1
|
Itagaki R, Nakada A, Suzuki H, Tomita O, Chang HC, Abe R. Phase-Migrating Z-Scheme Charge Transportation Enables Photoredox Catalysis Harnessing Water as an Electron Source. J Am Chem Soc 2025; 147:15567-15577. [PMID: 40252029 DOI: 10.1021/jacs.5c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Z-schematic photocatalytic reactions are of considerable interest because of their potential for application to reductive molecular conversions to value-added chemicals using water as an electron source. However, most demonstrations of Z-scheme photocatalysis have been limited to overall water splitting. In particular, it has been basically impossible to couple the reduction of "water-insoluble compounds" with water oxidation by conventional Z-scheme systems in aqueous solution. In this work, an unconventional Z-scheme electron transportation system with a "phase-migrating" redox mediator is constructed that enables photocatalytic conversion of water-insoluble compounds by using water as an electron/proton source. In a dichloroethane (DCE)/water biphasic solution, a molecular Ir(III) complex acts as a photoredox catalyst for the reductive coupling of benzyl bromide by using ferrocene (Fc) as an electron donor in the DCE phase. On the other side, an aqueous dispersion of a Bi4TaO8Cl semiconductor loaded with a (Fe,Ru)Ox cocatalyst photocatalyzed water oxidation using ferrocenium (Fc+) as an electron acceptor. Because the partition coefficients of Fc+/Fc are significantly different, the Fc+ and Fc generated by photoinduced electron transfer in each reaction could be selectively extracted to the opposite liquid phase. Spontaneous phase migration enables direction-selective electron transport across the organic/water interface that connects the reduction and oxidation reactions in the separated reaction phase. Eventually, photocatalytic reductive conversion of "water-insoluble" organic compounds using "water as the electron/proton source" was demonstrated through the step-by-step Z-scheme photocatalysis with the phase-migrating Fc+/Fc electron transportation.
Collapse
Affiliation(s)
- Ren Itagaki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akinobu Nakada
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hajime Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Osamu Tomita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ryu Abe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Yang G, Blechschmidt L, Zedler L, Zens C, Witas K, Schmidt M, Esser B, Rau S, Shillito GE, Dietzek-Ivanšić B, Kupfer S. Excited State Branching Processes in a Ru(II)-Based Donor-Acceptor-Donor System. Chemistry 2025:e202404671. [PMID: 40317779 DOI: 10.1002/chem.202404671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Excited state properties such as excitation energy, accessibility of the respective excited state either by direct or indirect population transfer, and its lifetime govern the application of these excited states in light-driven reactions, for example, photocatalysis using transition metal complexes. Compared with triplet metal-to-ligand charge transfer (3MLCT) states, charge-separated (3CS) excited states involving organic moieties, such as triplet intra-ligand or ligand-to-ligand charge transfer (3ILCT and 3LLCT) states, tend to possess longer-lived excited states due to the weak spin-orbit coupling with the closed-shell ground state. Thus, the combination of inorganic and organic chromophores enables isolating the triplet states onto the organic chromophore. In this study, we aim to elucidate the excited-state relaxation processes in a Ru(II)-terpyridyl donor-acceptor-donor system (RuCl) in a joint spectroscopic-theoretical approach combining steady-state and time-resolved spectroscopy as well as quantum chemical simulations and dissipative quantum dynamics. The electron transfer (ET) processes involving the low-lying 3MLCT, 3ILCT, and 3LLCT excited states were investigated experimentally and computationally within a semiclassical Marcus picture. Finally, dissipative quantum dynamical simulations-capable of describing incomplete ET processes involving all three states-enabled us to unravel the competitive relaxation channels at short and long timescales among the strongly coupled 3MLCT-3ILCT states and weakly coupled 3MLCT-3LLCT and 3ILCT-3LLCT states.
Collapse
Affiliation(s)
- Guangjun Yang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Louis Blechschmidt
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department Spectroscopy and Imaging - Work group Photophysics and Photochemistry of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Linda Zedler
- Department Spectroscopy and Imaging - Work group Photophysics and Photochemistry of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Clara Zens
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Kamil Witas
- Institute for Inorganic Chemistry 1, Ulm University, 89081, Ulm, Germany
| | - Maximilian Schmidt
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sven Rau
- Institute for Inorganic Chemistry 1, Ulm University, 89081, Ulm, Germany
| | - Georgina E Shillito
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department Spectroscopy and Imaging - Work group Photophysics and Photochemistry of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
3
|
Zhang JH, Ge ZM, Zhong DC, Zuo JL, Robert M, Lu TB. Self-Photosensitizing Cobalt Complexes for Photocatalytic CO 2 Reduction Coupled with CH 3OH Oxidation. Angew Chem Int Ed Engl 2025:e202506060. [PMID: 40235230 DOI: 10.1002/anie.202506060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
The use of metal complexes as homogeneous molecular catalysts has attracted considerable attention regarding photocatalytic CO2 reduction. Enhancing these complexes with photosensitivity and photooxidation capabilities, aiming to create multifunctional molecular devices, presents significant challenges. In response to these challenges, we successfully designed and synthesized three innovative metal complexes. The complexes demonstrate a remarkable ability to perform CO2 photoreduction in tandem with methanol photooxidation, allowing for the simultaneous production of formic acid without requiring additional photosensitizers and electron sacrificial reductants. An optimal turnover number (TON) value of 855 was obtained under simulated sunlight. Even under natural sunlight, the TON can reach 207, much higher than the value of the physical mixture of the photocatalytic reductive and oxidative moieties. Spectroscopic studies and density functional theory (DFT) calculations revealed that integrating reduction and oxidation sites in one molecular catalyst can promote charge transfer kinetics and enhance activity for CO2 reduction and methanol oxidation. This is the first report that non-noble metal homogeneous catalysts can simultaneously possess photosensitivity, photoreduction, and photo-oxidation functions, offering new insights into designing homogeneous catalysts for artificial photosynthesis.
Collapse
Affiliation(s)
- Ji-Hong Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| | - Zhao-Ming Ge
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jing-Lin Zuo
- School of Chemistry & Chemical Engineering, State Key Lab Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| | - Marc Robert
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, IPCM, Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, F-75005, France
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
4
|
Huber M, Kumar A, Hauer J, Thyrhaug E, Hess CR. Photoredox capacity expanded by the Cu site of CuFe-Mabiq. Chem Commun (Camb) 2025; 61:5731-5734. [PMID: 40035667 DOI: 10.1039/d4cc06104g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The monometallic Fe-Mabiq and bimetallic CuFe-Mabiq photoredox catalysts feature similar optical spectra and short excited-state lifetimes. Nevertheless, they exhibit markedly different photochemistry. Photoreduction proceeds significantly faster for the bimetallic complex, and uniquely generates the three-electron reduced form. These characteristics underpin the self-sensitized photocatalytic behaviour of the bimetallic complex.
Collapse
Affiliation(s)
- Matthias Huber
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany.
- TUM School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany.
| | - Ajeet Kumar
- TUM School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany.
| | - Jürgen Hauer
- TUM School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany.
| | - Erling Thyrhaug
- TUM School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany.
| | - Corinna R Hess
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany.
- TUM School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
5
|
Saccullo E, Patamia V, Bifarella A, Ferlazzo A, Fiorenza R, Spitaleri L, Sfuncia G, Nicotra G, Zagni C, Iapichino MTA, Gulino A, Floresta G, Rescifina A. Conversion of VOC-derived CO 2 into sustainable products with a natural magnetic alginate composite. Int J Biol Macromol 2025; 304:140695. [PMID: 39914552 DOI: 10.1016/j.ijbiomac.2025.140695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
In this study, we developed a sustainable nanocatalyst, AXFe, by functionalizing magnetite nanoparticles with an alginate-xanthine conjugate (AX). This hybrid material combines magnetite's adsorption and photocatalytic properties with the CO2 fixation capabilities of alginate and xanthine. AXFe exhibited exceptional performance in the photocatalytic mineralization of toluene under simulated solar irradiation, achieving a 61.5 % conversion to CO2. Furthermore, the catalyst facilitated efficient CO2 fixation into cyclic carbonates, achieving high yields under mild conditions (70 °C, 1 atm CO2). CO2 adsorption studies revealed enhanced capture efficiency due to the synergistic interaction between AX and magnetite. The material also demonstrated excellent reusability, enabling magnetic recovery and maintaining over 90 % catalytic activity for four cycles. This straightforward synthesis from natural substrates and its versatility in tackling VOCs and CO2 highlight AXFe as a promising tool for sustainable pollution mitigation and resource recovery. This dual-functionality catalysis significantly enhances the overall process efficiency while adhering to the core principles of green chemistry. By combining environmental sustainability with high performance, AXFe emerges as an up-and-coming candidate for mitigating environmental pollution through innovative and sustainable solutions.
Collapse
Affiliation(s)
- Erika Saccullo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Alessandra Bifarella
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Angelo Ferlazzo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Roberto Fiorenza
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Luca Spitaleri
- STMicroelectronics Stradale Primosole, 50, 95121, Catania, Italy
| | - Gianfranco Sfuncia
- Institute for Microelectronics and Microsystems CNR-IMM, Zona Industriale Strada VIII, 5, 95121 Catania, Italy
| | - Giuseppe Nicotra
- Institute for Microelectronics and Microsystems CNR-IMM, Zona Industriale Strada VIII, 5, 95121 Catania, Italy
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | - Antonino Gulino
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
6
|
Koizumi H, Tamaki Y, Kamogawa K, Nicaso M, Suzuki Y, Yamazaki Y, Takeda H, Ishitani O. Development of a Highly Durable Photocatalytic CO 2 Reduction Using a Mn-Complex Catalyst: Application of Selective Photosplitting of a Mn(0)-Mn(0) Bond. J Am Chem Soc 2025; 147:6236-6248. [PMID: 39925236 PMCID: PMC11848913 DOI: 10.1021/jacs.4c18366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
fac-[MnI(diimine)(CO)3(L)]0/+ has attracted significant attention as a catalyst for the photocatalytic reduction of CO2. However, in such photocatalytic systems, the photoexcitation of Mn complexes and reaction intermediates induces their decomposition, which lowers the durability of these systems. In this study, we clarified the primary process whereby the Mn complex catalyst decomposes during the photocatalytic reaction. Based thereupon, we successfully constructed a highly durable photocatalytic system, of which the turnover number of formate (TONHCOO-) exceeded 1700 when fac-[MnI(bpy)(CO)3((OC(O)OC2H5N(C2H5OH)2) (Mn-CO2-TEOA) as the catalyst, [OsII(4,4'-dimethyl-bpy)(5,5'-dimethyl-bpy)2]2+ (Os) as the photosensitizer, and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as the reductant were used in conjunction with irradiation at λex ≥ 620 nm. In contrast, for the same photocatalytic system, irradiation at λex ≥ 480 nm lowered the TONHCOO- to less than 60. The significant difference in the durability of the photocatalytic system arises from the dependence of the Mn(0)-Mn(0) dimer [Mn02(bpy)2(CO)6] (Dim-Mn), an intermediate produced during the photocatalytic reaction, on the wavelength of the irradiated light for its photoreactivity. That is, the irradiation of Dim-Mn at λex ≥ 620 nm selectively induces splitting of the Mn-Mn bond to produce [Mn0(bpy)(CO)3] (Mn•) and, contrary to this, splitting of the Mn(0)-CO bonds and further decomposition processes are induced by irradiation at λex ≥ 480 nm.
