaccharide vaccine response. SUMMARY IEI represent a rapidly growing field, particularly in paediatrics. Use of state-of-the-art diagnostic testing can facilitate rapid identification of IEI, hopefully allowing for initiation of prompt treatment and improved patient outcomes.
Collapse
|
8
|
Tanita K, Kawamura Y, Miura H, Mitsuiki N, Tomoda T, Inoue K, Iguchi A, Yamada M, Yoshida T, Muramatsu H, Tada N, Matsui T, Kato M, Eguchi K, Ishimura M, Ohga S, Imai K, Morio T, Yoshikawa T, Kanegane H. Case Report: Rotavirus Vaccination and Severe Combined Immunodeficiency in Japan. Front Immunol 2022; 13:786375. [PMID: 35281013 PMCID: PMC8905240 DOI: 10.3389/fimmu.2022.786375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is an inborn error of immunity that occurs in approximately 1 in 50,000 births, mainly due to impaired lymphocyte differentiation. Without curative treatment, such as hematopoietic cell transplantation (HCT) or gene therapy, severe infection in the first year of life could make this condition fatal. The results of HCT are poor when patients have active infections, thus requiring early diagnosis before onset of infection. In five cases of SCID diagnosed in Japan, the oral rotavirus vaccine had been administered before diagnosis. In this study, we demonstrated that the rotavirus from their stools was a vaccine-derived strain. In some cases, severe gastroenteritis triggered the diagnosis of SCID. However, newborn screening for SCID is available before the first rotavirus vaccination using assays for the detection of T-cell receptor excision circles (TRECs). Therefore, to improve the prognosis of patients with SCID in Japan, we should establish a screening system of TRECs for newborns throughout Japan.
Collapse
Affiliation(s)
- Kay Tanita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroki Miura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Tomoda
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kento Inoue
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akihiro Iguchi
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Yoshida
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norimasa Tada
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Toshihiro Matsui
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
9
|
Rawat A, Tyagi R, Chaudhary H, Pandiarajan V, Jindal AK, Suri D, Gupta A, Sharma M, Arora K, Bal A, Madaan P, Saini L, Sahu JK, Ogura Y, Kato T, Imai K, Nonoyama S, Singh S. Unusual clinical manifestations and predominant stopgain ATM gene variants in a single centre cohort of ataxia telangiectasia from North India. Sci Rep 2022; 12:4036. [PMID: 35260754 PMCID: PMC8904522 DOI: 10.1038/s41598-022-08019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
Germline ATM gene variations result in phenotypic heterogeneity characterized by a variable degree of disease severity. We retrospectively collected clinical, genetic, and immunological data of 26 cases with A-T. Clinical manifestations included oculocutaneous telangiectasia (100%), ataxia (100%), fever, loose stools or infection (67%), cerebellar atrophy (50%), nystagmus (8%), dysarthria (15.38%), and visual impairment (8%). Genetic analysis confirmed ATM gene variations in 16 unrelated cases. The most common type of variation was stopgain variants (56%). Immunoglobulin profile indicated reduced IgA, IgG, and IgM in 94%, 50%, and 20% cases, respectively. T cell lymphopenia was observed in 80% of cases among those investigated. Unusual presentations included an EBV-associated smooth muscle tumour located in the liver in one case and Hyper IgM syndrome-like presentation in two cases. Increased immunosenescence was observed in T-cell subsets (CD4+CD57+ and CD8+CD57+). T-cell receptor excision circles (TRECs) were reduced in 3/8 (37.50%) cases.
Collapse
Affiliation(s)
- Amit Rawat
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Rahul Tyagi
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Himanshi Chaudhary
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vignesh Pandiarajan
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Ankur Kumar Jindal
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Deepti Suri
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anju Gupta
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Madhubala Sharma
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Kanika Arora
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Lokesh Saini
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitendra Kumar Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Yumi Ogura
- National Defense Medical College (Japan), Saitama, Japan
| | - Tamaki Kato
- National Defense Medical College (Japan), Saitama, Japan
| | - Kohsuke Imai
- National Defense Medical College (Japan), Saitama, Japan.,Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Surjit Singh
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
10
|
Taki M, Miah T, Secord E. Newborn Screening for Severe Combined Immunodeficiency. Immunol Allergy Clin North Am 2021; 41:543-553. [PMID: 34602227 DOI: 10.1016/j.iac.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The T-cell receptor excision circle (TREC) assay is an effective screening tool for severe combined immunodeficiency (SCID). The TREC assay was designed to detect typical SCID and leaky SCID, but any condition causing low naïve T-cell counts will also be detected. Newborn screening for SCID using the TREC assay has proven itself to be highly sensitive and cost-efficient. This review covers the history of SCID newborn screening, elaborates on the SCID subtypes and TREC assay limitations, and discusses diagnostic and management considerations for infants with a positive screen.
Collapse
Affiliation(s)
- Mohammed Taki
- Department of Pediatrics, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA
| | - Tayaba Miah
- Department of Pediatrics, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA
| | - Elizabeth Secord
- Department of Allergy and Immunology, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA.
| |
Collapse
|
11
|
Newborn Screening for Severe Combined Immunodeficiency: Do Preterm Infants Require Special Consideration? Int J Neonatal Screen 2021; 7:ijns7030040. [PMID: 34287233 PMCID: PMC8293075 DOI: 10.3390/ijns7030040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
The Wisconsin Newborn Screening (NBS) Program began screening for severe combined immunodeficiency (SCID) in 2008, using real-time PCR to quantitate T-cell receptor excision circles (TRECs) in DNA isolated from dried blood NBS specimens. Prompted by the observation that there were disproportionately more screening-positive cases in premature infants, we performed a study to assess whether there is a difference in TRECs between full-term and preterm newborns. Based on de-identified SCID data from 1 January to 30 June 2008, we evaluated the TRECs from 2510 preterm newborns (gestational age, 23-36 weeks) whose specimens were collected ≤72 h after birth. The TRECs from 5020 full-term newborns were included as controls. The relationship between TRECs and gestational age in weeks was estimated using linear regression analysis. The estimated increase in TRECs for every additional week of gestation is 9.60%. The 95% confidence interval is 8.95% to 10.25% (p ≤ 0.0001). Our data suggest that TRECs increase at a steady rate as gestational age increases. These results provide rationale for Wisconsin's existing premature infant screening procedure of recommending repeat NBS following an SCID screening positive in a premature infant instead of the flow cytometry confirmatory testing for SCID screening positives in full-term infants.
Collapse
|
12
|
Immunological abnormalities in patients with early-onset ataxia with ocular motor apraxia and hypoalbuminemia. Clin Immunol 2021; 229:108776. [PMID: 34118401 DOI: 10.1016/j.clim.2021.108776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 11/21/2022]
Abstract
Early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH) is a neurodegenerative disorder caused by mutation in the aprataxin (APTX)-coding gene APTX, which is involved in DNA single-strand break repair (SSBR). The neurological abnormalities associated with EAOH are similar to those observed in patients with ataxia-telangiectasia. However, the immunological abnormalities in patients with EAOH have not been described. In this study, we report that EAOH patients have immunological abnormalities, including lymphopenia; decreased levels of CD4+ T-cells, CD8+ T-cells, and B-cells; hypogammaglobulinemia; low T-cell recombination excision circles and kappa-deleting element recombination circles; and oligoclonality of T-cell receptor β-chain variable repertoire. These immunological abnormalities vary among the EAOH patients. Additionally, mild radiosensitivity in the lymphocytes obtained from the patients with EAOH was demonstrated. These findings suggested that the immunological abnormalities and mild radiosensitivity evident in patients with EAOH could be probably caused by the DNA repair defects.
Collapse
|
13
|
Nemoto K, Kawanami T, Hoshina T, Ishimura M, Yamasaki K, Okada S, Kanegane H, Yatera K, Kusuhara K. Impaired B-Cell Differentiation in a Patient With STAT1 Gain-of-Function Mutation. Front Immunol 2020; 11:557521. [PMID: 33133069 PMCID: PMC7550620 DOI: 10.3389/fimmu.2020.557521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Hypogammaglobulinemia is a rare complication of STAT1 gain-of-function (GOF) mutations. We report an adult patient diagnosed with hypogammaglobulinemia caused by B-cell depletion during the treatment of disseminated cryptococcosis. The patient carried the STAT1 GOF mutation (c.820C>T, p.R274W). The flow cytometric analysis of his bone marrow revealed that B-cell differentiation was blocked in the stages between pre-B1b and pre-B2 cells. On the other hand, his brother who carried the same mutation displayed normal B-cell counts, thereby indicating that the unrecognized variants in same or other gene might be associated with abnormal B-cell differentiation in the patients. In conclusion, impaired B-cell differentiation in the bone marrow can cause hypogammaglobulinemia in patients with STAT1 GOF mutations.
