1
|
Pang S, Li Z, Zhang Q, Tian Z, Deng S, Zhang P, Liu S, Yang B, Zhou Z. Physiological characteristics during the formation of aromatic components in xylem of Aquilaria sinensis induced by exogenous substances. FRONTIERS IN PLANT SCIENCE 2024; 15:1461048. [PMID: 39628533 PMCID: PMC11612829 DOI: 10.3389/fpls.2024.1461048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
An inductive combination of plant growth regulators, inorganic salts, and fungi is essential for the formation of aromatic components in the xylem of Aquilaria sinensis. However, the dynamics of xylem physiology and the relationships between physiological properties and aromatic components after artificial induction remain unclear. In this study, the changes in physiological properties of A. sinensis xylem during induction were determined and analyzed under four induction treatments and a control group. The defense hormone contents of jasmonic acid, salicylic acid, aminocyclopropane-1-carboxylic acid, and abscisic acid obtained from the four induction treatments increased significantly. However, the concentrations of gibberellin and indoleacetic acid were decreased compared to the control group. An initially upward and then downward trend was observed in the main antioxidant enzyme activities. Additionally, malonaldehyde content decreased obviously, while proline content tended to increase and then decrease as induction continued. The total and soluble sugar content was evidently reduced after treatment, and the soluble sugar content recovered more rapidly with time. Thirty-three aromatic components were identified in all treatments, and the primary aromatic components were terpenes, aromatics and chromones, the relative contents of which varied among treatments. These results provide new insights for optimization and innovation of agarwood induction techniques by exploring the formation of aromatics in the xylem of A. sinensis and its physiological responses following induction with exogenous substances (ethephon, NaCl, CaCl2 and fungal mixed solution).
Collapse
Affiliation(s)
- Shengjiang Pang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhongguo Li
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Qingqing Zhang
- Institute of Flower, Fujian Academy of Forestry, Fuzhou, China
| | - Zuwei Tian
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Shuokun Deng
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Pei Zhang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Shiling Liu
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Baoguo Yang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Zaizhi Zhou
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
2
|
Dong X, Shi L, Bao S, Ren Y, Fu H, You Y, Li Q, Chen Z. Comprehensive evaluation of freezing tolerance in prickly ash and its correlation with ecological and geographical origin factors. Sci Rep 2024; 14:26301. [PMID: 39487305 PMCID: PMC11530428 DOI: 10.1038/s41598-024-77397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Low temperatures are a key factor affecting the growth, development, and geographical distribution of prickly ash. This study investigated the impact of ecological and geographical factors on the freezing tolerance of prickly ash germplasm. Thirty-seven germplasm samples from 18 different origins were collected, and their freezing tolerance was comprehensively evaluated. The correlation between freezing tolerance and the ecological and geographical factors of their origins was also analyzed. Significant differences in freezing tolerance were observed among germplasm from different origins. The semi-lethal temperature of the germplasm ranged from - 12.37 to 1.08 °C. As temperatures decreased, the relative conductivity (REC) and catalase (CAT) activity of the germplasm gradually increased, while soluble sugar (SS), soluble protein (SP), free proline (Pro), and Peroxidase (POD) activities decreased and then increased. Superoxide dismutase (SOD) activity initially increased and then decreased. A comprehensive evaluation of freezing tolerance was conducted using a logistic equation, membership function, and cluster analysis. Germplasm from Tongchuan and Hancheng (Shaanxi Province, China), Asakura (Japan), and Yuncheng (Shanxi Province, China) exhibited the highest freezing tolerance, whereas those from Rongchang (Chongqing Municipality, China), Qujing (Yunnan Province, China), and Honghe (Yunnan Province, China) had the lowest. The correlation analysis revealed a significant positive correlation between freezing tolerance and latitude, and a significant negative correlation with the temperature of origin. Germplasm from higher latitudes showed higher SS content, SOD and CAT activities, stronger antioxidant enzyme activity, and better freezing tolerance compared to those from lower latitudes. REC was lower in germplasm originating from low-temperature areas than in those from high-temperature areas. Additionally, SP, Pro content, SOD, and POD activities were higher, indicating effective scavenging of active oxygen free radicals. No significant correlation was found between altitude and longitude of origin and freezing tolerance. However, at similar latitudes, prickly ash from higher altitudes displayed higher antioxidant enzyme activity and stronger freezing tolerance compared to those from lower altitudes. These findings provide a scientific basis for breeding prickly ash cultivars suited to different ecological regions.
