1
|
Targino VA, Dias TJ, Sousa VFDO, Silva MDM, da Silva AJ, Ribeiro JEDS, da Silva RF, Batista DS, Henschel JM, do Rêgo MM. Growth, Gas Exchange, and Phytochemical Quality of Nasturtium ( Tropaeolum majus L.) Subjected to Proline Concentrations and Salinity. PLANTS (BASEL, SWITZERLAND) 2025; 14:301. [PMID: 39942863 PMCID: PMC11820538 DOI: 10.3390/plants14030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025]
Abstract
Salinity is a significant challenge for agriculture in semi-arid regions, affecting the growth and productivity of plants like Tropaeolum majus (nasturtium), which is valued for its ornamental, medicinal, and food uses. Salt stress disrupts the plant's biochemical, physiological, and anatomical processes, limiting its development. This study investigates the potential of proline as an osmoprotectant to mitigate the effects of salt stress on nasturtium's growth and physiology. A completely randomized factorial design was employed, testing five levels of electrical conductivity (0.0, 1.50, 3.00, 4.5, 6.5 dS m-1) and four proline concentrations (0.0, 5.00, 10.0, 15.0 mM) with six replicates. The results showed that proline application, particularly at 15.0 mM, enhanced growth parameters such as leaf number, stem diameter, and root length. At moderate salinity (3.0 dS m-1), proline significantly improved gas exchange, increasing net photosynthesis, transpiration, and stomatal conductance. Additionally, proline reduced the negative impact of salt stress on the fresh mass of leaves, stems, and roots, and increased both the mass and number of flowers. Proline also elevated the levels of total phenolic compounds and vitamin C while reducing soluble sugars, particularly under moderate salt stress (4.75 dS m-1). Overall, applying 15.0 mM proline shows promise for enhancing the biomass accumulation, flower production, and overall quality of nasturtium under saline conditions.
Collapse
Affiliation(s)
- Vitor Araujo Targino
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | - Thiago Jardelino Dias
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | | | - Mariana de Melo Silva
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | - Adjair José da Silva
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | | | - Ramon Freire da Silva
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | - Diego Silva Batista
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | - Juliane Maciel Henschel
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | - Mailson Monteiro do Rêgo
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| |
Collapse
|
2
|
Kaviyarasu K. Investigation of structural, optical, photocatalytic, and antibacterial properties of ZnO doped GO nanoparticles for environment applications. Microsc Res Tech 2025; 88:73-91. [PMID: 39192686 PMCID: PMC11652825 DOI: 10.1002/jemt.24672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
As a result of their unique and novel properties, nanocomposites have found applications in a wide variety of fields. The purpose of this study is to demonstrate the ability to synthesize nanoparticles consisting of zinc oxide (ZnO) and graphene oxide (GO) via sol-gel techniques. An x-ray diffractometer (XRD) as well as a UV-visible spectrometer were used to determine the crystalline and optical characteristics of the prepared samples. A hexagonal wurtzite crystal structure was observed in both pure ZnO nanoparticles and those that contain GO based on XRD results. It was estimated that the average crystallite size is based on the broadening of x-ray lines. In comparison with pure ZnO, the antimicrobial properties were enhanced when GO was incorporated with ZnO. In addition, experiments on the absorption edge indicated the presence of a red shift as a result of the incorporation of GO. When GO is incorporated in quantitative amounts, the bandgap value of pure ZnO decreased. FTIR spectra exhibit a band of absorption at 486 cm-1, which confirms Zn-O stretching in both samples. SEM images reveal a random pattern of structural features on the surface of the prepared samples. According to the EDX spectrum, pure GO nanoparticles and those doped with ZnO contain 61%-64% zinc and 32%-34% oxygen, respectively. When annealed at a higher temperature, ZnO NPs produced more H2 with a narrower bandgap than before annealing. In addition, methyl blue (MB) was used as an example of an organic compound in order to investigate the potential photocatalytic properties of nanoparticles with ZnO doped GO. In addition to DPPH assays, ZnO nanoparticles and ZnO doped GO nanoparticles were tested for their ability to scavenge free radicals. Comparing ZnO doped GO NPs with pure ZnO, these nanoparticles showed increased antioxidant activity. Based on the increased zone of inhibition observed for pure ZnO and ZnO doped GO (5, 10, 50, and 100 mg/mL), the antibacterial activity of pure ZnO and ZnO doped GO is concentration dependent. A detailed discussion of the results of the study demonstrated that ZnO doped GO and pure ZnO are toxic in different ways depending on how long they survive in degreased Zebrafish embryos and how fast they decompose. RESEARCH HIGHLIGHTS: The scope of the manuscript was under the results of the study confirmed that both nanoparticles exhibited concentration dependent antioxidative activity. Determined that 89% of methyl orange dye can be degraded photocatalytically. ZnO nanoparticles were found to be 74.86% antioxidant at a concentration of 50 g/mL in the present study. At a concentration of 50 g/mL, ZnO doped GO NPs showed 79.1% antioxidant activity. Photocatalytic degradation mechanism scheme is implicit in the photoexcited charge carrier transportation path is observed for all the samples. Survival rate of zebrafish embryos was shown to decrease with increasing concentrations of ZnO and zinc oxide plus GO nanoparticles.
Collapse
Affiliation(s)
- K. Kaviyarasu
- UNESCO‐UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, School of Interdisciplinary Research and Graduate Studies, College of Graduate StudiesUniversity of South Africa (UNISA)RoodepoortJohannesburgSouth Africa
| |
Collapse
|
3
|
Ekinci A, Şahin Ö, Kutluay S, Horoz S, Canpolat G, Çokyaşa M, Baytar O. Designing copper-doped zinc oxide nanoparticle by tobacco stem extract-mediated green synthesis for solar cell efficiency and photocatalytic degradation of methylene blue. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2183-2193. [PMID: 39037035 DOI: 10.1080/15226514.2024.2379605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This study presents the green synthesis of copper-doped zinc oxide (Cu-doped ZnO) nanoparticles using tobacco stem (TS) extract. The environmentally friendly synthesis method ensures distinct features, high efficiency, and applicability in various fields, particularly in solar cell technology and photocatalytic applications. ZnO nanostructures are investigated due to their unique properties, cost-effectiveness, and broad range of applications. The nanoparticles are synthesized with varying Cu concentrations, and their structural, morphological, and compositional characteristics are thoroughly analyzed. The Cu-doped ZnO nanoparticles exhibit improved properties, such as increased surface area and reduced particle size, attributed to the incorporation of Cu dopants. The green synthesis approach using TS extract serves as a stabilizing agent and avoids the toxicity associated with chemical methods. Characterization techniques including SEM, TEM, EDX, FTIR, and XRD confirm the successful synthesis of the nanoparticles. Photocatalytic degradation studies reveal that the 5% Cu-doped ZnO exhibits the highest photocatalytic activity against methylene blue, attributed to synergistic effects between Cu and ZnO, including oxygen vacancy and electron-hole pair recombination rate suppression. The photocatalytic mechanism involves the generation of superoxide and hydroxyl radicals, leading to methylene blue degradation. Furthermore, the Cu-doped ZnO nanoparticles demonstrate promising photovoltaic performance, with the optimal efficiency observed at a 5% Cu concentration. The study suggests that Cu-doped ZnO has the potential to enhance solar cell efficiency and could serve as an alternative material in solar cell applications. Future research should focus on refining Cu-doped ZnO for further improvements in solar energy conversion efficiency.
Collapse
Affiliation(s)
- Arzu Ekinci
- Department of Occupational Health and Safety, Siirt University, Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sabit Horoz
- Department of Metallurgical and Materials, Sivas Science and Technology University, Sivas, Turkey
| | | | - Mine Çokyaşa
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Orhan Baytar
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
4
|
Renuka R, Thilagavathi T, Inmozhi C, Uthrakumar R, Gobi G, Kaviyarasu K, Al-Sowayan NS, Mir TA, Alam MW. Silver sulphide nanoparticles (Ag 2SNPs) synthesized using Phyllanthus emblica fruit extract for enhanced antibacterial and antioxidant properties. Microsc Res Tech 2024; 87:2312-2320. [PMID: 38752356 DOI: 10.1002/jemt.24612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 09/02/2024]
Abstract
In this study, silver sulfide nanoparticles (Ag2SNP's) were successfully produced by using fruit extracts of Phyllanthus emblica. UV-vis, FTIR, XRD with SEM and EDX techniques were used for the synthesis process and for characterization of the resulting nanostructures. According to the findings, the fabricated nanostructure had a monoclinic crystal structure, measuring 44 nm in grain size, and its strain was 1.82 × 10-3. As revealed by SEM analysis, the synthesized nanostructure consists of irregular spherical and triangular shapes. The presence of silver (Ag) and sulfur (S) was also confirmed through EDX spectra. Furthermore, Ag2S nanoparticles were tested for their ability to effectively inhibit gram-positive and gram-negative bacterial growth. As a result of this study, it was clearly demonstrated that Ag2S nanoparticles possess powerful antibacterial properties, particularly when it came to inhibiting Escherichia coli growth. Ag2S nanoparticles had high total H2O2 and flavonoid concentrations and the greatest overall antioxidant activity, according to the evaluation of antioxidant activity of the samples. The results obtained from the P. emblica fruit extract were followed by those obtained from Ag2S nanoparticles were reported in detail. RESEARCH HIGHLIGHTS: Innovative Ag2SNP synthesis using Phyllanthus emblica fruit extract. SEM with EDX revealed a monoclinic crystal structure with a grain size of 44 nm and a strain of 1.82 × 10-3. Many of these applications are demonstrated by the potential of Ag2SNPs to treat and combat bacteria, particularly Escherichia coli. A peak at 653 cm-1 indicates the presence of primary sulfide aliphatic C-S extension vibrations. The abundant H2O2 and NO2 found in P. emblica nanocomposites make them potent antioxidants.