Collapse
Affiliation(s)
- Kazuki Nemoto
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Toshinori Kawanami
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Takayuki Hoshina
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
14
|
Barmettler S, Coffey K, Smith MJ, Chong HJ, Pozos TC, Seroogy CM, Walter J, Abraham RS. Functional Confirmation of DNA Repair Defect in Ataxia Telangiectasia (AT) Infants Identified by Newborn Screening for Severe Combined Immunodeficiency (NBS SCID). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:723-732.e3. [PMID: 32818697 DOI: 10.1016/j.jaip.2020.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The introduction of newborn screening for severe combined immunodeficiencies (NBS SCID) in 2010 was a significant public health milestone. Although SCID was the primary target, several other conditions associated with severe T-cell lymphopenia have subsequently been identified as secondary targets. The differential diagnosis in infants with an abnormal T-cell receptor excision circle result on NBS SCID who do not meet criteria for typical SCID is often broad, and often the evaluation of these conditions requires immunological and functional testing, in conjunction with genetic analysis, to obtain an accurate diagnosis and develop an appropriate management and treatment plan. OBJECTIVE We describe here 3 infants identified by NBS SCID, who required additional workup as they did not have a typical SCID phenotype and meet the relevant diagnostic criteria. Genetic testing identified pathogenic variants in ATM in all 3 patients, and the pathogenicity of the variants was confirmed by a functional flow cytometry assay. METHODS The patients underwent immunological and genetic workup to identify an underlying cause of their abnormal NBS SCID. Ataxia telangiectasia (AT) was suspected based on clinical and family history, and immunological analyses. The diagnosis was confirmed in all patients with a rapid functional flow cytometric assay and genetic testing. RESULTS A rapid functional flow cytometry assay was used as a diagnostic and confirmatory tool, in conjunction with genetic testing, to make a diagnosis of AT. Experimental validation of the causal relationship between genotype and phenotype allowed for expeditious diagnosis, which facilitated early discussions with families regarding prognosis, treatment, and management. CONCLUSIONS Even with increased rapidity and access to genetic results, functional testing is required for clinical diagnosis in infants identified by NBS SCID who do not fit into the classic categories or have novel genetic variants to confirm the diagnosis. Consideration should be given to the use of functional assays as an essential component of an integrated evaluation to characterize the genetics and mechanisms of inborn errors of immunity.
Collapse
Affiliation(s)
- Sara Barmettler
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass.
| | - Kara Coffey
- Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Matthew J Smith
- Department of Pathology and Laboratory Medicine, Division of Hematology Research, Mayo Clinic, Rochester, Minn
| | - Hey Jin Chong
- Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Tamara C Pozos
- Department of Clinical Immunology, Children's Minnesota Minneapolis, Minneapolis, Minn
| | - Christine M Seroogy
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Jolan Walter
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Division of Pediatric Allergy and Immunology, University of South Florida, Tampa, Fla; Division of Pediatric Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
15
|
Shinwari K, Bolkov M, Tuzankina IA, Chereshnev VA. Newborn Screening through TREC, TREC/KREC System for Primary Immunodeficiency with limitation of TREC/KREC. Comprehensive Review. Antiinflamm Antiallergy Agents Med Chem 2020; 20:132-149. [PMID: 32748762 DOI: 10.2174/1871523019999200730171600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/11/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Newborn screening (NBS) by quantifying T cell receptor excision circles (TRECs) and Kappa receptor excision circles in neonatal dried blood spots (DBS) enables early diagnosis of different types of primary immune deficiencies. Global newborn screening for PID, using an assay to detect T-cell receptor excision circles (TREC) in dried blood spots (DBS), is now being performed in all states in the United States. In this review, we discuss the development and outcomes of TREC, TREC/KREC combines screening, and continued challenges to implementation. OBJECTIVE To review the diagnostic performance of published articles for TREC and TREC/ KREC based NBS for PID and its different types. METHODS Different research resources were used to get an approach for the published data of TREС and KREC based NBS for PID like PubMed, Scopus, Google Scholar, Research gate EMBASE. We extracted TREC and KREC screening Publisher with years of publication, content and cut-off values, and a number of retests, repeat DBS, and referrals from the different published pilot, pilot cohort, Case series, and cohort studies. RESULTS We included the results of TREC, combined TREC/KREC system based NBS screening from different research articles, and divided these results between the Pilot studies, case series, and cohort. For each of these studies, different parameter data are excluded from different articles. Thirteen studies were included, re-confirming 89 known SCID cases in case series and reporting 53 new SCID cases in 3.15 million newborns. Individual TREC contents in all SCID patients were <25 TRECs/μl (except in those evaluated with the New York State assay). CONCLUSION TREC and KREC sensitivity for typical SCID and other types of PID was 100 %. It shows its importance and anticipating the significance of implementation in different undeveloped and developed countries in the NBS program in upcoming years. Data adapting the screening algorithm for pre-term/ill infants reduce the amount of false-positive test results.
Collapse
Affiliation(s)
- Khyber Shinwari
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Mikhail Bolkov
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Irina A Tuzankina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Valery A Chereshnev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| |
Collapse
|
16
|
Dasouki M, Jabr A, AlDakheel G, Elbadaoui F, Alazami AM, Al-Saud B, Arnaout R, Aldhekri H, Alotaibi I, Al-Mousa H, Hawwari A. TREC and KREC profiling as a representative of thymus and bone marrow output in patients with various inborn errors of immunity. Clin Exp Immunol 2020; 202:60-71. [PMID: 32691468 DOI: 10.1111/cei.13484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022] Open
Abstract
Primary immune deficiency (PID) disorders are clinically and molecularly heterogeneous diseases. T cell receptor excision circles (TRECs) and κ (kappa)-deleting excision circles (KRECs) are markers of T and B cell development, respectively. They are useful tools to assess T and B cell function and immune reconstitution and have been used for newborn screening for severe combined immunodeficiency disease (SCID) and agammaglobulinemia, respectively. Their profiles in several genetically confirmed PIDs are still lacking. The objective of this study was to determine TREC and KREC genomic profiling among various molecularly confirmed PIDs. We used real-time-quantitative polymerase chain reaction (RT-qPCR)-based triplex analysis of TRECs, KRECs and β-actin (ACTB) in whole blood genomic DNA isolated from 108 patients with molecularly confirmed PIDs. All agammaglobulinemia patients had low KREC counts. All SCIDs and Omenn syndrome patients secondary to mutations in RAG1, RAG2, DCLRE1C and NHEJ1 had low TREC and KREC counts. JAK3-deficient patients had normal KREC and the TREC count was influenced by the type of mutation. Early-onset ADA patients had low TREC and KREC counts. Four patients with zeta-chain-associated protein kinase 70 (ZAP70) had low TREC. All purine nucleoside phosphorylase (PNP) patients had low TREC. Combined immunodeficiency (CID) patients secondary to AK2, PTPRC, CD247, DCLREC1 and STAT1 had normal TREC and KREC counts. Most patients with ataxia-telangiectasia (AT) patients had low TREC and KREC, while most DOCK8-deficient patients had low TRECs only. Two of five patients with Wiskott-Aldrich syndrome (WAS) had low TREC counts as well as one patient each with bare lymphocyte syndrome (BLS) and chronic granulomatous disease. All patients with Griscelli disease, Chediak-Higashi syndrome, hyper-immunoglobulin (Ig)M syndrome and IFNGR2 had normal TREC and KREC counts. These data suggest that, in addition to classical SCID and agammaglobulinemia, TREC/KREC assay may identify ZAP70 patients and secondary target PIDs, including dedicator of cytokinesis 8 (DOCK8) deficiency, AT and some individuals with WAS and BLS.