Collapse
Affiliation(s)
- Xixi Dong
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Lin Shi
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Shuqin Bao
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yun Ren
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Hao Fu
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- Geological Team 607, Chongqing Geological and Mineral Exploration and Development Bureau, Chongqing, 401300, China
| | - Yuming You
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Qiang Li
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zexiong Chen
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
3
|
Reynolds J, Wilkins M, Martin D, Taggart M, Rivera KR, Tunc-Ozdemir M, Rufty T, Lobaton E, Bozkurt A, Daniele MA. Evaluating Bacterial Nanocellulose Interfaces for Recording Surface Biopotentials from Plants. SENSORS (BASEL, SWITZERLAND) 2024; 24:2335. [PMID: 38610546 PMCID: PMC11014089 DOI: 10.3390/s24072335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
The study of plant electrophysiology offers promising techniques to track plant health and stress in vivo for both agricultural and environmental monitoring applications. Use of superficial electrodes on the plant body to record surface potentials may provide new phenotyping insights. Bacterial nanocellulose (BNC) is a flexible, optically translucent, and water-vapor-permeable material with low manufacturing costs, making it an ideal substrate for non-invasive and non-destructive plant electrodes. This work presents BNC electrodes with screen-printed carbon (graphite) ink-based conductive traces and pads. It investigates the potential of these electrodes for plant surface electrophysiology measurements in comparison to commercially available standard wet gel and needle electrodes. The electrochemically active surface area and impedance of the BNC electrodes varied based on the annealing temperature and time over the ranges of 50 °C to 90 °C and 5 to 60 min, respectively. The water vapor transfer rate and optical transmittance of the BNC substrate were measured to estimate the level of occlusion caused by these surface electrodes on the plant tissue. The total reduction in chlorophyll content under the electrodes was measured after the electrodes were placed on maize leaves for up to 300 h, showing that the BNC caused only a 16% reduction. Maize leaf transpiration was reduced by only 20% under the BNC electrodes after 72 h compared to a 60% reduction under wet gel electrodes in 48 h. On three different model plants, BNC-carbon ink surface electrodes and standard invasive needle electrodes were shown to have a comparable signal quality, with a correlation coefficient of >0.9, when measuring surface biopotentials induced by acute environmental stressors. These are strong indications of the superior performance of the BNC substrate with screen-printed graphite ink as an electrode material for plant surface biopotential recordings.
Collapse
Affiliation(s)
- James Reynolds
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606, USA; (J.R.); (E.L.); (A.B.)
| | - Michael Wilkins
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606, USA; (J.R.); (E.L.); (A.B.)
| | - Devon Martin
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606, USA; (J.R.); (E.L.); (A.B.)
| | - Matthew Taggart
- Department of Crop and Soil Sciences, NC State University, Raleigh, NC 27695, USA
| | - Kristina R. Rivera
- Joint Department of Biomedical Engineering, NC State University and University of North Carolina, Chapel Hill, NC 27695, USA
| | - Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Thomas Rufty
- Department of Crop and Soil Sciences, NC State University, Raleigh, NC 27695, USA
| | - Edgar Lobaton
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606, USA; (J.R.); (E.L.); (A.B.)
| | - Alper Bozkurt
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606, USA; (J.R.); (E.L.); (A.B.)
| | - Michael A. Daniele
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606, USA; (J.R.); (E.L.); (A.B.)
- Joint Department of Biomedical Engineering, NC State University and University of North Carolina, Chapel Hill, NC 27695, USA
| |
Collapse
|
4
|
Gao Y, Cai C, Yang Q, Quan W, Li C, Wu Y. Response of Bletilla striata to Drought: Effects on Biochemical and Physiological Parameter Also with Electric Measurements. PLANTS 2022; 11:plants11172313. [PMID: 36079696 PMCID: PMC9460583 DOI: 10.3390/plants11172313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
In heterogeneous landscapes with temporary water deficit characteristics in southwestern China, understanding the electrophysiological and morphological characteristics of Bletilla striata under different water conditions can help to better evaluate its suitability for planting plants in specific locations and guide planting and production. Using B. striata seedlings as experimental materials, the maximum field capacity (FC) was 75–80% (CK: control group), 50–60% FC (LS: light drought stress), 40–45% FC (MS: moderate drought stress), and 30–35% FC (SS: severe drought stress). In terms of physiological response, the activities of peroxidase (POD) and catalase (CAT) decreased under drought conditions, but the activity was well under the LS treatment, and the contents of proline (Pro) and malondialdehyde (MDA) increased. In terms of morphological responses, under drought conditions, root lengths of the rhizomes (except the LS treatment) were significantly reduced, the leaf lengths were reduced, and the biomass was significantly reduced. The stomatal size reached the maximum under the LS treatment, and the stomatal density gradually decreased with the increase in drought degree. In terms of electrophysiological responses, drought significantly decreased the net photosynthetic rate (PN) of B. striata, stomatal conductance (gs), and transpiration rate (Tr), but effectively increased the water use efficiency (WUE). The effective thickness of leaves of B. striata increased under drought conditions, and drought promoted the formation of leaf morphological diversity. Our results showed that drought stress changed the physiological and morphological characteristics of B. striata, and under light drought conditions had higher physiological activity, good morphological characteristics, higher cellular metabolic energy and ecological adaptability. Appropriate drought can promote the improvement of the quality of B. striata, and it can be widely planted in mildly arid areas.