Collapse
Affiliation(s)
- Hiroki Koizumi
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yusuke Tamaki
- National
Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake,
Miyagino, Sendai, Miyagi 983-8551, Japan
| | - Kei Kamogawa
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, O-okayama 2-12-1-NE-1, Meguro, Tokyo 152-8550, Japan
| | - Marco Nicaso
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, O-okayama 2-12-1-NE-1, Meguro, Tokyo 152-8550, Japan
| | - Yutaka Suzuki
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, O-okayama 2-12-1-NE-1, Meguro, Tokyo 152-8550, Japan
| | - Yasuomi Yamazaki
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Hiroyuki Takeda
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Osamu Ishitani
- Department
of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
7
|
Choroba K, Palion-Gazda J, Kryczka A, Malicka E, Machura B. Push-pull effect - how to effectively control photoinduced intramolecular charge transfer processes in rhenium(I) chromophores with ligands of D-A or D-π-A structure. Dalton Trans 2025; 54:2209-2223. [PMID: 39801429 DOI: 10.1039/d4dt03237c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands. Such compounds can be treated as bichromophoric systems with two close-lying excited states, metal-to-ligand charge transfer (MLCT) and intraligand-charge-transfer (ILCT). A role of ILCT transitions in controlling photobehaviour was discussed for Re(I) tricarbonyls with six different diimine cores decorated by various electron-rich amine, sulphur-based and π-conjugated aryl groups. It was evidenced that this approach is an effective tool for enhancement of the visible absorptivity, bathochromic emission shift and significant prolongation of the excited-state, opening up new possibilities in the development of more efficient materials and expand the range of their applications.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Joanna Palion-Gazda
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Anna Kryczka
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Ewa Malicka
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
8
|
Kitagawa Y, Tomikawa T, Aikawa K, Miyazaki S, Akama T, Kobayashi M, Wang M, Shoji S, Fushimi K, Miyata K, Hirai Y, Nakanishi T, Onda K, Taketsugu T, Hasegawa Y. Charge transfer emission between π- and 4f-orbitals in a trivalent europium complex. Commun Chem 2025; 8:24. [PMID: 39875727 PMCID: PMC11775200 DOI: 10.1038/s42004-025-01420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Photoinduced metal-to-ligand (or ligand-to-metal) charge-transfer (CT) states in metal complexes have been extensively studied toward the development of luminescent materials. However, previous studies have mainly focused on CT transitions between d- and π-orbitals. Herein, we report the demonstration of CT emission from 4f- to π-orbitals using a trivalent europium (Eu(III)) complex, supported by both experimental and theoretical analyses. The Eu(III) complex exhibits an eight-coordination structure, comprising three anionic nitrates and two neutral electron-donating ligands containing a carbazole unit. The diffuse reflectance spectrum of the complex displays an absorption band at 440 nm and time-resolved emission analyses reveal a characteristic emission band at 550 nm. Comparative studies employing a trivalent gadolinium (Gd(III)) complex, alongside quantum chemical analyses, confirm that the observed absorption and emission bands are associated with CT transitions between π- and 4f-orbitals. The observation of CT emission based on the 4f-orbital offers novel insights into the field of molecular luminescence science and technology.
Collapse
Affiliation(s)
- Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| | - Toranosuke Tomikawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Sapporo, Hokkaido, 060-8628, Japan
| | - Kota Aikawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Sapporo, Hokkaido, 060-8628, Japan
| | - Shiori Miyazaki
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 829-0395, Japan
| | - Tomoko Akama
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Masato Kobayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Sunao Shoji
- Faculty of Engineering, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Kiyoshi Miyata
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 829-0395, Japan
| | - Yuichi Hirai
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takayuki Nakanishi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ken Onda
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 829-0395, Japan
| | - Tetsuya Taketsugu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| |
Collapse
|
9
|
Xiao Y, Zhang HT, Zhang MT. Heterobimetallic NiFe Complex for Photocatalytic CO 2 Reduction: United Efforts of NiFe Dual Sites. J Am Chem Soc 2024; 146:28832-28844. [PMID: 39378398 DOI: 10.1021/jacs.4c08510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Catalytic CO2 reduction poses a significant challenge for the conversion of CO2 into chemicals and fuels. Ni-Fe carbon monoxide dehydrogenase ([NiFe]-CODH) effectively mediates the reversible conversion of CO2 and CO at a nearly thermodynamic equilibrium potential, highlighting the heterobimetallic cooperation for the design of CO2 reduction catalysts. However, numerous NiFe biomimetic model complexes have realized little success in CO2 reduction catalysis, which underscores the crucial role of precise bimetallic configuration and functionality. Herein, we presented a heterobimetallic NiFe complex for the photocatalytic reduction of CO2 to CO, demonstrating significantly enhanced catalytic performance compared to the homonuclear NiNi catalyst. Photocatalytic and mechanistic investigations revealed that with the assistance of a redox-active phenanthroline ligand, NiFe achieves dual-site activation of CO2 through a pivotal intermediate, NiII(μ-CO22--κC:κO)FeII, where the Lewis acidity of the FeII site plays an important role, as corroborated in the homonuclear FeFe system. This study introduces the first heteronuclear NiFe molecular catalyst capable of efficiently catalyzing the reduction of CO2 to CO, deepening insights into heterobimetallic cooperation and offering a novel strategy for designing highly active and selective CO2 reduction catalysts.
Collapse
Affiliation(s)
- Yao Xiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Kuramochi Y, Kamiya M, Ishida H. Exploring the Impact of Water Content in Solvent Systems on Photochemical CO 2 Reduction Catalyzed by Ruthenium Complexes. Molecules 2024; 29:4960. [PMID: 39459328 PMCID: PMC11510497 DOI: 10.3390/molecules29204960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
To achieve artificial photosynthesis, it is crucial to develop a catalytic system for CO2 reduction using water as the electron source. However, photochemical CO2 reduction by homogeneous molecular catalysts has predominantly been conducted in organic solvents. This study investigates the impact of water content on catalytic activity in photochemical CO2 reduction in N,N-dimethylacetamide (DMA), using [Ru(bpy)3]2+ (bpy: 2,2'-bipyridine) as a photosensitizer, 1-benzyl-1,4-dihydronicotinamide (BNAH) as an electron donor, and two ruthenium diimine carbonyl complexes, [Ru(bpy)2(CO)2]2+ and trans(Cl)-[Ru(Ac-5Bpy-NHMe)(CO)2Cl2] (5Bpy: 5'-amino-2,2'-bipyridine-5-carboxylic acid), as catalysts. Increasing water content significantly decreased CO and formic acid production. The similar rates of decrease for both catalysts suggest that water primarily affects the formation efficiency of free one-electron-reduced [Ru(bpy)3]2+, rather than the intrinsic catalytic activity. The reduction in cage-escape efficiency with higher water content underscores the challenges in replacing organic solvents with water in photochemical CO2 reduction.
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguroku, Tokyo 153-8505, Japan
- Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
| | - Masaya Kamiya
- Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
| | - Hitoshi Ishida
- Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita 564-8680, Osaka, Japan
| |
Collapse
|
11
|
McQueen E, Sakakibara N, Kamogawa K, Zwijnenburg MA, Tamaki Y, Ishitani O, Sprick RS. Visible-light-responsive hybrid photocatalysts for quantitative conversion of CO 2 to highly concentrated formate solutions. Chem Sci 2024:d4sc05289g. [PMID: 39416289 PMCID: PMC11474659 DOI: 10.1039/d4sc05289g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Photocatalysts can use visible light to convert CO2 into useful products. However, to date photocatalysts for CO2 conversion are limited by insufficient long-term stability and low CO2 conversion rates. Here we report hybrid photocatalysts consisting of conjugated polymers and a ruthenium(ii)-ruthenium(ii) supramolecular photocatalyst which overcome these challenges. The use of conjugated polymers allows for easy fine-tuning of structural and optoelectronic properties through the choice of monomers, and after loading with silver nanoparticles and the ruthenium-based binuclear metal complex, the resulting hybrid systems displayed remarkably enhanced activity for visible light-driven CO2 conversion to formate. In particular, the hybrid photocatalyst system based on poly(dibenzo[b,d]thiophene sulfone) drove the very active, durable and selective photocatalytic CO2 conversion to formate under visible light irradiation. The turnover number was found to be very high (TON = 349 000) with a similarly high turnover frequency (TOF) of 6.5 s-1, exceeding the CO2 fixation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in natural photosynthesis (TOF = 3.3 s-1), and an apparent quantum yield of 11.2% at 440 nm. Remarkably, quantitative conversion of CO2 (737 μmol, 16.5 mL) to formate was achieved using only 8 mg of the hybrid photocatalyst containing 80 nmol of the supramolecular photocatalyst at standard temperature and pressure. The system sustained photocatalytic activity even after further replenishment of CO2, yielding a very high concentration of formate in the reaction solution up to 0.40 M without significant photocatalyst degradation within the timeframe studied. A range of experiments together with density functional theory calculations allowed us to understand the activity in more detail.
Collapse
Affiliation(s)
- Ewan McQueen
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
| | - Noritaka Sakakibara
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro Tokyo 152-8550 Japan
| | - Kei Kamogawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro Tokyo 152-8550 Japan
| | - Martijn A Zwijnenburg
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Yusuke Tamaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro Tokyo 152-8550 Japan
| | - Osamu Ishitani
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739 8526 Japan
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
12
|
Ning J, Chen W, Niu Q, Li L, Yu Y. Charge Transport Approaches in Photocatalytic Supramolecular Systems Composing of Semiconductor and Molecular Metal Complex for CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202301963. [PMID: 38703125 DOI: 10.1002/cssc.202301963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
The design of photocatalytic supramolecular systems composing of semiconductors and molecular metal complexes for CO2 reduction has attracted increasing attention. The supramolecular system combines the structural merits of semiconductors and metal complexes, where the semiconductor harvests light and undertakes the oxidative site, while the metal complex provides activity for CO2 reduction. The intermolecular charge transfer plays crucial role in ensuring photocatalytic performance. Here, we review the progress of photocatalytic supramolecular systems in reduction of CO2 and highlight the interfacial charge transfer pathways, as well as their state-of-the-art characterization methods. The remaining challenges and prospects for further design of supramolecular photocatalysts are also presented.
Collapse
Affiliation(s)
- Jiangqi Ning
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wei Chen
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qing Niu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Liuyi Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
13
|
Bento MA, Bandeira NAG, Miras HN, Moro AJ, Lima JC, Realista S, Gleeson M, Devid EJ, Brandão P, Rocha J, Martinho PN. Solar Light CO 2 Photoreduction Enhancement by Mononuclear Rhenium(I) Complexes: Characterization and Mechanistic Insights. Inorg Chem 2024; 63:18211-18222. [PMID: 39270003 DOI: 10.1021/acs.inorgchem.4c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The catalytic efficacy of a novel mononuclear rhenium(I) complex in CO2 reduction is remarkable, with a turnover number (TONCO) of 1517 in 3 h, significantly outperforming previous Re(I) catalysts. This complex, synthesized via a substitution reaction on an aromatic ring to form a bromo-bipyridine derivative, L1 = 2-bromo-6-(1H-pyrazol-1-yl)pyridine, and further reacting with [Re(CO)5Cl], results in the facial-tricarbonyl complex [ReL1(CO)3Cl] (1). The light green solid was obtained with an 80% yield and thoroughly characterized using cyclic voltammetry, nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy. Cyclic voltammetry under CO2 atmosphere revealed three distinct redox processes, suggesting the formation of new electroactive compounds. The studies on photoreduction highlighted the ability of the catalyst to reduce CO2, while NMR, FTIR, and electrospray ionization (ESI) mass spectrometry provided insights into the mechanism, revealing the formation of solvent-coordinated complexes and new species under varying conditions. Additionally, computational studies (DFT) were undertaken to better understand the electronic structure and reactivity patterns of 1, focusing on the role of the ligand, the spectroscopic features, and the redox behavior. This comprehensive approach provides insights into the intricate dynamics of CO2 photoreduction, showcasing the potential of Re(I) complexes in catalysis.