Collapse
Affiliation(s)
- R Renuka
- Department of Physics, Government Arts College for Women (Autonomous), Pudukkottai, India
| | - T Thilagavathi
- Department of Physics, Government College for Women (Autonomous), Kumbakonam, India
| | - C Inmozhi
- Department of Physics, Government Arts College for Women, Salem, India
| | - R Uthrakumar
- Department of Physics, Government Arts College (Autonomous), Salem, India
| | - G Gobi
- Department of Physics, Government Arts College (Autonomous), Salem, India
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | | | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering and BioMEMS, Organ Transplant Centre of Excellence, Transplantation Research & Innovation (Dpt)-R, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
5
|
Kaviyarasu K. Investigate the biological activities of Lawsonia inermis extract synthesized from TiO 2 doped graphene oxide nanoparticles. Microsc Res Tech 2024; 87:2425-2436. [PMID: 38845108 DOI: 10.1002/jemt.24625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 09/02/2024]
Abstract
Nanoparticles of titanium dioxide (TiO2) were made by reacting graphene oxide (GO) with Lawsonia inermis leaf extract. X-ray diffraction (XRD) analysis revealed crystalline TiO2 doped GO nanoparticles composed of a variety of anatase phases. Initially, UV-vis spectroscopy was performed to confirm the biogenesis of TiO2 doped GO nanoparticles (NP's). Using SEM, the research showed that the biosynthesized TiO2 nanoparticles were mostly spherical, polydispersed, and of a nanoscale size. Because of the energy dispersive X-ray spectroscopy (EDS) pattern, distinct and robust peaks of titanium (Ti) and oxygen (O) were observed, which were supportive of the formation of TiO2 nanoparticles. By using fourier transform infrared (FTIR) spectroscopy, it was demonstrated that terpenoids, flavonoids, and proteins are involved in the biosynthesis and production of TiO2 doped GO nanoparticles. 2,2-diphenylpicrylhydrazyl (DPPH) assays were conducted to evaluate the free radical scavenging activity of TiO2 doped GO nanoparticles. Additionally, the TiO2 doped GO NPs had enhanced antioxidant activity when compared with the TiO2 matrix. A series of pure TiO2 and TiO2 doped GO nanoparticles (5, 10, 50, and 100 mg/mL) solutions were investigated for their antibacterial activities. In the current study, zebrafish embryos exposed to pure TiO2 and TiO2 doped GO nanoparticles were toxic and suffered a low survival rate based on concentration. During photocatalysis, O2˙ and ˙OH radicals are rapidly produced because of the reactive species trapping experiment. It was estimated that pure TiO2 nanoparticles and those doped with GO were 80% effective in degrading methyl orange(MO) after 120 min, respectively. RESEARCH HIGHLIGHTS: The UV-vis absorption spectra showed a maximum absorbance peak at 290 nm. SEM, the pure TiO2 doped GO NPs exhibit agglomeration and spherical shape. When tested in zebrafish embryos, TiO2 NPs are toxic at high concentrations. GO nanoparticles showed better antioxidant activity. NPs exhibited concentration dependent antioxidative activity.
Collapse
Affiliation(s)
- K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, School of Interdisciplinary Research and Graduate Studies, College of Graduate Studies, University of South Africa (UNISA), Johannesburg, South Africa
| |
Collapse
|
6
|
Irshad MA, Hussain A, Nasim I, Nawaz R, Al-Mutairi AA, Azeem S, Rizwan M, Al-Hussain SA, Irfan A, Zaki MEA. Exploring the antifungal activities of green nanoparticles for sustainable agriculture: a research update. CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE 2024; 11:133. [DOI: 10.1186/s40538-024-00662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/31/2024] [Indexed: 01/06/2025]
|
7
|
Brindhadevi K, Kim TP, Alharbi SA, Ramesh MD, Lee J, Bharathi D. Enhanced photocatalytic degradation of polycyclic aromatic hydrocarbons (PAHs) Using NiO nanoparticles. ENVIRONMENTAL RESEARCH 2024; 252:118454. [PMID: 38387488 DOI: 10.1016/j.envres.2024.118454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The oncogenic and genetic properties of anthracene, a member of the polycyclic aromatic hydrocarbons (PAHs) family, pose a significant health threat to humans. This study aims to investigate the photocatalytic decomposition of anthracene under various conditions, such as different concentrations of PAHs, varying amounts of NiO (nickel oxide) nanoparticles, and different pH levels under ultraviolet light and sunlight. The synthesized NiO nanoparticles showed surface plasma resonance at 230 and 360 nm, while XRD and SEM analysis confirmed the nanoparticles were cubic crystalline in structure with sizes ranging between 37 and 126 nm. NiO nanoparticles exhibited 79% degradation of pyrene at 2 μg/mL of anthracene within 60 min of treatment. NiO at 10 μg/mL concentration showed significant adsorption of 57%, while the adsorption method worked efficiently (72%) at 5 pH. Photocatalytic degradation was confirmed by isotherm and kinetic studies through monolayer adsorption and pseudo-first-order kinetics. Further, the absorption process was confirmed by performing GC-MS analysis of the NiO nanoparticles. On the other hand, NiO nanoparticles showed antimicrobial activity against Gram negative and Gram-positive bacteria. Therefore, the present work is one of its kind proving the dual application of NiO nanoparticles, which makes them suitable candidates for bioremediation by treating PAHs and killing pathogenic bacteria.
Collapse
Affiliation(s)
- Kathirvel Brindhadevi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - T P Kim
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - M D Ramesh
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
8
|
Ahmed H, Zaky MY, M A Rashed M, Almoiliqy M, Al-Dalali S, Eldin ZE, Bashari M, Cheikhyoussef A, Alsalamah SA, Ibrahim Alghonaim M, Alhudhaibi AM, Wang J, Jiang LP. UPLC-qTOF-MS phytochemical profile of Commiphora gileadensis leaf extract via integrated ultrasonic-microwave-assisted technique and synthesis of silver nanoparticles for enhanced antibacterial properties. ULTRASONICS SONOCHEMISTRY 2024; 107:106923. [PMID: 38815489 PMCID: PMC11157276 DOI: 10.1016/j.ultsonch.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The utilization of metallic nanoparticles in bio-nanofabrication holds significant potential in the field of applied research. The current study applied and compared integrated ultrasonic-microwave-assisted extraction (US/MICE), ultrasonic extraction (USE), microwave-assisted extraction (MICE), and maceration (MAE) to extract total phenolic content (TPC). In addition, the study examined the antioxidant activity of Commiphora gileadensis (Cg) leaf. The results demonstrated that the TPC of US/MICE exhibited the maximum value at 59.34 ± 0.007 mg GAE/g DM. Furthermore, at a concentration of 10 μg/mL, TPC displayed a significant scavenging effect on DPPH (56.69 %), with an EC50 (6.48 μg/mL). Comprehensive metabolite profiling of the extract using UPLC-qTOF-MS/MS was performed to identify active agents. A total of 64 chromatographic peaks were found, out of which 60 were annotated. The most prevalent classes of metabolites found were polyphenols (including flavonoids and lignans), organic compounds and their derivatives, amides and amines, terpenes, and fatty acid derivatives. Transmission electron microscopy (TEM) revealed the aggregate size of the synthesized nanoparticles and the spherical shape of C. gileadensis-mediated silver nanoparticles (Cg-AgNPs). The nanoparticles had a particle size ranging from 7.7 to 42.9 nm. The Cg-AgNPs exhibited more inhibition zones against S. aureus and E. coli. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Cg-extract, AgNPs, and Cg-AgNPs were also tested. This study demonstrated the feasibility of using combined ultrasonic-microwave-assisted extraction to separate and extract chemicals from C. gileadensis on a large scale. These compounds have potential use in the pharmaceutical industry. Combining antibacterial and biocompatible properties in materials is vital for designing new materials for biomedical applications. Additionally, the results showed that the biocompatibility of the Ag-NPs using C. gileadensis extracts demonstrated outstanding antibacterial properties.
Collapse
Affiliation(s)
- Hani Ahmed
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Marwan M A Rashed
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, Anhui, China
| | - Marwan Almoiliqy
- Department of Medicine and Health Science, College of Medicine and Health Science, University of Science and Technology, Aden, Yemen
| | - Sam Al-Dalali
- Department of Food Science and Technology, Ibb University, Ibb 70270, Yemen
| | - Zienab E Eldin
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Mohanad Bashari
- Department of Food Science and Human Nutrition, College of Applied and Health Sciences, A'Sharqiyah University, Ibra, Oman
| | - Ahmad Cheikhyoussef
- Science and Technology Division, Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Sulaiman A Alsalamah
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Li-Ping Jiang
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
9
|
Javed MA, Ali B, Sarfraz MH, Ali S, Liaqat E, Afzal MS, Wang Y, Peng L, ur Rehman A, Aftab MN, Alarjani KM, Elshikh MS. Biosynthesis and characterization of silver nanoparticles from Cedrela toona leaf extracts: An exploration into their antibacterial, anticancer, and antioxidant potential. GREEN PROCESSING AND SYNTHESIS 2024; 13. [DOI: 10.1515/gps-2023-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Abstract
This research work aims to synthesize environmentally benign and cost-effective metal nanoparticles. In this current research scenario, the leaf extract of Cedrela toona was used as a reducing agent to biosynthesize silver nanoparticles (AgNPs). The synthesis of AgNPs was confirmed by the color shift of the reaction mixture, i.e., silver nitrate and plant extract, from yellow to dark brown colloidal suspension and was established by UV-visible analysis showing a surface plasmon resonance band at 434 nm. Different experimental factors were optimized for the formation and stability of AgNPs, and the optimum conditions were found to be 1 mM AgNO3 concentration, a 1:9 ratio of extract/precursor, and an incubation temperature of 70°C for 4 h. The Fourier transform infrared spectroscopy spectra indicated the presence of phytochemicals in the leaf extract that played the role of bioreducing agents in forming AgNPs. X-ray diffraction patterns confirmed the presence of AgNPs with a mean size of 25.9 nm. The size distribution and morphology of AgNPs were investigated by scanning electron microscopy, which clearly highlighted spherical nanoparticles with a size distribution of 22–30 nm with a mean average size of 25.5 nm. Moreover, prominent antibacterial activity was found against Enterococcus faecalis (21 ± 0.5 mm), Bacillus subtilis (20 ± 0.9 mm), Pseudomonas aeruginosa (18 ± 0.3 mm), Staphylococcus aureus (16 ± 0.7 mm), Klebsiella pneumoniae (16 ± 0.3 mm), and Escherichia coli (14 ± 0.7 mm). In addition, antioxidant activity was determined by DPPH and ABTS assays. Higher antioxidant activity was reported in AgNPs compared to the plant extract in both DPPH (IC50 = 69.62 µg·ml−1) and ABTS assays (IC50 = 47.90 µg·ml−1). Furthermore, cytotoxic activity was also investigated by the MTT assay against MCF-7 cells, and IC50 was found to be 32.55 ± 0.05 µg·ml−1. The crux of this research is that AgNPs synthesized from the Cedrela toona leaf extract could be employed as antibacterial, antioxidant, and anticancer agents for the treatment of bacterial, free radical-oriented, and cancerous diseases.