Collapse
Affiliation(s)
- Yongdao Gao
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Chang Cai
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Qiaoan Yang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Chaochan Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
- Correspondence: (C.L.); (Y.W.); Tel.: +86-851-86702710 (C.L.); +86-851-84391746 (Y.W.)
| | - Yanyou Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Correspondence: (C.L.); (Y.W.); Tel.: +86-851-86702710 (C.L.); +86-851-84391746 (Y.W.)
| |
Collapse
|
5
|
Development of an Algorithm to Indicate the Right Moment of Plant Watering Using the Analysis of Plant Biomasses Based on Dahlia × hybrida. SUSTAINABILITY 2022. [DOI: 10.3390/su14095165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water management in agriculture and horticulture has a strong ecological importance related to the necessity of optimizing the use of water resources. To achieve sustainable water use, it is necessary to optimize the time, frequency and the methods of water application. In this study, we hypothesized that the right moment for watering may be established on the grounds of the observation of the physiological state of the plant (if the plant is still in turgor) and the biomass of plant and the substrate. The proper irrigation scheduling, that is, just before the plant loses turgor, which appears at ca. 73% of LRWC in dahlias, determined with the use of the proposed measurement and computing system, makes it possible to save ca. 30% of irrigation water, in comparison to standard watering. Controlled watering also affected plant growth parameters, such as the content of chlorophyll a and b and carotenoid, as well as total and reducing sugar content (ca. 7%, 9% and 23% more than in plants watered in a standard way, respectively). Plants watered in a controlled way were 12% more compact when compared with the ones watered in a standard way. The results clearly proved that the computing system connected to scales made it possible to save water used for irrigation without a negative impact on the parameters of plant growth.
Collapse
|
6
|
Khan AL, Asaf S, Numan M, AbdulKareem NM, Imran M, Riethoven JJM, Kim HY, Al-Harrasi A, Schachtman DP, Al-Rawahi A, Lee IJ. Transcriptomics of tapping and healing process in frankincense tree during resin production. Genomics 2021; 113:4337-4351. [PMID: 34798281 DOI: 10.1016/j.ygeno.2021.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022]
Abstract
Frankincense tree (Boswellia sacra Fluek) has been poorly known on how it responds to tapping and wound-recovery process at molecular levels. Here, we used RNA-sequencing analysis to profile transcriptome of B. sacra after 30 min, 3 h and 6 h of post-tapping. Results showed 5525 differentially expressed genes (DEGs) that were related to terpenoid biosynthesis, phytohormonal regulation, cellular transport, and cell-wall synthesis. Plant-growth-regulators were applied exogenously which showed regulation of endogenous jasmonates and resulted in rapid recovery of cell-wall integrity by significantly up-regulated gene expression of terpenoid biosynthesis (germacrene-D synthase, B-amyrin synthase, and squalene epioxidase-1) and cell-wall synthesis (xyloglucan endotransglucosylase, cellulose synthase-A, and cell-wall hydrolase) compared to control. These findings suggest that tapping immediately activated several cell-developmental and regeneration processes, alongwith defense-induced terpenoid metabolism, to improve the healing process in epidermis. Exogenous growth regulators, especially jasmonic acid, can drastically help tree recovery from tissue degeneration and might help in tree conservation purposes.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, Houston 77479, TX, United States of America; Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Numan
- Department of Biology, University of North Carolina at Greensboro, 363 Sullivan Science Building, Greensboro, NC 27402-6170, United States of America
| | | | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jean-Jack M Riethoven
- Nebraska Center for Integrated Biomolecular communication, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, United States of America.
