1
|
Fekete EE, Wang A, Creskey M, Cummings SE, Lavoie JR, Ning Z, Li J, Figeys D, Chen R, Zhang X. Multilevel Proteomic Profiling of Colorectal Adenocarcinoma Caco-2 Cell Differentiation to Characterize an Intestinal Epithelial Model. J Proteome Res 2024; 23:2561-2575. [PMID: 38810023 PMCID: PMC11232098 DOI: 10.1021/acs.jproteome.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Emergent advancements on the role of the intestinal microbiome for human health and disease necessitate well-defined intestinal cellular models to study and rapidly assess host, microbiome, and drug interactions. Differentiated Caco-2 cell line is commonly utilized as an epithelial model for drug permeability studies and has more recently been utilized for investigating host-microbiome interactions. However, its suitability to study such interactions remains to be characterized. Here, we employed multilevel proteomics to demonstrate that both spontaneous and butyrate-induced Caco-2 differentiations displayed similar protein and pathway changes, including the downregulation of proteins related to translation and proliferation and upregulation of functions implicated in host-microbiome interactions, such as cell adhesion, tight junction, extracellular vesicles, and responses to stimuli. Lysine acetylomics revealed that histone protein acetylation levels were decreased along with cell differentiation, while the acetylation in proteins associated with mitochondrial functions was increased. This study also demonstrates that, compared to spontaneous differentiation methods, butyrate-containing medium accelerates Caco-2 differentiation, with earlier upregulation of proteins related to host-microbiome interactions, suggesting its superiority for assay development using this intestinal model. Altogether, this multiomics study emphasizes the controlled progression of Caco-2 differentiation toward a specialized intestinal epithelial-like cell and establishes its suitability for investigating the host-microbiome interactions.
Collapse
Affiliation(s)
- Emily Ef Fekete
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Angela Wang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Marybeth Creskey
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Sarah E Cummings
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Jessie R Lavoie
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A0R6, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| | - Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A0R6, Canada
| | - Xu Zhang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| |
Collapse
|
2
|
Yariv O, Camphausen K, Krauze AV. Small Bowel Dose Constraints in Radiation Therapy—Where Omics-Driven Biomarkers and Bioinformatics Can Take Us in the Future. BIOMEDINFORMATICS 2024; 4:158-172. [DOI: 10.3390/biomedinformatics4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Radiation-induced gastrointestinal (GI) dose constraints are still a matter of concern with the ongoing evolution of patient outcomes and treatment-related toxicity in the era of image-guided intensity-modulated radiation therapy (IMRT), stereotactic ablative radiotherapy (SABR), and novel systemic agents. Small bowel (SB) dose constraints in pelvic radiotherapy (RT) are a critical aspect of treatment planning, and prospective data to support them are scarce. Previous and current guidelines are based on retrospective data and experts’ opinions. Patient-related factors, including genetic, biological, and clinical features and systemic management, modulate toxicity. Omic and microbiome alterations between patients receiving RT to the SB may aid in the identification of patients at risk and real-time identification of acute and late toxicity. Actionable biomarkers may represent a pragmatic approach to translating findings into personalized treatment with biologically optimized dose escalation, given the mitigation of the understood risk. Biomarkers grounded in the genome, transcriptome, proteome, and microbiome should undergo analysis in trials that employ, R.T. Bioinformatic templates will be needed to help advance data collection, aggregation, and analysis, and eventually, decision making with respect to dose constraints in the modern RT era.
Collapse
Affiliation(s)
- Orly Yariv
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA
| | - Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Chaukimath P, Frankel G, Visweswariah SS. The metabolic impact of bacterial infection in the gut. FEBS J 2023; 290:3928-3945. [PMID: 35731686 DOI: 10.1111/febs.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 08/17/2023]
Abstract
Bacterial infections of the gut are one of the major causes of morbidity and mortality worldwide. The interplay between the pathogen and the host is finely balanced, with the bacteria evolving to proliferate and establish infection. In contrast, the host mounts a response to first restrict and then eliminate the infection. The intestine is a rapidly proliferating tissue, and metabolism is tuned to cater to the demands of proliferation and differentiation along the crypt-villus axis (CVA) in the gut. As bacterial pathogens encounter the intestinal epithelium, they elicit changes in the host cell, and core metabolic pathways such as the tricarboxylic acid (TCA) cycle, lipid metabolism and glycolysis are affected. This review highlights the mechanisms utilized by diverse gut bacterial pathogens to subvert host metabolism and describes host responses to the infection.
Collapse
Affiliation(s)
- Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College, London, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
4
|
Ramadan R, Wouters VM, van Neerven SM, de Groot NE, Garcia TM, Muncan V, Franklin OD, Battle M, Carlson KS, Leach J, Sansom OJ, Boulard O, Chamaillard M, Vermeulen L, Medema JP, Huels DJ. The extracellular matrix controls stem cell specification and crypt morphology in the developing and adult mouse gut. Biol Open 2022; 11:bio059544. [PMID: 36350252 PMCID: PMC9713296 DOI: 10.1242/bio.059544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2023] Open
Abstract
The rapid renewal of the epithelial gut lining is fuelled by stem cells that reside at the base of intestinal crypts. The signal transduction pathways and morphogens that regulate intestinal stem cell self-renewal and differentiation have been extensively characterised. In contrast, although extracellular matrix (ECM) components form an integral part of the intestinal stem cell niche, their direct influence on the cellular composition is less well understood. We set out to systematically compare the effect of two ECM classes, the interstitial matrix and the basement membrane, on the intestinal epithelium. We found that both collagen I and laminin-containing cultures allow growth of small intestinal epithelial cells with all cell types present in both cultures, albeit at different ratios. The collagen cultures contained a subset of cells enriched in fetal-like markers. In contrast, laminin increased Lgr5+ stem cells and Paneth cells, and induced crypt-like morphology changes. The transition from a collagen culture to a laminin culture resembled gut development in vivo. The dramatic ECM remodelling was accompanied by a local expression of the laminin receptor ITGA6 in the crypt-forming epithelium. Importantly, deletion of laminin in the adult mouse resulted in a marked reduction of adult intestinal stem cells. Overall, our data support the hypothesis that the formation of intestinal crypts is induced by an increased laminin concentration in the ECM.
Collapse
Affiliation(s)
- Rana Ramadan
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Valérie M. Wouters
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sanne M. van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina E. de Groot
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Tania Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC University of Amsterdam, 1015 BK Amsterdam, The Netherlands
| | - Vanessa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC University of Amsterdam, 1015 BK Amsterdam, The Netherlands
| | - Olivia D. Franklin
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
| | - Michelle Battle
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
| | - Karen Sue Carlson
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
- The Blood Research Institute of Wisconsin, part of Versiti, and the Medical College of Wisconsin, Department of Internal Medicine, Milwaukee, WI 53226, USA
| | - Joshua Leach
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Olivier Boulard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d'Infection et d'Immunité de Lille (CIIL), Université de Lille, 59019 Lille, France
| | - Mathias Chamaillard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d'Infection et d'Immunité de Lille (CIIL), Université de Lille, 59019 Lille, France
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - David J. Huels
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Bidaud-Meynard A, Demouchy F, Nicolle O, Pacquelet A, Suman SK, Plancke CN, Robin FB, Michaux G. High-resolution dynamic mapping of the C. elegans intestinal brush border. Development 2021; 148:dev200029. [PMID: 34704594 PMCID: PMC10659032 DOI: 10.1242/dev.200029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
The intestinal brush border is made of an array of microvilli that increases the membrane surface area for nutrient processing, absorption and host defense. Studies on mammalian cultured epithelial cells have uncovered some of the molecular players and physical constraints required to establish this apical specialized membrane. However, the building and maintenance of a brush border in vivo has not yet been investigated in detail. Here, we combined super-resolution imaging, transmission electron microscopy and genome editing in the developing nematode Caenorhabditis elegans to build a high-resolution and dynamic localization map of known and new brush border markers. Notably, we show that microvilli components are dynamically enriched at the apical membrane during microvilli outgrowth and maturation, but become highly stable once microvilli are built. This new toolbox will be instrumental for understanding the molecular processes of microvilli growth and maintenance in vivo, as well as the effect of genetic perturbations, notably in the context of disorders affecting brush border integrity.