Collapse
Affiliation(s)
- M Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - A Jabr
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - G AlDakheel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - F Elbadaoui
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - A M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - B Al-Saud
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - R Arnaout
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H Aldhekri
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - I Alotaibi
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H Al-Mousa
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - A Hawwari
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City Hospital, Ministry of National Guard Health Affairs, Al-Ahsa, Saudi Arabia
| |
Collapse
|
17
|
Kwok JSY, Cheung SKF, Ho JCY, Tang IWH, Chu PWK, Leung EYS, Lee PPW, Cheuk DKL, Lee V, Ip P, Lau YL. Establishing Simultaneous T Cell Receptor Excision Circles (TREC) and K-Deleting Recombination Excision Circles (KREC) Quantification Assays and Laboratory Reference Intervals in Healthy Individuals of Different Age Groups in Hong Kong. Front Immunol 2020; 11:1411. [PMID: 32765500 PMCID: PMC7378446 DOI: 10.3389/fimmu.2020.01411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
The clinical experience gathered throughout the years has raised awareness of primary immunodeficiency diseases (PIDD). T cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC) assays for thymic and bone marrow outputs measurement have been widely implemented in newborn screening (NBS) programs for Severe Combined Immunodeficiency. The potential applications of combined TREC and KREC assay in PIDD diagnosis and immune reconstitution monitoring in non-neonatal patients have been suggested. Given that ethnicity, gender, and age can contribute to variations in immunity, defining the reference intervals of TREC and KREC levels in the local population is crucial for setting up cut-offs for PIDD diagnosis. In this retrospective study, 479 healthy Chinese sibling donors (240 males and 239 females; age range: 1 month-74 years) from Hong Kong were tested for TREC and KREC levels using a simultaneous quantitative real-time PCR assay. Age-specific 5th-95th percentile reference intervals of TREC and KREC levels (expressed in copies per μL blood and copies per 106 cells) were established in both pediatric and adult age groups. Significant inverse correlations between age and both TREC and KREC levels were observed in the pediatric age group. A significant higher KREC level was observed in females than males after 9-12 years of age but not for TREC. Low TREC or KREC levels were detected in patients diagnosed with mild or severe PIDD. This assay with the established local reference intervals would allow accurate diagnosis of PIDD, and potentially monitoring immune reconstitution following haematopoietic stem cell transplantation or highly active anti-retroviral therapy in the future.
Collapse
Affiliation(s)
- Janette S. Y. Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Stephen K. F. Cheung
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Jenny C. Y. Ho
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Ivan W. H. Tang
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Patrick W. K. Chu
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Eric Y. S. Leung
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Pamela P. W. Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Daniel K. L. Cheuk
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Vincent Lee
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Y. L. Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
18
|
Gans MD, Gavrilova T. Retrospective Analysis of a New York Newborn Screen Severe Combined Immunodeficiency Referral Center. J Clin Immunol 2020; 40:456-465. [PMID: 31997108 DOI: 10.1007/s10875-020-00757-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/21/2020] [Indexed: 12/20/2022]
Abstract
In 2010, the New York State (NYS) Newborn Screen (NBS) Program added the T cell receptor excision circle (TREC) assay to screen for severe combined immunodeficiency disorder (SCID). The objective of this study was to perform a retrospective chart review of 199 infants referred to a single institution for abnormal TREC on NYS NBS between 2010 and 2017. Statistical analysis included analysis of variance, logistic regression models, chi-square, and linear mixed models. One hundred ninety-nine infants were found to have a TREC value of fewer than 200 copies/μL on NYS NBS. Infants were stratified as primary immunodeficiency (PID) (n = 54), immunocompetent (n = 133), lost to follow-up (n = 8), or deceased (n = 4). PID included SCID (n = 3), DiGeorge (n = 6), idiopathic lymphopenia (IL) (n = 44), and other syndromes associated with lymphopenia (n = 3). The 3 SCID cases were identified and brought to treatment, although all experienced significant infections. The study population was found to be predominately non-Hispanic, African American, and male. There was a difference in the average TREC values among those with immunocompetence (83 copies/μL), IL (81 copies/μL), and PID (40 copies/μL) (p < 0.05). On follow-up of 40 patients with IL, patients typically did not have severe infections during first few years of life. This study demonstrates that TREC value can be used to stratify infants for further confirmatory testing to exclude PID. Risk factors, such as stressful prenatal/postnatal conditions, prematurity, race, and sex may affect TREC value but cannot explain all causes of lymphopenia. This study may assist providers in risk stratifying the likelihood of PID with an abnormal TREC and determining the extent of the initial work up that is necessary at the time of a newborn's presentation.
Collapse
Affiliation(s)
- Melissa D Gans
- Department of Pediatrics, Division of Allergy and Immunology, Montefiore Medical Center, 1525 Blondell Ave, Bronx, NY, 10461, USA.
| | - Tatyana Gavrilova
- Department of Pediatrics, Division of Allergy and Immunology, Montefiore Medical Center, 1525 Blondell Ave, Bronx, NY, 10461, USA
| |
Collapse
|
19
|
Abnormal Newborn Screening Follow-up for Severe Combined Immunodeficiency in an Amish Cohort with Cartilage-Hair Hypoplasia. J Clin Immunol 2020; 40:321-328. [PMID: 31903518 DOI: 10.1007/s10875-019-00739-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
Cartilage-hair hypoplasia (CHH) is an autosomal recessive, short limb skeletal dysplasia with a variable immunologic phenotype. The spectrum of immune function ranges from clinically normal to severe combined immunodeficiency (SCID). Multiple studies have shown that abnormal immune parameters may not predict severe outcomes. Newborn screening (NBS) using T cell receptor excision circle (TREC) assay can now effectively identify infants with severe T cell deficiency who are at risk for SCID. NBS has allowed for cost-effective identification of patients with SCID and improved outcomes with hematopoietic stem cell transplant (HSCT). Ohio reports two abnormal TREC results: decreased and absent TREC. This study evaluated the laboratory and clinical differences in eight Amish patients with CHH with an abnormal TREC result on the NBS. There were four patients with absent TREC and four patients with decreased TREC. The absent TREC patients had lower CD3, CD4, naïve CD4, CD8 cells, and phytohemagglutinin (PHA)-induced lymphocyte proliferation. Three patients with absent TREC were diagnosed with SCID and two underwent successful HSCT. Patients with absent TREC experienced more CHH-related morbidity including anemia requiring transfusion, Hirschsprung's disease, and failure to thrive. No patients with decreased TREC required HSCT. Our study indicates that CHH patients with absent TREC tend to have more severe immunological and clinical phenotype than patients with decreased TREC. Confirmation of these trends in a larger group would guide providers and parents in a timely referral for HSCT, or cost-effective surveillance monitoring of children with a life-threatening illness.
Collapse
|
20
|
Abstract
Laboratory assays of immune cell function are essential for understanding the type and function of immune defects. These assessments should be performed in conjunction with a detailed history and physical examination, which should guide the evaluation of patients with a suspected immune deficiency. Laboratory assays of immune cell function are critical for assessing and demonstrating the functional impact of genetic mutations. Advances in diagnostic techniques continue to expand the ability of clinicians and researchers to understand the complex immune pathophysiology that underlies these disorders.
Collapse
|
21
|
Abstract
The T-cell receptor excision circle (TREC) assay is an effective screening tool for severe combined immunodeficiency (SCID). The TREC assay was designed to detect typical SCID and leaky SCID, but any condition causing low naïve T-cell counts will also be detected. Newborn screening for SCID using the TREC assay has proven itself to be highly sensitive and cost-efficient. This review covers the history of SCID newborn screening, elaborates on the SCID subtypes and TREC assay limitations, and discusses diagnostic and management considerations for infants with a positive screen.
Collapse
Affiliation(s)
- Mohammed Taki
- Department of Pediatrics, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA
| | - Tayaba Miah
- Department of Pediatrics, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA
| | - Elizabeth Secord
- Department of Allergy and Immunology, Children's Hospital of Michigan, 3901 Beaubien Street, Detroit, MI 48201, USA.
| |
Collapse
|
22
|
Hoshino A, Takashima T, Yoshida K, Morimoto A, Kawahara Y, Yeh TW, Okano T, Yamashita M, Mitsuiki N, Imai K, Sakatani T, Nakazawa A, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Ogawa S, Kojima S, Morio T, Kanegane H. Dysregulation of Epstein-Barr Virus Infection in Hypomorphic ZAP70 Mutation. J Infect Dis 2019; 218:825-834. [PMID: 29684201 DOI: 10.1093/infdis/jiy231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Background Some patients with genetic defects develop Epstein-Barr virus (EBV)-associated lymphoproliferative disorder (LPD)/lymphoma as the main feature. Hypomophic mutations can cause different clinical and laboratory manifestations from null mutations in the same genes. Methods We sought to describe the clinical and immunologic phenotype of a 21-month-old boy with EBV-associated LPD who was in good health until then. A genetic and immunologic analysis was performed. Results Whole-exome sequencing identified a novel compound heterozygous mutation of ZAP70 c.703-1G>A and c.1674G>A. A small amount of the normal transcript was observed. Unlike ZAP70 deficiency, which has been previously described as severe combined immunodeficiency with nonfunctional CD4+ T cells and absent CD8+ T cells, the patient had slightly low numbers of CD8+ T cells and a small amount of functional T cells. EBV-specific CD8+ T cells and invariant natural killer T (iNKT) cells were absent. The T-cell receptor repertoire, determined using next generation sequencing, was significantly restricted. Conclusions Our patient showed that a hypomorphic mutation of ZAP70 can lead to EBV-associated LPD and that EBV-specific CD8+ T cells and iNKT cells are critically involved in immune response against EBV infection.