Collapse
Affiliation(s)
- Marcos A Bento
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Nuno A G Bandeira
- Biosystems and Integrative Sciences Institute (BioISI), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 8.5.53─C8 Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Artur J Moro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Sciences and Technology (NOVA-FCT), 2829-516 Caparica, Portugal
| | - João Carlos Lima
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Sciences and Technology (NOVA-FCT), 2829-516 Caparica, Portugal
| | - Sara Realista
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Michael Gleeson
- Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Edwin J Devid
- Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - João Rocha
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Paulo N Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
14
|
Sun GQ, Liao LL, Ran CK, Ye JH, Yu DG. Recent Advances in Electrochemical Carboxylation with CO 2. Acc Chem Res 2024; 57:2728-2745. [PMID: 39226463 DOI: 10.1021/acs.accounts.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ConspectusCarbon dioxide (CO2) is recognized as a greenhouse gas and a common waste product. Simultaneously, it serves as an advantageous and commercially available C1 building block to generate valuable chemicals. Particularly, carboxylation with CO2 is considered a significant method for the direct and sustainable production of important carboxylic acids. However, the utilization of CO2 is challenging owing to its thermodynamic stability and kinetic inertness. Recently, organic electrosynthesis has emerged as a promising approach that utilizes electrons or holes as environmentally friendly redox reagents to produce reactive intermediates in a controlled and selective manner. This technique holds great potential for the CO2 utilization.Since 2015, our group has been dedicated to exploring the utilization of CO2 in organic synthesis with a particular focus on electrochemical carboxylation. Despite the significant advancements made in this area, there are still many challenges, including the activation of inert substrates, regulation of selectivity, diversity in electrolysis modes, and activation strategies. Over the past 7 years, our team, with many great experts, has presented findings on electrochemical carboxylation with CO2 under mild conditions. In this context, we primarily highlight our contributions to selective electrocarboxylations, encompassing new reaction systems, selectivity control methods, and activation approaches.We commenced our research by establishing a Ni-catalyzed electrochemical carboxylation of unactivated aryl halides and alkyl bromides in conjunction with a useful paired anodic reaction. This approach eliminates the need for sacrificial anodes, rendering the carboxylation process sustainable. To further utilize the widely existing yet cost-effective alkyl chlorides, we have developed a deep electroreductive system to achieve carboxylation of unactivated alkyl chlorides and poly(vinyl chloride), allowing the direct modification and upgrading of waste polymers.Through precise adjustment of the electroreductive conditions, we successfully demonstrated the dicarboxylation of both strained carbocycles and acyclic polyarylethanes with CO2 via C-C bond cleavage. Furthermore, we have realized the dicarboxylative cyclization of unactivated skipped dienes to produce the valuable ring-tethered adipic acids through single-electron reduction of CO2 to the CO2 radical anion (CO2•-). In terms of the asymmetric carboxylation, Guo's and our groups have recently achieved the nickel-catalyzed enantioselective electroreductive carboxylation reaction using racemic propargylic carbonates and CO2, paving the way for the synthesis of enantioenriched propargylic carboxylic acids.In addition to the aforementioned advancements, Lin's and our groups have also developed new electrolysis modes to achieve regiodivergent C-H carboxylation of N-heteroarenes dictated by electrochemical reactors. The choice of reactors plays a crucial role in determining whether the hydrogen atom transfer (HAT) reagents are formed anodically, consequently influencing the carboxylation pathways of N-heteroarene radical anions in the distinct electrolyzed environments.
Collapse
Affiliation(s)
- Guo-Quan Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
15
|
Jia G, Zhang Y, Yu JC, Guo Z. Asymmetric Atomic Dual-Sites for Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403153. [PMID: 39039977 DOI: 10.1002/adma.202403153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yingchuan Zhang
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
16
|
Eisele L, Hulaj B, Podsednik M, Laudani F, Ayala P, Cherevan A, Foelske A, Limbeck A, Eder D, Bica-Schröder K. Polymerized ionic liquid Co-catalysts driving photocatalytic CO 2 transformation. RSC SUSTAINABILITY 2024; 2:2524-2531. [PMID: 39211507 PMCID: PMC11353680 DOI: 10.1039/d4su00194j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Photocatalytic production of CO from CO2 has the potential for safe and atom-economic production of feedstock chemicals via in situ carbonylation chemistry. We developed novel ionic liquid-based polymeric materials through radical copolymerisation of 1-butyl-3-vinylimidazolium chloride and photocatalytically active Re- and Ru-complexes that serve as the CO2 reduction catalyst and photosensitiser, respectively. The crosslinked polymeric framework allows for the facile immobilisation of molecular organometallic complexes for use as heterogenised catalysts; moreover, the involved imidazolium core units co-catalyze the reduction of CO2 via covalent interaction. The ratio of sensitiser and catalyst was analysed by laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) and set in relation to results from photocatalytic experiments. Ultimately, the heterogenous polymeric framework showed high selectivity for CO formation on photocatalytic CO2 reduction with improved stability to the corresponding homogenous system.
Collapse
Affiliation(s)
- Lisa Eisele
- Institute of Applied and Synthetic Chemistry, TU Wien Getreidemark 9/163 1060 Wien Austria
| | - Bletë Hulaj
- Institute of Applied and Synthetic Chemistry, TU Wien Getreidemark 9/163 1060 Wien Austria
| | - Maximilian Podsednik
- KAI Kompetenzzentrum Automobil- und Industrieelektronik GmbH Argentinierstraße 8 1040 Wien Austria
| | - Francesco Laudani
- Analytical Instrumentation Center, TU Wien Lehargasse 6/Objekt 10 1060 Wien Austria
| | - Pablo Ayala
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/165 1060 Wien Austria
| | - Alexey Cherevan
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/165 1060 Wien Austria
| | - Annette Foelske
- Analytical Instrumentation Center, TU Wien Lehargasse 6/Objekt 10 1060 Wien Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9/164 1060 Wien Austria
| | - Dominik Eder
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/165 1060 Wien Austria
| | | |
Collapse
|
17
|
Ishizuka T, Kojima T. Oxidative and Reductive Manipulation of C1 Resources by Bio-Inspired Molecular Catalysts to Produce Value-Added Chemicals. Acc Chem Res 2024; 57:2437-2447. [PMID: 39116211 DOI: 10.1021/acs.accounts.4c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
ConspectusTo tackle the energy and environmental concerns the world faces, much attention is given to catalytic reactions converting methane (CH4) and carbon dioxide (CO2) as abundant C1 resources into value-added chemicals with high efficiency and selectivity. In the oxidative conversion of CH4 to methanol, it is necessary to solve the requirement of strong oxidants due to the large bond-dissociation energy (BDE) of the C-H bonds in methane and achieve suppression of overoxidation due to the smaller BDE of the C-H bond in methanol as the product. On the other hand, to efficiently perform CO2 reduction, proton-coupled electron transfer (PCET) processes are required since the reduction potential of CO2 becomes positive by using proton-coupled processes; however, under the acidic conditions required for PCET, hydrogen evolution by the reduction of protons becomes competitive with CO2 reduction. Thus, it is indispensable to develop efficient catalysts for selective CO2 reduction. Recently, we have developed efficient catalytic reactions toward the alleviation of the concerns mentioned above. Concerning CH4 oxidation, inspired by metalloenzymes that oxidize hydrophobic organic substrates, a hydrophobic second coordination sphere (SCS) was introduced to an FeII complex bearing a pentadentate N-heterocyclic carbene ligand, and the FeII complex was used as a catalyst for CH4 oxidation in aqueous media. Consequently, CH4 was efficiently and selectively oxidized to methanol with 83% selectivity and a turnover number of 500. In contrast, when methanol was used as a substrate for catalytic oxidation by the FeII complex, oxidation products were obtained in a negligible yield, which was comparable to that of the control experiment without the catalyst. Therefore, the hydrophobic SCS of the FeII complex can capture only hydrophobic substrates such as CH4 and release hydrophilic products such as methanol to the aqueous medium for suppressing overoxidation ("catch-and-release" mechanism). On the other hand, for photocatalytic CO2 reduction, we have developed NiII complexes with N2S2-chelating ligands as catalysts, which have been inspired by carbon monoxide dehydrogenase, and have also introduced a binding site of Lewis-acidic metal ions to the SCS of the Ni complex. When Mg2+ was applied as a moderate Lewis acid, a Mg2+-bound Ni catalyst allowed us to achieve remarkable enhancement of the photocatalytic CO2 reduction to afford CO as the product with over 99% selectivity and a quantum yield of 11.4%. Divalent metal ions besides Mg2+ also showed similar positive impacts on photocatalytic CO2 reduction, whereas monovalent metal ions exhibited almost no effects and trivalent metal ions exclusively promoted hydrogen evolution. In this Account, we highlight our recent progress in the catalytic manipulations of CH4 and CO2 as C1 resources.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
18
|
Bruschi C, Gui X, Rauthe P, Fuhr O, Unterreiner AN, Klopper W, Bizzarri C. Dual Role of a Novel Heteroleptic Cu(I) Complex in Visible-Light-Driven CO 2 Reduction. Chemistry 2024; 30:e202400765. [PMID: 38742808 DOI: 10.1002/chem.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
A novel mononuclear Cu(I) complex was synthesized via coordination with a benzoquinoxalin-2'-one-1,2,3-triazole chelating diimine and the bis[(2-diphenylphosphino)phenyl] ether (DPEPhos), to target a new and efficient photosensitizer for photocatalytic CO2 reduction. The Cu(I) complex absorbs in the blue-green region of the visible spectrum, with a broad band having a maximum at 475 nm (ϵ =4500 M-1 cm-1), which is assigned to the metal-to-ligand charge transfer (MLCT) transition from the Cu(I) to the benzoquinoxalin-2'-one moiety of the diimine. Surprisingly, photo-driven experiments for the CO2 reduction showed that this complex can undergo a photoinduced electron transfer with a sacrificial electron donor and accumulate electrons on the diimine backbone. Photo-driven experiments in a CO2 atmosphere revealed that this complex can not only act as a photosensitizer, when combined with an Fe(III)-porphyrin, but can also selectively produce CO from CO2. Thus, owing to its charge-accumulation properties, the non-innocent benzoquinoxalin-2-one based ligand enabled the development of the first copper(I)-based photocatalyst for CO2 reduction.