Collapse
Affiliation(s)
- Aurélien Bidaud-Meynard
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Flora Demouchy
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Ophélie Nicolle
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Anne Pacquelet
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Shashi Kumar Suman
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Camille N Plancke
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - François B Robin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Grégoire Michaux
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
6
|
Yoon G, Davidson LA, Goldsby JS, Mullens DA, Ivanov I, Donovan SM, Chapkin RS. Exfoliated epithelial cell transcriptome reflects both small and large intestinal cell signatures in piglets. Am J Physiol Gastrointest Liver Physiol 2021; 321:G41-G51. [PMID: 33949197 PMCID: PMC8321797 DOI: 10.1152/ajpgi.00017.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Assessing intestinal development and host-microbe interactions in healthy human infants requires noninvasive approaches. We have shown that the transcriptome of exfoliated epithelial cells in feces can differentiate breast-fed and formula-fed infants and term and preterm infants. However, it is not fully understood which regions of the intestine that the exfoliated cells represent. Herein, the transcriptional profiles of exfoliated cells with that of the ileal and colonic mucosa were compared. We hypothesized that exfoliated cells in the distal colon would reflect mucosal signatures of more proximal regions of the gut. Two-day-old piglets (n = 8) were fed formulas for 20 days. Luminal contents and mucosa were collected from ileum (IL), ascending colon (AC), and descending (DC) colon, and mRNA was extracted and sequenced. On average, ∼13,000 genes were mapped in mucosal tissues and ∼10,000 in luminal contents. The intersection of detected genes between three mucosa regions and DC exfoliome indicated an approximately 99% overlap. On average, 49% of the genes in IL, AC, and DC mucosa were present in the AC and DC exfoliome. Genes expressed predominantly in specific anatomic sites (stomach, pancreas, small intestine, colon) were detectable in exfoliated cells. In addition, gene markers for all intestinal epithelial cell types were expressed in the exfoliome representing a diverse array of cell types arising from both the small and large intestine. Genes were mapped to nutrient absorption and transport and immune function. Thus, the exfoliome represents a robust reservoir of information in which to assess intestinal development and responses to dietary interventions.NEW & NOTEWORTHY The transcriptome of exfoliated epithelial cells in stool contain gene signatures from both small and large intestinal mucosa affording a noninvasive approach to assess gut health and function.
Collapse
Affiliation(s)
- Grace Yoon
- 1Department of Statistics, Texas A&M University, College Station, Texas
| | - Laurie A. Davidson
- 2Department of Nutrition, Texas A&M University, College Station Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| | - Jennifer S. Goldsby
- 2Department of Nutrition, Texas A&M University, College Station Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| | - Destiny A. Mullens
- 3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas,4Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Ivan Ivanov
- 4Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Sharon M. Donovan
- 5Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois
| | - Robert S. Chapkin
- 2Department of Nutrition, Texas A&M University, College Station Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| |
Collapse
|
7
|
Anterior Gradient Protein 2 Promotes Mucosal Repair in Pediatric Ulcerative Colitis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6483860. [PMID: 34055987 PMCID: PMC8149229 DOI: 10.1155/2021/6483860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
Mucosal healing comprises a key goal of ulcerative colitis (UC) treatment. Anterior gradient protein 2 (AGR2) plays an important role in maintaining intestinal homeostasis in UC. However, the role of AGR2 in the repair of mucosal injury is not yet clear. This study is aimed at investigating the expression of AGR2 in the intestinal tissues of children with UC and its role in repairing mucosal injury. Forty UC patients who were hospitalized in the Pediatric Gastroenterology Ward of Shengjing Hospital affiliated with China Medical University between July 1, 2013, and May 31, 2020, and 20 children who had normal colonoscopy results during the same period (control group) made up the study sample. The disease activity of UC was evaluated based on the pediatric ulcerative colitis activity index, and the ulcerative colitis endoscopic index was evaluated according to the Rachmilewitz score. Immunohistochemical staining was employed to examine the differences in AGR2 expression in the intestinal mucosa between groups. The protective effect of AGR2 in a model of tumor necrosis factor-alpha- (TNF-α-) induced intestinal mucosal barrier injury and the underlying molecular mechanism were explored through in vitro experiments. The results showed that compared with the normal control group, UC patients in the remission or active period had significantly higher expression of AGR2 in the intestine. AGR2 expression was positively correlated with Ki67, an intestinal epithelial cell proliferation marker, but negatively correlated with the degree of endoscopic mucosal injury. In an in vitro model, AGR2 overexpression promoted cell proliferation and migration and inhibited TNF-α-induced intestinal epithelial barrier damage by activating yes-associated protein (YAP). Collectively, our study suggests that AGR2 might serve as a valuable biomarker to help assess the condition and mucosal healing status of UC patients. In vitro, AGR2 promoted the repair of intestinal mucosal barrier injury by activating YAP.
Collapse
|
8
|
Abstract
The development of intestinal organoids from single adult intestinal stem cells in vitro recapitulates the regenerative capacity of the intestinal epithelium1,2. Here we unravel the mechanisms that orchestrate both organoid formation and the regeneration of intestinal tissue, using an image-based screen to assay an annotated library of compounds. We generate multivariate feature profiles for hundreds of thousands of organoids to quantitatively describe their phenotypic landscape. We then use these phenotypic fingerprints to infer regulatory genetic interactions, establishing a new approach to the mapping of genetic interactions in an emergent system. This allows us to identify genes that regulate cell-fate transitions and maintain the balance between regeneration and homeostasis, unravelling previously unknown roles for several pathways, among them retinoic acid signalling. We then characterize a crucial role for retinoic acid nuclear receptors in controlling exit from the regenerative state and driving enterocyte differentiation. By combining quantitative imaging with RNA sequencing, we show the role of endogenous retinoic acid metabolism in initiating transcriptional programs that guide the cell-fate transitions of intestinal epithelium, and we identify an inhibitor of the retinoid X receptor that improves intestinal regeneration in vivo.