Collapse
Affiliation(s)
- Akihiro Hoshino
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan.,Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Akira Morimoto
- Department of Pediatrics, Jichi Medical University of Medicine, Shimotsuke, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University of Medicine, Shimotsuke, Japan
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Takashi Sakatani
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Atsuko Nakazawa
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan.,Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| |
Collapse
|
23
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
24
|
Wasant P, Padilla C, Lam S, Thong MK, Lai PS. Asia Pacific Society of Human Genetics (APSHG) from conception to 2019: 13 years of collaboration to tackle congenital malformation and genetic disorders in Asia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:155-165. [PMID: 31050142 DOI: 10.1002/ajmg.c.31701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Putting together the reports in this issue that come from a representation of the different countries in Asia presents an opportunity to share the unique story of the Asia Pacific Society of Human Genetics (APSHG), which has provided the authors of many of these articles. This paper, authored by the Past Presidents of the Society, shares glimpses of how medical genetics activities were first organized in the Asia Pacific region and provides interesting corollaries on how under-developed and developing countries in this part of the world had developed a unique network for exchange and sharing of expertise and resources. Although APSHG was formally registered as a Society in Singapore in 2006, the Society has its origins as far back as in the 1990s with members from different countries meeting informally, exchanging ideas, and collaborating. This treatise documents the story of the experiences of the Society and hopes it will provide inspiration on how members of a genetics community can foster and build a thriving environment to promote this field.
Collapse
Affiliation(s)
- Pornswan Wasant
- Advisory, Siriraj Hospital Faculty of Medicine, Mahidol University, Bangkok, Thailand.,Division of Medical Genetics, Department of Pediatrics, Siriraj Hospital Faculty of Medicine, Mahidol University, Bangkok, Thailand
| | - Carmencita Padilla
- Department of Pediatrics, College of Medicine and Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila, Philippines
| | - Stephen Lam
- Clinical Genetics Service, Hong Kong Sanatorium and Hospital, HKSH Medical Group, Hong Kong, China
| | - Meow-Keong Thong
- Genetic Medicine Unit, Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Poh-San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
A Novel FOXN1 Variant Is Identified in Two Siblings with Nude Severe Combined Immunodeficiency. J Clin Immunol 2019; 39:144-147. [DOI: 10.1007/s10875-019-00615-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/14/2019] [Indexed: 12/17/2022]
|
26
|
Okano T, Imai K, Tsujita Y, Mitsuiki N, Yoshida K, Kamae C, Honma K, Mitsui-Sekinaka K, Sekinaka Y, Kato T, Hanabusa K, Endo E, Takashima T, Hiroki H, Yeh TW, Tanaka K, Nagahori M, Tsuge I, Bando Y, Iwasaki F, Shikama Y, Inoue M, Kimoto T, Moriguchi N, Yuza Y, Kaneko T, Suzuki K, Matsubara T, Maruo Y, Kunitsu T, Waragai T, Sano H, Hashimoto Y, Tasaki K, Suzuki O, Shirakawa T, Kato M, Uchiyama T, Ishimura M, Tauchi T, Yagasaki H, Jou ST, Yu HH, Kanegane H, Kracker S, Durandy A, Kojima D, Muramatsu H, Wada T, Inoue Y, Takada H, Kojima S, Ogawa S, Ohara O, Nonoyama S, Morio T. Hematopoietic stem cell transplantation for progressive combined immunodeficiency and lymphoproliferation in patients with activated phosphatidylinositol-3-OH kinase δ syndrome type 1. J Allergy Clin Immunol 2019; 143:266-275. [DOI: 10.1016/j.jaci.2018.04.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
|
27
|
Dorsey MJ, Puck JM. Newborn Screening for Severe Combined Immunodeficiency in the United States: Lessons Learned. Immunol Allergy Clin North Am 2018; 39:1-11. [PMID: 30466767 DOI: 10.1016/j.iac.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the United States, significant improvement in diagnosis and outcomes for children affected with severe combined immunodeficiency has followed institution of newborn screening using an assay to measure T-cell receptor excision circles in newborn dried blood spot specimens. Key to this outcome is the avoidance of infectious complications in infants with severe combined immunodeficiency.
Collapse
Affiliation(s)
- Morna J Dorsey
- Department of Pediatrics, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA.
| | - Jennifer M Puck
- Department of Pediatrics, University of California San Francisco, Box 3118, 555 Mission Bay Boulevard South, Rm SC-252K, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
Kamae C, Imai K, Kato T, Okano T, Honma K, Nakagawa N, Yeh TW, Noguchi E, Ohara A, Shigemura T, Takahashi H, Takakura S, Hayashi M, Honma A, Watanabe S, Shigemori T, Ohara O, Sasaki H, Kubota T, Morio T, Kanegane H, Nonoyama S. Clinical and Immunological Characterization of ICF Syndrome in Japan. J Clin Immunol 2018; 38:927-937. [PMID: 30353301 DOI: 10.1007/s10875-018-0559-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a rare autosomal recessive primary immunodeficiency. Hypogammaglobulinemia is a major manifestation of ICF syndrome, but immunoglobulin replacement therapy does not seem to be effective for some ICF patients. Therefore, we aimed to reassess the immunological characteristics of this syndrome. METHODS Eleven Japanese patients with ICF syndrome were enrolled. We performed whole-exome sequencing in four cases and homozygosity mapping using SNP analysis in two. We evaluated their clinical manifestations and immunological status. RESULTS We newly diagnosed six ICF patients who had tentatively been diagnosed with common variable immunodeficiency. We identified two novel mutations in the DNMT3B gene and one novel mutation in the ZBTB24 gene. All patients showed low serum IgG and/or IgG2 levels and were treated by periodic immunoglobulin replacement therapy. Three of the six patients showed worse results of the mitogen-induced lymphocyte proliferation test. Analyses of lymphocyte subpopulations revealed that CD19+CD27+ memory B cells were low in seven of nine patients, CD3+ T cells were low in three patients, CD4/8 ratio was inverted in five patients, CD31+ recent thymic emigrant cells were low in two patients, and CD19+ B cells were low in four patients compared with those in the normal controls. ICF2 patients showed lower proportions of CD19+ B cells and CD16+56+ NK cells and significantly higher proportions of CD3+ T cells than ICF1 patients. T cell receptor excision circles were undetectable in two patients. Despite being treated by immunoglobulin replacement therapy, three patients died of influenza virus, fatal viral infection with persistent Epstein-Barr virus infection, or JC virus infection. One of three dead patients showed normal intelligence with mild facial anomaly. Two patients presented with autoimmune or inflammatory manifestations. Infectious episodes decreased in three patients who were started on trimethoprim-sulfamethoxazole and/or antifungal drugs in addition to immunoglobulin replacement therapy. These patients might have suffered from T cell immunodeficiency. CONCLUSION These results indicate that patients with ICF syndrome have a phenotype of combined immunodeficiency. Thus, to achieve a better prognosis, these patients should be treated as having combined immunodeficiency in addition to receiving immunoglobulin replacement therapy.
Collapse
Affiliation(s)
- Chikako Kamae
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan.
- Department of Pediatrics, Self Defense Forces Central Hospital, Tokyo, Japan.
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
- Department of Pediatrics, Self Defense Forces Central Hospital, Tokyo, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenichi Honma
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Noriko Nakagawa
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
- Department of Pediatrics, Self Defense Forces Central Hospital, Tokyo, Japan
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Ohara
- Department of Pediatrics, Toho University School of Medicine, Tokyo, Japan
| | - Tomonari Shigemura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroshi Takahashi
- Department of Neurology, National Hospital Organization, Tottori Medical Center, Tottori, Japan
| | - Shunichi Takakura
- Department of Infectious Diseases, Okinawa Chubu Hospital, Uruma, Japan
| | | | - Aoi Honma
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Seiichi Watanabe
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Tomoko Shigemori
- Department of Pediatrics, Nippon Medical School Tama Nagayama Hospital, Tama, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeo Kubota
- Faculty of Child Studies, Seitoku University, Matsudo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
| |
Collapse
|
29
|
Vidal-Folch N, Milosevic D, Majumdar R, Gavrilov D, Matern D, Raymond K, Rinaldo P, Tortorelli S, Abraham RS, Oglesbee D. A Droplet Digital PCR Method for Severe Combined Immunodeficiency Newborn Screening. J Mol Diagn 2018; 19:755-765. [PMID: 28826609 DOI: 10.1016/j.jmoldx.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/11/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022] Open
Abstract
Severe combined immunodeficiency (SCID) benefits from early intervention via hematopoietic cell transplantation to reverse T-cell lymphopenia (TCL). Newborn screening (NBS) programs use T-cell receptor excision circle (TREC) levels to detect SCID. Real-time quantitative PCR is often performed to quantify TRECs in dried blood spots (DBSs) for NBS. Yet, real-time quantitative PCR has inefficiencies necessitating normalization, repeat analyses, or standard curves. To address these issues, we developed a multiplex, droplet digital PCR (ddPCR) method for measuring absolute TREC amounts in one DBS punch. TREC and RPP30 levels were simultaneously measured with a Bio-Rad AutoDG and QX200 ddPCR system. DBSs from 610 presumed-normal, 29 lymphocyte-profiled, and 10 clinically diagnosed infants (1 X-linked SCID, 1 RAG1 Omenn syndrome, and other conditions) were tested. Control infants showed 14 to 474 TREC copies/μL blood. SCID infants, and other TCL conditions, had ≤15 TREC copies/μL. The ddPCR lower limit of quantitation was 14 TREC copies/μL, and the limit of detection was 4 TREC copies/μL. Intra-assay and interassay imprecision was <20% CV for DBSs at 54 to 60 TREC copies/μL. Testing 29 infants with known lymphocyte profiles resulted in a sensitivity of 88.9% and a specificity of 100% at TRECs <20 copies/μL. We developed a multiplex ddPCR method for the absolute quantitation of DBS TRECs that can detect SCID and other TCL conditions associated with absent or low TRECs and validated this method for NBS.
