1
|
Jurga A, Ratkiewicz K, Wdowikowska A, Reda M, Janicka M, Chohura P, Janiak K. Urine and grey water based liquid fertilizer - Production and the response of plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117248. [PMID: 36652879 DOI: 10.1016/j.jenvman.2023.117248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Plant cultivation is a key aspect of future long-distance space missions, and the creation of an efficient food system will not be possible without it. The production of fertilizer in space is based on the recovery of water and nutrients from wastewater, such as urine and grey water. In this study, the fertilizer production process was conducted in an aerobic, activated sludge reactor, where nitrification and the process of carbon removal take place. Treated streams have three potential factors that could affect the plants growth in a hydroponic system (anionic surfactants, nutrients deficiencies, high salinity). The effect of these factors was examined for two hydroponic configurations. Their influence on lettuce yield, quality parameters and stress response were investigated and compared to the control cultivation. The results showed that the main cause of a decrease (up to 24%) in the yield productivity of plants grown on nitrified urine and grey water is oxidative stress originated from a deficiency of elements, not from used anionic surfactant. Enrichment with nutrients resulted in the restoration of proper protein synthesis and an increase in the activity of antioxidant enzymes, which was positively reflected in the qualitative and quantitative parameters of the enriched cultivation (fresh leaves mass equal to 103% of the control). Results also show that Sodium Methyl Cocoyl Taurate (SMCT) surfactant itself after biological treatment used in plant cultivation has no negative effects reflected in lettuce yield or quality.
Collapse
Affiliation(s)
- Anna Jurga
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland.
| | - Krzysztof Ratkiewicz
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Anna Wdowikowska
- Department of Plant Molecular Physiology, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Małgorzata Reda
- Department of Plant Molecular Physiology, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Piotr Chohura
- Faculty of Life Science and Technology, Wroclaw University of Environmental and Life Sciences, St. C. K. Norwida 27, 50-375, Wroclaw, Poland
| | - Kamil Janiak
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland; Wroclaw Municipal Water and Sewage Company, Na Grobli 19, 50-421, Wroclaw, Poland
| |
Collapse
|
2
|
Kermeur N, Pédrot M, Cabello-Hurtado F. Iron Availability and Homeostasis in Plants: A Review of Responses, Adaptive Mechanisms, and Signaling. Methods Mol Biol 2023; 2642:49-81. [PMID: 36944872 DOI: 10.1007/978-1-0716-3044-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Iron is an essential element for all living organisms, playing a major role in plant biochemistry as a redox catalyst based on iron redox properties. Iron is the fourth most abundant element of the Earth's crust, but its uptake by plants is complex because it is often in insoluble forms that are not easily accessible for plants to use. The physical and chemical speciation of iron, as well as rhizosphere activity, are key factors controlling the bioavailability of Fe. Iron can be under reduced (Fe2+) or oxidized (Fe3+) ionic forms, adsorbed onto mineral surfaces, forming complexes with organic molecules, precipitated to form poorly crystalline hydroxides to highly crystalline iron oxides, or included in crystalline Fe-rich mineral phases. Plants must thus adapt to a complex and changing iron environment, and their response is finely regulated by multiple signaling pathways initiated by a diversity of stimulus perceptions. Higher plants possess two separate strategies to uptake iron from rhizosphere soil: the chelation strategy and the reduction strategy in grass and non-grass plants, respectively. Molecular actors involved in iron uptake and mobilization through the plant have been characterized for both strategies. All these processes that contribute to iron homeostasis in plants are highly regulated in response to iron availability by downstream signaling responses, some of which are characteristic signaling signatures of iron dynamics, while others are shared with other environmental stimuli. Recent research has thus revealed key transcription factors, cis-acting elements, post-translational regulators, and other molecular mechanisms controlling these genes or their encoded proteins in response to iron availability. In addition, the most recent research is increasingly highlighting the crosstalk between iron homeostasis and nutrient response regulation. These regulatory processes help to avoid plant iron concentrations building up to potential cell functioning disruptions that could adversely affect plant fitness. Indeed, when iron is in excess in the plant, it can lead to the production and accumulation of dangerous reactive oxygen species and free radicals (H2O2, HO•, O2•-, HO•2) that can cause considerable damages to most cellular components. To cope with iron oxidative stress, plants have developed defense systems involving the complementary action of antioxidant enzymes and molecular antioxidants, safe iron-storage mechanisms, and appropriate morphological adaptations.
Collapse
Affiliation(s)
- Nolenn Kermeur
- University of Rennes, CNRS, Ecobio, UMR 6553, Rennes, France
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Mathieu Pédrot
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | | |
Collapse
|
3
|
Chen Y, Bao W, Hong W, Dong X, Gong M, Cheng Q, Mao K, Yao C, Liu Z, Wang N. Evaluation of eleven kiwifruit genotypes for bicarbonate tolerance and characterization of two tolerance-contrasting genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:202-213. [PMID: 36427382 DOI: 10.1016/j.plaphy.2022.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Screening bicarbonate-tolerant genotypes is an environmentally-friendly and long-term effective strategy to cope with bicarbonate-induced chlorosis in fruit crops grown on calcareous soils. We investigated eleven genotypes from four kiwifruit species (Actinidia chinensis, A. macrosperma, A. polygama, and A. valvata) for differences in bicarbonate tolerance. We also characterized the physiological and molecular differences in two contrasting genotypes of this group. In the first experiment, bicarbonate-treated plantlets were irrigated with 3.0 g L-1 CaCO3 and 5.04 g L-1 NaHCO3 in peat and perlite medium culture. Based on principal component analysis, weight-based membership function method and cluster analysis, the tested genotypes were classified into three groups: (1) tolerant, including YX, Av-1, Acd, Ap, Av-2, and QM; (2) moderately tolerant, including Av-3, Am, Av-4, and HWD; and (3) sensitive, including only QH. In the second experiment, QH (bicarbonate-sensitive) and YX (bicarbonate-tolerant) were grown in sand culture with 4.0 g L-1 CaCO3 and 0.84 g L-1 or 1.26 g L-1 NaHCO3. Compared with QH, YX showed a better ability to take up iron (Fe) by roots and to transport Fe from roots to shoots in the bicarbonate treatments, probably due to a better capacity to protect from oxidative damage and to excrete protons, and a differential expression of genes associated with Fe uptake and translocation, including HA8, IRT1, YSL3 and NRAMP3. The results can facilitate identifying potential resources for bicarbonate tolerance and breeding new rootstocks, and contribute to the elucidation of the bicarbonate tolerance mechanisms in the genus Actinidia.
Collapse
Affiliation(s)
- Yuanlei Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenwu Bao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weijin Hong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoke Dong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Manyu Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Quanqi Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ke Mao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunchao Yao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Nannan Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Dehghan-Harati Z, Mahdavi B, Hashemi SE. Ion contents, physiological characteristics and growth of Carum copticum as influenced by salinity and alkalinity stresses. Biol Futur 2022; 73:301-308. [PMID: 36197601 DOI: 10.1007/s42977-022-00129-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
A controlled experiment was conducted to investigate the effect of salinity and alkalinity stresses on the growth and physiological characteristics of Carum copticum L. The treatments included four salinity levels: 0, 50, 100 and 150 mM NaCl, and four alkalinity levels 0, 20, 40 and 60 mM NaHCO3. The results indicated that root dry weight and magnesium concentration were decreased and catalase and peroxidase activity, proline, malondialdehyde, Na+ and Ca2+ concentration were increased in plants simultaneously subjected to both salinity and alkalinity stresses. In all traits, the highest salinity and alkalinity levels had the most negative and significant effects. In general, our findings revealed that alkalinity and salinity stresses considerably decreased ajwain growth through adverse impact on physiological characteristics such as ion concentration and activity of antioxidant enzymes. These effects were greater when the two salinity and alkalinity stresses were simultaneously applied. Ajwain plant tolerated a part of the stresses via osmotic adjustment mechanism was assessed by proline, malondialdehyde and total carbohydrate.