Collapse
|
9
|
Lyu Z, Jin H, Yan Z, Hu K, Jiang H, Peng H, Zhuo H. Effects of NRP1 on angiogenesis and vascular maturity in endothelial cells are dependent on the expression of SEMA4D. Int J Mol Med 2020; 46:1321-1334. [PMID: 32945351 PMCID: PMC7447310 DOI: 10.3892/ijmm.2020.4692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis and vascular maturation play important roles in tumorigenesis and tumor development. The expression of neuropilin 1 (NRP1) is closely associated with angiogenesis in tumors; however, the molecular mechanisms of action in angiogenesis and tumor maturation, as well as the potential clinical value of NRP1 remain unclear. The importance of NRP1 expression in tumor progression was determined using The Cancer Genome Atlas (TCGA) database analysis. Gain- and loss-of-function experiments of NRP1 were performed in vascular endothelial cells (ECs) to investigate the functions in angiogenesis. CCK-8, flow cytometry, Transwell experiments and a series of in vitro experiments were used to detect cell functions. A combination of angiogenesis antibody arrays and RNA-Seq analyses were performed to reveal the proangiogenic mechanisms of action. The function of semaphorin 4D (SEMA4D) was also investigated separately. NRP1 mRNA levels were significantly increased in primary tumors compared with normal tissues based on TCGA data (P<0.01) and were associated with tumor development in patients. Gain- and loss-of-function experiments highlighted the function of NRP1 in promoting EC proliferation, motility and capillary-like tube formation and in reducing apoptosis. NRP1 overexpression led to significantly decreased EC markers (PECAM-1, angiogenin, PIGF and MMP-9) expression levels and reduced the vascular maturity. MAPK7, TPM1, RRBP1, PTPRK, HSP90A, PRKD2, PFKFB3, RGS4 and SPARC were revealed to play important roles in this process. SEMA4D was revealed to be a key protein associated with NRP1 in ECs. These data indicated that NRP1-promoted angiogenesis may be induced at the cost of reducing maturity of the ECs. NRP1 may also be a therapeutic target for antiangiogenic strategies and a candidate prognostic marker for tumors.
Collapse
Affiliation(s)
- Zhi Lyu
- Respiratory Department, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Hongwei Jin
- Medical Laboratory Center, The Affiliated Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361000, P.R. China
| | - Zhijian Yan
- Department of Urology, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Keyan Hu
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471000, P.R. China
| | - Hongwei Jiang
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471000, P.R. China
| | - Huifang Peng
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471000, P.R. China
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
10
|
Zhu J, Zhao R, Xu W, Ma J, Ning X, Ma R, Meng F. Correlation between reticulum ribosome-binding protein 1 (RRBP1) overexpression and prognosis in cervical squamous cell carcinoma. Biosci Trends 2020; 14:279-284. [PMID: 32536673 DOI: 10.5582/bst.2020.03136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our purpose was to evaluate the correlation between endoplasmic reticulum ribosomal binding protein 1 (RRBP1) expression in cervical squamous cell carcinoma (CSCC) and poor patient prognosis. RRBP1 is a nascent transporter that is situated on the rough endoplasmic reticulum (ER). It adjusts to the secretion of proteins in cells and alleviates ER stress, thus stimulating cell proliferation. An immunohistochemical (IHC) study was conducted to detect the expression level of RRBP1 on 96 CSCC tissue samples. Western blot and Quantitative real-time polymerase chain reaction (qRT-PCR) were performed to compare the expression levels of RRBP1 in cervical squamous cell carcinoma with healthy cervical tissues. An overexpression of RRBP1 was observed in CSCC tissues, and the expression level was associated with FIGO stage (Stage I vs. II: 52.6% vs. 74.1%, p = 0.030), and lymph node metastasis (No vs. Yes: 61.5% vs. 92.3%, p = 0.031) but not patient age and tissue differentiation. Univariate survival analysis indicated that prognosis was associated with the expression level of RRBP1 and tissue differentiation and lymph node metastasis. Analysis of the multi-factor survival Cox model proved that RRBP1 was an independent prognostic factor. In conclusion, compared with healthy cervical tissues, RRBP1 was overexpressed in CSCC tissues, illustrating that RRBP1 may be a new biomarker for the diagnosis of CSCC. The study on RRBP1 may contribute to exploring the pathogenesis of CSCC and may also guide targeted therapy for CSCC in the future.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ruixue Zhao
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Wei Xu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jing Ma
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xin Ning
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Rong Ma
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Fanling Meng
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Maurel M, Obacz J, Avril T, Ding YP, Papadodima O, Treton X, Daniel F, Pilalis E, Hörberg J, Hou W, Beauchamp MC, Tourneur-Marsille J, Cazals-Hatem D, Sommerova L, Samali A, Tavernier J, Hrstka R, Dupont A, Fessart D, Delom F, Fernandez-Zapico ME, Jansen G, Eriksson LA, Thomas DY, Jerome-Majewska L, Hupp T, Chatziioannou A, Chevet E, Ogier-Denis E. Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation. EMBO Mol Med 2020; 11:emmm.201810120. [PMID: 31040128 PMCID: PMC6554669 DOI: 10.15252/emmm.201810120] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses.
Collapse
Affiliation(s)
- Marion Maurel
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", University of Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.,VIB Department of Medical Protein Research, UGent, Gent, Belgium.,Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Joanna Obacz
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", University of Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Tony Avril
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", University of Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Yong-Ping Ding
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| | - Olga Papadodima
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece
| | - Xavier Treton
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| | - Fanny Daniel
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| | - Eleftherios Pilalis
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece.,International Centre for Cancer Vaccine Science, Gdansk, Poland
| | - Johanna Hörberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Wenyang Hou
- Departments of Anatomy and Cell Biology, Human Genetics, and Pediatrics, McGill University, Montreal, QC, Canada
| | - Marie-Claude Beauchamp
- Departments of Anatomy and Cell Biology, Human Genetics, and Pediatrics, McGill University, Montreal, QC, Canada
| | - Julien Tourneur-Marsille
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| | - Dominique Cazals-Hatem
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| | - Lucia Sommerova
- Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Jan Tavernier
- VIB Department of Medical Protein Research, UGent, Gent, Belgium
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic
| | - Aurélien Dupont
- Microscopy Rennes Imaging Centre, and Biosit, UMS3480 CNRS, University of Rennes 1, Rennes Cédex, France
| | | | | | - Martin E Fernandez-Zapico
- Division of Oncology Research, Department of Oncology, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gregor Jansen
- Biochemistry Department, McGill University Life Sciences Complex, Montréal, QC, Canada
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - David Y Thomas
- Biochemistry Department, McGill University Life Sciences Complex, Montréal, QC, Canada
| | - Loydie Jerome-Majewska
- Departments of Anatomy and Cell Biology, Human Genetics, and Pediatrics, McGill University, Montreal, QC, Canada
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, Gdansk, Poland.,Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic.,Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University, Edimburgh, UK
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece .,e-NIOS PC, Kallithea-Athens, Greece
| | - Eric Chevet
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", University of Rennes, Rennes, France .,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Eric Ogier-Denis
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France .,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| |
Collapse
|
12
|
Pierre N, Salée C, Massot C, Blétard N, Mazzucchelli G, Smargiasso N, Morsa D, Baiwir D, De Pauw E, Reenaers C, Van Kemseke C, Loly JP, Delvenne P, Meuwis MA, Louis E. Proteomics Highlights Common and Distinct Pathophysiological Processes Associated with Ileal and Colonic Ulcers in Crohn's Disease. J Crohns Colitis 2020; 14:205-215. [PMID: 31282946 DOI: 10.1093/ecco-jcc/jjz130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Based on genetics and natural history, Crohn's disease can be separated into two entities, an ileal and a colonic disease. Protein-based approaches are needed to elucidate whether such subphenotypes are related to distinct pathophysiological processes. METHODS The proteome of ulcer edges was compared with that of paired control tissue samples [n = 32 biopsies] by differential proteomics in the ileum and the colon of Crohn's disease patients [n = 16]. The results were analysed using a hypothesis-driven approach [based on the literature] and a hypothesis-free approach [pathway enrichment analyses] to determine common and segment-specific pathophysiological processes associated with ileal and colonic CD ulcer edges. To confirm the involvement of a key pathway highlighted by proteomics, two proteins were also studied by immunochemistry. RESULTS In the ileum and the colon, 4428 and 5204 proteins, respectively, were identified and quantified. Ileal and colonic ulcer edges differed in having a distinct distribution of proteins associated with epithelial-mesenchymal transition, neutrophil degranulation, and ribosomes. Ileal and colonic ulcer edges were similarly characterized by an increase in the proteins implicated in the endoplasmic reticulum protein-processing pathway and a decrease in mitochondrial proteins. Immunochemistry confirmed the presence of endoplasmic reticulum stress in the mucosa of ileal and colonic ulcer edges. CONCLUSION This study provides protein-based evidence for partially distinct pathophysiological processes being associated with ileal and colonic ulcer edges in Crohn's disease patients. This could constitute a first step toward the development of gut segment-specific diagnostic markers and therapeutics.