Collapse
Affiliation(s)
- Noemi Vidal-Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Dragana Milosevic
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Ramanath Majumdar
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Dimitar Gavrilov
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Clinical Genomics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Clinical Genomics, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kimiyo Raymond
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Clinical Genomics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Piero Rinaldo
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Clinical Genomics, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Silvia Tortorelli
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Clinical Genomics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Allergy and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Clinical Genomics, Mayo Clinic College of Medicine, Rochester, Minnesota.
| |
Collapse
|
30
|
Al-Mousa H, Al-Dakheel G, Jabr A, Elbadaoui F, Abouelhoda M, Baig M, Monies D, Meyer B, Hawwari A, Dasouki M. High Incidence of Severe Combined Immunodeficiency Disease in Saudi Arabia Detected Through Combined T Cell Receptor Excision Circle and Next Generation Sequencing of Newborn Dried Blood Spots. Front Immunol 2018; 9:782. [PMID: 29713328 PMCID: PMC5911483 DOI: 10.3389/fimmu.2018.00782] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/28/2018] [Indexed: 11/23/2022] Open
Abstract
Severe combined immunodeficiency disease (SCID) is the most severe form of primary immunodeficiency disorders (PID). T-cell receptor excision circle (TREC) copy number analysis is an efficient tool for population-based newborn screening (NBS) for SCID and other T cell lymphopenias. We sought to assess the incidence of SCID among Saudi newborn population and examine the feasibility of using targeted next generation sequencing PID gene panel (T-NGS PID) on DNA isolated from dried blood spots (DBSs) in routine NBS programs as a mutation screening tool for samples with low TREC count. Punches from 8,718 DBS collected on Guthrie cards were processed anonymously for the TREC assay. DNA was extracted from samples with confirmed low TREC count, then screened for 22q11.2 deletion syndrome by real-time polymerase chain reaction and for mutations in PID-related genes by T-NGS PID panel. Detected mutations were confirmed by Sanger sequencing. Sixteen out of the 8,718 samples were confirmed to have low TREC copy number. Autosomal recessive mutations in AK2, JAK3, and MTHFD1 were confirmed in three samples. Two additional samples were positive for the 22q11.2 deletion syndrome. In this study, we provide evidence for high incidence of SCID among Saudi population (1/2,906 live births) and demonstrate the feasibility of using T-NGS PID panel on DNA extracted from DBSs as a new reliable, rapid, and cost-effective mutation screening method for newborns with low TREC assay, which can be implemented as part of NBS programs for SCID.
Collapse
Affiliation(s)
- Hamoud Al-Mousa
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Department of Genetics, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ghadah Al-Dakheel
- Department of Genetics, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Amal Jabr
- Department of Genetics, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Fahd Elbadaoui
- Department of Genetics, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mansoor Baig
- Department of Biostatistics, Epidemiology & Scientific Computing (BESC), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brian Meyer
- Department of Genetics, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Abbas Hawwari
- Department of Genetics, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Mauracher AA, Pagliarulo F, Faes L, Vavassori S, Güngör T, Bachmann LM, Pachlopnik Schmid J. Causes of low neonatal T-cell receptor excision circles: A systematic review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 5:1457-1460.e22. [DOI: 10.1016/j.jaip.2017.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/03/2017] [Accepted: 02/03/2017] [Indexed: 10/19/2022]
|
32
|
Okano T, Nishikawa T, Watanabe E, Watanabe T, Takashima T, Yeh TW, Yamashita M, Tanaka-Kubota M, Miyamoto S, Mitsuiki N, Takagi M, Kawano Y, Mochizuki Y, Imai K, Kanegane H, Morio T. Maternal T and B cell engraftment in two cases of X-linked severe combined immunodeficiency with IgG1 gammopathy. Clin Immunol 2017; 183:112-120. [PMID: 28780374 DOI: 10.1016/j.clim.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 01/12/2023]
Abstract
X-linked severe combined immunodeficiency (X-SCID), caused by defects in the common gamma chain, is typically characterized by T and NK cell defects with the presence of B cells. T cell dysfunction and impaired class-switch recombination of B cells mean that patients typically have defects in class-switched immunoglobulins (IgG, IgA, and IgE) with detectable IgM. Here, we describe two patients with X-SCID with IgG1 gammopathy, in whom we identified maternal T and B cell engraftment. Exclusively, maternal B cells were found among the IgD-CD27+ class-switched memory B cells, whereas the patients' B cells remained naïve. In vitro stimulation with CD40L+IL-21 revealed that peripheral blood cells from both patients produced only IgG1. Class-switched maternal B cells had restricted receptor repertoires with various constant regions and few somatic hypermutations. In conclusion, engrafted maternal B cells underwent class-switch recombination and produced immunoglobulin, causing hypergammaglobulinemia in patients with X-SCID.
Collapse
Affiliation(s)
- Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuro Nishikawa
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eri Watanabe
- Laboratory of Diagnostic Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Tanaka-Kubota
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshifumi Kawano
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiki Mochizuki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
33
|
A novel pathogenic frameshift variant of CD3E gene in two T-B+ NK+ SCID patients from Turkey. Immunogenetics 2017; 69:653-659. [PMID: 28597365 DOI: 10.1007/s00251-017-1005-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
Abstract
Severe combined immunodeficiency (SCID) is the most severe form of primary immunodeficiency, which is characterized by the dysfunction and/or absence of T lymphocytes. Early diagnosis of SCID is crucial for overall survival, and if it remains untreated, SCID is often fatal. Next-generation sequencing (NGS) has become a rapid, high-throughput technology, and has already been proven to be beneficial in medical diagnostics. In this study, a targeted NGS panel was developed to identify the genetic variations of SCID by using SmartChip-TE technology, and a novel pathogenic frameshift variant was found in the CD3E gene. Sanger sequencing has confirmed the segregation of the variant among patients. We found a novel deletion in the CD3E gene (NM000733.3:p.L58Hfs*9) in two T-B+ NK+ patients. The variant was not found in the databases of dbSNP, ExAC, and 1000G. One sibling in family I was homozygous and the rest of the family members were heterozygous for this variant. T cell receptor excision circle (TREC) and kappa-deleting recombination excision circle (KREC) analyses were performed for T and B cell maturation. TRECs were not detected in both patients and the KREC copy numbers were similar to the other family members. In addition, heterozygous family members showed decreased TREC levels when compared with the wild-type sibling, indicating that carrying this variant in one allele does not cause immunodeficiency, but does effect T cell proliferation. Here, we report a novel pathogenic frameshift variant in CD3E gene by using targeted NGS panel.
Collapse
|
34
|
Dorsey M, Puck J. Newborn Screening for Severe Combined Immunodeficiency in the US: Current Status and Approach to Management. Int J Neonatal Screen 2017; 3:15. [PMID: 31304419 PMCID: PMC6625796 DOI: 10.3390/ijns3020015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the US, the assay of T cell receptor excision circles (TRECs) in newborn dried blood spot specimens to detect severe combined immunodeficiency (SCID) was first piloted in 2008 in the state of Wisconsin. It has been rapidly adopted with 49 states and Puerto Rico now either routinely screening all newborns or planning to do so in 2017. Advances in SCID NBS over the last 9 years have revolutionized the ability to detect SCID and has led to profound improvement in outcomes of affected children.