Collapse
Affiliation(s)
- Zahra Dehghan-Harati
- Department of Genetics and Plant Production, Agriculture College, Vali-e-Asr University of Rafsanajn, Rafsanjan, Iran
| | - Batool Mahdavi
- Department of Genetics and Plant Production, Agriculture College, Vali-e-Asr University of Rafsanajn, Rafsanjan, Iran.
| | - Seyedeh-Elahe Hashemi
- Department of Genetics and Plant Production, Agriculture College, Vali-e-Asr University of Rafsanajn, Rafsanjan, Iran
| |
Collapse
|
5
|
Sun S, Li J, Song H, Chen D, Tu M, Chen Q, Jiang G, Zhou Z. Comparative transcriptome and physiological analyses reveal key factors in the tolerance of peach rootstocks to iron deficiency chlorosis. 3 Biotech 2022; 12:38. [PMID: 35070628 PMCID: PMC8738836 DOI: 10.1007/s13205-021-03046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023] Open
Abstract
Iron (Fe) deficiency chlorosis (IDC) is a major nutritional disorder in fruit trees grown on calcareous soils. As a peach rootstock, 'GF677' (Prunus dulcis Miller × P. persica (L.) Batsch) has great tolerance to Fe deficiency, but the molecular mechanisms of 'GF677' that support the process of iron deficiency chlorosis tolerance are still unknown. In this study, the key factors for differential iron deficiency chlorosis tolerance in two contrasting rootstocks (IDC-tolerant: 'GF677', IDC-susceptible: 'Maotao' (P. persica)) were investigated. 'GF677' exhibited greater Fe transfer and accumulation capacities when compared with 'Maotao', and the analysis of photosynthetic pigments, related precursors, and antioxidative enzyme activities further demonstrated that 'GF677' was more tolerant to IDC when compared with 'Maotao'. Furthermore, comparative transcriptome analysis revealed differential expression in many genes involved in iron transport and storage, and in photosynthesis recovery. These results suggest that the greater IDC tolerance of 'GF677' can be attributed to the greater expression of key genes related to specific Fe transporters, defense systems, photosynthetic recovery, and/or special proteins. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03046-6.
Collapse
Affiliation(s)
- Shuxia Sun
- Horticulture Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Southwest Region), Ministry of Agriculture, Chengdu, 610066 Sichuan China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Jing Li
- Horticulture Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Southwest Region), Ministry of Agriculture, Chengdu, 610066 Sichuan China
| | - Haiyan Song
- Horticulture Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Southwest Region), Ministry of Agriculture, Chengdu, 610066 Sichuan China
| | - Dong Chen
- Horticulture Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Southwest Region), Ministry of Agriculture, Chengdu, 610066 Sichuan China
| | - Meiyan Tu
- Horticulture Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Southwest Region), Ministry of Agriculture, Chengdu, 610066 Sichuan China
| | - Qiyang Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Guoliang Jiang
- Horticulture Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Southwest Region), Ministry of Agriculture, Chengdu, 610066 Sichuan China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing, 400054 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400715 China
| |
Collapse
|
6
|
Manzoor M, Zargar SM, Akhter P, Urwat U, Mahajan R, Bhat SA, Dar TA, Khan I. Morphological, Biochemical, and Proteomic Studies Revealed Impact of Fe and P Crosstalk on Root Development in Phaseolus vulgaris L. Appl Biochem Biotechnol 2021; 193:3898-3914. [PMID: 34524636 DOI: 10.1007/s12010-021-03662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Mineral stress is one of the major abiotic stresses faced by crop plants. The present study was undertaken to investigate the impact of mineral stress (iron (Fe) and phosphorus (P)) on various morphological and biochemical responses of the shoot and root tissues and root architecture of common bean (Phaseolus vulgaris L.). This study also leads us to the identification of P stress responsive proteins. The study was conducted under in vitro conditions, in which seeds of Shalimar French Bean-1 (SFB-1) variety were cultured on four different MGRL medium (control (P1Fe1), iron deficient (P1Fe0), phosphorus deficient (P0Fe1), and phosphorus and iron deficient (P0Fe0)). Chlorophyll content of leaves, Fe/P content of root tissues, total sugars, proline, length, and weight of shoot and root tissues were assessed and compared within and between the treatments. The analyzed data revealed significant difference between control and other three treatments. Chlorophyll content of shoots was found significantly decreased under mineral stress treatments P0Fe1, P1Fe0, and P0Fe0 than control. Length and weight of shoot and root were also observed significantly decreased under P0Fe1, P1Fe0, and P0Fe0 as compared to control. Total sugar was significantly higher in P0Fe1 of roots in comparison to control. Proline content was significantly higher in both tissues of shoots and roots of plants grown under P1Fe0, P0Fe1, and P0Fe0 than control condition. Furthermore, we unexpectedly observed the recovery of roots (mainly primary roots) under P0Fe0 as compared to P1Fe0 and P0Fe1. Interestingly higher concentration of Fe was also observed in P0Fe1 compared to other treatments and also higher concentration of P was observed in P1Fe1. These findings suggested that there is a crosstalk between Fe and P and also revealed that there is a disruption in the ability of PR (primary root) to sense local P deficiency in the absence of Fe. Furthermore, proteomics analysis (SDS-PAGE followed by MALDI MS) helped in identification of defensive proteins in P stress condition compared to control.
Collapse
Affiliation(s)
- Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India, 190025
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India, 190025.