Collapse
Affiliation(s)
- Nicolas Pierre
- Laboratory of Translational Gastroenterology, GIGA Institute, University of Liège, Liège, Belgium
| | - Catherine Salée
- Laboratory of Translational Gastroenterology, GIGA Institute, University of Liège, Liège, Belgium
| | - Charlotte Massot
- Laboratory of Translational Gastroenterology, GIGA Institute, University of Liège, Liège, Belgium
| | - Noëlla Blétard
- Department of Anatomy and Pathology, GIGA Institute, Liège University Hospital CHU, Liège, Belgium
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry, Chemistry Department, University of Liège, Liège, Belgium
| | - Nicolas Smargiasso
- Laboratory of Mass Spectrometry, Chemistry Department, University of Liège, Liège, Belgium
| | - Denis Morsa
- GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | | | - Edwin De Pauw
- Laboratory of Mass Spectrometry, Chemistry Department, University of Liège, Liège, Belgium
| | - Catherine Reenaers
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital CHU, Liège, Belgium
| | - Catherine Van Kemseke
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital CHU, Liège, Belgium
| | - Jean-Philippe Loly
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital CHU, Liège, Belgium
| | - Philippe Delvenne
- Department of Anatomy and Pathology, GIGA Institute, Liège University Hospital CHU, Liège, Belgium
| | - Marie-Alice Meuwis
- Laboratory of Translational Gastroenterology, GIGA Institute, University of Liège, Liège, Belgium.,Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital CHU, Liège, Belgium
| | - Edouard Louis
- Laboratory of Translational Gastroenterology, GIGA Institute, University of Liège, Liège, Belgium.,Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital CHU, Liège, Belgium
| |
Collapse
|
13
|
Faust JJ, Millis BA, Tyska MJ. Profilin-Mediated Actin Allocation Regulates the Growth of Epithelial Microvilli. Curr Biol 2019; 29:3457-3465.e3. [PMID: 31607529 DOI: 10.1016/j.cub.2019.08.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/17/2019] [Accepted: 08/20/2019] [Indexed: 01/18/2023]
Abstract
Transporting epithelial cells, like those that line the intestinal tract, are specialized for solute processing and uptake. One defining feature is the brush border, an array of microvilli that serves to amplify apical membrane surface area and increase functional capacity. During differentiation, upon exit from stem-cell-containing crypts, enterocytes build thousands of microvilli, each supported by a parallel bundle of actin filaments several microns in length. Given the high concentration of actin residing in mature brush borders, we sought to determine whether enterocytes were resource (i.e., actin monomer) limited in assembling this domain. To examine this possibility, we inhibited Arp2/3, the ubiquitous branched actin nucleator, to increase G-actin availability during brush border assembly. In native intestinal tissues, Arp2/3 inhibition led to increased microvilli length on the surface of crypt, but not villus, enterocytes. In a cell culture model of brush border assembly, Arp2/3 inhibition accelerated the growth and increased the length of microvilli; it also led to a redistribution of F-actin from cortical lateral networks into the brush border. Effects on brush border growth were rescued by treatment with the G-actin sequestering drug, latrunculin A. G-actin binding protein, profilin-1, colocalized in the terminal web with G-actin, and knockdown of this factor compromised brush border growth in a concentration-dependent manner. Finally, the acceleration in brush border assembly induced by Arp2/3 inhibition was abrogated by profilin-1 knockdown. Thus, brush border assembly is limited by G-actin availability, and profilin-1 directs unallocated actin monomers into microvillar core bundles during enterocyte differentiation.
Collapse
Affiliation(s)
- James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA; Cell Imaging Shared Resource, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Lepczyński A, Herosimczyk A, Ożgo M, Barszcz M, Taciak M, Skomiał J. Modification of ileal proteome in growing pigs by dietary supplementation with inulin or dried chicory root. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/109518/2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Carter CL, Hankey KG, Booth C, Tudor GL, Parker GA, Jones JW, Farese AM, MacVittie TJ, Kane MA. Characterizing the Natural History of Acute Radiation Syndrome of the Gastrointestinal Tract: Combining High Mass and Spatial Resolution Using MALDI-FTICR-MSI. HEALTH PHYSICS 2019; 116:454-472. [PMID: 30681424 PMCID: PMC6384159 DOI: 10.1097/hp.0000000000000948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The acute radiation syndrome of the gastrointestinal tract has been histologically characterized, but the molecular and functional mechanisms that lead to these cellular alterations remain enigmatic. Mass spectrometry imaging is the only technique that enables the simultaneous detection and cellular or regional localization of hundreds of biomolecules in a single experiment. This current study utilized matrix-assisted laser desorption/ionization mass spectrometry imaging for the molecular characterization of the first natural history study of gastrointestinal acute radiation syndrome in the nonhuman primate. Jejunum samples were collected at days 4, 8, 11, 15, and 21 following 12-Gy partial-body irradiation with 2.5% bone marrow sparing. Mass spectrometry imaging investigations identified alterations in lipid species that further understanding of the functional alterations that occur over time in the different cellular regions of the jejunum following exposure to high doses of irradiation. Alterations in phosphatidylinositol species informed on dysfunctional epithelial cell differentiation and maturation. Differences in glycosphingolipids of the villi epithelium that would influence the absorptive capacity and functional structure of the brush border membrane were detected. Dichotomous alterations in cardiolipins indicated altered structural and functional integrity of mitochondria. Phosphatidylglycerol species, known regulators of toll-like receptors, were detected and localized to regions in the lamina propria that contained distinct immune cell populations. These results provide molecular insight that can inform on injury mechanism in a nonhuman primate model of the acute radiation syndrome of the gastrointestinal tract. Findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | | | | | - George A. Parker
- Charles River Laboratories, Pathology Associates, Raleigh-Durham, North Carolina, USA
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| |
Collapse
|
16
|
Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech 2018; 11:11/2/dmm031088. [PMID: 29590640 PMCID: PMC5894939 DOI: 10.1242/dmm.031088] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a highly organized tissue. The establishment of epithelial cell polarity, with distinct apical and basolateral plasma membrane domains, is pivotal for both barrier formation and for the uptake and vectorial transport of nutrients. The establishment of cell polarity requires a specialized subcellular machinery to transport and recycle proteins to their appropriate location. In order to understand and treat polarity-associated diseases, it is necessary to understand epithelial cell-specific trafficking mechanisms. In this Review, we focus on cell polarity in the adult mammalian intestine. We discuss how intestinal epithelial polarity is established and maintained, and how disturbances in the trafficking machinery can lead to a polarity-associated disorder, microvillus inclusion disease (MVID). Furthermore, we discuss the recent developments in studying MVID, including the creation of genetically manipulated cell lines, mouse models and intestinal organoids, and their uses in basic and applied research. Summary: Microvillus inclusion disease serves as a useful model to enhance our understanding of the intestinal trafficking and polarity machinery in health and disease.