Collapse
Affiliation(s)
- Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University , Lahore 54000 , Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University , Islamabad , PK 45320 , Pakistan
| | - Muhammad Hassan Sarfraz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute of Musculoskeletal Sciences, University of Oxford , Oxford, OX3 7LD , United Kingdom
| | - Sikander Ali
- Institute of Industrial Biotechnology, Government College University , Lahore 54000 , Pakistan
| | - Erum Liaqat
- Department of Zoology, Government College University , Lahore 54000 , Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Sciences, University of Management and Technology , Lahore 54770 , Pakistan
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Biomass & Bioenergy Research Center, Hubei University of Technology , Wuhan , 430068 , China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Biomass & Bioenergy Research Center, Hubei University of Technology , Wuhan , 430068 , China
| | - Asad ur Rehman
- Institute of Industrial Biotechnology, Government College University , Lahore 54000 , Pakistan
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University , Lahore 54000 , Pakistan
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University , Riyadh 11451 , Saudi Arabia
| |
Collapse
|
10
|
Marathe K, Naik J, Maheshwari V. Synthesis, characterisation and in vitro anticancer activity of conjugated protease inhibitor-silver nanoparticles (AgNPs-PI) against human breast MCF-7 and prostate PC-3 cancer cell lines. Bioprocess Biosyst Eng 2024; 47:931-942. [PMID: 38709274 DOI: 10.1007/s00449-024-03023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
The conjugated silver nanoparticles using biomolecules have attracted great attention of researchers because physical dimensions and surface chemistry play important roles in toxicity and biocompatibility of AgNPs. Hence, in the current study, synthesis of bio-conjugated AgNPs with protein protease inhibitor (PI) isolated from Streptomyces spp. is reported. UV-visible spectra of PI and AgNPs showed stronger peaks at 280 and 405 nm, confirming the synthesis of conjugated AgNPs-PI. TEM and SEM images of AgNPs-PI showed spherical-shaped nanoparticles with a slight increase in particle size and thin amorphous layer around the surface of silver nanomaterial. Circular dichroism, FT-IR and fluorescence spectral studies confirmed AgNPs-PI conjugation. Conjugated AgNPs-PI showed excellent anticancer potential than AgNPs and protease inhibitor separately on human breast MCF-7 and prostate PC-3 cell lines. The findings revealed that surface modification of AgNPs with protein protease inhibitor stabilised the nanomaterial and increased its anticancer activity.
Collapse
Affiliation(s)
- Kiran Marathe
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India.
| | - Jitendra Naik
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India
| | - Vijay Maheshwari
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India
| |
Collapse
|
11
|
Pintão AM, Santos T, Nogueira F. Antimalarial Activity of Aqueous Extracts of Nasturtium ( Tropaeolum majus L.) and Benzyl Isothiocyanate. Molecules 2024; 29:2316. [PMID: 38792178 PMCID: PMC11124403 DOI: 10.3390/molecules29102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Malaria remains an important and challenging infectious disease, and novel antimalarials are required. Benzyl isothiocyanate (BITC), the main breakdown product of benzyl glucosinolate, is present in all parts of Tropaeolum majus L. (T. majus) and has antibacterial and antiparasitic activities. To our knowledge, there is no information on the effects of BITC against malaria. The present study evaluates the antimalarial activity of aqueous extracts of BITC and T. majus seeds, leaves, and stems. We used flow cytometry to calculate the growth inhibition (GI) percentage of the extracts and BITC against unsynchronized cultures of the chloroquine-susceptible Plasmodium falciparum 3D7 - GFP strain. Extracts and/or compounds with at least 70% GI were validated by IC50 estimation against P. falciparum 3D7 - GFP and Dd2 (chloroquine-resistant strain) unsynchronized cultures by flow cytometry, and the resistance index (RI) was determined. T. majus aqueous extracts showed some antimalarial activity that was higher in seeds than in leaves or stems. BITC's GI was comparable to chloroquine's. BITC's IC50 was similar in both strains; thus, a cross-resistance absence with aminoquinolines was found (RI < 1). BITC presented features that could open new avenues for malaria drug discovery.
Collapse
Affiliation(s)
- Ana Maria Pintão
- Egas Moniz School of Health & Science, University Campus, Quinta da Granja Monte da Caparica, 2829-511 Caparica, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, University Campus, Quinta da Granja Monte da Caparica, 2829-511 Caparica, Portugal
| | - Tiago Santos
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (T.S.); (F.N.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Fátima Nogueira
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (T.S.); (F.N.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
- LAQV-REQUIMTE, MolSyn, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| |
Collapse
|
12
|
Bishoyi AK, Sahoo CR, Samal P, Mishra NP, Jali BR, Khan MS, Padhy RN. Unveiling the antibacterial and antifungal potential of biosynthesized silver nanoparticles from Chromolaena odorata leaves. Sci Rep 2024; 14:7513. [PMID: 38553574 PMCID: PMC10980689 DOI: 10.1038/s41598-024-57972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
This research investigates the biogenic synthesis of silver nanoparticles (AgNPs) using the leaf extract of Chromolaena odorata (Asteraceae) and their potential as antibacterial and antifungal agents. Characterization techniques like ultraviolet-visible, Fourier transform infrared (FTIR), Dynamic light scattering and zeta potential (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy (FESEM-EDX) confirmed the formation of spherical (AgNPs). UV-vis spectroscopy reaffirms AgNP formation with a peak at 429 nm. DLS and zeta potential measurements revealed an average size of 30.77 nm and a negative surface charge (- 0.532 mV). Further, XRD analysis established the crystalline structure of the AgNPs. Moreover, the TEM descriptions indicate that the AgNPs are spherical shapes, and their sizes ranged from 9 to 22 nm with an average length of 15.27 nm. The X-ray photoelectron spectroscopy (XPS) analysis validated the formation of metallic silver and elucidated the surface state composition of AgNPs. Biologically, CO-AgNPs showed moderate antibacterial activity but excellent antifungal activity against Candida tropicalis (MCC 1559) and Trichophyton rubrum (MCC 1598). Low MIC values (0.195 and 0.390 mg/mL) respectively, suggest their potential as effective antifungal agents. This suggests potential applications in controlling fungal infections, which are often more challenging to treat than bacterial infections. Molecular docking results validated that bioactive compounds in C. odorata contribute to antifungal activity by interacting with its specific domain. Further research could pave the way for the development of novel and safe antifungal therapies based on biogenic nanoparticles.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
- Department of Clinical Hematology, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Priyanka Samal
- Department of Clinical Hematology, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | | | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India.
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
13
|
Thirupathi B, Pongen YL, Kaveriyappan GR, Dara PK, Rathinasamy S, Vinayagam S, Sundaram T, Hyun BK, Durairaj T, Sekar SKR. Padina boergesenii mediated synthesis of Se-ZnO bimetallic nanoparticles for effective anticancer activity. Front Microbiol 2024; 15:1358467. [PMID: 38468852 PMCID: PMC10925794 DOI: 10.3389/fmicb.2024.1358467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Evaluating the anticancer property of Padina boergesenii mediated bimetallic nanoparticles. Methods The present study focuses on synthesizing Se-ZnO bimetallic nanoparticles from an aqueous algal extract of brown algae Padina boergesenii.Synthesized Se-ZnO NPs were characterized by UV, FTIR, SEM-EDS and HRTEM for confirmation along with the anticancer activity by MTT assay. Results The UV gave an absorbance peak at 342 and 370 nm, and the FTIR showed functional groups involved in synthesizing Se-ZnO NPs. The TEM micrographs indicated the crystalline nature and confirmed the size of the Se-ZnO NPs to be at an average size of 26.14 nm. Anticancer efficacy against the MCF-7 breast and HepG2 (hepatoblastoma) cell lines were also demonstrated, attaining an IC50 value of 67.9 µg and 74.9 µg/ml respectively, which caused 50% cell death. Discussion This work aims to highlight an effective method for delivering bioactive compounds extracted from brown algae and emphasize its future therapeutic prospects. The potential of Selenium-Zinc oxide nanoparticles is of great interest due to the biocompatibility and low toxicity aspects of selenium combined with the cost-effectiveness and sustainability of zinc metal. The presence of bioactive compounds contributed to the stability of the nanoparticles and acted as capping properties.
Collapse
Affiliation(s)
- Balaji Thirupathi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Yimtar Lanutoshi Pongen
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Pavan Kumar Dara
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Suresh Rathinasamy
- Research and Development Centre, Greensmed Labs, Thoraipakkam, Chennai, Tamil Nadu, India
| | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Baek Kwang Hyun
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Thirumurugan Durairaj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | | |
Collapse
|
14
|
Mohanta YK, Mishra AK, Panda J, Chakrabartty I, Sarma B, Panda SK, Chopra H, Zengin G, Moloney MG, Sharifi-Rad M. Promising applications of phyto-fabricated silver nanoparticles: Recent trends in biomedicine. Biochem Biophys Res Commun 2023; 688:149126. [PMID: 37951153 DOI: 10.1016/j.bbrc.2023.149126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/13/2023]
Abstract
The prospective contribution of phyto-nanotechnology to the synthesis of silver nanomaterials for biomedical purposes is attracting increasing interest across the world. Green synthesis of silver nanoparticles (Ag-NPs) through plants has been extensively examined recently, and it is now seen to be a green and efficient path for future exploitation and development of practical nano-factories. Fabrication of Ag-NPs is the process involves use of plant extracts/phyto-compounds (e.g.alkaloids, terpenoids, flavonoids, and phenolic compounds) to synthesise nanoparticles in more economical and feasible. Several findings concluded that in the field of medicine, Ag-NPs play a major role in pharmacotherapy (infection and cancer). Indeed, they exhibits novel properties but the reason is unclear (except some theoretical interpretation e.g. size, shape and morphology). But recent technological advancements help to address these questions by predicting the unique properties (composition and origin) by characterizing physical, chemical and biological properties. Due to increased list of publications and their application in the field of agriculture, industries and pharmaceuticals, issues relating to toxicity are unavoidable and question of debate. The present reviews aim to find out the role of plant extracts to synthesise Ag-NPs. It provides an overview of various phytocompounds and their role in the field of biomedicine (antibacterial, antioxidant, anticancer, anti-inflammatory etc.). In addition, this review also especially focused on various applications such as role in infection, oxidative stress, application in medical engineering, diagnosis and therapy, medical devices, orthopedics, wound healing and dressings. Additionally, the toxic effects of Ag-NPs in cell culture, tissue of different model organism, type of toxic reactions and regulation implemented to reduce associated risk are discussed critically. Addressing all above explanations, this review focus on the detailed properties of plant mediated Ag-NPs, its impact on biology, medicine and their commercial properties as well as toxicity.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, Meghalaya, 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, Meghalaya, 793101, India.
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Nagarwara, Bangalore, 560045, Karnataka, India.