| | - Parveen Akhter
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India, 190025
| | - Uneeb Urwat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India, 190025
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India, 190025
| | - Sajad Ahmad Bhat
- Division of Basic Science, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir, India
| | - Imran Khan
- Division of Agricultural Statistics, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
7
|
Gupta OP, Pandey V, Saini R, Khandale T, Singh A, Malik VK, Narwal S, Ram S, Singh GP. Comparative physiological, biochemical and transcriptomic analysis of hexaploid wheat (T. aestivum L.) roots and shoots identifies potential pathways and their molecular regulatory network during Fe and Zn starvation. Genomics 2021; 113:3357-3372. [PMID: 34339815 DOI: 10.1016/j.ygeno.2021.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/26/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
The combined effect of iron (Fe) and zinc (Zn) starvation on their uptake and transportation and the molecular regulatory networks is poorly understood in wheat. To fill this gap, we performed a comprehensive physiological, biochemical and transcriptome analysis in two bread wheat genotypes, i.e. Narmada 195 and PBW 502, differing in inherent Fe and Zn content. Compared to PBW 502, Narmada 195 exhibited increased tolerance to Fe and Zn withdrawal by significantly modulating the critical physiological and biochemical parameters. We identified 25 core genes associated with four key pathways, i.e. methionine cycle, phytosiderophore biosynthesis, antioxidant and transport system, that exhibited significant up-regulation in both the genotypes with a maximum in Narmada 195. We also identified 26 microRNAs targeting 14 core genes across the four pathways. Together, core genes identified can serve as valuable resources for further functional research for genetic improvement of Fe and Zn content in wheat grain.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Vanita Pandey
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Ritu Saini
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Tushar Khandale
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Ajeet Singh
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Vipin Kumar Malik
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Sneh Narwal
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India; Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Sewa Ram
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| |
Collapse
|
8
|
Xiao J, Park YG, Guo G, Jeong BR. Effect of Iron Source and Medium pH on Growth and Development of Sorbus commixta In Vitro. Int J Mol Sci 2020; 22:ijms22010133. [PMID: 33374479 PMCID: PMC7796064 DOI: 10.3390/ijms22010133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Sorbus commixta is a valuable hardwood plant with a high economical value for its medicinal and ornamental qualities. The aim of this work was to investigate the effects of the iron (Fe) source and medium pH on the growth and development of S. commixta in vitro. The Fe sources used, including non-chelated iron sulfate (FeSO4), iron ethylenediaminetetraacetic acid (Fe-EDTA), and iron diethylenetriaminepentaacetic acid (Fe-DTPA), were supplemented to the Multipurpose medium with a final Fe concentration of 2.78 mg·L-1. The medium without any supplementary Fe was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70. The experiment was conducted in a culture room for six weeks with 25 °C day and night temperatures, and a 16-h photoperiod with a light intensity of 50 mmol·m-2·s-1 photosynthetic photon flux density (PPFD). Both the Fe source and pH affected the growth and development of the micropropagated plants in vitro. The leaves were greener in the pH 4.70 and 5.70 treatments. The tissue Fe content decreased with the increase of the medium pH. The leaf chlorophyll content was similar between plants treated with FeSO4 and those with Fe-EDTA. The numbers of the shoots and roots of plantlets treated with FeSO4 were 2.5 and 2 times greater than those of the control, respectively. The fresh and dry weights of the shoot and the root were the greatest for plants treated with Fe-EDTA combined with pH 5.70. The calcium, magnesium, and manganese contents in the plantlets increased in the pH 5.70 treatments regardless of the Fe source. Supplementary Fe decreased the activity of ferric chelate reductase. Overall, although the plantlets absorbed more Fe at pH 4.70, Fe-EDTA combined with pH 5.70 was found to be the best for the growth and development of S. commixta in vitro.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.X.); (G.G.)
| | - Yoo Gyeong Park
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Ge Guo
- Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.X.); (G.G.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.X.); (G.G.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1913
| |
Collapse
|
9
|
Casiraghi FM, Landi M, Donnini S, Borlotti A, Zocchi G, Guidi L, Vigani G. Modulation of photorespiration and nitrogen recycling in Fe-deficient cucumber leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:142-150. [PMID: 32559518 DOI: 10.1016/j.plaphy.2020.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Low Fe availability affects plant production mainly by impairing the photosynthetic pathway, since Fe plays an essential role in chlorophyll synthesis as well as in the photosynthetic electron transport chain. Under these conditions, plant cells require the activation of protective mechanisms to prevent photo-inhibition. Among these mechanisms, photorespiration (PR) has been relatively little investigated in Fe-deficient plants. The aim of this work was to investigate the effect of Fe deficiency on photorespiration by performing in vivo analysis in leaves as well as biochemical characterization of some PR-related enzyme activities in a peroxisome-purified fraction from cucumber leaves. Modelling of light response curves at both 21 and 2% pO2 revealed a slowing down of PR under Fe deficiency. The activity of some PR-involving enzymes as well as the contents of glycine and serine were affected under Fe deficiency. Furthermore, nitrate reductase, the glutamine synthetase-glutamate synthase (GS-GOGAT) cycle and hydroxypyruvate dehydrogenase isoform activities were differentially altered under Fe deficiency. The dataset indicates that, in Fe-deficient cucumber leaves, the modulation of PR involves the induction of some PR-related pathways, such as the photorespiratory N recycling and cytosolic photorespiratory bypass processes.
Collapse
Affiliation(s)
- Fabio M Casiraghi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia - Università Degli Studi di Milano, Italy
| | - Marco Landi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Italy
| | - Silvia Donnini
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia - Università Degli Studi di Milano, Italy
| | - Andrea Borlotti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia - Università Degli Studi di Milano, Italy
| | - Graziano Zocchi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia - Università Degli Studi di Milano, Italy
| | - Lucia Guidi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Italy
| | - Gianpiero Vigani
- Dipartimento di Scienze Della Vita e Biologia Dei Sistemi, Università Degli Studi di Torino, Italy.
| |
Collapse
|
10
|
Oustric J, Morillon R, Luro F, Herbette S, Martin P, Giannettini J, Berti L, Santini J. Nutrient Deficiency Tolerance in Citrus Is Dependent on Genotype or Ploidy Level. FRONTIERS IN PLANT SCIENCE 2019; 10:127. [PMID: 30853962 PMCID: PMC6396732 DOI: 10.3389/fpls.2019.00127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/24/2019] [Indexed: 05/17/2023]
Abstract
Plants require essential minerals for their growth and development that are mainly acquired from soil by their roots. Nutrient deficiency is an environmental stress that can seriously affect fruit production and quality. In citrus crops, rootstock/scion combinations are frequently employed to enhance tolerance to various abiotic stresses. These tolerances can be improved in doubled diploid genotypes. The aim of this work was to compare the impact of nutrient deficiency on the physiological and biochemical response of diploid (2x) and doubled diploid (4x) citrus seedlings: Volkamer lemon, Trifoliate orange × Cleopatra mandarin hybrid, Carrizo citrange, Citrumelo 4475. Flhorag1 (Poncirus trifoliata + and willow leaf mandarin), an allotetraploid somatic hybrid, was also included in this study. Our results showed that depending on the genotype, macronutrient and micronutrient deficiency affected certain physiological traits and oxidative metabolism differently. Tetraploid genotypes, mainly Flhorag1 and Citrumelo 4475, appeared resistant compared to the other genotypes as indicated by the lesser decrease in photosynthetic parameters (P net, F v/F m, and G s) and the lower accumulation of oxidative markers (MDA and H2O2) in roots and leaves, especially after long-term nutrient deficiency. Their higher tolerance to nutrient deficiency could be explained by better activation of their antioxidant system. For the other genotypes, tetraploidization did not induce greater tolerance to nutrient deficiency.