Collapse
Affiliation(s)
- Kerstin Schneeberger
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabrina Roth
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands .,Regenerative Medicine Center Utrecht, University Medical Centre (UMC) Utrecht, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
17
|
Exploring the villus. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:181-190. [PMID: 30013740 PMCID: PMC6040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The small intestinal villus and its associated epithelium includes enterocytes as the main cell type and differentiated goblet and argentaffin cells, while the invaginated crypt epithelium is the site of cell division and hence the origin of all epithelial components. Enterocytes form a cohesive monolayer which acts both as a permeability barrier between lumen and the interior, and an important gateway for nutrient digestion, absorption and transport. Differentiation and polarisation of enterocytes depends on cytoskeletal proteins that control cell shape and maintain functionally specialised membrane domains; extracellular matrix (ECM) receptors; channels and transporters regulating ion/solute transfer across the cell. The mesenchymally-derived basement membrane dynamically controls morphogenesis, cell differentiation and polarity, while also providing the structural basis for villi, crypts and the microvasculature of the lamina propria so that tissue morphology, crucially, is preserved in the absence of epithelium. Mucosal re-organisation requires immense cooperation between all elements within the lamina, including marked revisions of the microvasculature and extensive alterations to all basement membranes providing support for endodermal and mesenchymal components. In this context, subepithelial myofibroblasts fulfil important regulatory activities in terms of tissue morphogenesis; remodelling; control of epithelial cell development, polarity and functional attributes; and an intimate involvement in repair, inflammation and fibrosis. This paper reviews the main structural and functional aspects of the villus, including the epithelium and its outer glycocalyx and microvillous border; and subjacent to the epithelium, the basement membrane with its attached web of myo-fibroblasts together with the lamina propria core of the villi, and its microvasculature and lacteals. Finally, some comments on the rapidity with which the overall structure of the villi changes in their response to both external, and internal, influences.
Collapse
|
18
|
Zou L, Wang X, Jiang L, Wang S, Xiong X, Yang H, Gao W, Gong M, Hu CAA, Yin Y. Molecular cloning, characterization and expression analysis of Frizzled 6 in the small intestine of pigs (Sus scrofa). PLoS One 2017; 12:e0179421. [PMID: 28614361 PMCID: PMC5470702 DOI: 10.1371/journal.pone.0179421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
Frizzled 6 (FZD6) encodes an integral membrane protein that functions in multiple signal transduction pathways, for example, as a receptor in Wnt/planar cell polarity (PCP) signaling pathway for polarized cell migration and organ morphogenesis. Mutations in FZD6 have been identified in a variety of tumors. In this study, the full-length cDNA of Sus scrofa FZD6 (Sfz6) was cloned and characterized. Nucleotide sequence analysis demonstrates that the Sfz6 gene encodes the 712 amino-acid (aa) protein with seven transmembrane domain. Tissue distribution analysis showed that Sfz6 mRNA is ubiquitously expressed in various tissues, being highest in kidney, moderate in jejunum, ileum, colon, liver, and spleen. However, FZD6 protein is highly expressed in the heart and there was no significant difference in other tissues. The relative abundance and localization of FZD6 protein in jejunum along the crypt-villus axis was determined by Western blot and immunohistochemical localization. The results show that in the jejunum, FZD6 protein is highly expressed in the villus and less in the crypt cells. Cellular proliferation and viability assays indicate that knockdown of FZD6 with small interfering RNAs (siRNA) significantly reduced the cell viability of the intestinal porcine enterocyte cells (IPEC-J2). Furthermore, qPCR and Western blot analysis revealed that expressions of ras-related C3 botulinum toxin substrate 1 (Rac1); ras homolog gene family member A (RhoA) and c-Jun N-terminal kinase 1 (JNK1), some components of PCP signaling pathway were upregulated (P < 0.05) by knockdown of FZD6 in IPEC-J2 cells. In conclusion, these results showed that FZD6 abundance in the villus was higher than that in crypt cells and knockdown of FZD6 induces PCP signal pathway components expression in IPEC-J2 cells. Our findings provide the foundation for further investigation into porcine FZD6 gene.
Collapse
Affiliation(s)
- Lijun Zou
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China.,Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Laboratory of Basic Biology, Hunan First Normal College, Changsha, Hunan, China
| | - Xiaocheng Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Liping Jiang
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shengping Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xia Xiong
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Huansheng Yang
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wei Gao
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Min Gong
- Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Chien-An A Hu
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yulong Yin
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China.,Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
19
|
Yang H, Wang X, Xiong X, Yin Y. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis. Sci Rep 2016; 6:31917. [PMID: 27558220 PMCID: PMC4997266 DOI: 10.1038/srep31917] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/25/2016] [Indexed: 01/21/2023] Open
Abstract
Intestinal epithelial cells continuously migrate and mature along crypt-villus axis (CVA), while the changes in energy metabolism during maturation are unclear in neonates. The present study was conducted to test the hypothesis that the energy metabolism in intestinal epithelial cells would be changed during maturation along CVA in neonates. Eight 21-day-old suckling piglets were used. Intestinal epithelial cells were isolated sequentially along CVA, and proteomics was used to analyze the changes in proteins expression in epithelial cells along CVA. The identified differentially expressed proteins were mainly involved in cellular process, metabolic process, biological regulation, pigmentation, multicellular organizational process and so on. The energy metabolism in intestinal epithelial cells of piglets was increased from the bottom of crypt to the top of villi. Moreover, the expression of proteins related to the metabolism of glucose, most of amino acids, and fatty acids was increased in intestinal epithelial cells during maturation along CVA, while the expression of proteins related to glutamine metabolism was decreased from crypt to villus tip. The expression of proteins involved in citrate cycle was also increased intestinal epithelial cells during maturation along CVA. Moreover, dietary supplementation with different energy sources had different effects on intestinal structure of weaned piglets.
Collapse
Affiliation(s)
- Huansheng Yang
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center of Healthy Breeding Livestock &Poultry, Human Engineering &Research Center of Animal &Poultry Science, Key Lab Agroecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Fujian Aonong Bio-Technology Co., Ltd., Xiamen, China
| | - Xiaocheng Wang
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center of Healthy Breeding Livestock &Poultry, Human Engineering &Research Center of Animal &Poultry Science, Key Lab Agroecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xia Xiong
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center of Healthy Breeding Livestock &Poultry, Human Engineering &Research Center of Animal &Poultry Science, Key Lab Agroecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yulong Yin
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center of Healthy Breeding Livestock &Poultry, Human Engineering &Research Center of Animal &Poultry Science, Key Lab Agroecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| |
Collapse
|
20
|
Yang H, Xiong X, Wang X, Tan B, Li T, Yin Y. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets. PLoS One 2016; 11:e0150216. [PMID: 27022727 PMCID: PMC4811545 DOI: 10.1371/journal.pone.0150216] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/10/2016] [Indexed: 12/25/2022] Open
Abstract
The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets.