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, 787057, Assam, India.
| | - Sujogya Kumar Panda
- Centre of Environment Climate Change and Public Health, RUSA 2.0, Deapartment of Zoology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and TechnicalSciences, Chennai, 602105, Tamil Nadu, India.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Mark G Moloney
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
15
|
Kaari M, Joseph J, Manikkam R, Kalyanasundaram R, Sivaraj A, Anbalmani S, Murthy S, Sahu AK, Said M, Dastager SG, Ramasamy B. A Novel Finding: 2,4-Di-tert-butylphenol from Streptomyces bacillaris ANS2 Effective Against Mycobacterium tuberculosis and Cancer Cell Lines. Appl Biochem Biotechnol 2023; 195:6572-6585. [PMID: 36881320 DOI: 10.1007/s12010-023-04403-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
The aim of the present study is to identify actinobacteria Streptomyces bacillaris ANS2 as the source of the potentially beneficial compound 2,4-di-tert-butylphenol, describe its chemical components, and assess its anti-tubercular (TB) and anti-cancer properties. Ethyl acetate was used in the agar surface fermentation of S. bacillaris ANS2 to produce the bioactive metabolites. Using various chromatographic and spectroscopy analyses, the potential bioactive metabolite separated and identified as 2,4-di-tert-butylphenol (2,4-DTBP). The lead compound 2,4-DTBP inhibited 78% and 74% of relative light unit (RLU) decrease against MDR Mycobacterium tuberculosis at 100ug/ml and 50ug/ml concentrations, respectively. The Wayne model was used to assess the latent/dormant potential in M. tuberculosis H37RV at various doses, and the MIC for the isolated molecule was found to be 100ug/ml. Furthermore, the molecular docking of 2,4-DTBP was docked using Autodock Vinasuite onto the substrate binding site of the target Mycobacterium lysine aminotransferase (LAT) and the grid box was configured for the docking run to cover the whole LAT dimer interface. At a dosage of 1 mg/ml, the anti-cancer activity of the compound 2,4-DTBP was 88% and 89% inhibited against the HT 29 (colon cancer) and HeLa (cervical cancer) cell lines. According to our literature survey, this present finding may be the first report on anti-TB activity of 2,4-DTBP and has the potential to become an effective natural source and the promising pharmaceutical drug in the future.
Collapse
Affiliation(s)
- Manigundan Kaari
- Centre for Drug Discovery and Development, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| | - Jerrine Joseph
- Centre for Drug Discovery and Development, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India.
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India.
| | - Revathy Kalyanasundaram
- Centre for Drug Discovery and Development, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| | - Anbarasu Sivaraj
- Centre for Drug Discovery and Development, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| | - Sivarajan Anbalmani
- Department of Microbiology, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Sangeetha Murthy
- Department of Microbiology, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Amit Kumar Sahu
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Madhukar Said
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Syed G Dastager
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | | |
Collapse
|
16
|
Okeke ES, Nweze EJ, Anaduaka EG, Okoye CO, Anosike CA, Joshua PE, Ezeorba TPC. Plant-derived nanomaterials (PDNM): a review on pharmacological potentials against pathogenic microbes, antimicrobial resistance (AMR) and some metabolic diseases. 3 Biotech 2023; 13:291. [PMID: 37547919 PMCID: PMC10403488 DOI: 10.1007/s13205-023-03713-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Plant-derived nanomaterials (PDNM) have gained significant attention recently due to their potential pharmacological applications against pathogenic microbes, antimicrobial resistance (AMR), and certain metabolic diseases. This review introduces the concept of PDNMs and their unique properties, including their small size, high surface area, and ability to penetrate biological barriers. Besides various methods for synthesizing PDNMs, such as green synthesis techniques that utilize plant extracts and natural compounds, the advantages of using plant-derived materials, such as their biocompatibility, biodegradability, and low toxicity, were elucidated. In addition, it examines the recent and emerging trends in nanomaterials derived from plant approaches to combat antimicrobial resistance and metabolic diseases. The sizes of nanomaterials and their surface areas are vital as they play essential roles in the interactions and relationships between these materials and the biological components or organization. We critically analyze the biomedical applications of nanoparticles which include antibacterial composites for implantable devices and nanosystems to combat antimicrobial resistance, enhance antibiotic delivery, and improve microbial diagnostic/detection systemsIn addition, plant extracts can potentially interfere with metabolic syndrome pathways; hence most nano-formulations can reduce chronic inflammation, insulin resistance, oxidative stress, lipid profile, and antimicrobial resistance. As a result, these innovative plant-based nanosystems may be a promising contender for various pharmacological applications.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Charles Obinwanne Okoye
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Biofuels Institute, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | - Chioma Assumpta Anosike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
17
|
Zykova MV, Volikov AB, Buyko EE, Bratishko KA, Ivanov VV, Konstantinov AI, Logvinova LA, Mihalyov DA, Sobolev NA, Zhirkova AM, Maksimov SV, Perminova IV, Belousov MV. Enhanced Antioxidant Activity and Reduced Cytotoxicity of Silver Nanoparticles Stabilized by Different Humic Materials. Polymers (Basel) 2023; 15:3386. [PMID: 37631443 PMCID: PMC10457742 DOI: 10.3390/polym15163386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The current article describes the biological activity of new biomaterials combining the "green" properties of humic substances (HSs) and silver nanoparticles. The aim is to investigate the antioxidant activity (AOA) of HS matrices (macroligands) and AgNPs stabilized with humic macroligands (HS-AgNPs). The unique chemical feature of HSs makes them very promising ligands (matrices) for AgNP stabilization. HSs have previously been shown to exert many pharmacological effects mediated by their AOA. AgNPs stabilized with HS showed a pronounced ability to bind to reactive oxygen species (ROS) in the test with ABTS. Also, higher AOA was observed for HS-AgNPs as compared to the HS matrices. In vitro cytotoxicity studies have shown that the stabilization of AgNPs with the HS matrices reduces the cytotoxicity of AgNPs. As a result of in vitro experiments with the use of 2,7-dichlorodihydrofluorescein diacetate (DCFDA), it was found that all HS materials tested and the HS-AgNPs did not exhibit prooxidant effects. Moreover, more pronounced AOA was shown for HS-AgNP samples as compared to the original HS matrices. Two putative mechanisms of the pronounced AOA of the tested compositions are proposed: firstly, the pronounced ability of HSs to inactivate ROS and, secondly, the large surface area and surface-to-volume ratio of HS-AgNPs, which facilitate electron transfer and mitigate kinetic barriers to the reduction reaction. As a result, the antioxidant properties of the tested HS-AgNPs might be of particular interest for biomedical applications aimed at inhibiting the growth of bacteria and viruses and the healing of purulent wounds.
Collapse
Affiliation(s)
- Maria V. Zykova
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Alexander B. Volikov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Evgeny E. Buyko
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Kristina A. Bratishko
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Vladimir V. Ivanov
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Andrey I. Konstantinov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Lyudmila A. Logvinova
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Dmitrii A. Mihalyov
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Nikita A. Sobolev
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Anastasia M. Zhirkova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Sergey V. Maksimov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Irina V. Perminova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Mikhail V. Belousov
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| |
Collapse
|
18
|
Dalmagro M, Pinc MM, Donadel G, Tominc GC, Jacomassi E, Lourenço ELB, Gasparotto Junior A, Boscarato AG, Belettini ST, Alberton O, Prochnau IS, Bariccatti RA, de Almeida RM, Rossi de Aguiar KMF, Hoscheid J. Bioprospecting a Film-Forming System Loaded with Eugenia uniflora L. and Tropaeolum majus L. Leaf Extracts for Topical Application in Treating Skin Lesions. Pharmaceuticals (Basel) 2023; 16:1068. [PMID: 37630984 PMCID: PMC10459946 DOI: 10.3390/ph16081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Natural products can be used as complements or as alternatives to synthetic drugs. Eugenia uniflora and Tropaeolum majus are natives of Brazil and have antimicrobial, anti-inflammatory, and antioxidant activities. This study aimed to develop a film-forming system (FFS) loaded with plant extracts with the potential for treating microbial infections. E. uniflora and T. majus leaf extracts were prepared and characterized, and the individual and combined antioxidant and antimicrobial activities were evaluated. The FFS was developed with different concentrations of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) and analyzed for physicochemical characteristics. The combination of extracts showed a superior antioxidant effect compared to the individual extracts, justifying the use of the blend. FFS prepared with 4.5% PVA, 4.5% PVP, 7.81% E. uniflora extract, and 3.90% T. majus extract was adhesive, lacked scale formation, presented good malleability, and had a suitable pH for topical application. In addition, the viscosity at rest was satisfactory for maintaining stability; water solubility was adequate; skin permeation was low; and the antimicrobial effect was superior to that of the individual extracts. Therefore, the developed FFS is promising for the differentiated treatment of skin lesions through topical application.
Collapse
Affiliation(s)
- Mariana Dalmagro
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Mariana Moraes Pinc
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Guilherme Donadel
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Getulio Capello Tominc
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Ezilda Jacomassi
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Emerson Luiz Botelho Lourenço
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, Brazil;
| | - André Giarola Boscarato
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Salviano Tramontin Belettini
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Odair Alberton
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Inara Staub Prochnau
- School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Toledo 85902-532, Brazil;
| | | | - Rafael Menck de Almeida
- Synthetica Research and Technical Analysis Ltda., Capela do Alto, São Paulo 18195-000, Brazil;
| | | | - Jaqueline Hoscheid
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| |
Collapse
|
19
|
Divya S, Anusree AR, Vigi S, Jiji SG, Das PA, Dev ASR, Thara SS, Varghese EM, Gopinath PP, Anith KN. Silver nanoparticles green synthesized with leaf extract of disease-resistant amaranthus genotypes effectively suppress leaf blight ( Rhizoctonia solani Kühn) disease in a susceptible red amaranthus cultivar. 3 Biotech 2023; 13:196. [PMID: 37215371 PMCID: PMC10192493 DOI: 10.1007/s13205-023-03614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023] Open
Abstract
Silver nanoparticles (AgNPs) were green synthesized using leaf extract of the leaf blight disease (Rhizoctonia solani) susceptible red amaranthus (Amaranthus tricolor L.) and the disease-resistant green (A. dubius) and the wild amaranthus (A. viridis) genotypes, physically characterized, and assessed for their anti-fungal effects against R. solani. The green synthesized nanostructures showed an absorption maximum typical of silver nanoparticles in spectroscopy, and face-centered cubic structures in X-ray diffraction. Field Emission Scanning Electron Microscopic analysis and High-Resolution Transmission Electron Microscopy revealed the size range to be 35-45 nm for all the samples. In vitro mycelial growth inhibition of the pathogen occurred with 500 and 750 ppm concentrations of the nanoparticles in a poisoned-food assay. Further, detached leaves of red amaranthus variety were sprayed with the nanoparticles, and then challenged with the pathogen. There was significant difference in lesion development on leaves sprayed with Ad-AgNPs and Av-AgNPs compared to those treated with At-AgNPs. In the in vivo assay, challenging with the pathogen after spraying the foliage of the leaf blight susceptible red amaranthus variety with Ad-AgNPs at 750 ppm concentration recorded the lowest disease index (7.40) followed by that received Av-AgNPs spray at the same concentration (17.69), five days after inoculation. At-AgNPs treated plants had a disease index of 49.38. Our findings suggest that application of AgNPs green synthesized with leaf extract of disease-resistant genotypes of amaranthus effectively suppressed leaf blight disease incidence in a susceptible amaranthus genotype. To our knowledge, this is the first report on the improved plant pathogen-suppressive activity of any metal nanoparticle when biogenically synthesized using extracts from a disease-resistant plant genotype.