Collapse
Affiliation(s)
- Cecilia Bruschi
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Xin Gui
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Pascal Rauthe
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology., Kaiserstraße 12, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology., Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
19
|
Ma F, Luo ZM, Wang JW, Ouyang G. Highly Efficient, Noble-Metal-Free, Fully Aqueous CO 2 Photoreduction Sensitized by a Robust Organic Dye. J Am Chem Soc 2024; 146:17773-17783. [PMID: 38888951 DOI: 10.1021/jacs.4c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The development of efficient, selective, and durable CO2 photoreduction systems presents a long-standing challenge in full aqueous solutions owing to the presence of scarce CO2 and the fierce competition against H2 evolution, which is even more challenging when noble metals are not utilized. Herein, we present the facile decorations of four phosphonic acid groups on a donor-acceptor-type organic dye to obtain a water-soluble photosensitizer (4P-DPAIPN), which succeeds the excellent photophysical and photoredox properties of its prototype, exhibiting long-lived delayed fluorescence (>10 μs) in aqueous solutions. Combining 4P-DPAIPN with a cationic cobalt porphyrin catalyst has accomplished record-high apparent quantum yields of 9.4-17.4% at 450 nm for CO2-to-CO photoconversion among the precedented systems (maximum 13%) in fully aqueous solutions. Remarkable selectivity of 82-93% and turnover number of 2700 for CO production can also be achieved with this noble-metal-free system, outperforming a benchmarking ruthenium photosensitizer and a commercial organic dye under parallel conditions. Such high performances of 4P-DPAIPN can be well maintained under real sunlight. More impressively, no significant decomposition of 4P-DPAIPN was detected during the long-term photocatalysis. Eventually, the photoinduced electron transfer pathways were proposed.
Collapse
Affiliation(s)
- Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhi-Mei Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
20
|
Lee D, Molani F, Choe MS, Lee HS, Wee KR, Hwang S, Kim CH, Cho AE, Son HJ. Photocatalytic Conversion of CO 2 to Formate/CO by an (η 6- para-Cymene)Ru(II) Half-Metallocene Catalyst: Influence of Additives and TiO 2 Immobilization on the Catalytic Mechanism and Product Selectivity. Inorg Chem 2024; 63:11506-11522. [PMID: 38856726 DOI: 10.1021/acs.inorgchem.3c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The catalytic efficacy of the monobipyridyl (η6-para-Cymene)Ru(II) half-metallocene, [(p-Cym)Ru(bpy)Cl]+ was evaluated in both mixed homogeneous (dye + catalyst) and heterogeneous hybrid systems (dye/TiO2/Catalyst) for photochemical CO2 reduction. A series of homogeneous photolysis experiments revealed that the (p-Cym)Ru(II) catalyst engages in two competitive routes for CO2 reduction (CO2 to formate conversion via RuII-hydride vs CO2 to CO conversion through a RuII-COOH intermediate). The conversion activity and product selectivity were notably impacted by the pKa value and the concentration of the proton source added. When a more acidic TEOA additive was introduced, the half-metallocene Ru(II) catalyst leaned toward producing formate through the RuII-H mechanism, with a formate selectivity of 86%. On the other hand, in homogeneous catalysis with TFE additive, the CO2-to-formate conversion through RuII-H was less effective, yielding a more efficient CO2-to-CO conversion with a selectivity of >80% (TONformate of 140 and TONCO of 626 over 48 h). The preference between the two pathways was elucidated through an electrochemical mechanistic study, monitoring the fate of the metal-hydride intermediate. Compared to the homogeneous system, the TiO2-heterogenized (p-Cym)Ru(II) catalyst demonstrated enhanced and enduring performance, attaining TONs of 1000 for CO2-to-CO and 665 for CO2-to-formate.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Farzad Molani
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Kyung-Ryang Wee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Seongpil Hwang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
21
|
Zhang J, She P, Xu Q, Tian F, Rao H, Qin JS, Bonin J, Robert M. Efficient Visible-Light-Driven Carbon Dioxide Reduction using a Bioinspired Nickel Molecular Catalyst. CHEMSUSCHEM 2024; 17:e202301892. [PMID: 38324459 DOI: 10.1002/cssc.202301892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Inspired by natural enzymes, this study presents a nickel-based molecular catalyst, [Ni‖(N2S2)]Cl2 (NiN2S2, N2S2=2,11-dithia[3,3](2,6)pyridinophane), for the photochemical catalytic reduction of CO2 under visible light. The catalyst was synthesized and characterized using various techniques, including liquid chromatography-high resolution mass spectrometry (LC-HRMS), UV-Visible spectroscopy, and X-ray crystallography. The crystallographic analysis revealed a slightly distorted octahedral coordination geometry with a mononuclear Ni2+ cation, two nitrogen atoms and two sulfur atoms. Photocatalytic CO2 reduction experiments were performed in homogeneous conditions using the catalyst in combination with [Ru(bpy)3]Cl2 (bpy=2,2'-bipyridine) as a photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as a sacrificial electron donor. The catalyst achieved a high selectivity of 89 % towards CO and a remarkable turnover number (TON) of 7991 during 8 h of visible light irradiation under CO2 in the presence of phenol as a co-substrate. The turnover frequency (TOF) in the initial 6 h was 1079 h-1, with an apparent quantum yield (AQY) of 1.08 %. Controlled experiments confirmed the dependency on the catalyst, light, and sacrificial electron donor for the CO2 reduction process. These findings demonstrate this bioinspired nickel molecular catalyst could be effective for fast and efficient photochemical catalytic reduction of CO2 to CO.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qiang Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Fengkun Tian
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Julien Bonin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013, Paris, France
| | - Marc Robert
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013, Paris, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| |
Collapse
|
22
|
Cui X, Wang X, Zhao L, Wang J, Kong T, Xiong Y. Bridging molecular photosensitizer and catalyst on carbon nanotubes toward enhanced selectivity and durability for CO 2 photoreduction. J Environ Sci (China) 2024; 140:157-164. [PMID: 38331497 DOI: 10.1016/j.jes.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 02/10/2024]
Abstract
Homogenous molecular photocatalysts for CO2 reduction, especially metal complex-based photosensitizer‒catalyst assemblages, have been attracting extensive research interests due to their efficiency and customizability. However, their low durability and recyclability limit practical applications. In this work, we immobilized the catalysts of metal terpyridyl complexes and the photosensitizer of [Ru(bpy)3]Cl2 onto the surface of carbon nanotubes through covalent bonds and electrostatic interactions, respectively, transforming the homogeneous system into a heterogeneous one. Our characterizations prove that these metal complexes are well dispersed on CNTs with a high loading (ca. 12 wt.%). Photocatalytic measurements reveal that catalytic activity is remarkably enhanced when the molecular catalysts are anchored, which is three times higher than that of homogeneous molecular catalysts. Moreover, when the photosensitizer of [Ru(bpy)3]Cl2 is immobilized, the side reaction of hydrogen evolution is completely suppressed and the selectivity for CO production reaches 100%, with its durability also significantly improved. This work provides an effective pathway for constructing heterogeneous photocatalysts based on rational assembly of efficient molecular photosensitizers and catalysts.
Collapse
Affiliation(s)
- Xiaofeng Cui
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Xueting Wang
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijun Zhao
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Jixin Wang
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Tingting Kong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Yujie Xiong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
23
|
Guo S, Zeng FG, Li XD, Chen KK, Wang P, Lu TB, Zhang ZM. Earth-abundant Zn-dipyrrin chromophores for efficient CO 2 photoreduction. Natl Sci Rev 2024; 11:nwae130. [PMID: 38741716 PMCID: PMC11089819 DOI: 10.1093/nsr/nwae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
The development of strong sensitizing and Earth-abundant antenna molecules is highly desirable for CO2 reduction through artificial photosynthesis. Herein, a library of Zn-dipyrrin complexes (Z-1-Z-6) are rationally designed via precisely controlling their molecular configuration to optimize strong sensitizing Earth-abundant photosensitizers. Upon visible-light excitation, their special geometry enables intramolecular charge transfer to induce a charge-transfer state, which was first demonstrated to accept electrons from electron donors. The resulting long-lived reduced photosensitizer was confirmed to trigger consecutive intermolecular electron transfers for boosting CO2-to-CO conversion. Remarkably, the Earth-abundant catalytic system with Z-6 and Fe-catalyst exhibits outstanding performance with a turnover number of >20 000 and 29.7% quantum yield, representing excellent catalytic performance among the molecular catalytic systems and highly superior to that of noble-metal photosensitizer Ir(ppy)2(bpy)+ under similar conditions. Experimental and theoretical investigations comprehensively unveil the structure-activity relationship, opening up a new horizon for the development of Earth-abundant strong sensitizing chromophores for boosting artificial photosynthesis.
Collapse
Affiliation(s)
- Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Fu-Gui Zeng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiao-Di Li
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kai-Kai Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ping Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
24
|
Kamada K, Jung J, Yamada C, Wakabayashi T, Sekizawa K, Sato S, Morikawa T, Fukuzumi S, Saito S. Photocatalytic CO 2 Reduction Using an Osmium Complex as a Panchromatic Self-Photosensitized Catalyst: Utilization of Blue, Green, and Red Light. Angew Chem Int Ed Engl 2024; 63:e202403886. [PMID: 38545689 DOI: 10.1002/anie.202403886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 04/24/2024]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) represents an attractive approach for solar-energy storage and leads to the production of renewable fuels and valuable chemicals. Although some osmium (Os) photosensitizers absorb long wavelengths in the visible-light region, a self-photosensitized, mononuclear Os catalyst for red-light-driven CO2 reduction has not yet been exploited. Here, we discovered that the introduction of an Os metal to a PNNP-type tetradentate ligand resulted in the absorption of light with longer-wavelength (350-700 nm) and that can be applied to a panchromatic self-photosensitized catalyst for CO2 reduction to give mainly carbon monoxide (CO) with a total turnover number (TON) of 625 under photoirradiation (λ≥400 nm). CO2 photoreduction also proceeded under irradiation with blue (λ0=405 nm), green (λ0=525 nm), or red (λ0=630 nm) light to give CO with >90 % selectivity. The quantum efficiency using red light was determined to be 12 % for the generation of CO. A catalytic mechanism is proposed based on the detection of intermediates using various spectroscopic techniques, including transient absorption, electron paramagnetic resonance, and UV/Vis spectroscopy.
Collapse
Affiliation(s)
- Kenji Kamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Chihiro Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Keita Sekizawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunsuke Sato
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Takeshi Morikawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunichi Fukuzumi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennoudai, 305-8571, Tsukuba, Ibaraki, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| |
Collapse
|
25
|
Yang S, Morita Y, Nakamura Y, Iwasawa N, Takaya J. Tuning Photoredox Catalysis of Ruthenium with Palladium: Synthesis of Heterobimetallic Ru-Pd Complexes That Enable Efficient Photochemical Reduction of CO 2. J Am Chem Soc 2024; 146:12288-12293. [PMID: 38651835 DOI: 10.1021/jacs.3c14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
New Ru-Pd heterobimetallic complexes were synthesized and structurally characterized utilizing 6,6″-bis(phosphino)-2,2':6',2″-terpyridine as a scaffold for the metal-metal bond. The dicationic Ru-Pd complex was found to exhibit high catalytic activity as a photocatalyst for photochemical reduction of CO2 to CO under visible light irradiation. This study established a new design of transition metal catalysts that tune photoredox catalysis with metalloligands.
Collapse
Affiliation(s)
- Siteng Yang
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yuto Morita
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yuta Nakamura
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Jun Takaya
- Division of Chemistry, Department of Material Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
26
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
27
|
Patra S, Atta S, Ghosh S, Majumdar A, Dey A. Kinetic isotope effect offers selectivity in CO 2 reduction. Chem Commun (Camb) 2024; 60:4826-4829. [PMID: 38618750 DOI: 10.1039/d3cc06336d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A binuclear Ni complex with N,O donors catalyzes CO2 reduction via its Ni(I) state. The product distribution when H2O is used as a proton source shows similar yields for CO, HCOOH and H2. However, when D2O is used, the product distribution shows a ∼65% selectivity for HCOOH. In situ FTIR indicates that the reaction involves a Ni-COO* and a Ni-CO intermediate. Differences in H/D KIEs on different protonation pathways determine the selectivity of CO2 reduction.