Collapse
Affiliation(s)
- Morna Dorsey
- Department of Pediatrics, Division of Allergy, Immunology and Bone Marrow Transplant, University of California San Francisco, San Francisco, CA 94158, USA
- Correspondence: ; Tel.: +1-415-476-3086
| | - Jennifer Puck
- Smith Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
35
|
Sekinaka Y, Mitsuiki N, Imai K, Yabe M, Yabe H, Mitsui-Sekinaka K, Honma K, Takagi M, Arai A, Yoshida K, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Muramatsu H, Kojima S, Hira A, Takata M, Ohara O, Ogawa S, Morio T, Nonoyama S. Common Variable Immunodeficiency Caused by FANC Mutations. J Clin Immunol 2017; 37:434-444. [PMID: 28493158 DOI: 10.1007/s10875-017-0396-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/17/2017] [Indexed: 11/24/2022]
Abstract
Common variable immunodeficiency (CVID) is the most common adult-onset primary antibody deficiency disease due to various causative genes. Several genes, which are known to be the cause of different diseases, have recently been reported as the cause of CVID in patients by performing whole exome sequencing (WES) analysis. Here, we found FANC gene mutations as a cause of adult-onset CVID in two patients. B cells were absent and CD4+ T cells were skewed toward CD45RO+ memory T cells. T-cell receptor excision circles (TRECs) and signal joint kappa-deleting recombination excision circles (sjKRECs) were undetectable in both patients. Both patients had no anemia, neutropenia, or thrombocytopenia. Using WES, we identified compound heterozygous mutations of FANCE in one patient and homozygous mutation of FANCA in another patient. The impaired function of FANC protein complex was confirmed by a monoubiquitination assay and by chromosome fragility test. We then performed several immunological evaluations including quantitative lymphocyte analysis and TRECs/sjKRECs analysis for 32 individuals with Fanconi anemia (FA). In total, 22 FA patients (68.8%) were found to have immunological abnormalities, suggesting that such immunological findings may be common in FA patients. These data indicate that FANC mutations are involved in impaired lymphogenesis probably by the accumulation of DNA replication stress, leading to CVID. It is important to diagnose FA because it drastically changes clinical management. We propose that FANC mutations can cause isolated immunodeficiency in addition to bone marrow failure and malignancy.
Collapse
Affiliation(s)
- Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan. .,Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Miharu Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | | | - Kenichi Honma
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Arai
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Okuno
- Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asuka Hira
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| |
Collapse
|
36
|
Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol 2017; 139:733-742. [PMID: 28270365 PMCID: PMC5385855 DOI: 10.1016/j.jaci.2017.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/30/2022]
Abstract
Severe combined immunodeficiency (SCID) is characterized by severely impaired T-cell development and is fatal without treatment. Newborn screening (NBS) for SCID permits identification of affected infants before development of opportunistic infections and other complications. Substantial variation exists between treatment centers with regard to pretransplantation care, and transplantation protocols for NBS identified infants with SCID, as well as infants with other T-lymphopenic disorders detected by using NBS. We developed approaches to management based on the study of infants identified by means of NBS for SCID who received care at the University of California, San Francisco (UCSF). From August 2010 through October 2016, 32 patients with NBS-identified SCID and leaky SCID from California and other states were treated, and 42 patients with NBS-identified non-SCID T-cell lymphopenia were followed. Our center's approach supports successful outcomes; systematic review of our practice provides a framework for diagnosis and management, recognizing that more data will continue to shape best practices.
Collapse
Affiliation(s)
- Morna J Dorsey
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif.
| | - Christopher C Dvorak
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Morton J Cowan
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| |
Collapse
|
37
|
Tsujita Y, Mitsui-Sekinaka K, Imai K, Yeh TW, Mitsuiki N, Asano T, Ohnishi H, Kato Z, Sekinaka Y, Zaha K, Kato T, Okano T, Takashima T, Kobayashi K, Kimura M, Kunitsu T, Maruo Y, Kanegane H, Takagi M, Yoshida K, Okuno Y, Muramatsu H, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Kojima S, Ogawa S, Ohara O, Okada S, Kobayashi M, Morio T, Nonoyama S. Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase δ syndrome-like immunodeficiency. J Allergy Clin Immunol 2016; 138:1672-1680.e10. [PMID: 27426521 DOI: 10.1016/j.jaci.2016.03.055] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 02/27/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Activated phosphatidylinositol 3-kinase δ syndrome (APDS) is a recently discovered primary immunodeficiency disease (PID). Excess phosphatidylinositol 3-kinase (PI3K) activity linked to mutations in 2 PI3K genes, PIK3CD and PIK3R1, causes APDS through hyperphosphorylation of AKT, mammalian target of rapamycin (mTOR), and S6. OBJECTIVE This study aimed to identify novel genes responsible for APDS. METHODS Whole-exome sequencing was performed in Japanese patients with PIDs. Immunophenotype was assessed through flow cytometry. Hyperphosphorylation of AKT, mTOR, and S6 in lymphocytes was examined through immunoblotting, flow cytometry, and multiplex assays. RESULTS We identified heterozygous mutations of phosphatase and tensin homolog (PTEN) in patients with PIDs. Immunoblotting and quantitative PCR analyses indicated that PTEN expression was decreased in these patients. Patients with PTEN mutations and those with PIK3CD mutations, including a novel E525A mutation, were further analyzed. The clinical symptoms and immunologic defects of patients with PTEN mutations, including lymphocytic AKT, mTOR, and S6 hyperphosphorylation, resemble those of patients with APDS. Because PTEN is known to suppress the PI3K pathway, it is likely that defective PTEN results in activation of the PI3K pathway. CONCLUSION PTEN loss-of-function mutations can cause APDS-like immunodeficiency because of aberrant PI3K pathway activation in lymphocytes.
Collapse
Affiliation(s)
- Yuki Tsujita
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan; Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan; Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kiyotaka Zaha
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Mitsuaki Kimura
- Department of Allergy and Clinical Immunology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Tomoaki Kunitsu
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan; Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| |
Collapse
|
38
|
Kojima D, Muramatsu H, Okuno Y, Kataoka S, Murakami N, Tanahashi Y, Suzuki K, Kato T, Sekiya Y, Kawashima N, Narita A, Nishio N, Hama A, Imai K, Nonoyama S, Takahashi Y, Kojima S. Successful T-cell reconstitution after unrelated cord blood transplantation in a patient with complete DiGeorge syndrome. J Allergy Clin Immunol 2016; 138:1471-1473.e4. [PMID: 27444175 DOI: 10.1016/j.jaci.2016.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/30/2016] [Accepted: 04/25/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Daiei Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norihiro Murakami
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Tanahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Yuko Sekiya
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nozomu Kawashima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhiro Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Asahito Hama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohsuke Imai
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
39
|
Ikegame K, Imai K, Yamashita M, Hoshino A, Kanegane H, Morio T, Kaida K, Inoue T, Soma T, Tamaki H, Okada M, Ogawa H. Allogeneic stem cell transplantation for X-linked agammaglobulinemia using reduced intensity conditioning as a model of the reconstitution of humoral immunity. J Hematol Oncol 2016; 9:9. [PMID: 26873735 PMCID: PMC4752762 DOI: 10.1186/s13045-016-0240-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We herein report the first case of X-linked agammaglobulinemia (XLA) that underwent allogeneic stem cell transplantation using reduced intensity conditioning (RIC). We chronologically observed the reconstitution of humoral immunity in this case. CASE PRESENTATION The patient was a 28-year-old Japanese male with XLA who previously had life-threatening infectious episodes and was referred for the possible indication of allogeneic stem cell transplantation. After a thorough discussion within specialists from different backgrounds, we decided to perform allogeneic peripheral stem cell transplantation from his HLA-identical elder brother. Due to the non-malignant nature of XLA, we selected RIC consisting of fludarabine, cyclophosphamide, anti-thymocyte globulin, and 3 Gy of total body irradiation. Neutrophil engraftment was achieved on day 11 with complete donor chimerism. No major complications, except for stage 1 skin graft-versus-host disease, were observed. The patient was discharged on day 75 and has been followed as an outpatient without any infectious episodes for more than 500 days. CONCLUSIONS Regarding immune reconstitution, CD19(+) cells, IgA, and IgM, which were undetectable before allogeneic stem cell transplantation (allo-SCT), started to increase in number 10 days after allo-SCT and continued to increase for more than 1 year. Anti-B antibodies appeared as early as day 10. Total IgG levels decreased after the discontinuation of IgG replacement and spontaneously recovered after day 350. However, most anti-viral IgG titers, except EB virus-virus capsid antigen IgG, disappeared after the discontinuation of IgG replacement. A seasonal vaccination to influenza was performed on day 148, with neither anti-influenza type A nor type B being positive after the vaccination. The transient transfer of allergic immunity to orchard grass was observed. Similar Bruton's tyrosine kinase (BTK) expression levels in monocytes and B-cells were observed between the patient and healthy control. B-cells in the peripheral blood (PB) of the patient on day 279 showed sufficient proliferation after a CD40L and IL-21 or CD40L and CpG stimulation. Effective immunoglobulin production and class switching were also observed after a CD40L and IL-21 or CpG stimulation. Signal joint kappa-deleting recombination excision circles (sjKRECs) became positive 16 days post-SCT, increased to 6300 copies/μg DNA at 42 days, and were maintained at a high level thereafter. The recovery of T-cell receptor excision circles (TRECs) was slow, but became detectable 1 year post-hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan.