Collapse
Affiliation(s)
- Julie Oustric
- CNRS, Laboratoire Biochimie and Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Raphaël Morillon
- Equipe “Amélioration des Plantes à Multiplication Végétative”, UMR AGAP, Département BIOS, CIRAD, Petit-Bourg, Guadeloupe
| | - François Luro
- UMR AGAP Corse, Station INRA/CIRAD, San-Giuliano, France
| | | | | | - Jean Giannettini
- CNRS, Laboratoire Biochimie and Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Liliane Berti
- CNRS, Laboratoire Biochimie and Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Laboratoire Biochimie and Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| |
Collapse
|
11
|
Elias F, Marimon BS, Marimon-Junior BH, Budke JC, Esquivel-Muelbert A, Morandi PS, Reis SM, Phillips OL. Idiosyncratic soil-tree species associations and their relationships with drought in a monodominant Amazon forest. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1016/j.actao.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Elkhouni A, Rabhi M, Ivanov AG, Krol M, Zorrig W, Smaoui A, Abdelly C, Huner NPA. Structural and functional integrity of Sulla carnosa photosynthetic apparatus under iron deficiency conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:415-425. [PMID: 29274120 DOI: 10.1111/plb.12684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
The abundance of calcareous soils makes bicarbonate-induced iron (Fe) deficiency a major problem for plant growth and crop yield. Therefore, Fe-efficient plants may constitute a solution for use on calcareous soils. We investigated the ability of the forage legume Sulla carnosa (Desf.) to maintain integrity of its photosynthetic apparatus under Fe deficiency conditions. Three treatments were applied: control, direct Fe deficiency and bicarbonate-induced Fe deficiency. At harvest, all organs of deficient plants showed severe growth inhibition, the effect being less pronounced under indirect Fe deficiency. Pigment analysis of fully expanded leaves revealed a reduction in concentrations of chlorophyll a, chlorophyll b and carotenoids under Fe deficiency. Electron transport rate, maximum and effective quantum yield of photosystem II (PSII), photochemical quenching (qP), non-photochemical quenching (qN) as well as P700 activity also decreased significantly in plants exposed to direct Fe deficiency, while qN was not affected. The effects of indirect Fe deficiency on the same parameters were less pronounced in bicarbonate-treated plants. The relative abundances of thylakoid proteins related to PSI (PsaA, Lhca1, Lhca2) and PSII (PsbA, Lhcb1) were also more affected under direct than indirect Fe deficiency. We conclude that S. carnosa can maintain the integrity of its photosynthetic apparatus under bicarbonate-induced Fe deficiency, preventing harmful effects to both photosystems under direct Fe deficiency. This suggests a high capacity of this species not only to take up Fe in the presence of bicarbonate (HCO3- ) but also to preferentially translocate absorbed Fe towards leaves and prevent its inactivation.
Collapse
Affiliation(s)
- A Elkhouni
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - M Rabhi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - A G Ivanov
- Department of Biology, University of Western Ontario, London, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - M Krol
- Department of Biology, University of Western Ontario, London, Canada
| | - W Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - A Smaoui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - C Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - N P A Huner
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
13
|
Martinez-Cuenca MR, Primo-Capella A, Quiñones A, Bermejo A, Forner-Giner MA. Rootstock influence on iron uptake responses in Citrus leaves and their regulation under the Fe paradox effect. PeerJ 2017; 5:e3553. [PMID: 28966887 PMCID: PMC5619235 DOI: 10.7717/peerj.3553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/16/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND AND AIMS This work evaluates the regulation of iron uptake responses in Citrus leaves and their involvement in the Fe paradox effect. METHODS Experiments were performed in field-grown 'Navelina' trees grafted onto two Cleopatra mandarin × Poncirus trifoliata (L.) Raf. hybrids with different Fe-chlorosis symptoms: 030146 (non-chlorotic) and 030122 (chlorotic). RESULTS Chlorotic leaves were smaller than non-chlorotic ones for both dry weight (DW) and area basis, and exhibited marked photosynthetic state affection, but reduced catalase and peroxidase enzymatic activities. Although both samples had a similar total Fe concentration on DW, it was lower in chlorotic leaves when expressed on an area basis. A similar pattern was observed for the total Fe concentration in the apoplast and cell sap and in active Fe (Fe2+) concentration. FRO2 gene expression and ferric chelate reductase (FC-R) activity were also lower in chlorotic samples, while HA1 and IRT1 were more induced. Despite similar apoplasmic pH, K+/Ca2+ was higher in chlorotic leaves, and both citrate and malate concentrations in total tissue and apoplast fluid were lower. CONCLUSION (1) The rootstock influences Fe acquisition system in the leaf; (2) the increased sensitivity to Fe-deficiency as revealed by chlorosis and decreased biomass, was correlated with lower FC-R activity and lower organic acid level in leaf cells, which could cause a decreased Fe mobility and trigger other Fe-stress responses in this organ to enhance acidification and Fe uptake inside cells; and (3) the chlorosis paradox phenomenon in citrus likely occurs as a combination of a marked FC-R activity impairment in the leaf and the strong growth inhibition in this organ.
Collapse
Affiliation(s)
- Mary-Rus Martinez-Cuenca
- Centre of Citriculture and Plant Production, Valencian Agricultural and Research Institute (IVIA), Moncada, Valencia, Spain
| | - Amparo Primo-Capella
- Centre of Citriculture and Plant Production, Valencian Agricultural and Research Institute (IVIA), Moncada, Valencia, Spain
| | - Ana Quiñones
- Centre of Sustainable Agricultural Development, Valencian Agricultural and Research Institute (IVIA), Moncada, Valencia, Spain
| | - Almudena Bermejo
- Centre of Citriculture and Plant Production, Valencian Agricultural and Research Institute (IVIA), Moncada, Valencia, Spain
| | - Maria Angeles Forner-Giner
- Centre of Citriculture and Plant Production, Valencian Agricultural and Research Institute (IVIA), Moncada, Valencia, Spain
| |
Collapse
|
14
|
Fan W, Wang H, Wu Y, Yang N, Yang J, Zhang P. H + -pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.]. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:698-712. [PMID: 27864852 PMCID: PMC5425394 DOI: 10.1111/pbi.12667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/23/2016] [Accepted: 11/16/2016] [Indexed: 05/08/2023]
Abstract
Iron (Fe) deficiency is one of the most common micronutrient deficiencies limiting crop production globally, especially in arid regions because of decreased availability of iron in alkaline soils. Sweet potato [Ipomoea batatas (L.) Lam.] grows well in arid regions and is tolerant to Fe deficiency. Here, we report that the transcription of type I H+ -pyrophosphatase (H+ -PPase) gene IbVP1 in sweet potato plants was strongly induced by Fe deficiency and auxin in hydroponics, improving Fe acquisition via increased rhizosphere acidification and auxin regulation. When overexpressed, transgenic plants show higher pyrophosphate hydrolysis and plasma membrane H+ -ATPase activity compared with the wild type, leading to increased rhizosphere acidification. The IbVP1-overexpressing plants showed better growth, including enlarged root systems, under Fe-sufficient or Fe-deficient conditions. Increased ferric precipitation and ferric chelate reductase activity in the roots of transgenic lines indicate improved iron uptake, which is also confirmed by increased Fe content and up-regulation of Fe uptake genes, e.g. FRO2, IRT1 and FIT. Carbohydrate metabolism is significantly affected in the transgenic lines, showing increased sugar and starch content associated with the increased expression of AGPase and SUT1 genes and the decrease in β-amylase gene expression. Improved antioxidant capacities were also detected in the transgenic plants, which showed reduced H2 O2 accumulation associated with up-regulated ROS-scavenging activity. Therefore, H+ -PPase plays a key role in the response to Fe deficiency by sweet potato and effectively improves the Fe acquisition by overexpressing IbVP1 in crops cultivated in micronutrient-deficient soils.