Collapse
Affiliation(s)
- Suman Patra
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B, Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Sayan Atta
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B, Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Soumili Ghosh
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B, Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Amit Majumdar
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B, Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Abhishek Dey
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B, Raja SC Mullick Road, Kolkata, WB 700032, India.
| |
Collapse
|
28
|
Takeda H, Irimajiri M, Mizutani T, Nozawa S, Matsuura Y, Kurosu M, Ishitani O. Photocatalytic CO 2 Reduction Using Mixed Catalytic Systems Comprising an Iron Cation with Bulky Phenanthroline Ligands. Inorg Chem 2024; 63:7343-7355. [PMID: 38598607 DOI: 10.1021/acs.inorgchem.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
This study reports on efficient photocatalytic CO2 reduction reactions using mixed catalytic systems of an Fe ion source and various 1,10-phenanthroline derivatives (R1R2p) as ligands in the presence of triethanolamine (TEOA). As the relatively bulky substituents at positions 2 and 9 of R1R2p weakened the ability to coordinate to the Fe ion, the Fe ion formed TEOA complexes. The free R1R2p accepted an electron from the reduced photosensitizer through proton-coupled electron transfer (PCET) using protons of TEOA dissolved in a CH3CN solution in a CO2 atmosphere as the initial step of the catalytic cycle. Although the mixed system of the nonsubstituted 1,10-phenanthroline generates a stable tris(phenanthroline)-Fe(II) complex in solution, this complex could not function as a CO2 reduction catalyst. The mechanism in which R1R2p interacts with the Fe ion after PCET was proposed for this efficient photocatalytic CO2 reduction. The proposed photocatalytic system using the 2,9-di-sec-butyl-phenanthroline ligand could produce CO with high efficiency (quantum yield of 8.2%) combined with a dinuclear Cu(I) complex as a photosensitizer.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Mina Irimajiri
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshihide Mizutani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shunsuke Nozawa
- High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Yuna Matsuura
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Masao Kurosu
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
29
|
Tsipis AC, Sarantou AA. Photocatalytic conversion of CO 2 to CO by Ru(II) and Os(II) octahedral complexes: a DFT/TDDFT study. Dalton Trans 2024; 53:6791-6801. [PMID: 38535991 DOI: 10.1039/d4dt00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The reaction mechanisms of the photocatalytic reduction of CO2 to CO catalyzed by [(en)M(CO)3Cl] complexes (M = Ru, Os, en = ethylenediamine) in the presence of triethanolamine (TEOA), R3N (R = -CH2CH2OH), in DCM and DMF solvents, were studied by means of DFT/TDDFT electronic structure calculations. The geometric and free energy reaction profiles for two possible reaction pathways were calculated. Both reaction pathways studied, start with the 17e-, catalytically active intermediate, [(en)M(CO)3]˙+ generated from the first triplet excited state, T1 upon reductive quenching by TEOA which acts as a sacrificial electron donor. In the first possible pathway, TEOA- anion binds to the metal center of the catalytically active intermediate, [(en)M(CO)3]˙+ followed by CO2 insertion into the M-OCH2CH2NR2 bond. The latter upon successive protonations releases a metal 'free' [R2NCH2CH2OC(O)(OH)] intermediate which starts a new and final catalytic cycle, leading to the formation of CO and H2O while regenarating TEOA. In the second possible pathway, the 17e-, catalytically active intermediate, [(en)M(CO)3]˙+ captures CO2 molecule, forming an η1-CO2 complex. Upon 2H+/2e- successive protonations and reductions, CO product is obtained along with regenarating the catalytically active intermediate [(en)M(CO)3]˙+. The nature of the proton donor affects the reaction profiles of both mechanisms. The nature of the solvent does not affect significantly the reaction mechanisms under study. Finally, since photoexcitation and T1 reductive quenching are common to both pathways, we have srutinized the photophysical properties of the [(en)M(CO)3Cl] complexes along with their T1 excited states reduction potentials, . The [(en)M(CO)3Cl] complexes absorb mainly in the UV region while the absolute are in the range 6.4-0.9 eV.
Collapse
Affiliation(s)
- Athanassios C Tsipis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110, Greece.
| | - Antonia A Sarantou
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110, Greece.
| |
Collapse
|
30
|
Norouziyanlakvan S, Berro P, Rao GK, Gabidullin B, Richeson D. Electrocatalytic Reduction of CO 2 and H 2O with Zn(II) Complexes Through Metal-Ligand Cooperation. Chemistry 2024; 30:e202303147. [PMID: 38224468 DOI: 10.1002/chem.202303147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Air and water-stable zinc (II) complexes of neutral pincer bis(diphenylphosphino)-2,6-di(amino)pyridine ("PN3P") ligands are reported. These compounds, [Zn(κ2-2,6-{Ph2PNR}2(NC5H3))Br2] (R=Me, 1; R=H, 2), were shown to be capable of electrocatalytic reduction of CO2 at -2.3 V vs. Fc+/0 to selectively yield CO in mixed water/acetonitrile solutions. These complexes also electrocatalytically generate H2 from water in acetonitrile solutions, at the same potential, with Faradaic efficiencies of up to 90 %. DFT computations support a proposed mechanism involving the first reduction of 1 or 2 occurring at the PN3P ligand. Furthermore, computational analysis suggested a mechanism involving metal-ligand cooperation of a Lewis acidic Zn(II) and a basic ligand.
Collapse
Affiliation(s)
- Somayeh Norouziyanlakvan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada
| | - Patrick Berro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada
| | - Gyandshwar Kumar Rao
- Faculty of Science Engineering And Technology, Amity University, Haryana, India, 122413
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada
| | - Darrin Richeson
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Isegawa M. Metal- and ligand-substitution-induced changes in the kinetics and thermodynamics of hydrogen activation and hydricity in a dinuclear metal complex. Dalton Trans 2024; 53:5966-5978. [PMID: 38462977 DOI: 10.1039/d4dt00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Catalytic function in organometallic complexes is achieved by carefully selecting their central metals and ligands. In this study, the effects of a metal and a ligand on the kinetics and thermodynamics of hydrogen activation, hydricity degree of the hydride complex, and susceptibility to electronic oxidation in bioinspired NiFe complexes, [NiIIX FeII(Cl)(CO)Y]+ ([NiFe(Cl)(CO)]+; X = N,N'-diethyl-3,7-diazanonane-1,9-dithiolato and Y = 1,2-bis(diphenylphosphino)ethane), were investigated. The density functional theory calculations revealed that the following order thermodynamically favored hydrogen activation: [NiFe(CO)]2+ > [NiRu(CO)]2+ > [NiFe(CNMe)]2+ ∼ [PdRu(CO)]2+ ∼ [PdFe(CO)]2+ ≫ [NiFe(NCS)]+. Moreover, the reverse order thermodynamically favored the hydricity degree.
Collapse
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
32
|
Jelemenska I, Zalibera M, Rapta P, Dobrov AA, Arion VB, Bucinsky L. Isomerization pathway of a C-C sigma bond in a bis(octaazamacrocycle)dinickel(II) complex activated by deprotonation: a DFT study. Theor Chem Acc 2024; 143:26. [PMID: 38495857 PMCID: PMC10937780 DOI: 10.1007/s00214-024-03100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
The anti (a) to syn (s) isomerization pathway of the deprotonated form of the dimer with two nickel(II) 15-membered octaazamacrocyclic units connected via a carbon-carbon (C-C) σ bond was investigated. For the initial anti (a) structure, a deprotonation of one of the bridging (sp3 hybridized) carbon atoms is suggested to allow for an a to s geometry twist. A 360° scan around the bridging C-C dihedral angle was performed first to find an intermediate geometry. Subsequently, the isomerization pathway was explored via individual steps using a series of mode redundant geometry optimizations (internal coordinates potential energy surface scans) and geometry relaxations leading to the s structure. The prominent geometries (intermediates) of the isomerization pathway are chosen and compared to the a and s structures, and geometry relaxations of the protonated forms of selected intermediates are considered. Supplementary Information The online version contains supplementary material available at 10.1007/s00214-024-03100-5.
Collapse
Affiliation(s)
- Ingrid Jelemenska
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Anatoly A. Dobrov
- Faculty of Chemistry, Institute of Biophysical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
| |
Collapse
|
33
|
Chon B, Lee HJ, Kang Y, Kim HW, Kim CH, Son HJ. Investigation of Interface Characteristics and Physisorption Mechanism in Quantum Dots/TiO 2 Composite for Efficient and Sustainable Photoinduced Interfacial Electron Transfer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9414-9427. [PMID: 38334708 DOI: 10.1021/acsami.3c16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Owing to their superior stability compared to those of conventional molecular dyes, as well as their high UV-visible absorption capacity, which can be tuned to cover the majority of the solar spectrum through size adjustment, quantum dot (QD)/TiO2 composites are being actively investigated as photosensitizing components for diverse solar energy conversion systems. However, the conversion efficiencies and durabilities of QD/TiO2-based solar cells and photocatalytic systems are still inferior to those of conventional systems that employ organic/inorganic components as photosensitizers. This is because of the poor adsorption of QDs onto the TiO2 surface, resulting in insufficient interfacial interactions between the two. The mechanism underlying QD adsorption on the TiO2 surface and its relationship to the photosensitization process remain unclear. In this study, we established that the surface characteristics of the TiO2 semiconductor and the QDs (i.e., surface defects of the metal oxide and the surface structure of the QD core) directly affect the QD adsorption capacity by TiO2 and the interfacial interactions between the QDs and TiO2, which relates to the photosensitization process from the photoexcited QDs to TiO2 (QD* → TiO2). The interfacial interaction between the QDs and TiO2 is maximized when the shape/thickness-modulated triangular QDs are composited with defect-rich anatase TiO2. Comprehensive investigations through photodynamic analyses and surface evaluation using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and photocatalysis experiments collectively validate that tuning the surface properties of QDs and modulating the TiO2 defect concentration can synergistically amplify the interfacial interaction between the QDs and TiO2. This augmentation markedly improved the efficiency of photoinduced electron transfer from the photoexcited QDs to TiO2, resulting in significantly increased photocatalytic activity of the QD/TiO2 composite. This study provides the first in-depth characterization of the physical adhesion of QDs dispersed on a heterogeneous metal-oxide surface. Furthermore, the prepared QD/TiO2 composite exhibits exceptional adsorption stability, resisting QD detachment from the TiO2 surface over a wide pH range (pH = 2-12) in aqueous media as well as in nonaqueous solvents during two months of immersion. These findings can aid the development of practical QD-sensitized solar energy conversion systems that require the long-term stability of the photosensitizing unit.