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Miguel-Tomé S, Llinás RR. Broadening the definition of a nervous system to better understand the evolution of plants and animals. PLANT SIGNALING & BEHAVIOR 2021; 16:1927562. [PMID: 34120565 PMCID: PMC8331040 DOI: 10.1080/15592324.2021.1927562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 05/10/2023]
Abstract
Most textbook definitions recognize only animals as having nervous systems. However, for the past couple decades, botanists have been meticulously studying long-distance signaling systems in plants, and some researchers have stated that plants have a simple nervous system. Thus, an academic conflict has emerged between those who defend and those who deny the existence of a nervous system in plants. This article analyses that debate, and we propose an alternative to answering yes or no: broadening the definition of a nervous system to include plants. We claim that a definition broader than the current one, which is based only on a phylogenetic viewpoint, would be helpful in obtaining a deeper understanding of how evolution has driven the features of signal generation, transmission and processing in multicellular beings. Also, we propose two possible definitions and exemplify how broader a definition allows for new viewpoints on the evolution of plants, animals and the nervous system.
Collapse
Affiliation(s)
- Sergio Miguel-Tomé
- Grupo De Investigación En Minería De Datos (Mida), Universidad De Salamanca, Salamanca, Spain
| | - Rodolfo R. Llinás
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| |
Collapse
|
8
|
Shi M, Li Y, Deng S, Wang D, Chen Y, Yang S, Wu J, Tian WM. The formation and accumulation of protein-networks by physical interactions in the rapid occlusion of laticifer cells in rubber tree undergoing successive mechanical wounding. BMC PLANT BIOLOGY 2019; 19:8. [PMID: 30616545 PMCID: PMC6322289 DOI: 10.1186/s12870-018-1617-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Although the wound response of plants has been extensively studied, little is known of the rapid occlusion of wounded cell itself. The laticifer in rubber tree is a specific type of tissue for natural rubber biosynthesis and storage. In natural rubber production, tapping is used to harvest the latex which flows out from the severed laticifer in the bark. Therefore, study of the rapid wound-occlusion of severed laticifer cells is important for understanding the rubber tree being protected from the continuously mechanical wounding. RESULTS Using cytological and biochemical techniques, we revealed a biochemical mechanism for the rapid occlusion of severed laticifer cells. A protein-network appeared rapidly after tapping and accumulated gradually along with the latex loss at the severed site of laticifer cells. Triple immunofluorescence histochemical localization showed that the primary components of the protein-network were chitinase, β-1,3-glucanase and hevein together with pro-hevein (ProH) and its carboxyl-terminal part. Molecular sieve chromatography showed that the physical interactions among these proteins occurred under the condition of neutral pH. The interaction of β-1,3-glucanase respectively with hevein, chitinase and ProH was testified by surface plasmon resonance (SPR). The interaction between actin and β-1,3-glucanase out of the protein inclusions of lutoids was revealed by pull-down. This interaction was pharmacologically verified by cytochalasin B-caused significant prolongation of the duration of latex flow in the field. CONCLUSIONS The formation of protein-network by interactions of the proteins with anti-pathogen activity released from lutoids and accumulation of protein-network by binding to the cytoskeleton are crucial for the rapid occlusion of laticifer cells in rubber tree. The protein-network at the wounded site of laticifer cells provides not only a physical barrier but also a biochemical barrier to protect the wounded laticifer cells from pathogen invasion.
Collapse
Affiliation(s)
- Minjing Shi
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Yan Li
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Shunnan Deng
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
- Dehong Vocational College, Mangshi, Dehong State, 678400, Yunnan, People's Republic of China
| | - Dongdong Wang
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Yueyi Chen
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Shuguang Yang
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Jilin Wu
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Wei-Min Tian
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China.
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China.
| |
Collapse
|
9
|
PlantES: A Plant Electrophysiological Multi-Source Data Online Analysis and Sharing Platform. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
At present, plant electrophysiological data volumes and complexity are increasing rapidly. It causes the demand for efficient management of big data, data sharing among research groups, and fast analysis. In this paper, we proposed PlantES (Plant Electrophysiological Data Sharing), a distributed computing-based prototype system that can be used to store, manage, visualize, analyze, and share plant electrophysiological data. We deliberately designed a storage schema to manage the multi-source plant electrophysiological data by integrating distributed storage systems HDFS and HBase to access all kinds of files efficiently. To improve the online analysis efficiency, parallel computing algorithms on Spark were proposed and implemented, e.g., plant electrical signals extraction method, the adaptive derivative threshold algorithm, and template matching algorithm. The experimental results indicated that Spark efficiently improves the online analysis. Meanwhile, the online visualization and sharing of multiple types of data in the web browser were implemented. Our prototype platform provides a solution for web-based sharing and analysis of plant electrophysiological multi-source data and improves the comprehension of plant electrical signals from a systemic perspective.