Collapse
Affiliation(s)
- Weijuan Fan
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Hongxia Wang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yinliang Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Nan Yang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghai Chenshan Botanical GardenShanghaiChina
| | - Peng Zhang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
15
|
Rouphael Y, Cardarelli M, Bonini P, Colla G. Synergistic Action of a Microbial-based Biostimulant and a Plant Derived-Protein Hydrolysate Enhances Lettuce Tolerance to Alkalinity and Salinity. FRONTIERS IN PLANT SCIENCE 2017; 8:131. [PMID: 28223995 PMCID: PMC5295141 DOI: 10.3389/fpls.2017.00131] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/23/2017] [Indexed: 05/02/2023]
Abstract
In the coming years, farmers will have to deal with growing crops under suboptimal conditions dictated by global climate changes. The application of plant biostimulants such as beneficial microorganisms and plant-derived protein hydrolysates (PHs) may represent an interesting approach for increasing crop tolerance to alkalinity and salinity. The current research aimed at elucidating the agronomical, physiological, and biochemical effects as well as the changes in mineral composition of greenhouse lettuce (Lactuca sativa L.) either untreated or treated with a microbial-based biostimulant (Tablet) containing Rhizophagus intraradices and Trichoderma atroviride alone or in combination with a PH. Plants were sprayed with PH at weekly intervals with a solution containing 2.5 ml L-1 of PH. Lettuce plants were grown in sand culture and supplied with three nutrient solutions: standard, saline (25 mM NaCl) or alkaline (10 mM NaHCO3 + 0.5 g l-1 CaCO3; pH 8.1). Salt stress triggered a decrease in fresh yield, biomass production, SPAD index, chlorophyll fluorescence, leaf mineral composition and increased leaf proline concentration, without altering antioxidant enzyme activities. The decrease in marketable yield and biomass production under alkali stress was not significant. Irrespective of nutrient solution, the application of Tablet and especially Tablet + PH increased fresh marketable yield, shoot and root dry weight. This was associated with an improvement in SPAD index, Fv/Fm ratio, CAT and GPX activities and a better nutritional status (higher P, K, and Fe and lower Na with NaCl and higher P and Fe with NaHCO3) via an increase of total root length and surface. The combination of microbial biostimulant with foliar application of PH synergistically increased the marketable fresh yield by 15.5 and 46.7% compared to the Tablet-treated and untreated plants, respectively. The improved crop performance of Tablet + PH application was attributed to a better root system architecture (higher total root length and surface), an improved chlorophyll synthesis and an increase in proline accumulation. Combined application of Tablet and PH could represent an effective strategy to minimize alkalinity and salinity stress in a sustainable way.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II Portici, Italy
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo Rome, Italy
| | | | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, Tuscia University Viterbo, Italy
| |
Collapse
|
16
|
Fu L, Zhu Q, Sun Y, Du W, Pan Z, Peng S. Physiological and Transcriptional Changes of Three Citrus Rootstock Seedlings under Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1104. [PMID: 28694816 PMCID: PMC5483480 DOI: 10.3389/fpls.2017.01104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/07/2017] [Indexed: 05/06/2023]
Abstract
Iron is an essential micronutrient for plants, and plants have evolved adaptive mechanisms to improve iron acquisition from soils. Grafting on iron deficiency-tolerant rootstock is an effective strategy to prevent iron deficiency-chlorosis in fruit-tree crops. To determine the mechanisms underlying iron uptake in iron deficiency, two iron deficiency-tolerant citrus rootstocks, Zhique (ZQ) and Xiangcheng (XC), as well as iron deficiency-sensitive rootstock trifoliate orange (TO) seedlings were studied. Plants were grown in hydroponics system for 100 days, having 50 μM iron (control) and 0 μM iron (iron deficiency) nutrient solution. Under iron deficiency, more obvious visual symptoms of iron chlorosis were observed in the leaves of TO, whereas slight symptoms were observed in ZQ and XC. This was further supported by the lower chlorophyll concentration in the leaves of TO than in leaves of ZQ and XC. Ferrous iron showed no differences among the three citrus rootstock roots, whereas ferrous iron was significantly higher in leaves of ZQ and XC than TO. The specific iron absorption rate and leaf iron proportion were significantly higher in ZQ and XC than in TO, suggesting the iron deficiency tolerance can be explained by increased iron uptake in roots of ZQ and XC, allowed by subsequent translocation to shoots. In transcriptome analysis, 29, 298, and 500 differentially expressed genes (DEGs) in response to iron deficiency were identified in ZQ, XC, and TO, respectively (Fold change ≥ 2 and Probability ≥ 0.8 were used as thresholds to identify DEGs). A Gene Ontology analysis suggested that several genotype-specific biological processes are involved in response to iron deficiency. Genes associated with cell wall biosynthesis, ethylene and abscisic acid signal transduction pathways were involved in iron deficiency responses in citrus rootstocks. The results of this study provide a basis for future analyses of the physiological and molecular mechanisms of the tolerance of different citrus rootstocks to iron deficiency.
Collapse
Affiliation(s)
- Lina Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Qingqing Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Yinya Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Wei Du
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
- *Correspondence: Zhiyong Pan, Shu’ang Peng,
| | - Shu’ang Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
- *Correspondence: Zhiyong Pan, Shu’ang Peng,
| |
Collapse
|
17
|
Tanou G, Ziogas V, Molassiotis A. Foliar Nutrition, Biostimulants and Prime-Like Dynamics in Fruit Tree Physiology: New Insights on an Old Topic. FRONTIERS IN PLANT SCIENCE 2017; 8:75. [PMID: 28203243 PMCID: PMC5285389 DOI: 10.3389/fpls.2017.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/12/2017] [Indexed: 05/15/2023]
Abstract
Despite the fact that the usage of foliar nutrients has long history, many aspects of fertilization through leaves are still unknown. Herein, we review the current knowledge regarding the canopy fertilization putting special emphasis on Fe nutrition and briefly provide insights into the nanofertilizer technology of the foliar feeding of fruit crops. In addition, this paper discusses the main aspects of the foliar application of biostimulants regarding crucial factors of fruit cropping systems, such as fruit yield/size, tolerance to environmental stresses, and nutrient availability. Also, we specifically discuss the role of hydrogen peroxide (H2O2) and nitric oxide (NO) as priming molecules and their possible cross-talk with biostimulants in fruit tree physiology. Finally, a view of the key issues for future fundamental and applied research in the topic is put forward.
Collapse
|
18
|
Martínez-Cuenca MR, Quiñones A, Primo-Millo E, Forner-Giner MÁ. Flooding impairs Fe uptake and distribution in Citrus due to the strong down-regulation of genes involved in Strategy I responses to Fe deficiency in roots. PLoS One 2015; 10:e0123644. [PMID: 25897804 PMCID: PMC4405480 DOI: 10.1371/journal.pone.0123644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/28/2015] [Indexed: 11/18/2022] Open
Abstract
This work determines the ffects of long-term anoxia conditions--21 days--on Strategy I responses to iron (Fe) deficiency in Citrus and its impact on Fe uptake and distribution. The study was carried out in Citrus aurantium L. seedlings grown under flooding conditions (S) and in both the presence (+Fe) and absence of Fe (-Fe) in nutritive solution. The results revealed a strong down-regulation (more than 65%) of genes HA1 and FRO2 coding for enzymes proton-ATPase and Ferric-Chelate Reductase (FC-R), respectively, in -FeS plants when compared with -Fe ones. H+-extrusion and FC-R activity analyses confirmed the genetic results, indicating that flooding stress markedly repressed acidification and reduction responses to Fe deficiency (3.1- and 2.0-fold, respectively). Waterlogging reduced by half Fe concentration in +FeS roots, which led to 30% up-regulation of Fe transporter IRT1, although this effect was unable to improve Fe absorption. Consequently, flooding inhibited 57Fe uptake in +Fe and -Fe seedlings (29.8 and 66.2%, respectively) and 57Fe distribution to aerial part (30.6 and 72.3%, respectively). This evidences that the synergistic action of both enzymes H+-ATPase and FC-R is the preferential regulator of the Fe acquisition system under flooding conditions and, hence, their inactivation implies a limiting factor of citrus in their Fe-deficiency tolerance in waterlogged soils.