Collapse
Affiliation(s)
- Bumsoo Chon
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyung Joo Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Yun Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyun Woo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
34
|
Silva GN, Faustino LA, Nascimento LL, Lopes OF, Patrocinio AOT. Visible light-driven CO2 photoreduction by a Re(I) complex immobilized onto CuO/Nb2O5 heterojunctions. J Chem Phys 2024; 160:034701. [PMID: 38226823 DOI: 10.1063/5.0178945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
The immobilization of Re(I) complexes onto metal oxide surfaces presents an elegant strategy to enhance their stability and reusability toward photocatalytic CO2 reduction. In this study, the photocatalytic performance of fac-[ClRe(CO)3(dcbH2)], where dcbH2 = 4,4'-dicarboxylic acid-2,2'-bipyridine, anchored onto the surface of 1%m/m CuO/Nb2O5 was investigated. Following adsorption, the turnover number for CO production (TONCO) in DMF/TEOA increased significantly, from ten in solution to 370 under visible light irradiation, surpassing the TONCO observed for the complex onto pristine Nb2O5 or CuO surfaces. The CuO/Nb2O5 heterostructure allows for efficient electron injection by the Re(I) center, promoting efficient charge separation. At same time CuO clusters introduce a new absorption band above 550 nm that contributes for the photoreduction of the reaction intermediates, leading to a more efficient CO evolution and minimization of side reactions.
Collapse
Affiliation(s)
- Gabriela N Silva
- Laboratory of Photochemistry and Materials Science, LAFOT-CM, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Leandro A Faustino
- Laboratory of Photochemistry and Materials Science, LAFOT-CM, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Lucas L Nascimento
- Laboratory of Photochemistry and Materials Science, LAFOT-CM, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Osmando F Lopes
- Laboratory of Photochemistry and Materials Science, LAFOT-CM, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Antonio Otavio T Patrocinio
- Laboratory of Photochemistry and Materials Science, LAFOT-CM, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| |
Collapse
|
35
|
Neumann T, Ramu V, Bertin J, He M, Vervisch C, Coogan MP, Bertrand HC. Rhenium fac-Tricarbonyl Bisimine Chalcogenide Complexes: Synthesis, Photophysical Studies, and Confocal and Time-Resolved Cell Microscopy. Inorg Chem 2024; 63:1197-1213. [PMID: 38164793 DOI: 10.1021/acs.inorgchem.3c03647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
We describe the preparation, characterization, and imaging studies of rhenium carbonyl complexes with a pyta (4-(2-pyridyl)-1,2,3-triazole) or tapy (1-(2-pyridyl)-1,2,3-triazole)-based heteroaromatic N∧N ligand and thiolate or selenoate X ligand. The stability and photophysical properties of the selenolate complexes are compared with parent chloride complexes and previously described analogues with benzenethiolate ligands. Two complexes were imaged in A549 cells upon excitation at 405 nm. Colocalization studies suggest a lysosomal accumulation, while one parent chloride complex was described to localize at the Golgi apparatus. Preliminary fluorescence lifetime measurements and imaging demonstrate potential for application in time-resolved microscopy techniques due to the long and variable lifetimes observed in cellular environments, including an increase in lifetime between the solution and solid state many times larger than previously reported.
Collapse
Affiliation(s)
- Till Neumann
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Vadde Ramu
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julie Bertin
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Menglan He
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Caitlan Vervisch
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Michael P Coogan
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, United Kingdom
| | - Helene C Bertrand
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
36
|
Sarantou A, Tsipis A. Photocatalytic Reduction of CO 2 into CO with Cyclometalated Pt(II) Complexes of N^C^N Pincer Dipyridylbenzene Ligands: A DFT Study. Molecules 2024; 29:403. [PMID: 38257316 PMCID: PMC10820273 DOI: 10.3390/molecules29020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
In this work, density functional theory (DFT) calculations were employed to study the photocatalytic reduction of CO2 into CO using a series of Pt(II) square planar complexes with the general formula [Pt(5-R-dpb)Cl] (dpb = 1,3-di(2-pyridyl)benzene anion, R = H, N,N-dimethylaniline,T thiophene, diazaborinine). The CO2-into-CO conversion process is thought to proceed via two main steps, namely the photocatalytic/reduction step and the main catalytic step. The simulated absorption spectra exhibit strong bands in the range 280-460 nm of the UV-Vis region. Reductive quenching of the T1 state of the complexes under study is expected to be favorable since the calculated excited state redox potentials for the reaction with sacrificial electron donors are highly positive. The redox potentials reveal that the reductive quenching of the T1 state, important to the overall process, could be modulated by suitable changes in the N^C^N pincer ligands. The CO2 fixation and activation by the three coordinated Pt(II) catalytically active species are predicted to be favorable, with the Pt-CO2 bond dissociation energies D0 in the range of -36.9--10.3 kcal/mol. The nature of the Pt-CO2 bond of the Pt(II) square planar intermediates is complex, with covalent, hyperconjugative and H-bonding interactions prevailing over the repulsive electrostatic interactions. The main catalytic cycle is estimated to be a favorable exergonic process.
Collapse
Affiliation(s)
| | - Athanassios Tsipis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
37
|
Dai H, Zhang R, Liu Z, Jiang W, Zhou Y. Ultrathin Metal-Organic Framework Nanosheets for Selective Photocatalytic C 2 H 2 Semihydrogenation in Aqueous Solution. Chemistry 2024; 30:e202302816. [PMID: 37933713 DOI: 10.1002/chem.202302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
The selective semihydrogenation of C2 H2 to C2 H4 in crude C2 H4 (with ~1 vol % C2 H2 contamination) is a crucial process in the manufacture of polyethylene. Comparing to conventional thermalcatalytic route with Pd as catalyst under high temperature with H2 as hydrogen source, photocatalytic C2 H2 reduction reaction with H2 O as hydrogen source can achieve high selectivity under milder conditions, but has rarely been reported. Here, we present a kind of ultrathin metal-organic framework nanosheets (Cu-Co-MNSs) that demonstrate excellent catalytic activities in the semihydrogenation of C2 H2 . Employing Ru(bpy)3 2+ as the photosensitizer, this catalyst attains a noteworthy turnover number (TON) of 2124 for C2 H4 , coupled with an impressive selectivity of 99.5 % after 12 h visible light irradiation. This performance is comparable to molecular catalysts and notably surpasses the efficiency of bulk metal-organic framework materials. Furthermore, Cu-Co-MNSs achieve a 99.95 % conversion of C2 H2 under industrial relevant conditions (1.10 % C2 H2 in C2 H4 ) with 90.3 % selectivity for C2 H4 over C2 H6 , demonstrating a great potential for polymer-grade C2 H4 production.
Collapse
Affiliation(s)
- Haojie Dai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruolan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyao Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
38
|
Peng LY, Pan GN, Chen WK, Liu XY, Fang WH, Cui G. Photocatalytic Reduction of CO 2 to HCOOH and CO by a Phosphine-Bipyridine-Phosphine Ir(III) Catalyst: Photophysics, Nonadiabatic Effects, Mechanism, and Selectivity. Angew Chem Int Ed Engl 2023:e202315300. [PMID: 38085965 DOI: 10.1002/anie.202315300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 12/23/2023]
Abstract
Photocatalytic CO2 reduction is one of the best solutions to solve the global energy crisis and to realize carbon neutralization. The tetradentate phosphine-bipyridine (bpy)-phosphine (PNNP)-type Ir(III) photocatalyst, Mes-IrPCY2, was reported with a high HCOOH selectivity but the photocatalytic mechanism remains elusive. Herein, we employ electronic structure methods in combination with radiative, nonradiative, and electron transfer rate calculations, to explore the entire photocatalytic cycle to either HCOOH or CO, based on which a new mechanistic scenario is proposed. The catalytic reduction reaction starts from the generation of the precursor metal-to-ligand charge transfer (3 MLCT) state. Subsequently, the divergence happens from the 3 MLCT state, the single electron transfer (SET) and deprotonation process lead to the formation of one-electron-reduced species and Ir(I) species, which initiate the reduction reaction to HCOOH and CO, respectively. Interestingly, the efficient occurrence of proton or electron transfer reduces barriers of critical steps. In addition, nonadiabatic transitions play a nonnegligible role in the cycle. We suggest a lower free-energy barrier in the reaction-limiting step and the very efficient SET in 3 MLCT are cooperatively responsible for a high HCOOH selectivity. The gained mechanistic insights could help chemists to understand, regulate, and design photocatalytic CO2 reduction reaction of similar function-integrated molecular photocatalyst.
Collapse
Affiliation(s)
- Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guang-Ning Pan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
39
|
Jennings M, Cuéllar E, Rojo A, Ferrero S, García-Herbosa G, Nganga J, Angeles-Boza AM, Martín-Alvarez JM, Miguel D, Villafañe F. 1,2-Azolylamidino ruthenium(II) complexes with DMSO ligands: electro- and photocatalysts for CO 2 reduction. Dalton Trans 2023; 52:16974-16983. [PMID: 37933188 DOI: 10.1039/d3dt01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
New 1,2-azolylamidino complexes fac-[RuCl(DMSO)3(NHC(R)az*-κ2N,N)]OTf [R = Me (2), Ph (3); az* = pz (pyrazolyl, a), indz (indazolyl, b)] are synthesized via chloride abstraction from their corresponding precursors cis,fac-[RuCl2(DMSO)3(az*H)] (1) after subsequent base-catalyzed coupling of the appropriate nitrile with the 1,2-azole previously coordinated. All the compounds are characterized by 1H NMR, 13C NMR and IR spectroscopy. Those derived from MeCN are also characterized by X-ray diffraction. Electrochemical studies showed several reduction waves in the range of -1.5 to -3 V. The electrochemical behavior in CO2 media is consistent with CO2 electrocatalytic reduction. The catalytic activity expressed as [icat(CO2)/ip(Ar)] ranged from 1.7 to 3.7 for the 1,2-azolylamidino complexes at voltages of ca. -2.7 to -3 V vs. ferrocene/ferrocenium. Controlled potential electrolysis showed rapid decomposition of the Ru catalysts. Photocatalytic CO2 reduction experiments using compounds 1b, 2b and 3b carried out in a CO2-saturated MeCN/TEOA (4 : 1 v/v) solution containing a mixture of the catalyst and [Ru(bipy)3]2+ as the photosensitizer under continuous irradiation (light intensity of 150 mW cm-2 at 25 °C, λ > 300 nm) show that compounds 1b, 2b and 3b allowed CO2 reduction catalysis, producing CO and trace amounts of formate. The combined turnover number for the production of formate and CO is ca. 100 after 8 h and follows the order 1b < 2b ≈ 3b.