Collapse
Affiliation(s)
- S. Divya
- Department of Plant Pathology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - A. R. Anusree
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - S. Vigi
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - S. G. Jiji
- Department of Physics, St. John’s College, University of Kerala, Anchal, Kollam, Kerala India
| | - P. Akshaya Das
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - A. S. Rahul Dev
- Department of Plant Pathology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - Susha S. Thara
- Department of Plant Pathology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - Edna Mary Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| | - Pratheesh P. Gopinath
- Department of Agricultural Statistics, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - K. N. Anith
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, Kerala 695522 India
| |
Collapse
|
20
|
Elsebaie EM, El-Wakeil NHM, Khalil AMM, Bahnasy RM, Asker GA, El-Hassnin MF, Ibraheim SS, El-Farsy MFA, Faramawy AA, Essa RY, Badr MR. Silver Nanoparticle Synthesis by Rumex vesicarius Extract and Its Applicability against Foodborne Pathogens. Foods 2023; 12:foods12091746. [PMID: 37174285 PMCID: PMC10177795 DOI: 10.3390/foods12091746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The consumption of foods polluted with different foodborne pathogens such as fungus, viruses, and bacteria is considered a serious cause of foodborne disease in both humans and animals. Multidrug-resistant foodborne pathogens (MRFP) cause morbidity, death, and substantial economic loss, as well as prolonged hospitalization. This study reports on the use of aqueous Rumex leaf extract (ARLE) in the synthesis of silver nanoparticles (ARLE-AgNPs) with versatile biological activities. The synthesized ARLE-AgNPs had spherical shapes with smooth surfaces and an average hydrodynamic size of 27 nm. ARLE-AgNPs inhibited the growth of Escherichia coli ATCC25721, Pseudomonas aeruginosa ATCC27843, Streptococcus gordonii ATCC49716, Enterococcus faecalis ATCC700813, and Staphylococcus aureus ATCC4342. The ARLE-AgNPs were more active against Escherichia coli ATCC25721 than other harmful bacterial strains (26 ± 3 mm). The zone of inhibition for antibacterial activity ranged between 18 ± 3 mm and 26 ± 3 mm in diameter. The nanoparticles' MIC values varied from 5.19 µg/mL to 61 µg/mL, while their MBC values ranged from 46 µg/mL to 119 µg/mL. The nanoparticles that were created had antioxidant potential. The cytotoxic activity was tested using normal fibroblast cell lines (L-929), and the enhanced IC50 value (764.3 ± 3.9 g/mL) demonstrated good biological compatibility. These nanoparticles could be evolved into new antibacterial compounds for MRFP prevention.
Collapse
Affiliation(s)
- Essam Mohamed Elsebaie
- Food Technology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | | | | | - Rasha M Bahnasy
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Galila Ali Asker
- Food Science &Technology Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Marwa Fawzy El-Hassnin
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Suzan S Ibraheim
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | | | - Asmaa Antar Faramawy
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Rowida Younis Essa
- Food Technology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohamed Reda Badr
- Food Science and Technology Department, Agriculture Faculty, Tanta University, Tanta 31512, Egypt
| |
Collapse
|
21
|
Mircea DM, Calone R, Shakya R, Zuzunaga-Rosas J, Sestras RE, Boscaiu M, Sestras AF, Vicente O. Evaluation of Drought Responses in Two Tropaeolum Species Used in Landscaping through Morphological and Biochemical Markers. Life (Basel) 2023; 13:life13040960. [PMID: 37109489 PMCID: PMC10145515 DOI: 10.3390/life13040960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One of the most important challenges horticultural crops confront is drought, particularly in regions such as the Mediterranean basin, where water supplies are usually limited and will become even scarcer due to global warming. Therefore, the selection and diversification of stress-tolerant cultivars are becoming priorities of contemporary ornamental horticulture. This study explored the impact of water stress on two Tropaeolum species frequently used in landscaping. Young plants obtained by seed germination were exposed to moderate water stress (half the water used in the control treatments) and severe water stress (complete withholding of irrigation) for 30 days. Plant responses to these stress treatments were evaluated by determining several growth parameters and biochemical stress markers. The latter were analysed by spectrophotometric methods and, in some cases, by non-destructive measurements using an optical sensor. The statistical analysis of the results indicated that although the stress responses were similar in these two closely related species, T. minus performed better under control and intermediate water stress conditions but was more susceptible to severe water stress. On the other hand, T. majus had a stronger potential for adaptation to soil water scarcity, which may be associated with its reported expansion and naturalisation in different regions of the world. The variations in proline and malondialdehyde concentrations were the most reliable biochemical indicators of water stress effects. The present study also showed a close relationship between the patterns of variation of flavonoid and chlorophyll contents obtained by sensor-based and spectrophotometric methods.
Collapse
Affiliation(s)
- Diana M Mircea
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Roberta Calone
- CREA-Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, I-40128 Bologna, I-00184 Rome, Italy
| | - Rashmi Shakya
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Department of Botany, Miranda House, University of Delhi, Delhi 110007, India
| | - Javier Zuzunaga-Rosas
- Department of Plant Production, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Radu E Sestras
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Adriana F Sestras
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
22
|
Azhar NA, Abu Bakar SA, Citartan M, Ahmad NH. mRNA transcriptome profiling of human hepatocellular carcinoma cells HepG2 treated with Catharanthus roseus-silver nanoparticles. World J Hepatol 2023; 15:393-409. [PMID: 37034237 PMCID: PMC10075008 DOI: 10.4254/wjh.v15.i3.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND The demand for the development of cancer nanomedicine has increased due to its great therapeutic value that can overcome the limitations of conventional cancer therapy. However, the presence of various bioactive compounds in crude plant extracts used for the synthesis of silver nanoparticles (AgNPs) makes its precise mechanisms of action unclear. AIM To assessed the mRNA transcriptome profiling of human HepG2 cells exposed to Catharanthus roseus G. Don (C. roseus)-AgNPs. METHODS The proliferative activity of hepatocellular carcinoma (HepG2) and normal human liver (THLE3) cells treated with C. roseusAgNPs were measured using MTT assay. The RNA samples were extracted and sequenced using BGIseq500 platform. This is followed by data filtering, mapping, gene expression analysis, differentially expression genes analysis, Gene Ontology analysis, and pathway analysis. RESULTS The mean IC50 values of C. roseusAgNPs on HepG2 was 4.38 ± 1.59 μg/mL while on THLE3 cells was 800 ± 1.55 μg/mL. Transcriptome profiling revealed an alteration of 296 genes. C. roseusAgNPs induced the expression of stress-associated genes such as MT, HSP and HMOX-1. Cellular signalling pathways were potentially activated through MAPK, TNF and TGF pathways that are responsible for apoptosis and cell cycle arrest. The alteration of ARF6, EHD2, FGFR3, RhoA, EEA1, VPS28, VPS25, and TSG101 indicated the uptake of C. roseus-AgNPs via both clathrin-dependent and clathrin-independent endocytosis. CONCLUSION This study provides new insights into gene expression study of biosynthesised AgNPs on cancer cells. The cytotoxicity effect is mediated by the aberrant gene alteration, and more interestingly the unique selective antiproliferative properties indicate the C. roseusAgNPs as an ideal anticancer candidate.
Collapse
Affiliation(s)
- Nur Asna Azhar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
- Liver Malignancies Research Program, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Siti Aishah Abu Bakar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Marimuthu Citartan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
- Liver Malignancies Research Program, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| |
Collapse
|
23
|
Sri PSBJK, Kumar MP, Padmavathy S. Cd2+ Converted to CdO Using Cosmos sulphureus as Reducing Agent and Evaluation of Optical Property, Morphology and Antimicrobial Activity. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
24
|
Huang T, Li X, Maier M, O'Brien-Simpson NM, Heath DE, O'Connor AJ. Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era. Acta Biomater 2023; 158:56-79. [PMID: 36640952 DOI: 10.1016/j.actbio.2023.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Fungal infections pose a serious threat to human health and livelihoods. The number and variety of clinically approved antifungal drugs is very limited, and the emergence and rapid spread of resistance to these drugs means the impact of fungal infections will increase in the future unless alternatives are found. Despite the significance and major challenges associated with fungal infections, this topic receives significantly less attention than bacterial infections. A major challenge in the development of fungi-specific drugs is that both fungi and mammalian cells are eukaryotic and have significant overlap in their cellular machinery. This lack of fungi-specific drug targets makes human cells vulnerable to toxic side effects from many antifungal agents. Furthermore, antifungal drug resistance necessitates higher doses of the drugs, leading to significant human toxicity. There is an urgent need for new antifungal agents, specifically those that can limit the emergence of new resistant species. Non-drug nanomaterials have primarily been explored as antibacterial agents in recent years; however, they are also a promising source of new antifungal candidates. Thus, this article reviews current research on the use of inorganic nanoparticles as antifungal agents. We also highlight challenges facing antifungal nanoparticles and discuss possible future research opportunities in this field. STATEMENT OF SIGNIFICANCE: Fungal infections pose a growing threat to human health and livelihood. The rapid spread of resistance to current antifungal drugs has led to an urgent need to develop alternative antifungals. Nanoparticles have many properties that could make them useful antimycotic agents. To the authors' knowledge, there is no published review so far that has comprehensively summarized the current development status of antifungal inorganic nanomaterials, so we decided to fill this gap. In this review, we discussed the state-of-the-art research on antifungal inorganic nanoparticles including metal, metal oxide, transition-metal dichalcogenides, and inorganic non-metallic particle systems. Future directions for the design of inorganic nanoparticles with higher antifungal efficacy and lower toxicity are described as a guide for further development in this important area.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xin Li
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Maier
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
25
|
Talukdar D, Kumar P, Sharma D, Balaramnavar VM, Afzal O, Altamimi ASA, Kazmi I, Al-Abbasi FA, Alzarea SI, Gupta G, Gupta MM. Anticancer Phytochemical-Based Nanoformulations: Therapeutic Intervention in Cancer Cell Lines. J Environ Pathol Toxicol Oncol 2023; 42:79-93. [PMID: 36734954 DOI: 10.1615/jenvironpatholtoxicoloncol.2022044317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phytochemicals have the potential to treat resistant cancer. They are delivered to the target site via nano-based carriers. Promising results are seen in preclinical and in vitro models, as phytochemical-based nanoformulations have improved cell cytotoxicity compared to single agents. They can synergistically inhibit cancer cell growth through p53 apoptosis in MCF-7 breast cancer cell lines. Moreover, synergic viability in reproducible glioma models at half inhibitory concentrations has been shown. Through caspase activation, phytochemical-based nanoformulations also increase cell death in 4T1 breast cancer cell lines. They have shown improved cytotoxicity at half inhibitory concentrations compared to single-agent drugs in cervical cancer. In terms of colorectal cancer, they have the potential to arrest cells in the S phase of the cell cycle and synergistically inhibit cell proliferation. In squamous cell carcinoma of the tongue, they inhibit protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways. This review reports on developments in the therapeutic management of various cancers using phytochemical-based nanoformulations, which have shown potential benefits in the clinical management of cancer patients, halting/slowing the progression of the disease and ameliorating chemotherapy-induced toxicities.