Collapse
Affiliation(s)
- Huansheng Yang
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
- School of Life Sciences, Hunan Normal University, Changsha, China
- Fujian Aonong Biotechnology Corporation, Xiamen, Fujian, China
| | - Xia Xiong
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Xiaocheng Wang
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Bie Tan
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Tiejun Li
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Yulong Yin
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
- School of Life Sciences, Hunan Normal University, Changsha, China
- * E-mail:
| |
Collapse
|
21
|
Yang C, Yang X, Lackeyram D, Rideout TC, Wang Z, Stoll B, Yin Y, Burrin DG, Fan MZ. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula. Amino Acids 2016; 48:1491-508. [PMID: 26984322 DOI: 10.1007/s00726-016-2210-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/29/2016] [Indexed: 01/11/2023]
Abstract
Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA co-transporter (B(0)AT1, encoded by the SLC6A19 gene) plays a dominant role for apical uptake of large neutral AA including L-Gln, we hypothesized that high apical Na(+)-Gln co-transport activity, and B(0)AT1 (SLC6A19) in co-expression with angiotensin-converting enzyme 2 (ACE2) were expressed along the entire small intestinal crypt-villus axis in young animals via unique control mechanisms. Kinetics of Na(+)-Gln co-transport activity in the apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from liquid formula-fed young pigs, were measured with the membrane potential being clamped to zero using thiocyanate. Apical maximal Na(+)-Gln co-transport activity was much higher (p < 0.05) in the upper villus cells than in the middle villus (by 29 %) and the crypt (by 30 %) cells, whereas Na(+)-Gln co-transport affinity was lower (p < 0.05) in the upper villus cells than in the middle villus and the crypt cells. The B(0)AT1 (SLC6A19) mRNA abundance was lower (p < 0.05) in the crypt (by 40-47 %) than in the villus cells. There were no significant differences in B(0)AT1 and ACE2 protein abundances on the apical membrane among the upper villus, the middle villus and the crypt cells. Our study suggests that piglet fast growth is associated with very high intestinal apical Na(+)-neutral AA uptake activities via abundantly co-expressing B(0)AT1 and ACE2 proteins in the apical membrane and by transcribing the B(0)AT1 (SLC6A19) gene in the epithelia along the entire crypt-villus axis.
Collapse
Affiliation(s)
- Chengbo Yang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Xiaojian Yang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Southern Research and Outreach Center, University of Minnesota, Waseca, MN, 56093, USA
| | - Dale Lackeyram
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Todd C Rideout
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Department of Exercise and Nutrition Sciences, the State University of New York at Buffalo, New York, 14214, USA
| | - Zirong Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Barbara Stoll
- US Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulong Yin
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Douglas G Burrin
- US Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ming Z Fan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
22
|
Yang H, Xiong X, Yin Y. Metabolomic analysis of intestinal epithelial cell maturation along the crypt–villus axis. RSC Adv 2016. [DOI: 10.1039/c5ra27722a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The present experiment showed a gradual change in the metabolism of intestinal epithelial cells during maturation along CVA. Metabolism of fatty acids, amino acids, and glucose was significantly different between villus and crypt cells.
Collapse
Affiliation(s)
- Huansheng Yang
- Chinese Academy of Science
- Institute of Subtropical Agriculture
- Research Center of Healthy Breeding Livestock & Poultry
- Human Engineering & Research Center of Animal & Poultry Science
- Key Lab Agroecology Processing Subtropical Region
| | - Xia Xiong
- Chinese Academy of Science
- Institute of Subtropical Agriculture
- Research Center of Healthy Breeding Livestock & Poultry
- Human Engineering & Research Center of Animal & Poultry Science
- Key Lab Agroecology Processing Subtropical Region
| | - Yulong Yin
- Chinese Academy of Science
- Institute of Subtropical Agriculture
- Research Center of Healthy Breeding Livestock & Poultry
- Human Engineering & Research Center of Animal & Poultry Science
- Key Lab Agroecology Processing Subtropical Region
| |
Collapse
|
23
|
De Santis C, Taylor JF, Martinez-Rubio L, Boltana S, Tocher DR. Influence of Development and Dietary Phospholipid Content and Composition on Intestinal Transcriptome of Atlantic Salmon (Salmo salar). PLoS One 2015; 10:e0140964. [PMID: 26488165 PMCID: PMC4619195 DOI: 10.1371/journal.pone.0140964] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/25/2015] [Indexed: 11/19/2022] Open
Abstract
The inclusion of intact phospholipids in the diet is essential during larval development and can improve culture performance of many fish species. The effects of supplementation of dietary phospholipid from marine (krill) or plant (soy lecithin) sources were investigated in Atlantic salmon, Salmo salar. First feeding fry were fed diets containing either krill oil or soybean lecithin supplying phospholipid at 2.6%, 3.2%, 3.6% and 4.2% of diet. Fish were sampled at ~ 2.5 g (~1,990°day post fertilization, dpf) and ~10 g (2,850°dpf). By comparison of the intestinal transcriptome in specifically chosen contrasts, it was determined that by 2,850°dpf fish possessed a profile that resembled that of mature and differentiated intestinal cell types with a number of changes specific to glycerophospholipid metabolism. It was previously shown that intact phospholipids and particularly phosphatidylcholine are essential during larval development and that this requirement is associated with the inability of enterocytes in young fry to endogenously synthesize sufficient phospholipid for the efficient export of dietary lipid. In the immature phase (~1,990°dpf), the dietary phospholipid content as well as its class composition impacted on several biochemical and morphological parameters including growth, but these differences were not associated with differences in intestinal transcriptomes. The results of this study have made an important contribution to our understanding of the mechanisms associated with lipid transport and phospholipid biosynthesis in early life stages of fish.
Collapse
Affiliation(s)
- Christian De Santis
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
- * E-mail:
| | - John F. Taylor
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| | - Laura Martinez-Rubio
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| | - Sebastian Boltana
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| | - Douglas R. Tocher
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| |
Collapse
|
24
|
De Santis C, Bartie KL, Olsen RE, Taggart JB, Tocher DR. Nutrigenomic profiling of transcriptional processes affected in liver and distal intestine in response to a soybean meal-induced nutritional stress in Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2015; 15:1-11. [PMID: 25916579 DOI: 10.1016/j.cbd.2015.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 01/23/2023]
Abstract
The aim of the present study was to generate an experimental model to characterize the nutrigenomic profile of a plant-derived nutritional stress. Atlantic salmon (Salmo salar) was used as the model species. The nutritional stress was induced by inclusion of dietary defatted soybean meal (SBM), as this ingredient had been previously demonstrated to induce enteropathy in the distal intestine and reduce growth in salmon. Triplicate groups of Atlantic salmon were fed concentrations of 0, 100, 200 and 300 g kg(-1) SBM for 12 weeks and reduced growth performance was used as the indicator of nutritional stress. The transcriptome was analyzed in two tissues, liver and distal intestine, with the hypothesis being that the liver transcriptome would be characterized by gene expression responses related to overall growth and health performance, whereas intestinal gene expression would be dominated by specific responses to SBM. A set of 133 genes was differentially expressed in liver including 44 genes in common with the intestinal response. The liver-specific response included up-regulation of genes involved in protein digestion, energy metabolism and immune functions, whereas genes in other metabolic pathways were generally anabolic and down-regulated. These responses may be more related to general nutritional stress than to SBM per se. The transcriptomic profile in the distal intestine was consistent with the enteritis response as described previously. This study provides a comprehensive report on the profiles of liver and distal intestine transcriptomes, specifically highlighting the role of the liver in fish undergoing SBM-induced nutritional stress.