Collapse
|
10
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
11
|
Vodeneev V, Mudrilov M, Akinchits E, Balalaeva I, Sukhov V. Parameters of electrical signals and photosynthetic responses induced by them in pea seedlings depend on the nature of stimulus. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:160-170. [PMID: 32291030 DOI: 10.1071/fp16342] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/09/2016] [Indexed: 05/13/2023]
Abstract
Local damage induces generation and propagation of variation potentials (VPs) that affect physiological processes in plants. The aims of the work presented here were to investigate parameters of VP induced by burning, heating and mechanical injury in pea seedlings, and to undertake a theoretical analysis of the mechanisms underlying the differences in VP parameters and a study of the photosynthetic responses caused by VPs induced by the damaging factors. The velocity of propagation of burn-induced VP decreased with distance from the damaged area whereas the velocities of heating- and injury-induced VPs were constant. The amplitudes of burn- and heating-induced VPs did not depend on distance whereas the amplitude of VP induced by mechanical injury decreased. VP propagation has been simulated on the basis of wound substance spread. The simulation revealed two possible ways of wound substance propagation: turbulent diffusion from the damaged area and secondary active production in intact cells. The photosynthetic response (decrease in the quantum yield of PSII and raising the level of non-photochemical fluorescence quenching (NPQ)) developed in case of VP entering the intact leaf under heating and burn but was not registered after mechanical injury. An increase in NPQ level was biphasic under burn in comparison with a single-phase one under heating, and the NPQ amplitude was slightly higher under burn. We suggest that differences in photosynthetic responses may be determined by the parameters of VPs induced by stimuli of different nature.
Collapse
Affiliation(s)
- Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue, 23, Nizhni Novgorod, Russia
| | - Maxim Mudrilov
- Department of Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue, 23, Nizhni Novgorod, Russia
| | - Elena Akinchits
- Department of Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue, 23, Nizhni Novgorod, Russia
| | - Irina Balalaeva
- Department of Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue, 23, Nizhni Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue, 23, Nizhni Novgorod, Russia
| |
Collapse
|
12
|
Prasad A, Sedlářová M, Kale RS, Pospíšil P. Lipoxygenase in singlet oxygen generation as a response to wounding: in vivo imaging in Arabidopsis thaliana. Sci Rep 2017; 7:9831. [PMID: 28851974 PMCID: PMC5575249 DOI: 10.1038/s41598-017-09758-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
Wounding, one of the most intensive stresses influencing plants ontogeny and lifespan, can be induced by herbivory as well as by physical factors. Reactive oxygen species play indispensable role both in the local and systemic defense reactions which enable "reprogramming" of metabolic pathways to set new boundaries and physiological equilibrium suitable for survival. In our current study, we provide experimental evidence on the formation of singlet oxygen (1O2) after wounding of Arabidopsis leaves. It is shown that 1O2 is formed by triplet-triplet energy transfer from triplet carbonyls to molecular oxygen. Using lipoxygenase inhibitor catechol, it is demonstrated that lipid peroxidation is initiated by lipoxygenase. Suppression of 1O2 formation in lox2 mutant which lacks chloroplast lipoxygenase indicates that lipoxygenase localized in chloroplast is predominantly responsible for 1O2 formation. Interestingly, 1O2 formation is solely restricted to chloroplasts localized at the wounding site. Data presented in this study might provide novel insight into wound-induced signaling in the local defense reaction.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ravindra Sonajirao Kale
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
13
|
|
14
|
Choi WG, Hilleary R, Swanson SJ, Kim SH, Gilroy S. Rapid, Long-Distance Electrical and Calcium Signaling in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:287-307. [PMID: 27023742 DOI: 10.1146/annurev-arplant-043015-112130] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants integrate activities throughout their bodies using long-range signaling systems in which stimuli sensed by just a few cells are translated into mobile signals that can influence the activities in distant tissues. Such signaling can travel at speeds well in excess of millimeters per second and can trigger responses as diverse as changes in transcription and translation levels, posttranslational regulation, alterations in metabolite levels, and even wholesale reprogramming of development. In addition to the use of mobile small molecules and hormones, electrical signals have long been known to propagate throughout the plant. This electrical signaling network has now been linked to waves of Ca(2+) and reactive oxygen species that traverse the plant and trigger systemic responses. Analysis of cell type specificity in signal propagation has revealed the movement of systemic signals through specific cell types, suggesting that a rapid signaling network may be hardwired into the architecture of the plant.