Collapse
Affiliation(s)
- Debjyoti Talukdar
- Department of Medical Research, Armenian Russian International University "Mkhitar Gosh," Yerevan, Armenia
| | | | - Deepak Sharma
- Department of Pharmaceutical Technology, SOMS, Adamas University, Kolkata, West Bengal, India
| | | | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| |
Collapse
|
26
|
Elshazly EH, Nasr A, Elnosary ME, Gouda GA, Mohamed H, Song Y. Identifying the Anti-MERS-CoV and Anti-HcoV-229E Potential Drugs from the Ginkgo biloba Leaves Extract and Its Eco-Friendly Synthesis of Silver Nanoparticles. Molecules 2023; 28:1375. [PMID: 36771041 PMCID: PMC9919260 DOI: 10.3390/molecules28031375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to estimate the antiviral activities of Ginkgo biloba (GB) leaves extract and eco-friendly free silver nanoparticles (Ag NPs) against the MERS-CoV (Middle East respiratory syndrome-coronavirus) and HCoV-229E (human coronavirus 229E), as well as isolation and identification of phytochemicals from GB. Different solvents and high-performance liquid chromatography (HPLC) were used to extract and identify flavonoids and phenolic compounds from GB leaves. The green, silver nanoparticle synthesis was synthesized from GB leaves aqueous extract and investigated for their possible effects as anti-coronaviruses MERS-CoV and HCoV-229E using MTT assay protocol. To verify the synthesis of Ag NPs, several techniques were employed, including X-ray diffraction (XRD), scan, transmission electron microscopy, FT-IR, and UV-visible spectroscopy. The highest contents of flavonoids and phenolic compounds were recorded for acetone, methanol, and ethanol as mixtures with water, in addition to pure water. HPLC flavonoids were detected as apegenin, luteolin, myricetin, and catechin, while HPLC phenolic compounds were pyrogallol, caffeic acid, gallic acid, and ellagic acid. In addition, our results revealed that Ag NPs were produced through the shift from yellow to dark brown. TEM examination of Ag NPs revealed spherical nanoparticles with mean sizes ranging from 5.46 to 19.40 nm and an average particle diameter of 11.81 nm. A UV-visible spectrophotometric investigation revealed an absorption peak at λ max of 441.56 nm. MTT protocol signified the use of GB leaves extract as an anti-coronavirus to be best from Ag NPs because GB extract had moderate anti-MERS-CoV with SI = 8.94, while had promising anti-HCov-229E, with an SI of 21.71. On the other hand, Ag NPs had a mild anti-MERS-CoV with SI = 4.23, and a moderate anti-HCoV-229E, with an SI of 7.51.
Collapse
Affiliation(s)
- Ezzat H. Elshazly
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Alyaa Nasr
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Mohamed E. Elnosary
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Gamal A. Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
27
|
Tahir MY, Sillanpaa M, Almutairi TM, Mohammed AAA, Ali S. Excellent photocatalytic and antibacterial activities of bio-activated carbon decorated magnesium oxide nanoparticles. CHEMOSPHERE 2023; 312:137327. [PMID: 36410509 DOI: 10.1016/j.chemosphere.2022.137327] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Green production of nanomaterials are restrict toxic substances and motivated the noxious free environment. Photocatalysis and antibacterial resistance are more promising and efficient fields for their chemical reductants and clean environment. Herein, we adopted a green and simple method for the biosynthesis of MgO NPs using Manilkara zapota as a bio source. Recently, the green synthesis of magnesium oxide nanoparticles has been a keen interest amongst researchers and scientists due to its simplicity eco-friendliness, non-toxic, inexpensive and potential to perform as an antibacterial agent. Activated carbon/Magnesium oxide (AC/MgO) photocatalyst was blended through a simple solution evaporation method. The surface electron microscopy (SEM) study reviles that AC/MgO had smooth and aggregated particles. The Fourier transform infrared (FT-IR) and x-ray diffraction (XRD) study confirms the structural formation and incorporation of nanoparticles into the AC matrix. Results confirmed the flourishing integration of MgO NPs over the activated carbon matrix. The electron movement and valency of AC/MgO photocatalyst reduced the bandgap and their findings were characterized by ultra visible diffuse reflectance spectroscopy (UV-DRS) and x-ray photoelectron spectroscopy (XPS). The blended AC/MgO photocatalyst was analyzed for photodegradation of Rhodamine- B (Rh-B) dye using a UV-visible spectrophotometer. The degradation study projects that the AC/MgO photocatalyst degrades (Rh-B) dye with 99% efficiency under simulated solar irradiation. This efficient degradation of (Rh-B) dye by AC/MgO photocatalyst is ascribed to the synergetic AC as catalytic support and adsorbent and MgO as photocatalyst. Finally, the photocatalytic material shows a better bactericidal effect in both gram-positive bacteria Escherichia coli-745 and gram-negative bacteria Staphylococcus aureus-9779. The AC/MgO photocatalyst is effectively used in bacteriocidal and photocatalytic removal of dyes and can be used for further development of water reuse and bio-medical fields. In addition, this research shows a viable method for synthesizing a cheap and effective AC/MgO for the photocatalytic destruction of organic pollutants.
Collapse
Affiliation(s)
- Muhammad Yahya Tahir
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Mika Sillanpaa
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus, Denmark
| | - Tahani Mazyad Almutairi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdallah A A Mohammed
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
28
|
Abd Aziz N, Mohd Salleh NH, Gopinath SCB, Harun Kamaruddin A, Ahmad NA, Ridzuan MI. Valorisation of Momordica Charantia Seed into Phytogenic Synthesized Silver Nanoparticles for Protection of Oyster Mushroom Against Trichoderma Pleuroticola.. [DOI: 10.2139/ssrn.4523932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
29
|
Jena B, Singh SS, Behera SK, Mishra S, Chakrabortty S, Meher D, Mulia B, Tripathy SK, Kumar R, Jeon BH, Lundborg CS, Mishra A. To decipher the phytochemical agent and mechanism for Urginea indica mediated green synthesis of Ag nanoparticles and investigation of its antibacterial activity against Methicillin-resistant Staphylococcus aureus. ENVIRONMENTAL RESEARCH 2023; 216:114700. [PMID: 36370814 DOI: 10.1016/j.envres.2022.114700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Globally, Methicillin-Resistant Staphylococcus aureus bacteraemia is one of the commonest bloodstream infections associated with clinical complications and high mortality. Thence, devising effective and targeted biogenic silver based strategies are in great demand. However, limited insights regarding the biosynthesis methodologies impedes the possible scale up and commercial potentials. We, hereby demonstrate the biosynthesis of Ag nanoparticles using the phytochemical agent extracted and purified from bulb extract of Urginea indica. The chemical structure of the phytochemical agent is investigated by various chromatographic and spectroscopic techniques and was found closely relatable to N-ethylacetamide. Ag nanoparticles synthesis by this agent was found to have a strong Surface Plasmon band at 402 nm. X-ray diffraction and transmission electron microscopy further validated the formation of Ag nanoparticles with face-centred cubic structure with a size range of 20-30 nm. The biogenic metal nanoparticles have shown potential antibacterial activity against S. aureus and MRSA (within a range of 10-50 μg/mL). The nanoparticles have also shown promising anti-biofim activity against the above mentioned strains. The nanoparticles were expected to induce ROS mediated bactericidal mechamism. Cell viability and in-vitro infection studies advocate noticeable biocompatibility and future clinical potential of the developed nanoparticles against Staphylococcus infections.
Collapse
Affiliation(s)
- Bhumika Jena
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Swati Sucharita Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Susanta Kumar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India; IMGENIX India Pvt. Ltd., Bhubaneswar, 751024, India
| | - Smrutirekha Mishra
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Dayanidhi Meher
- Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bansidhar Mulia
- Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Suraj K Tripathy
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | | | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| |
Collapse
|
30
|
Amino‐terminated hyperbranched polymer functionalized graphene oxide with in situ trapped silver nanoparticles for high‐performance antibacterial nonwoven fabric. J Appl Polym Sci 2022. [DOI: 10.1002/app.53466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Ashique S, Upadhyay A, Hussain A, Bag S, Chaterjee D, Rihan M, Mishra N, Bhatt S, Puri V, Sharma A, Prasher P, Singh SK, Chellappan DK, Gupta G, Dua K. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Molina-Hernández JB, Scroccarello A, Della Pelle F, De Flaviis R, Compagnone D, Del Carlo M, Paparella A, Chaves Lόpez C. Synergistic antifungal activity of catechin and silver nanoparticles on Aspergillus niger isolated from coffee seeds. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Yadav N, Singh D, Rawat M, Sangwan N. Novel archetype in cancer therapeutics: exploring prospective of phytonanocarriers. 3 Biotech 2022; 12:324. [PMID: 36276448 PMCID: PMC9569404 DOI: 10.1007/s13205-022-03372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
This paper reports various types of cancer, their incidence, and prevalence all over the globe. Along with the discovery of novel natural drugs for cancer treatment, these present a promising option which are eco-friendly, safe, and provide better acceptability in comparison to synthetic agents that carries multiple side effects. This paper provides an idea about various nanocarriers and phytochemicals, along with how their solubility and bioavailability can be enhanced in nanocarrier system. This report combines the data from various literature available on public domain including PubMed on research articles, reviews, and along with report from various national and international sites. Specialized metabolites (polyphenols, alkaloids, and steroids etc) from medicinal plants are promising alternatives to existing drugs. Studies have suggested that the treatment of cancer using plant products could be an alternative and a safe option. Studies have shown with the several cell lines as well as animal models, that phytomolecules are important in preventing/treating cancer. Phytochemicals often outperform chemical treatments by modulating a diverse array of cellular signaling pathways, promoting cell cycle arrest, apoptosis activation, and metastatic suppression, among others. However, limited water solubility, bioavailability, and cell penetration limit their potential clinical manifestations. The development of plant extract loaded nanostructures, rendering improved specificity and efficacy at lower concentrations could prove effective. Nanocarriers, such as liposomes, nanostructured lipids, polymers, and metal nanoparticles, have been tested for the delivery of plant products with enhanced effects. Recent advances have achieved improvement in the the stability, solubility, bioavailability, circulation time, and target specificity by nanostructure-mediated delivery of phytochemicals. Nanoparticles have been considered and attempted as a novel, targeted, and safe option. Newer approaches such as phyto-nanocarriers with carbohydrates, lignin, and polymers have been considered even more selective and effective modes of drug delivery in biomedical or diagnostic applications.