Collapse
Affiliation(s)
- Murphy Jennings
- Institute of Materials Science, University of Connecticut, 97 N. Eagleville Rd, Storrs, CT 06269, USA
| | - Elena Cuéllar
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Ariadna Rojo
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Sergio Ferrero
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Gabriel García-Herbosa
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - John Nganga
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, CT 06269, USA
| | - Alfredo M Angeles-Boza
- Institute of Materials Science, University of Connecticut, 97 N. Eagleville Rd, Storrs, CT 06269, USA
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, CT 06269, USA
| | - Jose M Martín-Alvarez
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Daniel Miguel
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Fernando Villafañe
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
40
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
41
|
Barker M, Whittemore TJ, London HC, Sledesky JM, Harris EA, Smith Pellizzeri TM, McMillen CD, Wagenknecht PS. Design Strategies for Luminescent Titanocenes: Improving the Photoluminescence and Photostability of Arylethynyltitanocenes. Inorg Chem 2023; 62:17870-17882. [PMID: 37831503 PMCID: PMC10618925 DOI: 10.1021/acs.inorgchem.3c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 10/14/2023]
Abstract
Complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts. Cp2Ti(C2Ph)2 (where C2Ph = phenylethynyl) was reported to be weakly emissive in room-temperature (RT) fluid solution from its phenylethynyl-to-Ti 3LMCT state but readily photodecomposes. Coordination of CuX between the alkyne ligands to give Cp2Ti(C2Ph)2CuX (X = Cl, Br) has been shown to significantly increase the photostability, but such complexes are not emissive in RT solution. Herein, we investigate whether inhibition of alkyne-Ti-alkyne bond compression might be responsible for the increased photostability of the CuX complexes by investigating the decomposition of a structurally constrained analogue, Cp2Ti(OBET) (OBET = o-bis(ethynyl)tolane). To investigate the mechanism of nonradiative decay from the 3LMCT states in Cp2Ti(C2Ph)2CuX, the photophysical properties were investigated both upon deuteration and upon rigidifying in a poly(methyl methacrylate) film. These investigations suggested that inhibition of structural rearrangement may play a dominant role in increasing emission lifetimes and quantum yields. The bulkier Cp*2Ti(C2Ph)2CuBr was prepared and is emissive at 693 nm in RT THF solution with a photoluminescent quantum yield of 1.3 × 10-3 (τ = 0.18 μs). Time-dependent density functional theory (TDDFT) calculations suggest that emission occurs from a 3LMCT state dominated by Cp*-to-Ti charge transfer.
Collapse
Affiliation(s)
- Matilda Barker
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Thomas J. Whittemore
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Henry C. London
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Jack M. Sledesky
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Elizabeth A. Harris
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Tiffany M. Smith Pellizzeri
- Department
of Chemistry and Biochemistry, Eastern Illinois
University, Charleston, Illinois 61920, United States
| | - Colin D. McMillen
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S. Wagenknecht
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
42
|
Ishizuka T, Hosokawa A, Kawanishi T, Kotani H, Zhi Y, Kojima T. Self-Photosensitizing Dinuclear Ruthenium Catalyst for CO 2 Reduction to CO. J Am Chem Soc 2023; 145:23196-23204. [PMID: 37831634 DOI: 10.1021/jacs.3c07685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The promise of artificial photosynthesis to solve environmental and energy issues such as global warming and the depletion of fossil fuels has inspired intensive research into photocatalytic systems for CO2 reduction to produce value-added chemicals such as CO and CH3OH. Among the photocatalytic systems for CO2 reduction, self-photosensitizing catalysts, bearing the functions of both photosensitization and catalysis, have attracted considerable attention recently, as such catalysts do not depend on the efficiency of electron transfer from the photosensitizer to the catalyst. Here, we have synthesized and characterized a dinuclear RuII complex bearing two molecules of a tripodal hexadentate ligand as chelating and linking ligands by X-ray crystallography to establish the structure explicitly and have used various spectroscopic and electrochemical methods to elucidate the photoredox characteristics. The dinuclear complex has been revealed to act as a self-photosensitizing catalyst, which acts not only as a photosensitizer but also as a catalyst for CO2 reduction. The dinuclear RuII complex is highly durable and performs efficient and selective CO2 reduction to produce CO with a turnover number of 2400 for 26 h. The quantum yield of the CO formation is also very high─19.7%─and the catalysis is efficient, even at a low concentration (∼1.5%) of CO2.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Atsushi Hosokawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takuya Kawanishi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yipeng Zhi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
43
|
Kuttassery F, Ohsaki Y, Thomas A, Kamata R, Ebato Y, Kumagai H, Nakazato R, Sebastian A, Mathew S, Tachibana H, Ishitani O, Inoue H. A Molecular Z-Scheme Artificial Photosynthetic System Under the Bias-Free Condition for CO 2 Reduction Coupled with Two-electron Water Oxidation: Photocatalytic Production of CO/HCOOH and H 2 O 2. Angew Chem Int Ed Engl 2023; 62:e202308956. [PMID: 37493175 DOI: 10.1002/anie.202308956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Bio-inspired molecular-engineered systems have been extensively investigated for the half-reactions of H2 O oxidation or CO2 reduction with sacrificial electron donors/acceptors. However, there has yet to be reported a device for dye-sensitized molecular photoanodes coupled with molecular photocathodes in an aqueous solution without the use of sacrificial reagents. Herein, we will report the integration of SnIV - or AlIII -tetrapyridylporphyrin (SnTPyP or AlTPyP) decorated tin oxide particles (SnTPyP/SnO2 or AlTPyP/SnO2 ) photoanode with the dye-sensitized molecular photocathode on nickel oxide particles containing [Ru(diimine)3 ]2+ as the light-harvesting unit and [Ru(diimine)(CO)2 Cl2 ] as the catalyst unit covalently connected and fixed within poly-pyrrole layer (RuCAT-RuC2 -PolyPyr-PRu/NiO). The simultaneous irradiation of the two photoelectrodes with visible light resulted in H2 O2 on the anode and CO, HCOOH, and H2 on the cathode with high Faradaic efficiencies in purely aqueous conditions without any applied bias is the first example of artificial photosynthesis with only two-electron redox reactions.
Collapse
Affiliation(s)
| | - Yutaka Ohsaki
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Arun Thomas
- Department of Chemistry, St. Stephen's College, Uzhavoor, Kerala, 686634, India
| | - Ryutaro Kamata
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro, Tokyo, 152-8550, Japan
| | - Yosuke Ebato
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro, Tokyo, 152-8550, Japan
| | - Hiromu Kumagai
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Ryosuke Nakazato
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Abin Sebastian
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Siby Mathew
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Hiroshi Tachibana
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Osamu Ishitani
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro, Tokyo, 152-8550, Japan
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Haruo Inoue
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
44
|
Kuramochi Y, Suzuki Y, Asai S, Suzuki T, Iwama H, Asano MS, Satake A. Significance of the connecting position between Zn(ii) porphyrin and Re(i) bipyridine tricarbonyl complex units in dyads for room-temperature phosphorescence and photocatalytic CO 2 reduction: unexpected enhancement by triethanolamine in catalytic activity. Chem Sci 2023; 14:8743-8765. [PMID: 37621430 PMCID: PMC10445468 DOI: 10.1039/d3sc02430j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023] Open
Abstract
We synthesized three new dyads composed of a Zn porphyrin and fac-Re(bpy)(CO)3Br (bpy = 2,2'-bipyridine) units, ZnP-nBpy[double bond, length as m-dash]ReBr (n = 4, 5, and 6), in which the porphyrin is directly connected at the meso-position through the 4-, 5-, or 6-position of the bpy. We investigated the relationships between the connecting positions and the photophysical properties as well as catalytic activity in the CO2 reduction reaction. The dyad connected through the 6-position, ZnP-6Bpy[double bond, length as m-dash]ReBr, showed obvious phosphorescence with a lifetime of 280 μs at room temperature, in N,N-dimethylacetamide (DMA), whereas the other two dyads showed almost no phosphorescence under the same conditions. The photocatalytic CO2 reduction reactions in DMA using 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the electron donor and the three dyads ZnP-nBpy[double bond, length as m-dash]ReBr selectively produced CO with similar initial rates, but the durabilities were low. The addition of triethanolamine (TEOA) suppressed the decomposition of dyads, improving their durabilities and reaction efficiencies. In particular, ZnP-5Bpy[double bond, length as m-dash]ReBr was remarkably improved-it gave the highest durability and reaction efficiency among the three dyads; the reaction quantum yield reached 24%. The reason for this significant activity is no accumulation of electrons on the Zn porphyrin in ZnP-5Bpy[double bond, length as m-dash]ReBr, which would be caused by dual interactions of TEOA with the Re and Zn ions in the dyad. As the highest catalytic activity was observed in ZnP-5Bpy[double bond, length as m-dash]ReBr among the three dyads, which had no room-temperature phosphorescence (RTP), the catalytic activities and RTP properties are considered independent, but they are greatly influenced by the connecting positions on the bpy ligand in ZnP-nBpy[double bond, length as m-dash]ReBr.
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Department of Chemistry, Graduate School of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
| | - Yuto Suzuki
- Department of Chemistry, Graduate School of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
| | - Somyo Asai
- Division of Molecular Science, School of Science and Technology, Gunma University 1-5-1 Tenjin-cho Kiryu Gunma 376-8515 Japan
| | - Tomohiro Suzuki
- Division of Molecular Science, School of Science and Technology, Gunma University 1-5-1 Tenjin-cho Kiryu Gunma 376-8515 Japan
| | - Hiroki Iwama
- Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
| | - Motoko S Asano
- Division of Molecular Science, School of Science and Technology, Gunma University 1-5-1 Tenjin-cho Kiryu Gunma 376-8515 Japan
| | - Akiharu Satake
- Department of Chemistry, Graduate School of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
| |
Collapse
|
45
|
Wang JW, Zhang X, Velasco L, Karnahl M, Li Z, Luo ZM, Huang Y, Yu J, Hu W, Zhang X, Yamauchi K, Sakai K, Moonshiram D, Ouyang G. Precious-Metal-Free CO 2 Photoreduction Boosted by Dynamic Coordinative Interaction between Pyridine-Tethered Cu(I) Sensitizers and a Co(II) Catalyst. JACS AU 2023; 3:1984-1997. [PMID: 37502157 PMCID: PMC10369415 DOI: 10.1021/jacsau.3c00218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Improving the photocatalytic efficiency of a fully noble-metal-free system for CO2 reduction remains a fundamental challenge, which can be accomplished by facilitating electron delivery as a consequence of exploiting intermolecular interactions. Herein, we have designed two Cu(I) photosensitizers with different pyridyl pendants at the phenanthroline moiety to enable dynamic coordinative interactions between the sensitizers and a cobalt macrocyclic catalyst. Compared to the parent Cu(I) photosensitizer, one of the pyridine-tethered derivatives boosts the apparent quantum yield up to 76 ± 6% at 425 nm for selective (near 99%) CO2-to-CO conversion. This value is nearly twice that of the parent system with no pyridyl pendants (40 ± 5%) and substantially surpasses the record (57%) of the noble-metal-free systems reported so far. This system also realizes a maximum turnover number of 11 800 ± 1400. In contrast, another Cu(I) photosensitizer, in which the pyridine substituents are directly linked to the phenanthroline moiety, is inactive. The above behavior and photocatalytic mechanism are systematically elucidated by transient fluorescence, transient absorption, transient X-ray absorption spectroscopies, and quantum chemical calculations. This work highlights the advantage of constructing coordinative interactions to fine-tune the electron transfer processes within noble-metal-free systems for CO2 photoreduction.