Collapse
Affiliation(s)
- Christian De Santis
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Kerry L Bartie
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Rolf E Olsen
- Institute of Marine Research, Matre 5984, Norway; Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - John B Taggart
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Douglas R Tocher
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
| |
Collapse
|
25
|
Park S, Navratil S, Gregory A, Bauer A, Srinath I, Szonyi B, Nightingale K, Anciso J, Jun M, Han D, Lawhon S, Ivanek R. Multifactorial effects of ambient temperature, precipitation, farm management, and environmental factors determine the level of generic Escherichia coli contamination on preharvested spinach. Appl Environ Microbiol 2015; 81:2635-50. [PMID: 25636850 PMCID: PMC4357951 DOI: 10.1128/aem.03793-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/27/2015] [Indexed: 11/20/2022] Open
Abstract
A repeated cross-sectional study was conducted to identify farm management, environment, weather, and landscape factors that predict the count of generic Escherichia coli on spinach at the preharvest level. E. coli was enumerated for 955 spinach samples collected on 12 farms in Texas and Colorado between 2010 and 2012. Farm management and environmental characteristics were surveyed using a questionnaire. Weather and landscape data were obtained from National Resources Information databases. A two-part mixed-effect negative binomial hurdle model, consisting of a logistic and zero-truncated negative binomial part with farm and date as random effects, was used to identify factors affecting E. coli counts on spinach. Results indicated that the odds of a contamination event (non-zero versus zero counts) vary by state (odds ratio [OR] = 108.1). Odds of contamination decreased with implementation of hygiene practices (OR = 0.06) and increased with an increasing average precipitation amount (mm) in the past 29 days (OR = 3.5) and the application of manure (OR = 52.2). On contaminated spinach, E. coli counts increased with the average precipitation amount over the past 29 days. The relationship between E. coli count and the average maximum daily temperature over the 9 days prior to sampling followed a quadratic function with the highest bacterial count at around 24°C. These findings indicate that the odds of a contamination event in spinach are determined by farm management, environment, and weather factors. However, once the contamination event has occurred, the count of E. coli on spinach is determined by weather only.
Collapse
Affiliation(s)
- Sangshin Park
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Sarah Navratil
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Ashley Gregory
- Department of Horticultural Sciences, Texas A&M AgriLife Extension Service, Weslaco, Texas, USA
| | - Arin Bauer
- Department of Horticultural Sciences, Texas A&M AgriLife Extension Service, Weslaco, Texas, USA
| | - Indumathi Srinath
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA Tarleton State University, Stephenville, Texas, USA
| | - Barbara Szonyi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Kendra Nightingale
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Juan Anciso
- Department of Horticultural Sciences, Texas A&M AgriLife Extension Service, Weslaco, Texas, USA
| | - Mikyoung Jun
- Department of Statistics, Texas A&M University, College Station, Texas, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M Health Science Center, College Station, Texas, USA
| | - Sara Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Renata Ivanek
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
26
|
Abstract
Epithelial cells from diverse tissues, including the enterocytes that line the intestinal tract, remodel their apical surface during differentiation to form a brush border: an array of actin-supported membrane protrusions known as microvilli that increases the functional capacity of the tissue. Although our understanding of how epithelial cells assemble, stabilize, and organize apical microvilli is still developing, investigations of the biochemical and physical underpinnings of these processes suggest that cells coordinate cytoskeletal remodeling, membrane-cytoskeleton cross-linking, and extracellular adhesion to shape the apical brush border domain.
Collapse
Affiliation(s)
- Scott W Crawley
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark S Mooseker
- Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520 Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520 Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
27
|
Role of the focal adhesion protein TRIM15 in colon cancer development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:409-21. [PMID: 25450970 DOI: 10.1016/j.bbamcr.2014.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 11/20/2022]
Abstract
The tripartite motif containing (TRIM) proteins are a large family of proteins that have been implicated in many biological processes including cell differentiation, apoptosis, transcriptional regulation, and signaling pathways. Here, we show that TRIM15 co-localized to focal adhesions through homo-dimerization and significantly suppressed cell migration. Domain mapping analysis indicated that B-box2 and PRY domains were essential for TRIM15 localization to focal adhesions and inhibition of cell migration. Our protein-protein interaction screen of TRIM15 with the integrin adhesome identified several TRIM15 interacting proteins including coronin 1B, cortactin, filamin binding LIM protein1, and vasodilator-stimulated phosphoprotein, which are involved in actin cytoskeleton dynamics. TRIM15 expression was tissue-restricted and downregulated in colon cancer. Level of TRIM15 expression was associated with colon cancer cell migration, as well as both in vitro and in vivo tumor growth. These data provide novel insights into the role of TRIM15 as an additional component of the integrin adhesome, regulating cell migration, and suggest that TRIM15 may function as a tumor suppressor of colon cancer.
Collapse
|
28
|
Crawley SW, Shifrin DA, Grega-Larson NE, McConnell RE, Benesh AE, Mao S, Zheng Y, Zheng QY, Nam KT, Millis BA, Kachar B, Tyska MJ. Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion. Cell 2014; 157:433-446. [PMID: 24725409 DOI: 10.1016/j.cell.2014.01.067] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/19/2013] [Accepted: 01/28/2014] [Indexed: 12/17/2022]
Abstract
Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border assembly is driven by the formation of Ca(2+)-dependent adhesion links between adjacent microvilli. Intermicrovillar links are composed of protocadherin-24 and mucin-like protocadherin, which target to microvillar tips and interact to form a trans-heterophilic complex. The cytoplasmic domains of microvillar protocadherins interact with the scaffolding protein, harmonin, and myosin-7b, which promote localization to microvillar tips. Finally, a mouse model of Usher syndrome lacking harmonin exhibits microvillar protocadherin mislocalization and severe defects in brush border morphology. These data reveal an adhesion-based mechanism for brush border assembly and illuminate the basis of intestinal pathology in patients with Usher syndrome. PAPERFLICK:
Collapse
Affiliation(s)
- Scott W Crawley
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David A Shifrin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Russell E McConnell
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew E Benesh
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suli Mao
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuxi Zheng
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Qing Yin Zheng
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Bryan A Millis
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bechara Kachar
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
29
|
Lo Sasso G, Ryu D, Mouchiroud L, Fernando SC, Anderson CL, Katsyuba E, Piersigilli A, Hottiger MO, Schoonjans K, Auwerx J. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS One 2014; 9:e102495. [PMID: 25013930 PMCID: PMC4094521 DOI: 10.1371/journal.pone.0102495] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/19/2014] [Indexed: 01/09/2023] Open
Abstract
Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int−/−) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC.