Collapse
Affiliation(s)
- Won-Gyu Choi
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Richard Hilleary
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Sarah J Swanson
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Su-Hwa Kim
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Simon Gilroy
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| |
Collapse
|
15
|
Huber AE, Bauerle TL. Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2063-79. [PMID: 26944636 DOI: 10.1093/jxb/erw099] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants require the capacity for quick and precise recognition of external stimuli within their environment for survival. Upon exposure to biotic (herbivores and pathogens) or abiotic stressors (environmental conditions), plants can activate hydraulic, chemical, or electrical long-distance signals to initiate systemic stress responses. A plant's stress reactions can be highly precise and orchestrated in response to different stressors or stress combinations. To date, an array of information is available on plant responses to single stressors. However, information on simultaneously occurring stresses that represent either multiple, within, or across abiotic and biotic stress types is nascent. Likewise, the crosstalk between hydraulic, chemical, and electrical signaling pathways and the importance of each individual signaling type requires further investigation in order to be fully understood. The overlapping presence and speed of the signals upon plant exposure to various stressors makes it challenging to identify the signal initiating plant systemic stress/defense responses. Furthermore, it is thought that systemic plant responses are not transmitted by a single pathway, but rather by a combination of signals enabling the transmission of information on the prevailing stressor(s) and its intensity. In this review, we summarize the mode of action of hydraulic, chemical, and electrical long-distance signals, discuss their importance in information transmission to biotic and abiotic stressors, and suggest future research directions.
Collapse
Affiliation(s)
- Annika E Huber
- Cornell University, School of Integrative Plant Science, Ithaca, NY 14850, USA
| | - Taryn L Bauerle
- Cornell University, School of Integrative Plant Science, Ithaca, NY 14850, USA
| |
Collapse
|
16
|
Zhao DJ, Chen Y, Wang ZY, Xue L, Mao TL, Liu YM, Wang ZY, Huang L. High-resolution non-contact measurement of the electrical activity of plants in situ using optical recording. Sci Rep 2015; 5:13425. [PMID: 26333536 PMCID: PMC4558603 DOI: 10.1038/srep13425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023] Open
Abstract
The limitations of conventional extracellular recording and intracellular recording make high-resolution multisite recording of plant bioelectrical activity in situ challenging. By combining a cooled charge-coupled device camera with a voltage-sensitive dye, we recorded the action potentials in the stem of Helianthus annuus and variation potentials at multiple sites simultaneously with high spatial resolution. The method of signal processing using coherence analysis was used to determine the synchronization of the selected signals. Our results provide direct visualization of the phloem, which is the distribution region of the electrical activities in the stem and leaf of H. annuus, and verify that the phloem is the main action potential transmission route in the stems of higher plants. Finally, the method of optical recording offers a unique opportunity to map the dynamic bioelectrical activity and provides an insight into the mechanisms of long-distance electrical signal transmission in higher plants.
Collapse
Affiliation(s)
- Dong-Jie Zhao
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Chen
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Zi-Yang Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Lin Xue
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Tong-Lin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Min Liu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhong-Yi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.,Key Laboratory of Agricultural information acquisition technology (Beijing), Ministry of Agriculture, Beijing 100083, China
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.,Key Laboratory of Agricultural information acquisition technology (Beijing), Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
17
|
Zebelo SA, Maffei ME. Role of early signalling events in plant-insect interactions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:435-48. [PMID: 25429000 DOI: 10.1093/jxb/eru480] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The response of plants to the stress caused by herbivores involves several different defence mechanisms. These responses begin at the plant cell plasma membrane, where insect herbivores interact physically by causing mechanical damage and chemically by introducing elicitors or by triggering plant-derived signalling molecules. The earliest plant responses to herbivore contact are represented by ion flux unbalances generated in the plant cell plasma membrane at the damaged site. Differences in the charge distribution generate plasma transmembrane potential (V m) variation, the first event, which eventually leads to the initiation of signal transduction pathways and gene expression. Calcium signalling and the generation of reactive oxygen and nitrogen species are early events closely related to V m variations. This review provides an update on recent developments and advances in plant early signalling in response to herbivory, with particular emphasis on the electrophysiological variations of the plasma membrane potential, calcium signalling, cation channel activity, production of reactive oxygen and nitrogen species, and formation of a systemically moving signal from wounded tissues. The roles of calcium-dependent protein kinases and calcineurin signalling are also discussed.