Collapse
Affiliation(s)
- Nisha Yadav
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Manju Rawat
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
34
|
Mussin J, Giusiano G. Biogenic silver nanoparticles as antifungal agents. Front Chem 2022; 10:1023542. [PMID: 36277355 PMCID: PMC9583421 DOI: 10.3389/fchem.2022.1023542] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
In recent years, an increase in multidrug-resistant fungal strains has been observed, which, together with the limited number of clinically available antifungal agents, highlights the need for the development of new antifungal agents. Due to the proven antifungal activity of silver nanoparticles (AgNPs), there is a growing interest in their use in the treatment of fungal infections. Nanoparticles are usually synthesised through a variety of physical and chemical processes that are costly and pollute the environment. For this reason, biogenic synthesis is emerging as an environmentally friendly technology and new strategies are increasingly based on the use of biogenic AgNPs as antifungal agents for clinical use. The aim of this review is to compare the antifungal activity of different biogenic AgNPs and to summarise the current knowledge on the mechanisms of action and resistance of fungi to AgNPs. Finally, a general analysis of the toxicity of biogenic AgNPs in human and veterinary medicine is performed.
Collapse
|
35
|
Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Behera HT, Mojumdar A, Behera SS, Das S, Ray L. Biocontrol of Wilt disease of rice seedlings incited by Fusarium oxysporum through soil application of Streptomyces chilikensis RC1830. Lett Appl Microbiol 2022; 75:1366-1382. [PMID: 35972435 DOI: 10.1111/lam.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
The genus Streptomyces includes many antifungal metabolite producing novel strains. Fusarium oxysporum a soil-inhabiting pathogenic fungi, that affects rice to cause wilt disease. This work demonstrates the efficacy of novel Streptomyces chilikensis strain RC1830, previously isolated from estuarine habitat Chilika Lake in preventing the F. oxysporum wilting/root rot disease and promoting the growth of rice (Var. Swarna) seedlings. A total of 25 different compounds were identified from crude extracts of S. chilikensis RC1830 by GC-MS. In pot trial experiments, Streptomyces treated rice seedlings showed significantly reduced Disease severity index (DSI) by 80.51%. The seedlings growth parameters (root length, root fresh weight and root dry weight )were also increased by 53.91%, 62.5%, 73.46% respectively in Streptomyces treated groups of seedlings compared to Fusarium infected seedlings. Similarly, the shoot length, shoot dry weight and shoot fresh weight were also increased by 26%, 58% and 34.4% respectively in Streptomyces treated groups of seedlings compared to Fusarium infected seedlings. Formulations of the strain were prepared using seven organic & inorganic wastes as the carrier material and the shelf lives of the propagules were also monitored. Vermiculite and activated charcoal formulations stored at 4°C exhibited a higher viable cell count after 3 months of storage.
Collapse
Affiliation(s)
- Himadri Tanaya Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Abhik Mojumdar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Subhransu Shekhar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Smrutiranjan Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Lopamudra Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India.,School of Law, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| |
Collapse
|
37
|
Green synthesis of Gold and Silver Nanoparticles: Updates on Research, Patents, and Future Prospects. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Mariappan A, Pandi P, Rajeswarapalanichamy R, Neyvasagam K, Sureshkumar S, Gatasheh MK, Hatamleh AA. Bandgap and visible-light-induced photocatalytic performance and dye degradation of silver doped HAp/TiO 2 nanocomposite by sol-gel method and its antimicrobial activity. ENVIRONMENTAL RESEARCH 2022; 211:113079. [PMID: 35276197 DOI: 10.1016/j.envres.2022.113079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Silver doped hydroxyapatite and titanium oxide nanocomposites have been obtained by sol-gel techniques with novel antimicrobial activities for biomedical applications. The synthesis of Ca10-X AgX (PO4)6(OH)2 along with titanium oxide nanoparticles with XAg = 0 (HAp/TiO2), 0.1, 0.25 and 0.5 (Ag:HAp/TiO2-NCS) was performed. The developed crystalline phase was characterized via X-ray diffraction (XRD), and the morphological features were executed via scanning and transmission electron microscopy (SEM/TEM). The HAp/TiO2 and silver doped HAp/TiO2 nanocomposites were spherical grains, with needle and flower-like structures. XRD examination revealed the crystalline phases of HAp/TiO2 and Ag-doped HAp/TiO2 nanocomposites. The crystallite size of HAp/TiO2 and Ag-doped HAp/TiO2 nanocomposites determined from the XRD pattern was ranged between 16 nm and 20 nm. The FTIR analysis confirms the presence of stretching and vibrational peaks for the presence of silver doped HAp/TiO2. The EDAX analysis showed the existence of major elements of HAp/TiO2 and Ag-HAp/TiO2 nanostructured composites. HAp/TiO2 and silver doped HAp/TiO2 were active against both Gram-positive and Gram-negative bacteria such as, E. coli (MTCC 443), S. typhi (MTCC 733), and S. aureus (MTCC 3160). The photocatalytic absorption spectrum implied an increased absorption rate of methylene blue by HAp/TiO2 and silver doped HAp/TiO2 nanocomposites. The photocatalytic activity revealed that 50% Ag doped HAp/TiO2 optimally improved photocatalytic activity.
Collapse
Affiliation(s)
- A Mariappan
- Department of Physics and Research Centre, Malankara Catholic College, Mariagiri, Kaliakkavilai, 629 153, Tamil Nadu, India; ManonmaniamSundaranar University, Abishekapatti, 627012, Tirunelveli, Tamilnadu, India.
| | - P Pandi
- P.G and Research Department of Physics, The Madura College, Madurai, Tamil Nadu, India
| | - R Rajeswarapalanichamy
- P.G and Research Department of Physics, N.M.S.S.VellaichamyNadar College, Madurai, Tamil Nadu, India
| | - K Neyvasagam
- Department of Animal Resource & Science, Dankook University, Cheonan-si, Chungnam, South Korea
| | - Shanmugam Sureshkumar
- Department of Animal Resource & Science, Dankook University, Cheonan-si, Chungnam, South Korea
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
39
|
Yadav R, Pradhan M, Yadav K, Mahalvar A, Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J Drug Deliv Sci Technol 2022; 74:103430. [PMID: 35582019 PMCID: PMC9101776 DOI: 10.1016/j.jddst.2022.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
The current COVID-19 epidemic is a sobering reminder that human susceptibility to infectious diseases remains even in our modern civilization. After all, infectious diseases are still the major reason of death globally. Healthcare authorities have often underestimated and ignored the threat posed by "microbial dangers," although they put millions of lives at risk every year. Overlooked developing diseases including fungal infections (FIs) contribute to roughly 1.7 million fatalities per year. As many as 150 million cases of severe and potentially life-threatening FIs are reported each year. In the last few years, the number of instances has steadily increased. Most of them are invasive fungal infections that require specialized treatment and hospital care. In recent years herbal antifungal compounds have been explored to acquire effective and safe therapy against fungal infections. However, potential therapeutic effects are hampered by the poor solubility, stability, and bioavailability of these important chemicals as well as the gastric degradation that occurs in the gastrointestinal tract. To get around this issue, researchers have turned to novel drug delivery systems such as nanoemulsions, ethosomes, metallic nanoparticles, liposomes, lipid nanoparticles, transferosomes, etc by improving their limits, nanocarriers can enhance the medicinal effects of herbal oils and extracts. The present review article focuses on the available antifungal agents and their characteristics, mechanism of antifungal drugs resistance, herbal oils and extract as antifungal agents, challenges in the delivery of herbal drugs, and application of nano-drug delivery systems for effective delivery of antifungal herbal compounds.
Collapse
Affiliation(s)
- Rahul Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Madhulika Pradhan
- Rungta College of Pharmaceutical Education and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh, 492010, India
| | - Anand Mahalvar
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Homesh Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| |
Collapse
|
40
|
Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02276-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Ahmad A, Khan M, Khan S, Luque R, Abualnaja KM, Alduaij O, Yousef TA. Bio-Construction of CuO Nanoparticles Using Texas Sage Plant Extract for catalytical degradation of Methylene blue Via Photocatalysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Zhou D, Jing T, Chen Y, Yun T, Qi D, Zang X, Zhang M, Wei Y, Li K, Zhao Y, Wang W, Xie J. Biocontrol potential of a newly isolated Streptomyces sp. HSL-9B from mangrove forest on postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Begum SJP, Pratibha S, Rawat JM, Venugopal D, Sahu P, Gowda A, Qureshi KA, Jaremko M. Recent Advances in Green Synthesis, Characterization, and Applications of Bioactive Metallic Nanoparticles. Pharmaceuticals (Basel) 2022; 15:ph15040455. [PMID: 35455452 PMCID: PMC9024851 DOI: 10.3390/ph15040455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles (NPs) are elements derived from a cluster of atoms with one or more dimensions in the nanometer scale in the range of 1–100 nm. The bio nanofabrication of metallic NPs is now an important dynamic area of research, with major significance in applied research. Biogenic synthesis of NPs is more desirable than physical and chemical synthesis due to its eco-friendliness, non-toxicity, lower energy consumption, and multifunctional nature. Plants outperform microorganisms as reducing agents as they contain large secondary biomolecules that accelerate the reduction and stability of the NPs. The produced NPs can then be studied spectroscopically (UV-Visible, XRD, Raman, IR, etc.) and microscopically (SEM, TEM, AFM, etc.). The biological reduction of a metallic ion or its oxide to a nanoparticle is quick, simple, and may be scaled up at room temperature and pressure. The rise in multi-drug resistant (MDR) microbes due to the immoderate use of antibiotics in non-infected patients is a major cause of morbidity and mortality in humans. The contemporary development of a new class of antibiotics with different mechanisms of action to kill microbes is crucial. Metals and their oxides are extremely toxic to microbes at unprecedentedly low concentrations. In addition, prevailing infections in plants and animals are raising significant concerns across the globe. NPs’ wide range of bioactivity makes them ideal antimicrobial agents in agricultural and medical fields. The present review outlines the synthesis of metallic NPs from botanicals, which enables the metals to be in a stabilized form even after ionization. It also presents a valuable database on the biofunctionalization of synthesized NPs for further drug development.