Collapse
Affiliation(s)
- Mary-Rus Martínez-Cuenca
- Department of Citriculture and Vegetal Production, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| | - Ana Quiñones
- Department of Citriculture and Vegetal Production, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| | - Eduardo Primo-Millo
- Department of Citriculture and Vegetal Production, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| | - M. Ángeles Forner-Giner
- Department of Citriculture and Vegetal Production, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| |
Collapse
|
19
|
Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:16-25. [PMID: 24811616 DOI: 10.1016/j.plaphy.2014.03.029] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/29/2014] [Indexed: 05/05/2023]
Abstract
The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records.
Collapse
Affiliation(s)
- Hazem M Kalaji
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Abdallah Oukarroum
- Department of Chemistry and Biochemistry, University of Québec in Montréal, Montréal, Quebec, C.P. 8888, Succ. Centre-Ville, H3C 3P8 Canada
| | - Vladimir Alexandrov
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Margarita Kouzmanova
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Izabela A Samborska
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Magdalena D Cetner
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|
20
|
Jelali N, Donnini S, Dell'Orto M, Abdelly C, Gharsalli M, Zocchi G. Root antioxidant responses of two Pisum sativum cultivars to direct and induced Fe deficiency. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:607-14. [PMID: 23957505 DOI: 10.1111/plb.12093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 07/12/2013] [Indexed: 05/23/2023]
Abstract
The contribution of antioxidant defence systems in different tolerance to direct and bicarbonate-induced Fe deficiency was evaluated in two pea cultivars (Kelvedon, tolerant and Lincoln, susceptible). Fe deficiency enhanced lipid peroxidation and H2 O2 concentration in roots of both cultivars, particularly in the sensitive one grown under bicarbonate supply. The results obtained on antioxidant activities (SOD, CAT, POD) suggest that H2 O2 accumulation could be due to an overproduction of this ROS and, at the same time, to a poor capacity to detoxify it. Moreover, under bicarbonate supply the activity of POD isoforms was reduced only in the sensitive cultivar, while in the tolerant one a new isoform was detected, suggesting that POD activity might be an important contributor to pea tolerance to Fe deficiency. The presence of bicarbonate also resulted in stimulation of GR, MDHAR and DHAR activities, part of the ASC-GSH pathway, which was higher in the tolerant cultivar than in the sensitive one. Overall, while in the absence of Fe only slight differences were reported between the two cultivars, the adaptation of Kelvedon to the presence of bicarbonate seems to be related to its greater ability to enhance the antioxidant response at the root level.
Collapse
Affiliation(s)
- N Jelali
- Laboratory of Extremophile Plants (LPE), Biotechnology Centre of Borj Cedria, (CBBC), Hammam-Lif, Tunisia
| | | | | | | | | | | |
Collapse
|
21
|
Tewari RK, Hadacek F, Sassmann S, Lang I. Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2013; 91:74-83. [PMID: 23825883 PMCID: PMC3661939 DOI: 10.1016/j.envexpbot.2013.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/17/2013] [Accepted: 03/22/2013] [Indexed: 05/21/2023]
Abstract
Using iron-deprived (-Fe) chlorotic as well as green iron-deficient (5 μM Fe) and iron-sufficient supplied (50 μM Fe) leaves of young hydroponically reared Brassica napus plants, we explored iron deficiency effects on triggering programmed cell death (PCD) phenomena. Iron deficiency increased superoxide anion but decreased hydroxyl radical (•OH) formation (TBARS levels). Impaired photosystem II efficiency led to hydrogen peroxide accumulation in chloroplasts; NADPH oxidase activity, however, remained on the same level in all treatments. Non-autolytic PCD was observed especially in the chlorotic leaf of iron-deprived plants, to a lesser extent in iron-deficient plants. It correlated with higher DNAse-, alkaline protease- and caspase-3-like activities, DNA fragmentation and chromatin condensation, hydrogen peroxide accumulation and higher superoxide dismutase activity. A significant decrease in catalase activity together with rising levels of dehydroascorbic acid indicated a strong disturbance of the redox homeostasis, which, however, was not caused by •OH formation in concordance with the fact that iron is required to catalyse the Fenton reaction leading to •OH generation. This study documents the chain of events that contributes to the development of non-autolytic PCD in advanced stages of iron deficiency in B. napus leaves.
Collapse
Key Words
- AA, ascorbic acid
- APX, ascorbate peroxidase
- Brassica napus
- CAT, catalase
- Caspase
- DAB, 3,3′-diaminobenzidine
- DAPI, 4′,6-diamidino-2-phenylindole dihydrochloride
- DHA, dehydroascorbic acid
- DNAse, deoxyribonuclease
- DTT, 1,4-dithio-dl-threitol
- Deficiency
- Deprivation
- EDTA, ethylenediaminetetraacetic acid
- ETR, electron transport rate
- ETS, electron transport system
- Iron
- NBT, p-nitro-blue tetrazolium chloride
- PCD, programmed cell death
- POD, peroxidase
- Programmed cell death
- Reactive oxygen species
- SOD, superoxide dismutase
- TBARS, thiobarbituric acid reactive substances
- Y(II), effective quantum yield
Collapse
Affiliation(s)
- Rajesh Kumar Tewari
- Department of Terrestrial Ecosystem Research (TER), Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Franz Hadacek
- Albrecht-von-Haller Institut, Plant Biochemistry, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Stefan Sassmann
- Cell Imaging and Ultrastructure Research (CIUS), Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ingeborg Lang
- Cell Imaging and Ultrastructure Research (CIUS), Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
22
|
Martínez-Cuenca MR, Legaz F, Forner-Giner MÁ, Primo-Millo E, Iglesias DJ. Bicarbonate blocks iron translocation from cotyledons inducing iron stress responses in Citrus roots. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:899-905. [PMID: 23465471 DOI: 10.1016/j.jplph.2013.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
The effect of bicarbonate ion (HCO3(-)) on the mobilization of iron (Fe) reserves from cotyledons to roots during early growth of citrus seedlings and its influence on the components of the iron acquisition system were studied. Monoembryonic seeds of Citrus limon (L.) were germinated "in vitro" on two iron-deprived media, supplemented or not with 10mM HCO3(-) (-Fe+Bic and -Fe, respectively). After 21d of culture, Fe concentration in seedling organs was measured, as well as gene expression and enzymatic activities. Finally, the effect of Fe resupply on the above responses was tested in the presence and absence of HCO3(-) (+Fe+Bic or +Fe, respectively). -Fe+Bic seedlings exhibited lower Fe concentration in shoots and roots than -Fe ones but higher in cotyledons, associated to a significative inhibition of NRAMP3 expression. HCO3(-) upregulated Strategy I related genes (FRO1, FRO2, HA1 and IRT1) and FC-R and H(+)-ATPase activities in roots of Fe-starved seedlings. PEPC1 expression and PEPCase activity were also increased. When -Fe+Bic pre-treated seedlings were transferred to Fe-containing media for 15d, Fe content in shoots and roots increased, although to a lower extent in the +Fe+Bic medium. Consequently, the above-described root responses became markedly repressed, however, this effect was less pronounced in +Fe+Bic seedlings. In conclusion, it appears that HCO3(-) prevents Fe translocation from cotyledons to shoot and root, therefore reducing their Fe levels. This triggers Fe-stress responses in the root, enhancing the expression of genes related with Fe uptake and the corresponding enzymatic activities.