Collapse
Affiliation(s)
- Simon A Zebelo
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn 36849, AL, USA
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Via Quarello 15/A, Turin 10135, Italy
| |
Collapse
|
18
|
Ríos-Rojas L, Morales-Moraga D, Alcalde JA, Gurovich LA. Use of plant woody species electrical potential for irrigation scheduling. PLANT SIGNALING & BEHAVIOR 2015; 10:e976487. [PMID: 25826257 PMCID: PMC4623352 DOI: 10.4161/15592324.2014.976487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 05/26/2023]
Abstract
The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological sensor and the EP electrodes connected to the Keithley voltmeter in each irrigation stage. Also, both sensors show a daily cyclical signal (circadian cycle).
Collapse
Affiliation(s)
| | | | - José A Alcalde
- Pontificia Universidad Católica de Chile; Santiago, Chile
| | | |
Collapse
|
19
|
Zhao DJ, Wang ZY, Huang L, Jia YP, Leng JQ. Spatio-temporal mapping of variation potentials in leaves of Helianthus annuus L. seedlings in situ using multi-electrode array. Sci Rep 2014; 4:5435. [PMID: 24961469 PMCID: PMC4069705 DOI: 10.1038/srep05435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 06/05/2014] [Indexed: 12/30/2022] Open
Abstract
Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress.
Collapse
Affiliation(s)
- Dong-Jie Zhao
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Zhong-Yi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | | | - John Q. Leng
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
20
|
Ríos-Rojas L, Tapia F, Gurovich LA. Electrophysiological assessment of water stress in fruit-bearing woody plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:799-806. [PMID: 24877671 DOI: 10.1016/j.jplph.2014.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a continuous signal with daily maximum and a minimum EP of similar magnitude in time, with zero slope. This plant electrical behavior is proposed for the development of a sensor measuring real-time plant water status.
Collapse
Affiliation(s)
- Liliana Ríos-Rojas
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Chile
| | | | - Luis A Gurovich
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
21
|
Savatin DV, Gramegna G, Modesti V, Cervone F. Wounding in the plant tissue: the defense of a dangerous passage. FRONTIERS IN PLANT SCIENCE 2014; 5:470. [PMID: 25278948 PMCID: PMC4165286 DOI: 10.3389/fpls.2014.00470] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/28/2014] [Indexed: 05/19/2023]
Abstract
Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e., the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e., chitinases and gluganases). Typical examples of DAMPs involved in the response to wounding are the peptide systemin, and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response) and systemically (systemic response) and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.
Collapse
Affiliation(s)
| | | | | | - Felice Cervone
- *Correspondence: Felice Cervone, Department of Biology and Biotechnology “Charles Darwin”, Sapienza–University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy e-mail:
| |
Collapse
|
22
|
Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF, Shuman JL, Luo X, Shah J, Schlauch K, Shulaev V, Mittler R. Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. THE PLANT CELL 2013; 25:3553-69. [PMID: 24038652 PMCID: PMC3809549 DOI: 10.1105/tpc.113.114595] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 05/18/2023]
Abstract
Being sessile organisms, plants evolved sophisticated acclimation mechanisms to cope with abiotic challenges in their environment. These are activated at the initial site of exposure to stress, as well as in systemic tissues that have not been subjected to stress (termed systemic acquired acclimation [SAA]). Although SAA is thought to play a key role in plant survival during stress, little is known about the signaling mechanisms underlying it. Here, we report that SAA in plants requires at least two different signals: an autopropagating wave of reactive oxygen species (ROS) that rapidly spreads from the initial site of exposure to the entire plant and a stress-specific signal that conveys abiotic stress specificity. We further demonstrate that SAA is stress specific and that a temporal-spatial interaction between ROS and abscisic acid regulates rapid SAA to heat stress in plants. In addition, we demonstrate that the rapid ROS signal is associated with the propagation of electric signals in Arabidopsis thaliana. Our findings unravel some of the basic signaling mechanisms underlying SAA in plants and reveal that signaling events and transcriptome and metabolome reprogramming of systemic tissues in response to abiotic stress occur at a much faster rate than previously envisioned.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203-5017
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Carolina Salazar
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203-5017
| | - Hossain A. Mondal
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203-5017
| | - Elena Shulaev
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203-5017
| | - Diego F. Cortes
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061
| | - Joel L. Shuman
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061
| | - Xiaozhong Luo
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203-5017
| | - Jyoti Shah
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203-5017
| | - Karen Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557
| | - Vladimir Shulaev
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203-5017