Collapse
Affiliation(s)
- Jia-Wei Wang
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xian Zhang
- Department
of Chemistry, Faculty of Science, Kyushu
University, Fukuoka 819-0395, Japan
- Institute
of Inorganic Chemistry, University of Göttingen, Göttingen D-37077, Germany
| | - Lucia Velasco
- Instituto
de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz,
3, Madrid 28049, Spain
| | - Michael Karnahl
- Department
of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Zizi Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhi-Mei Luo
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yanjun Huang
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jin Yu
- X-ray Science
Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Wenhui Hu
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Xiaoyi Zhang
- X-ray Science
Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Kosei Yamauchi
- Department
of Chemistry, Faculty of Science, Kyushu
University, Fukuoka 819-0395, Japan
| | - Ken Sakai
- Department
of Chemistry, Faculty of Science, Kyushu
University, Fukuoka 819-0395, Japan
| | - Dooshaye Moonshiram
- Instituto
de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz,
3, Madrid 28049, Spain
| | - Gangfeng Ouyang
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- Chemistry
College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
- Guangdong
Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical
Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
46
|
Santoro A, Cancelliere AM, Kamogawa K, Serroni S, Puntoriero F, Tamaki Y, Campagna S, Ishitani O. Photocatalyzed CO 2 reduction to CO by supramolecular photocatalysts made of Ru(II) photosensitizers and Re(I) catalytic subunits containing preformed CO 2TEOA adducts. Sci Rep 2023; 13:11320. [PMID: 37443197 DOI: 10.1038/s41598-023-38411-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
Two new supramolecular photocatalysts containing Ru(II) polypyridine units as light-harvesting photosensitizers and Re(I) polypyridine subunits as catalytic centers have been prepared. The new species, RuRe2A and Ru2ReA, contain catalytic Re(I) subunits coordinated by the preformed CO2TEOA adduct (known to be the effective catalytic subunits; TEOA is triethanolamine) and exhibit quite efficient and selective photoreduction of CO2 to CO, with outstanding TONs of 2368 and 2695 and a selectivity of 99.9% and 98.9%, respectively. Such photocatalytic properties are significantly improved with respect to those of previously studied RuRe2 and Ru2Re parent compounds, containing chloride ligands instead of the CO2TEOA adduct. Comparison between photocatalytic performance of the new species and their parent compounds allows to investigate the effect of the CO2TEOA insertion process as well as the eventual effect of the presence of chloride ions in solution on the photocatalytic processes. The improved photocatalytic properties of RuRe2A and Ru2ReA compared with their parent species are attributed to a combined effect of different distribution of the one-electron reduced form of the supramolecular photocatalysts on the Ru-subunit(s) (leading to decreased CO formation due to a poisoning ligand loss process) and on the Re-subunit(s) and to the presence of chloride ions in solution for RuRe2 and Ru2Re, which could interfere with the CO2TEOA adduct formation, a needed requisite for CO forming catalysis. These results strongly indicate the utility of preparing supramolecular photocatalysts containing preformed adducts.
Collapse
Affiliation(s)
- Antonio Santoro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Interuniversitary Research Center for Artificial Photosynthesis (Solar Chem, Messina Node), V. F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Ambra M Cancelliere
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Interuniversitary Research Center for Artificial Photosynthesis (Solar Chem, Messina Node), V. F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Kei Kamogawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 O-okayama, Meguro-Ku, Tokyo, 152-8550, Japan
| | - Scolastica Serroni
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Interuniversitary Research Center for Artificial Photosynthesis (Solar Chem, Messina Node), V. F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Fausto Puntoriero
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Interuniversitary Research Center for Artificial Photosynthesis (Solar Chem, Messina Node), V. F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Yusuke Tamaki
- Research Institute for Chemical Process Technology, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-Ku, Sendai, Miyagi, 983-8551, Japan
| | - Sebastiano Campagna
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Interuniversitary Research Center for Artificial Photosynthesis (Solar Chem, Messina Node), V. F. Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 O-okayama, Meguro-Ku, Tokyo, 152-8550, Japan.
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739 8526, Japan.
| |
Collapse
|
47
|
Izu H, Tabe H, Namiki Y, Yamada H, Horike S. Heterogenous CO 2 Reduction Photocatalysis of Transparent Coordination Polymer Glass Membranes Containing Metalloporphyrins. Inorg Chem 2023. [PMID: 37432910 DOI: 10.1021/acs.inorgchem.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Transparent and grain boundary-free substrates are essential to immobilize molecular photocatalysts for efficient photoirradiation reactions without unexpected light scattering and absorption by the substrates. Herein, membranes of coordination polymer glass immobilizing metalloporphyrins were examined as a heterogeneous photocatalyst for carbon dioxide (CO2) reduction under visible-light irradiation. [Zn(HPO4)(H2PO4)2](ImH2)2 (Im = imidazolate) liquid containing iron(III) 5,10,15,20-tetraphenyl-21H,23H-porphine chloride (Fe(TPP)Cl, 0.1-0.5 w/w%) was cast on a borosilicate glass substrate, followed by cooling to room temperature, resulting in transparent and grain boundary-free membranes with the thicknesses of 3, 5, and 9 μm. The photocatalytic activity of the membranes was in proportion to the membrane thickness, indicating that Fe(TPP)Cl in the subsurface of membranes effectively absorbed light and contributed to the reactions. The membrane photocatalysts were intact during the photocatalytic reaction and showed no recrystallization or leaching of Fe(TPP)Cl.
Collapse
Affiliation(s)
- Hitoshi Izu
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyasu Tabe
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Namiki
- Frontier Research Center, POLA Chemical Industries, Inc., Kashio-cho, Totsuka-ku, Yokohama, Kanagawa 244-0812, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroki Yamada
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
48
|
Chen JY, Li M, Liao RZ. Mechanistic Insights into Photochemical CO 2 Reduction to CH 4 by a Molecular Iron-Porphyrin Catalyst. Inorg Chem 2023. [PMID: 37279181 DOI: 10.1021/acs.inorgchem.3c00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Iron tetraphenylporphyrin complex modified with four trimethylammonium groups (Fe-p-TMA) is found to be capable of catalyzing the eight-electron eight-proton reduction of CO2 to CH4 photochemically in acetonitrile. In the present work, density functional theory (DFT) calculations have been performed to investigate the reaction mechanism and to rationalize the product selectivity. Our results revealed that the initial catalyst Fe-p-TMA ([Cl-Fe(III)-LR4]4+, where L = tetraphenylporphyrin ligand with a total charge of -2, and R4 = four trimethylammonium groups with a total charge of +4) undergoes three reduction steps, accompanied by the dissociation of the chloride ion to form [Fe(II)-L••2-R4]2+. [Fe(II)-L••2-R4]2+, bearing a Fe(II) center ferromagnetically coupled with a tetraphenylporphyrin diradical, performs a nucleophilic attack on CO2 to produce the 1η-CO2 adduct [CO2•--Fe(II)-L•-R4]2+. Two intermolecular proton transfer steps then take place at the CO2 moiety of [CO2•--Fe(II)-L•-R4]2+, resulting in the cleavage of the C-O bond and the formation of the critical intermediate [Fe(II)-CO]4+ after releasing a water molecule. Subsequently, [Fe(II)-CO]4+ accepts three electrons and one proton to generate [CHO-Fe(II)-L•-R4]2+, which finally undergoes a successive four-electron-five-proton reduction to produce methane without forming formaldehyde, methanol, or formate. Notably, the redox non-innocent tetraphenylporphyrin ligand was found to play an important role in CO2 reduction since it could accept and transfer electron(s) during catalysis, thus keeping the ferrous ion at a relatively high oxidation state. Hydrogen evolution reaction via the formation of Fe-hydride ([Fe(II)-H]3+) turns out to endure a higher total barrier than the CO2 reduction reaction, therefore providing a reasonable explanation for the origin of the product selectivity.
Collapse
Affiliation(s)
- Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
49
|
Lee D, Choe MS, Lee HJ, Shin JY, Kim CH, Son HJ, Kang SO. Accumulative Charge Separation in a Modular Quaterpyridine Bridging Ligand Platform and Multielectron Transfer Photocatalysis of π-Linked Dinuclear Ir(III)-Re(I) Complex for CO 2 Reduction. Inorg Chem 2023. [PMID: 37220663 DOI: 10.1021/acs.inorgchem.3c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Four sterically distorted quaterpyridyl (qpy) ligand-bridged Ir(III)-Re(I) heterometallic complexes (Ir-qpymm-Re, Ir-qpymp-Re, Ir-qpypm-Re, and Ir-qpypp-Re), in which the position of the coupling pyridine unit of the two 2,2'-bipyridine ligands was varied (meta (m)- or para (p)-position), pypyx-pyxpy (x = m and m, qpymm; x = m and p, qpymp; x = p and m, qpypm; x = p and p, qpypp), were prepared, along with the fully π-conjugated Ir(III)-[π linker]-Re(I) complexes (π linker = 2,2'-bipyrimidine (bpm), Ir-bpm-Re; π linker = 2,5-di(pyridin-2-yl)pyrazine (dpp), Ir-dpp-Re) to elucidate the electron mediating and accumulative charge separation properties of the bridging π-linker in a bimetallic system (photosensitizer-π linker-catalytic center). From the photophysical and electrochemical studies, it was found that the quaterpyridyl (qpy) bridging ligand (BL), in which the two planar Ir/Re metalated bipyridine (bpy) ligands were connected but slightly canted relative to each other, linking the heteroleptic Ir(III) photosensitizer, [(piqC^N)2IrIII(bpy)]+, and catalytic Re(I) complex, (bpy)ReI(CO)3Cl, minimized the energy lowering of the qpy BL, which hampers the forward photoinduced electron transfer (PET) process from [(piqC^N)2IrIII(N^N)]+ to (N^N)ReI(CO)3Cl (Ered1 = -(0.85-0.93) V and Ered2 = -(1.15-1.30) V vs SCE). This result contrasts with the fully π-delocalized bimetallic systems (Ir-bpm-Re and Ir-dpp-Re) that show a significant energy reduction due to the considerable π-extension and deshielding effect caused by the neighboring Lewis acidic metals (Ir and Re) on the electrochemical scale (Ered1 = -0.37 V and Ered2 = -1.02 and -0.99 V vs SCE). Based on a series of anion absorption studies and spectroelectrochemical (SEC) analyses, all Ir(III)-BL-Re(I) bimetallic complexes were found to exist as dianionic form (Ir(III)-[BL]2--Re(I)) after a fast reductive-quenching process in the presence of excess electron donor. In the photolysis experiment, the four Ir-qpy-Re complexes displayed the reasonable photochemical CO2-to-CO conversion activities (TON of 366-588 for 19 h) owing to the moderated electronic coupling between two functional Ir(III) and Re(I) centers through the slightly distorted qpy ligand, whereas Ir-bpm-Re and Ir-dpp-Re displayed negligible performances as a result of the strong electronic coupling via π-conjugation between the two functional components resulting in the energetic constraints for PET and an unwanted side reactions competing with the forward processes. These results confirm that the qpy unit can be utilized as an efficient BL platform in π-linked bimetallic systems.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyung Joo Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
50
|
Kosugi K, Akatsuka C, Iwami H, Kondo M, Masaoka S. Iron-Complex-Based Supramolecular Framework Catalyst for Visible-Light-Driven CO 2 Reduction. J Am Chem Soc 2023; 145:10451-10457. [PMID: 37023530 DOI: 10.1021/jacs.3c00783] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Molecule-based heterogeneous photocatalysts without noble metals are one of the most attractive systems for visible-light-driven CO2 reduction. However, reports on this class of photocatalysts are still limited, and their activities are quite low compared to those containing noble metals. Herein, we report an iron-complex-based heterogeneous photocatalyst for CO2 reduction with high activity. The key to our success is the use of a supramolecular framework composed of iron porphyrin complexes bearing pyrene moieties at meso positions. The catalyst exhibited high activity for CO2 reduction under visible-light irradiation (29100 μmol g-1 h-1 for CO production, selectivity 99.9%), which is the highest among relevant systems. The performance of this catalyst is also excellent in terms of apparent quantum yield for CO production (0.298% at 400 nm) and stability (up to 96 h). This study provides a facile strategy to create a highly active, selective, and stable photocatalyst for CO2 reduction without utilizing noble metals.
Collapse
Affiliation(s)
- Kento Kosugi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chiharu Akatsuka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hikaru Iwami
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|