Collapse
Affiliation(s)
- Mary-Rus Martínez-Cuenca
- Department of Citriculture and Vegetal Production, Instituto Valenciano Investigaciones Agrarias, Crta Náquera-Moncada, km 4.5, Valencia 46113, Spain
| | | | | | | | | |
Collapse
|
23
|
Martínez-Cuenca MR, Iglesias DJ, Talón M, Abadía J, López-Millán AF, Primo-Millo E, Legaz F. Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.) Raf]. TREE PHYSIOLOGY 2013; 33:320-329. [PMID: 23462311 DOI: 10.1093/treephys/tpt011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effects of iron (Fe) deficiency on the low-molecular-weight organic acid (LMWOA) metabolism have been investigated in Carrizo citrange (CC) [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.] roots. Major LMWOAs found in roots, xylem sap and root exudates were citrate and malate and their concentrations increased with Fe deficiency. The activities of several enzymes involved in the LMWOA metabolism were also assessed in roots. In the cytosolic fraction, the activities of malate dehydrogenase (cMDH) and phosphoenolpyruvate carboxylase (PEPC) enzymes were 132 and 100% higher in Fe-deficient conditions, whereas the activity of pyruvate kinase was 31% lower and the activity of malic enzyme (ME) did not change. In the mitochondrial fraction, the activities of fumarase, MDH and citrate synthase enzymes were 158, 117 and 53% higher, respectively, in Fe-deficient extracts when compared with Fe-sufficient controls, whereas no significant differences between treatments were found for aconitase (ACO) activity. The expression of their corresponding genes in roots of Fe-deficient plants was higher than that measured in Fe-sufficient controls, except for ACO and ME. Also, dicarboxylate-tricarboxylate carrier (DTC) expression was significantly increased in Fe-deficient roots. In conclusion, Fe deficiency in CC seedlings causes a reprogramming of the carbon metabolism that involves an increase of anaplerotic fixation of carbon via PEPC and MDH activities in the cytosol and a shift of the Krebs cycle in the mitochondria towards a non-cyclic mode, as previously described in herbaceous species. In this scheme, DTC could play an important role shuttling both malate and reducing equivalents between the cytosol and the mitochondria. As a result of this metabolic switch malate and citrate concentrations in roots, xylem sap and root exudates increase.
Collapse
Affiliation(s)
- Mary-Rus Martínez-Cuenca
- Department of Citriculture and Vegetal Production, Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
24
|
Rodríguez-Celma J, Lattanzio G, Jiménez S, Briat JF, Abadía J, Abadía A, Gogorcena Y, López-Millán AF. Changes induced by Fe deficiency and Fe resupply in the root protein profile of a peach-almond hybrid rootstock. J Proteome Res 2013; 12:1162-72. [PMID: 23320467 DOI: 10.1021/pr300763c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The changes in the root extract protein profile of the Prunus hybrid GF 677 rootstock (P. dulcis × P. persica) grown in hydroponics as affected by Fe deficiency and short-term (24 h) Fe resupply have been studied by 2-dimensional gel electrophoresis-based techniques. A total of 335 spots were consistently found in the gels. Iron deficiency caused above 2-fold increases or >50% decreases in the relative abundance in 10 and 6 spots, respectively, whereas one spot was only detected in Fe-deficient plants. Iron resupply to Fe-deficient plants caused increases and decreases in relative abundance in 15 and 16 spots, respectively, and one more spot was only detected in Fe-resupplied Fe-deficient plants. Ninety-five percent of the proteins changing in relative abundance were identified using nanoliquid chromatography-tandem mass spectrometry. Defense responses against oxidative and general stress accounted for 50% of the changes in Fe-deficient roots. Also, a slight induction of the glycolysis-fermentation pathways was observed in GF 677 roots with Fe deficiency. The root protein profile of 24 h Fe-resupplied plants was similar to that of Fe-deficient plants, indicating that the deactivation of Fe-deficiency metabolic responses is slow. Taken together, our results suggest that the high tolerance of GF 677 rootstock to Fe deficiency may be related to its ability to elicit a sound defense response against both general and oxidative stress.
Collapse
Affiliation(s)
- Jorge Rodríguez-Celma
- Pomology Department, Aula Dei Experimental Station, CSIC, PO Box 13034, E-50080 Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chakraborty B, Singh PN, Shukla A, Mishra DS. Physiological and biochemical adjustment of iron chlorosis affected low-chill peach cultivars supplied with different iron sources. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2012; 18:141-148. [PMID: 23573051 PMCID: PMC3550501 DOI: 10.1007/s12298-012-0107-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A pot experiment was carried out to investigate the effect of iron supplementation on physiological and biochemical status of the low-chill peach cultivars (Saharanpur Prabhat, Shan-e-Punjab and Pratap) suffered from iron chlorosis in artificially created calcareous soil. Three most commonly used iron sources viz. Fe-sulphate (1.0 % and 0.5 %), Fe-citrate (1.0 % and 0.5 %) and FeEDTA (0.1 % and 0.2 %) were sprayed on the 4th and 5th leaves from the apex of the twig. And after 1 week of spraying, observation on various physiological and biochemical parameters in leaves were recorded. Improvement in plant physiological parameters like chlorophyll content index (CCI), photosynthetic rate (P n), stomatal conductance (g s) and intercellular CO2 conc. (C i) were recorded best with the application of 1.0 % Fe-sulphate both in treated and untreated upper leaves. The maximum recovery in biochemical parameters such as total leaf chlorophyll content, superoxide dismutase (SOD) and peroxidase (POD) activity was also noted with the application of 1.0 % Fe-sulphate. However, application of 1.0 % Fe-sulphate and 0.5 % Fe-sulphate had similar effect for most of the parameters under study. The ability of iron sources to induce physiological and biochemical responses in iron deficient low-chill peach plants were in the following order Fe-sulphate>Fe-citrate>FeEDTA. Differential responses in plant physiological and biochemical parameters were also exhibited by the low-chill peach cultivars with regard to supplementation of various iron sources. Among the low-chill peach cultivars, Saharanpur Prabhat responded best with the application of iron sources followed by Shan-e-Punjab and Pratap.