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan.
| | - Takayuki Inoue
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan.
| | - Toshihiro Soma
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan.
| | - Hiroya Tamaki
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan.
| | - Masaya Okada
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan.
| | - Hiroyasu Ogawa
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan.
| |
Collapse
|
40
|
de Felipe B, Olbrich P, Lucenas JM, Delgado-Pecellin C, Pavon-Delgado A, Marquez J, Salamanca C, Soler-Palacin P, Gonzalez-Granado LI, Antolin LF, Borte S, Neth O. Prospective neonatal screening for severe T- and B-lymphocyte deficiencies in Seville. Pediatr Allergy Immunol 2016; 27:70-7. [PMID: 26498110 DOI: 10.1111/pai.12501] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Early diagnosis of primary immunodeficiency such as severe combined immunodeficiency (SCID) and X-linked agammaglobulinemia (XLA) improves outcome of affected children. T-cell-receptor-excision circles (TRECs) and kappa-deleting-recombination-excision circles (KRECs) determination from dried blood spots (DBS) identify neonates with severe T- and/or B-lymphopenia. No prospective data exist of the impact of gestational age (GA) and birth weight (BW) on TRECs and KRECs values. METHODS TRECs and KRECs determination using triplex RT-PCR (TRECS-KRECS-β-actin-Assay) from prospectively collected DBS between 02/2014 and 02/2015 in three hospitals in Seville, Spain. Cut-off levels were TRECs < 6/punch, KRECs < 4/punch and -β-actin>700/punch. Internal (SCID, XLA, ataxia telangiectasia) and external controls (NBS quality assurance program, CDC) were included. RESULTS A total of 5160 DBS were tested. Re-punch was needed in 77 samples (1.5%) due to insufficient β-actin (<700 copies/punch). Pre-term neonates (GA<37 weeks) and neonates with a BW<2500 g showed significantly lower TRECs and KRECs levels (p < 0.001). Due to repeat positive results five neonates were re-called (<0.1%): Fatal chromosomopathy (n = 1; TRECs 1/KRECs 4); extreme pre-maturity (n = 2; TRECs 0/KRECs 0 and TRECs 1/KRECs 20 copies/punch); neonates born to mothers receiving azathioprine during pregnancy (n = 2; TRECs 92/KRECs 1 and TRECs 154/KRECs 3 copies/punch). All internal and external controls were correctly identified. CONCLUSIONS TRECS-KRECS-β-actin-Assay correctly identifies T- and B-cell lymphopenias. Pre-maturity and low BW is associated with lower TREC and KREC levels. Extreme pre-maturity and maternal immune suppressive therapy may be a cause for false positive results of TRECs and KRECs values, respectively. To reduce the rate of insufficient samples, DBS extraction and storage need to be improved.
Collapse
Affiliation(s)
- Beatriz de Felipe
- Seccion de Infectología e Inmunodeficiencias, Unidad de Pediatria, Hospital Virgen del Rocío, Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Peter Olbrich
- Seccion de Infectología e Inmunodeficiencias, Unidad de Pediatria, Hospital Virgen del Rocío, Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - José Manuel Lucenas
- Unidad de Inmunología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | | | | | - Carmen Salamanca
- Unidad de Neonatología, Hospital Universitario Virgen de Macarena, Sevilla, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - Laura Ferreras Antolin
- Unidad de Enfermedades Infecciosas e Inmunodeficiencias, UGP de Pediatría. Hospital Materno-Infantil, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Stephan Borte
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany.,ImmunoDeficiencyCenter Leipzig at Hospital St Georg gGmbH Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Leipzig, Germany
| | - Olaf Neth
- Seccion de Infectología e Inmunodeficiencias, Unidad de Pediatria, Hospital Virgen del Rocío, Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| |
Collapse
|
41
|
Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, Espinosa-Rosales FJ, Hammarström L, Nonoyama S, Quinti I, Routes JM, Tang MLK, Warnatz K. International Consensus Document (ICON): Common Variable Immunodeficiency Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2016; 4:38-59. [PMID: 26563668 PMCID: PMC4869529 DOI: 10.1016/j.jaip.2015.07.025] [Citation(s) in RCA: 576] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 06/24/2015] [Accepted: 07/24/2015] [Indexed: 02/06/2023]
Abstract
The International Collaboration in Asthma, Allergy and Immunology initiated an international coalition among the American Academy of Allergy, Asthma & Immunology; the European Academy of Allergy and Clinical Immunology; the World Allergy Organization; and the American College of Allergy, Asthma & Immunology on common variable immunodeficiency. An author group was formed and then divided into individual committees. Within the committee, teams of authors were subgrouped to generate content for specific sections of the document. Content was derived from literature searches, relevant published guidelines, and clinical experience. After a draft of the document was assembled, it was collectively reviewed and revised by the authors. Where evidence was lacking or conflicting, the information presented represents the consensus expert opinion of the group. The full document was then independently reviewed by 5 international experts in the field, none of whom was among the authors of the original. The comments of these reviewers were incorporated before submission for publication.
Collapse
Affiliation(s)
| | - Isil Barlan
- Marmara University Pendik Education and Research Hospital, Istanbul, Turkey
| | - Helen Chapel
- John Radcliffe Hospital and University of Oxford, Oxford, United Kingdom
| | | | | | - M Teresa de la Morena
- Children's Medical Center and University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | - John M Routes
- Children's Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee, Wis
| | - Mimi L K Tang
- Royal Children's Hospital and Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Klaus Warnatz
- University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
Newborn Screening for Primary Immunodeficiencies: Focus on Severe Combined Immunodeficiency (SCID) and Other Severe T-Cell Lymphopenias. Int J Neonatal Screen 2015. [DOI: 10.3390/ijns1030089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Abstract
Primary immunodeficiencies are rare, inborn errors that result in impaired, disordered or uncontrolled immune responses. Whilst symptomatic and prophylactic treatment is available, hematopoietic stem cell transplantation is an option for many diseases, leading to cure of the immunodeficiency and establishing normal physical and psychological health. Newborn screening for some diseases, whilst improving outcomes, is focusing research on safer and less toxic treatment strategies, which result in durable and sustainable immune function without adverse effects. New conditioning regimens have reduced the risk of hematopoietic stem cell transplantation, and new methods of manipulating stem cell sources should guarantee a donor for almost all patients. Whilst incremental enhancements in transplantation technique have gradually improved survival outcomes over time, some of these new applications are likely to radically alter our approach to treating primary immunodeficiencies.
Collapse
Affiliation(s)
- Andrew Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
44
|
Fischer A, Notarangelo LD, Neven B, Cavazzana M, Puck JM. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers 2015; 1:15061. [PMID: 27189259 DOI: 10.1038/nrdp.2015.61] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe combined immunodeficiencies (SCIDs) comprise a group of rare, monogenic diseases that are characterized by an early onset and a profound block in the development of T lymphocytes. Given that adaptive immunity is abrogated, patients with SCID are prone to recurrent infections caused by both non-opportunistic and opportunistic pathogens, leading to early death unless immunity can be restored. Several molecular defects causing SCIDs have been identified, along with many other defects causing profound, albeit incomplete, T cell immunodeficiencies; the latter are referred to as atypical SCIDs or combined immunodeficiencies. The pathophysiology of many of these conditions has now been characterized. Early, accurate and precise diagnosis combined with the ongoing implementation of newborn screening have enabled major advances in the care of infants with SCID, including better outcomes of allogeneic haematopoietic stem cell transplantation. Gene therapy is also becoming an effective option. Further advances and a progressive extension of the indications for gene therapy can be expected in the future. The assessment of long-term outcomes of patients with SCID is now a major challenge, with a view to evaluating the quality and sustainability of immune restoration, the risks of sequelae and the ability to relieve the non-haematopoietic syndromic manifestations that accompany some of these conditions.