Collapse
Affiliation(s)
- Shabaaz J. P. Begum
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, India; (S.J.P.B.); (J.M.R.); (D.V.)
| | - S. Pratibha
- Department of Physics, BMS Institute of Technology and Management, Bengaluru 560064, India
- Correspondence:
| | - Janhvi M. Rawat
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, India; (S.J.P.B.); (J.M.R.); (D.V.)
| | - Divya Venugopal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, India; (S.J.P.B.); (J.M.R.); (D.V.)
| | - Prashant Sahu
- Babulal Tara Bhai Institute of Pharmaceutical Sciences, Sagar 470228, India;
| | - Abhilash Gowda
- Bangalore Medical College and Research Institute, Bengaluru 560002, India;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah 23955, Saudi Arabia;
| |
Collapse
|
44
|
Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran TB, Lam SE, Khandaker MU, Bradley DA. Biological agents for synthesis of nanoparticles and their applications. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101869. [DOI: 10.1016/j.jksus.2022.101869] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
45
|
Plant-Mediated Green Synthesis of Ag NPs and Their Possible Applications: A Critical Review. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/2779237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The potential applications of Ag NPs are exciting and beneficial in a variety of fields; however, there is less awareness of the new risks posed by inappropriate disposal of Ag NPs. The Ag NPs have medicinal, plasmonic, and catalytic properties. The Ag NPs can be prepared via physical, chemical, or biological routes, and the selection of any specific route depends largely on the end-use. The downside of a physical and chemical approach is that it requires a wide space, high temperature, high temperature for a longer time to preserve the thermal stability of synthesized Ag NPs, and the use of toxic chemicals. Although these methods produce nanoparticles with high purity and well-defined morphology, it is critical to develop cost-effective, energy-efficient, and facile route, such as green synthesis; it suggests the desirable use of renewable resources by avoiding the use of additional solvents and toxic reagents in order to achieve the ultimate goal. However, each method has its pros and cons. The synthesized Ag NPs obtained using the green approach have larger biocompatibility and are less toxic towards the biotic systems. However, identifying the phytoconstituents that are responsible for nanoparticle synthesis is difficult and has been reported as a suitable candidate for biological application. The concentration of the effective bioreducing phytoconstituents plays a crucial role in deciding the morphology of the nanoparticle. Besides these reaction times, temperature, pH, and concentration of silver salt are some of the key factors that determine the morphology. Hence, careful optimization in the methodology is required as different morphologies have different properties and usage. It is due to which the development of methods to prepare nanoparticles effectively using various plant extracts is gaining rapid momentum in recent days. To make sense of what involves in the bioreduction of silver salt and to isolate the secondary metabolites from plants are yet challenging. This review focuses on the contribution of plant-mediated Ag NPs in different applications and their toxicity in the aquatic system.
Collapse
|
46
|
Nathiya D, Alhaji NMI, Mohamed Jahangir AR, Ismail Fathima M, Gatasheh MK, Hatamleh AA, Zehra S, Ayeshamariam A. Synthesis and characterization of ZnGa 2O 4 composites and its photocatalytic properties for energy applications. ENVIRONMENTAL RESEARCH 2022; 204:112073. [PMID: 34537200 DOI: 10.1016/j.envres.2021.112073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
ZnGa2O4 nanocomposites have been widely used for photocatalytic degradation of industrial dyes. In this work, ZnGa2O4 was synthesized from zinc sulphate heptahydrate ZnSO4.10H2O and Gallium (III) oxide (Ga2O3) by hydrothermal method. As prepared, ZnGa2O4 nanocomposites was used as a photocatalyst degradation of three organic dyes rhodamine-B, methylene blue, and methyl orange, under ultraviolet (UV) light irradiation. The ZnGa2O4 nanocomposites structure, morphology, size and optical properties were studied by X-ray diffraction (XRD), Fourier transform Raman spectroscopy (FT-Raman), scanning electron microscopy (SEM), Transmission electron microscopes (TEM) and photoluminescence spectra (PL). Moreover, the results explained the rate-controlling mechanisms of the dye degradation process followed by second-order kinetics. After 100 min of adsorption kinetic models, the decomposition of rhodamine-B (7.2 Ct mg/L, 5.2 Ct mg/L, and 4.1 Ct mg/L), methylene blue (42.8 qt mg/g, 44.8 qt mg/g, and 45.9 qt mg/g), and methyl orange (42.8 qe mg/g, 44.8 qe mg/g, and 45.9 qe mg/g) respectively. This investigation study offers a promising method to design more efficient ZnGa2O4 nanocomposites based photocatalytic degradation of industrial organic dyes.
Collapse
Affiliation(s)
- D Nathiya
- PG & Research Department of Chemistry, KhadirMohideen College, Adirampattinam, (Affiliated to Bharathidasan University, Thiruchirappalli, 614701, India
| | - N M I Alhaji
- PG & Research Department of Chemistry, KhadirMohideen College, Adirampattinam, (Affiliated to Bharathidasan University, Thiruchirappalli, 614701, India
| | | | - M Ismail Fathima
- Department of Physics, Arul Anandar College (Autonomous), Karumathur, Madurai, 625514, India
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sadaf Zehra
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, PO Box, N9B 3P4, Canada
| | - A Ayeshamariam
- PG & Research Department of Chemistry, KhadirMohideen College, Adirampattinam, (Affiliated to Bharathidasan University, Thiruchirappalli, 614701, India; PG & Research Department of Physics, KhadirMohideen College, Adirampattinam, (Affiliated to Bharathidasan University, Thiruchirappalli, 614701, India.
| |
Collapse
|
47
|
Zeng N, Chen X, Liu Z. Natural Products and Nanotechnology Against Coronavirus Disease 2019. Front Chem 2022; 10:819969. [PMID: 35223771 PMCID: PMC8866311 DOI: 10.3389/fchem.2022.819969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a new and severe infectious disease and new global disaster and is spreading rapidly worldwide. Natural products have a long history and have been widely used to treat various acute, chronic, and even life-threatening diseases worldwide. However, the natural products have reduced bioavailability and availability as they have poor kinetic properties, such as large molecular weight, inability to cross lipid membranes, and weak absorption ability. With the rapid development of nanotechnology, using novel nanotechnology in conjunction with natural products can effectively eliminate the molecular restriction of the entry of nanoproducts into the body and can be used to diagnose and treat various diseases, including COVID-19, bringing new strategies and directions for medicine. This article reviews the role and implementation of natural products against COVID-19 based on nanotechnology.
Collapse
Affiliation(s)
| | | | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Pereira D, Carreira TS, Alves N, Sousa Â, Valente JFA. Metallic Structures: Effective Agents to Fight Pathogenic Microorganisms. Int J Mol Sci 2022; 23:1165. [PMID: 35163090 PMCID: PMC8835760 DOI: 10.3390/ijms23031165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
The current worldwide pandemic caused by coronavirus disease 2019 (COVID-19) had alerted the population to the risk that small microorganisms can create for humankind's wellbeing and survival. All of us have been affected, directly or indirectly, by this situation, and scientists all over the world have been trying to find solutions to fight this virus by killing it or by stop/decrease its spread rate. Numerous kinds of microorganisms have been occasionally created panic in world history, and several solutions have been proposed to stop their spread. Among the most studied antimicrobial solutions, are metals (of different kinds and applied in different formats). In this regard, this review aims to present a recent and comprehensive demonstration of the state-of-the-art in the use of metals, as well as their mechanisms, to fight different pathogens, such as viruses, bacteria, and fungi.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Tiago Soares Carreira
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Nuno Alves
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Joana F. A. Valente
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| |
Collapse
|
49
|
Kaur A, Kaur L, Singh G, Dhawan RK, Mahajan A. Nanotechnology-based Herbal Formulations: A Survey of Recent Patents, Advancements, and Transformative Headways. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:295-307. [PMID: 33913409 DOI: 10.2174/1872210515666210428135343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnology in association with herbal medicine can lead to enhanced therapeutic and diminished adverse effects of medication. In turn, it can lead to synergistic effects of administered compound overcoming its demerits. Nowadays, the trend of herbal compounds to treat even a small illness is gaining momentum. Gone are the days when the ineffectiveness of a compound was impossible to be dealt with. Nevertheless, in this competitive era of science and innovative technology, it has become possible to maximize the usefulness of ineffective yet potent herbal compounds. The demand for herbal compounds is getting amplified because of their ability to treat a myriad of diseases, including COVID-19, showing fewer side effects. The merger of nanotechnology with traditional medicine augments the potential of herbal drugs for devastating dangerous and chronic diseases like cancer. In this review article, we have tried to assimilate the complete information regarding the use of different nanocarriers to overcome the drawbacks of herbal compounds. In addition, all the recent advancements in the herbal field, as well as the future exploration to be emphasized, have been discussed.
Collapse
Affiliation(s)
- Anureet Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Lakhvir Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Gurjeet Singh
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - R K Dhawan
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Ayushi Mahajan
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| |
Collapse
|
50
|
Fan N, Wang X, Sun J, Lv X, Gu J, Zhao C, Wang D. Effects of konjac glucomannan/pomegranate peel extract composite coating on the quality and nutritional properties of fresh-cut kiwifruit and green bell pepper. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:228-238. [PMID: 35068567 PMCID: PMC8758865 DOI: 10.1007/s13197-021-05006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
The effects of an edible coating, based on konjac glucomannan (KG) incorporated with pomegranate peel extracts (PE), on the physicochemical and nutritional properties of fresh-cut kiwifruit and green bell pepper during storage were investigated. The optimal extract time (40.6 min), temperature (54.5 °C), and ultrasound power (255.5 W) with response surface method, provided a high total antioxidant activity (TAA) of (92.31 ± 1.43)%. Fresh-cut kiwifruit and green bell pepper were coated by dipping using five treatments (distilled water, ascorbic acid, KG, PE, KG + PE), packed into polymeric film and stored for 8 days at 10 °C. Distilled water treatment was used as control. KG + PE treatment resulted in the highest total soluble solid and titratable acidity in fresh-cut kiwifruit, while the maximum firmness in fresh-cut green bell pepper. The weight loss was both effectively decreased in samples treated with KG or KG + PE. All samples treated with KG + PE had significantly higher contents of chlorophyll, ascorbic acid, total phenolic and TAA than others. Moreover, the KG + PE group had the lowest counts of microorganisms in all samples. KG coating incorporated with PE was proved to be efficient in maintaining the physico-chemical and nutritional properties of fresh-cut kiwifruit and green bell pepper during low temperature storage compared with control. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05006-7.
Collapse
Affiliation(s)
- Na Fan
- College of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China ,College of Healthy Management, Shangluo University, Shangluo, 726000 People’s Republic of China
| | - Xian Wang
- College of Food Science and Engineering, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Jingyao Sun
- College of Food Science and Engineering, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Xingang Lv
- College of Food Science and Engineering, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Jiao Gu
- College of Healthy Management, Shangluo University, Shangluo, 726000 People’s Republic of China
| | - Chunfang Zhao
- College of Healthy Management, Shangluo University, Shangluo, 726000 People’s Republic of China
| | - Danping Wang
- College of Healthy Management, Shangluo University, Shangluo, 726000 People’s Republic of China
| |
Collapse
|