Collapse
Affiliation(s)
- Binayak Chakraborty
- />Department of Horticulture, College of Agriculture, G.B. Pant University of Agriculture and Technology, Udham Singh Nagar, Pantnagar, Uttarakhand PIN: 263 145 India
| | - Pramod Narayan Singh
- />Department of Horticulture, College of Agriculture, G.B. Pant University of Agriculture and Technology, Udham Singh Nagar, Pantnagar, Uttarakhand PIN: 263 145 India
| | - Alok Shukla
- />Department of Biotechnology, Bhimtal Campus, Kumaun University, Bhimtal, Uttarakhand PIN: 263136 India
| | - Daya Shankar Mishra
- />Department of Horticulture, College of Agriculture, G.B. Pant University of Agriculture and Technology, Udham Singh Nagar, Pantnagar, Uttarakhand PIN: 263 145 India
| |
Collapse
|
26
|
Cellini A, Corpas FJ, Barroso JB, Masia A. Nitric oxide content is associated with tolerance to bicarbonate-induced chlorosis in micropropagated Prunus explants. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1543-1549. [PMID: 21507506 DOI: 10.1016/j.jplph.2011.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 05/30/2023]
Abstract
Iron (Fe) chlorosis is a common nutritional deficiency in fruit trees grown in calcareous soils. Grafting on tolerant rootstocks is the most efficient practice to cope with it. In the present work, three Prunus hybrid genotypes, commonly used as peach rootstocks, and one peach cultivar were cultivated with bicarbonate in the growth medium. Parameters describing oxidative stress and the metabolism of reactive nitrogen species were studied. Lower contents of nitric oxide and a decreased nitrosoglutathione reductase activity were found in the most sensitive genotypes, characterized by higher oxidative stress and reduced antioxidant defense. In the peach cultivar, which behaved as a tolerant genotype, a specifically nitrated polypeptide was found.
Collapse
Affiliation(s)
- Antonio Cellini
- Dipartimento di Colture Arboree, Università degli Studi di Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | | | | | | |
Collapse
|
27
|
Gonzalo MJ, Moreno MÁ, Gogorcena Y. Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:887-93. [PMID: 21306783 DOI: 10.1016/j.jplph.2010.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/12/2010] [Accepted: 11/15/2010] [Indexed: 05/07/2023]
Abstract
Two Prunus rootstocks, the Myrobalan plum P 2175 and the interspecific peach-almond hybrid, Felinem, were studied to characterize their biochemical and molecular responses induced under iron-Deficient conditions. Plants of both genotypes were submitted to different treatments using a hydroponic system that permitted removal of Fe from the nutrient solution. Control plants were grown in 90 μM Fe (III)-EDTA, Deficient plants were grown in an iron free solution, and plants submitted to an Inductor treatment were resupplied with 180 μM Fe (III)-EDTA over 1 and 2 days after a period of 4 or 15 days of growth on an iron-free solution. Felinem increased the activity of the iron chelate reductase (FC-R) in the Inductor treatment after 4 days of iron deprivation. In contrast, P 2175 did not show any response after at least 15 days without iron. The induction of the FC-R activity in this genotype was coincident in time with the medium acidification. These results suggest two different mechanisms of iron chlorosis tolerance in both Strategy I genotypes. Felinem would use the iron reduction as the main mechanism to capture the iron from the soil, and in P 2175, the mechanism of response would be slower and start with the acidification of the medium synchronized with the gradual loss of chlorophyll in leaves. To better understand the control of these responses at the molecular level, the differential expression of PFRO2, PIRT1 and PAHA2 genes involved in the reductase activity, the iron transport in roots, and the proton release, respectively, were analyzed. The expression of these genes, estimated by quantitative real-time PCR, was different between genotypes and among treatments. The results were in agreement with the physiological responses observed.
Collapse
Affiliation(s)
- María José Gonzalo
- Pomology Department, Estación Experimental de Aula Dei, CSIC, Apartado 13034, E-50080 Zaragoza, Spain
| | | | | |
Collapse
|
28
|
Jiménez S, Ollat N, Deborde C, Maucourt M, Rellán-Álvarez R, Moreno MÁ, Gogorcena Y. Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:415-23. [PMID: 20952094 DOI: 10.1016/j.jplph.2010.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/07/2010] [Accepted: 08/03/2010] [Indexed: 05/07/2023]
Abstract
Iron deficiency induces several responses to iron shortage in plants. Metabolic changes occur to sustain the increased iron uptake capacity of Fe-deficient plants. We evaluated the metabolic changes of three Prunus rootstocks submitted to iron chlorosis and their different responses for tolerance using measurements of metabolites and enzymatic activities. The more tolerant rootstocks Adesoto (Prunus insititia) and GF 677 (Prunus amygdalus×Prunus persica), and the more sensitive Barrier (P. persica×Prunus davidiana) were grown hydroponically in iron-sufficient and -deficient conditions over two weeks. Sugar, organic and amino acid concentrations of root tips were determined after two weeks of iron shortage by proton nuclear magnetic resonance spectroscopy of extracts. Complementary analyses of organic acids were performed by liquid chromatography coupled to mass spectrometry. The major soluble sugars found were glucose and sucrose. The major organic acids were malic and citric acids, and the major amino acid was asparagine. Iron deficiency increased root sucrose, total organic and amino acid concentrations and phosphoenolpyruvate carboxylase activity. After two weeks of iron deficiency, the malic, citric and succinic acid concentrations increased in the three rootstocks, although no significant differences were found among genotypes with different tolerance to iron chlorosis. The tolerant rootstock Adesoto showed higher total organic and amino acid concentrations. In contrast, the susceptible rootstock Barrier showed lower total amino acid concentration and phosphoenolpyruvate carboxylase activity values. These results suggest that the induction of this enzyme activity under iron deficiency, as previously shown in herbaceous plants, indicates the tolerance level of rootstocks to iron chlorosis. The analysis of other metabolic parameters, such as organic and amino acid concentrations, provides complementary information for selection of genotypes tolerant to iron chlorosis.
Collapse
Affiliation(s)
- Sergio Jiménez
- Department of Pomology, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apdo. 13034, E-50080 Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Donnini S, Dell'Orto M, Zocchi G. Oxidative stress responses and root lignification induced by Fe deficiency conditions in pear and quince genotypes. TREE PHYSIOLOGY 2011; 31:102-13. [PMID: 21389006 DOI: 10.1093/treephys/tpq105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We analysed Pyrus communis cv. Conference and Cydonia oblonga BA29, differently tolerant to lime-induced chlorosis, to identify the key mechanisms involved in their different performance under Fe deficiency induced by the absence of Fe (-Fe) or by the presence of bicarbonate (+FeBic). Under our experimental conditions, a decrease in root elongation was observed in BA29 under bicarbonate supply. Superoxide dismutase (SOD) and peroxidase (POD) activities were analysed and the relative isoforms were detected by native electrophoresis. The data obtained for both genotypes under -Fe and for BA29 +FeBic suggest the occurrence of overproduction of reactive oxygen species (ROS) and, at the same time, of a scarce capacity to detoxify them. The detection of ROS (O(2)(-) and H(2)O(2)) through histochemical localization supports these results and suggests that they could account for the modifications of mechanical properties of the cell wall during stress adaptation. On the other hand, in the cv. Conference +FeBic, an increase in non-specific POD activity was detected, confirming its higher level of protection in particular against H(2)O(2) accumulation. Peroxidases involved in lignification were assayed and histochemical analysis was performed. The results suggest that only in BA29 under bicarbonate supply can the presence of ROS in root apoplast be correlated with lignin deposits in external layers and in endodermis as a consequence of the shift of PODs towards a lignification role. We suggest that in BA29 the decrease in root growth could impair mineral nutrition, generating susceptibility to calcareous soils. In the cv. Conference, the allocation of new biomass to the root system could improve soil exploration and consequently Fe uptake.
Collapse
Affiliation(s)
- Silvia Donnini
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, Milan, Italy.
| | | | | |
Collapse
|