Collapse
Affiliation(s)
- Alain Fischer
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Paris, France.,Collège de France, Paris, France
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bénédicte Neven
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Paris, France
| | - Marina Cavazzana
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,INSERM UMR 1163, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Jennifer M Puck
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
45
|
Tamura S, Higuchi K, Tamaki M, Inoue C, Awazawa R, Mitsuki N, Nakazawa Y, Mishima H, Takahashi K, Kondo O, Imai K, Morio T, Ohara O, Ogi T, Furukawa F, Inoue M, Yoshiura KI, Kanazawa N. Novel compound heterozygous DNA ligase IV mutations in an adolescent with a slowly-progressing radiosensitive-severe combined immunodeficiency. Clin Immunol 2015; 160:255-60. [PMID: 26172957 DOI: 10.1016/j.clim.2015.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/05/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022]
Abstract
We herein describe a case of a 17-year-old boy with intractable common warts, short stature, microcephaly and slowly-progressing pancytopenia. Simultaneous quantification of T-cell receptor recombination excision circles (TREC) and immunoglobulin κ-deleting recombination excision circles (KREC) suggested very poor generation of both T-cells and B-cells. By whole exome sequencing, novel compound heterozygous mutations were identified in the patient's DNA ligase IV (LIG4) gene. The diagnosis of LIG4 syndrome was confirmed by delayed DNA double-strand break repair kinetics in γ-irradiated fibroblasts from the patient and their restoration by an introduction of wild-type LIG4. Although the patient received allogeneic hematopoietic stem cell transplantation from his haploidentical mother, he unfortunately expired due to an insufficiently reconstructed immune system. An earlier definitive diagnosis using TREC/KREC quantification and whole exome sequencing would thereby allow earlier intervention, which would be essential for improving long-term survival in similar cases with slowly-progressing LIG4 syndrome masked in adolescents.
Collapse
Affiliation(s)
- Shinobu Tamura
- Department of Hematology and Oncology, Kinan Hospital, Wakayama, Japan
| | - Kohei Higuchi
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Masaharu Tamaki
- Department of Hematology and Oncology, Kinan Hospital, Wakayama, Japan
| | | | - Ryoko Awazawa
- Department of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Noriko Mitsuki
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuka Nakazawa
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki University, Nagasaki, Japan; Department of Genome Repair, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kenzo Takahashi
- Department of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Osamu Kondo
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Kohsuke Imai
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Tomoo Ogi
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki University, Nagasaki, Japan; Department of Genome Repair, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Fukumi Furukawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Masami Inoue
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
46
|
Diamond CE, Sanchez MJ, LaBelle JL. Diagnostic Criteria and Evaluation of Severe Combined Immunodeficiency in the Neonate. Pediatr Ann 2015; 44:e181-7. [PMID: 26171708 DOI: 10.3928/00904481-20150710-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Severe combined immunodeficiency disorders (SCID) are a group of primary immunodeficiencies resulting from any one of a diverse group of mutations impacting T-cell development. SCID is diagnosed and classified through assessment of the lymphocyte subset(s) affected and by the mechanisms responsible for the primary immune defect. Regardless of the genetics involved, patients invariably succumb to an early death without medical intervention. In the past, patients were primarily identified either by previous family history, physical manifestations, or after the onset of symptoms. However, the introduction of newborn screening for SCID has allowed the pediatrician to identify these patients at a much earlier age, greatly improving their survival. Currently, 23 states include SCID testing for T-cell deficiencies in their newborn screening platform. Protocols for confirmatory testing and medical intervention after a positive screen vary slightly from state-to-state. However, the standard curative treatment remains stem cell transplantation, although depending on the genetic cause of the disease, enzyme replacement and gene therapy may also be considered.
Collapse
|
47
|
Nakazawa Y, Kawai T, Uchiyama T, Goto F, Watanabe N, Maekawa T, Ishiguro A, Okuyama T, Otsu M, Yamada M, Hershfield MS, Ariga T, Onodera M. Effects of enzyme replacement therapy on immune function in ADA deficiency patient. Clin Immunol 2015; 161:391-3. [PMID: 26122173 DOI: 10.1016/j.clim.2015.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Yumiko Nakazawa
- Department of Human Genetics, National Research Institute for Child Health and Development, Japan
| | - Toshinao Kawai
- Department of Human Genetics, National Research Institute for Child Health and Development, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Research Institute for Child Health and Development, Japan
| | - Fumihiro Goto
- Department of Human Genetics, National Research Institute for Child Health and Development, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Research Institute for Child Health and Development, Japan
| | - Takanobu Maekawa
- Department of General Pediatrics &Interdisciplinary Medicine, National Center for Child Health and Development, Japan
| | - Akira Ishiguro
- Department of General Pediatrics &Interdisciplinary Medicine, National Center for Child Health and Development, Japan
| | - Torayuki Okuyama
- Clinical Laboratory Medicine, National Center for Child Health and Development, Japan
| | - Makoto Otsu
- Center for Stem Cell Biology and Regenerative Medicine, Tokyo University, Japan
| | | | | | - Tadashi Ariga
- Department of Pediatrics, Hokkaido University, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Research Institute for Child Health and Development, Japan.
| |
Collapse
|
48
|
TREC Based Newborn Screening for Severe Combined Immunodeficiency Disease: A Systematic Review. J Clin Immunol 2015; 35:416-30. [PMID: 25893636 PMCID: PMC4438204 DOI: 10.1007/s10875-015-0152-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Newborn screening (NBS) by quantifying T cell receptor excision circles (TRECs) in neonatal dried blood spots (DBS) enables early diagnosis of severe combined immunodeficiency disease (SCID). In recent years, different screening algorithms for TREC based SCID screening were reported. PURPOSE To systematically review the diagnostic performance of published algorithms for TREC based NBS for SCID. METHODS PubMed, EMBASE and the Cochrane Library were systematically searched for case series and prospective cohort studies describing TREC based NBS for SCID. We extracted TREC content and cut-off values, number of retests, repeat DBS and referrals, and type and number of typical SCID and other T cell lymphopenia (TCL) cases. We calculated positive predictive value (PPV), test sensitivity and SCID incidence. RESULTS Thirteen studies were included, re-confirming 89 known SCID cases in case series and reporting 53 new SCID cases in 3.15 million newborns. In case series, the sensitivity for typical SCID was 100%. In the prospective cohort studies, SCID incidence was ~1.7:100,000, re-test rate was 0.20-3.26%, repeat DBS rate 0.0-0.41% and referral rate 0.01-1.35%. PPV within the five largest cohorts was 0.8-11.2% for SCID and 18.3-81.0% for TCL. Individual TREC contents in all SCID patients was <25 TRECs/μl (except in those evaluated with the New York State assay). CONCLUSIONS The sensitivity of TREC based NBS for typical SCID was 100 %. The TREC cut-off score determines the percentage of non-SCID TCL cases detected in newborn screening for TCL. Adapting the screening algorithm for pre-term/ill infants reduces the amount of false positive test results.
Collapse
|
49
|
Abstract
The development of a T-cell receptor excision circle (TREC) assay utilizing dried blood spots in universal newborn screening has allowed the early detection of T-cell lymphopenia in newborns. Diagnosis of severe combined immunodeficiency (SCID) in affected infants in the neonatal period, while asymptomatic, permits early treatment and restoration of a functional immune system. SCID was the first immunodeficiency disease to be added to the Recommended Uniform Screening Panel of Core Conditions in the United States in 2010, and it is now implemented in 26 states in the U.S. This review covers the development of newborn screening for SCID, the biology of the TREC test, its current implementation in the U.S., new findings for SCID in the newborn screening era, and future directions.
Collapse
|
50
|
Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJC, Adams J. Current status of newborn screening worldwide: 2015. Semin Perinatol 2015; 39:171-87. [PMID: 25979780 DOI: 10.1053/j.semperi.2015.03.002] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Newborn screening describes various tests that can occur during the first few hours or days of a newborn's life and have the potential for preventing severe health problems, including death. Newborn screening has evolved from a simple blood or urine screening test to a more comprehensive and complex screening system capable of detecting over 50 different conditions. While a number of papers have described various newborn screening activities around the world, including a series of papers in 2007, a comprehensive review of ongoing activities since that time has not been published. In this report, we divide the world into 5 regions (North America, Europe, Middle East and North Africa, Latin America, and Asia Pacific), assessing the current NBS situation in each region and reviewing activities that have taken place in recent years. We have also provided an extensive reference listing and summary of NBS and health data in tabular form.
Collapse
Affiliation(s)
- Bradford L Therrell
- National Newborn Screening and Genetics Resource Center (NNSGRC), Austin, TX; Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX.
| | - Carmencita David Padilla
- College of Medicine, University of the Philippines Manila, Manila, Philippines; Newborn Screening Reference Center, National Institutes of Health (Philippines), Manila, Ermita, Philippines
| | - J Gerard Loeber
- International Society for Neonatal Screening, Bilthoven, Netherlands
| | - Issam Kneisser
- Newborn Screening Unit, Medical Genetic Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Amal Saadallah
- Newborn Screening and Biochemical Genetics Laboratory, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Gustavo J C Borrajo
- Programa de Detección de Errores Congénitos, Fundación Bioquímica Argentina, La Plata, Argentina
| | - John Adams
- Canadian Organization for Rare Disorders, Toronto, Ontario, Canada
| |
Collapse
|