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203-5017
- Address correspondence to
| |
Collapse
|
23
|
Kozyrovska NO. Crosstalk between endophytes and a plant host within information-processing networks. ACTA ACUST UNITED AC 2013. [DOI: 10.7124/bc.00081d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- N. O. Kozyrovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
24
|
Lüttge U. Whole-Plant Physiology: Synergistic Emergence Rather Than Modularity. PROGRESS IN BOTANY 2013. [DOI: 10.1007/978-3-642-30967-0_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Suzuki N, Mittler R. Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 2012; 53:2269-76. [PMID: 23085520 DOI: 10.1016/j.freeradbiomed.2012.10.538] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/20/2023]
Abstract
Animals and plants evolved sophisticated mechanisms that regulate their responses to mechanical injury. Wound response in animals mainly promotes wound healing processes, nerve cell regeneration, and immune system responses at the vicinity of the wound site. In contrast, wound response in plants is primarily directed at sealing the wound site via deposition of various compounds and generating systemic signals that activate multiple defense mechanisms in remote tissues. Despite these differences between animals and plants, recent studies have shown that reactive oxygen species (ROS) play very common signaling and coordination roles in the wound responses of both systems. This review provides an update on recent findings related to ROS-regulated coordination of intercellular communications and signal transduction during wound response in plants and animals. In particular, differences and similarities in H2O2-dependent long-distance signaling between zebrafish and Arabidopsis thaliana are discussed.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| |
Collapse
|
26
|
Chen BJW, During HJ, Anten NPR. Detect thy neighbor: identity recognition at the root level in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 195:157-67. [PMID: 22921010 DOI: 10.1016/j.plantsci.2012.07.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 05/06/2023]
Abstract
Some plant species increase root allocation at the expense of reproduction in the presence of non-self and non-kin neighbors, indicating the capacity of neighbor-identity recognition at the root level. Yet in spite of the potential consequences of root identity recognition for the relationship between plant interactions and community structure and functioning, this phenomenon still remains poorly understood. We first critically assess the evidence for the existence of self/non-self and kin recognition at the root level in plants. While root identity recognition most likely exists to some degree, there remain valid points of criticism regarding experiments that have documented this, particularly concerning the effects of pot volume in self/non-self recognition experiments and the roles of size inequality and asymmetric competition in kin recognition studies. Subsequently we review and propose some plausible physiological mechanisms that may underlie these responses. Finally we briefly discuss the relation between under- and aboveground interactions and the potential consequences of root identity recognition for agriculture, and conclude with raising several questions for future studies.
Collapse
Affiliation(s)
- Bin J W Chen
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, P.O. Box 800.84, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
27
|
Landgraf R, Schaarschmidt S, Hause B. Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. PLANT, CELL & ENVIRONMENT 2012; 35:1344-57. [PMID: 22329418 DOI: 10.1111/j.1365-3040.2012.02495.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In nature, plants are subject to various stresses that are often accompanied by wounding of the aboveground tissues. As wounding affects plants locally and systemically, we investigated the impact of leaf wounding on interactions of Medicago truncatula with root-colonizing microorganisms, such as the arbuscular mycorrhizal (AM) fungus Glomus intraradices, the pathogenic oomycete Aphanomyces euteiches and the nitrogen-fixing bacterium Sinorhizobium meliloti. To obtain a long-lasting wound response, repeated wounding was performed and resulted in locally and systemically increased jasmonic acid (JA) levels accompanied by the expression of jasmonate-induced genes, among them the genes encoding allene oxide cyclase 1 (MtAOC1) and a putative cell wall-bound invertase (cwINV). After repeated wounding, colonization with the AM fungus was increased, suggesting a role of jasmonates as positive regulators of mycorrhization, whereas the interaction with the rhizobacterium was not affected. In contrast, wounded plants appeared to be less susceptible to pathogens which might be caused by JA-induced defence mechanisms. The effects of wounding on mycorrhization and pathogen infection could be partially mimicked by foliar application of JA. In addition to JA itself, the positive effect on mycorrhization might be mediated by systemically induced cwINV, which was previously shown to exhibit a regulatory function on interaction with AM fungi.
Collapse
Affiliation(s)
- Ramona Landgraf
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | |
Collapse
|
28
|
Zhang X, Yu N, Xi G, Meng X. Changes in the power spectrum of electrical signals in maize leaf induced by osmotic stress. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-011-4820-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|