Collapse
Affiliation(s)
- Giuseppe Lo Sasso
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Samodha C. Fernando
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Christopher L. Anderson
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Elena Katsyuba
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alessandra Piersigilli
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Michael O. Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
30
|
Endoplasmic reticulum ribosome-binding protein 1 (RRBP1) overexpression is frequently found in lung cancer patients and alleviates intracellular stress-induced apoptosis through the enhancement of GRP78. Oncogene 2013; 32:4921-31. [DOI: 10.1038/onc.2012.514] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/05/2012] [Accepted: 09/20/2012] [Indexed: 01/29/2023]
|
31
|
Park S, Szonyi B, Gautam R, Nightingale K, Anciso J, Ivanek R. Risk factors for microbial contamination in fruits and vegetables at the preharvest level: a systematic review. J Food Prot 2012; 75:2055-81. [PMID: 23127717 DOI: 10.4315/0362-028x.jfp-12-160] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The objective of this study was to perform a systematic review of risk factors for contamination of fruits and vegetables with Listeria monocytogenes, Salmonella, and Escherichia coli O157:H7 at the preharvest level. Relevant studies were identified by searching six electronic databases: MEDLINE, EMBASE, CAB Abstracts, AGRIS, AGRICOLA, and FSTA, using the following thesaurus terms: L. monocytogenes, Salmonella, E. coli O157 AND fruit, vegetable. All search terms were exploded to find all related subheadings. To be eligible, studies had to be prospective controlled trials or observational studies at the preharvest level and had to show clear and sufficient information on the process in which the produce was contaminated. Of the 3,463 citations identified, 68 studies fulfilled the eligibility criteria. Most of these studies were on leafy greens and tomatoes. Six studies assessed produce contamination with respect to animal host-related risk factors, and 20 studies assessed contamination with respect to pathogen characteristics. Sixty-two studies assessed the association between produce contamination and factors related to produce, water, and soil, as well as local ecological conditions of the production location. While evaluations of many risk factors for preharvest-level produce contamination have been reported, the quality assessment of the reviewed studies confirmed the existence of solid evidence for only some of them, including growing produce on clay-type soil, the application of contaminated or non-pH-stabilized manure, and the use of spray irrigation with contaminated water, with a particular risk of contamination on the lower leaf surface. In conclusion, synthesis of the reviewed studies suggests that reducing microbial contamination of irrigation water and soil are the most effective targets for the prevention and control of produce contamination. Furthermore, this review provides an inventory of the evaluated risk factors, including those requiring more research.
Collapse
Affiliation(s)
- Sangshin Park
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Papetti M, Augenlicht LH. Mybl2, downregulated during colon epithelial cell maturation, is suppressed by miR-365. Am J Physiol Gastrointest Liver Physiol 2011; 301:G508-18. [PMID: 21737779 PMCID: PMC3174536 DOI: 10.1152/ajpgi.00066.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Altered profiles of gene expression reflect the reprogramming of intestinal epithelial cells during their maturation along the crypt-luminal axis. To focus on genes important in this process, and how they in turn are regulated, we identified 14 transcripts commonly downregulated in expression during lineage-specific maturation of the immortalized cell lines Caco-2 (absorptive), HT29Cl16E (goblet), and HT29Cl19A (secretory) induced by contact inhibition of growth or the short-chain fatty acid butyrate. One such gene, Mybl2 (Myb-related protein B), has been linked to the stem cell phenotype, and we report is also markedly suppressed in maturing cells along the crypt-luminal axis in vivo. Mybl2 is not significantly downregulated transcriptionally during colon cell maturation, but we identified a potential micro-RNA (miRNA)-binding sequence in the Mybl2 3'-untranslated region that mediates reporter gene suppression in differentiating colon cells. Accordingly, miRNAs predicted to bind this functional target are upregulated in differentiating colon epithelial cells in vitro and in vivo; expression of one of these, hsa-miR-365 (but not hsa-324-5p), suppresses Mybl2 protein expression in proliferating Caco-2 cells. These data demonstrate that miRNA silencing plays an important role in regulating gene expression in maturing colon epithelial cells, and that utilizing a target-centered approach, rather than profiling global miRNA expression, can identify physiologically relevant, functional miRNAs.
Collapse
Affiliation(s)
- Michael Papetti
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York, USA.
| | | |
Collapse
|
33
|
Nibbe RK, Chowdhury SA, Koyutürk M, Ewing R, Chance MR. Protein-protein interaction networks and subnetworks in the biology of disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:357-67. [PMID: 20865778 DOI: 10.1002/wsbm.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The main goal of systems medicine is to provide predictive models of the patho-physiology of complex diseases as well as define healthy states. The reason is clear--we hope accurate models will ultimately lead to more specific and sensitive markers of disease that will help clinicians better stratify their patient populations and optimize treatment plans. In addition, we expect that these models will define novel targets for combating disease. However, for many complex diseases, particularly at the clinical level, it is becoming increasingly clear that one or a few genomic variations alone (e.g., simple models) cannot adequately explain the multiple phenotypes related to disease states, or the variable risks that attend disease progression. We suggest that models that account for the activities of many interacting proteins will explain a wider range of variability inherent in these phenotypes. These models, which encompass protein interaction networks dysregulated for specific diseases and specific patient sub-populations, will be constructed by integrating protein interaction data with multiple types of other relevant cellular information. Protein interaction databases are thus playing an increasingly important role in systems biology approaches to the study of disease. They present us with a static, but highly functional view of the cellular state, and thus give us a better understanding of not only the normal phenotype, but also the overall disease phenotype at the level of the whole organism when certain interactions become dysregulated.
Collapse
Affiliation(s)
- Rod K Nibbe
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | |
Collapse
|
34
|
Izumi H, Sera K. Changes in bacterial flora of Japanese cabbage during growth and potential source of flora. J Food Prot 2011; 74:645-50. [PMID: 21477482 DOI: 10.4315/0362-028x.jfp-10-441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial flora of cabbage were identified and enumerated during various stages of growth, and the potential sources of contamination in the field were determined. Bacterial counts increased from below the level of detection (2.4 log CFU/g) on seeds to 2.5 to 5.7 log CFU/g on seedlings. After transplanting, the counts of mesophilic aerobic bacteria on leaves decreased and then increased to 5.7 log CFU/g on outer leaves, 5.0 log CFU/g on middle leaves, and 3.0 log CFU/g on inner leaves at the harvesting stage. Counts of coliforms were below the level of detection during the growing period of the leaves. Bacteria isolated from cabbage seeds, seedlings, and leaves were soilborne organisms such as Bacillus, Curtobacterium, and Delftia and phytopathogenic organisms such as Pseudomonas, Pantoea, and Stenotrophomonas. These bacteria were found frequently in seeding machines, potting soil mix, soil, agricultural water, pesticide solutions mixed with the agricultural water, liquid fertilizers, and chemical fertilizers. Contamination from these environmental sites occurred throughout the cabbage growing period rather than only at the harvesting stage. These results indicate that use of clean water for irrigation and for mixing with pesticides and amendments from seeding to the harvesting stage is an important part of a good agricultural practices program for cabbage in Japan.
Collapse
Affiliation(s)
- Hidemi Izumi
- Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan.
| | | |
Collapse
|
35
|
Papetti M, Augenlicht LH. MYBL2, a link between proliferation and differentiation in maturing colon epithelial cells. J Cell Physiol 2011; 226:785-91. [PMID: 20857481 PMCID: PMC3012743 DOI: 10.1002/jcp.22399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple signals, controlling both proliferation and differentiation, must be integrated in the reprogramming of intestinal epithelial cells during maturation along the crypt-luminal axis. The v-myb family member Mybl2, a molecule implicated in the development and maintenance of the stem cell phenotype, has been suggested to play an important role in proliferation and differentiation of several cell types and is a gene we have found is commonly regulated in several systems of colon cell maturation both in vitro and in vivo. Here we show that siRNA silencing of Mybl2 in proliferating Caco-2 cells increases expression of the cell-cycle regulators cdk2, cyclin D2, and c-myc and decreases expression of cdc25B and cyclin B2 with a consequent 10% increase of cells in G2/M and a complementary 10% decrease in G1. Mybl2 occupies sequences upstream of transcriptional start sites of cyclin D2, c-myc, cyclin B2, and cdc25B and regulates reporter activity driven by upstream regions of cdk2, cyclin D2, and c-myc. These data suggest that Mybl2 plays a subtle but key role in linking specific aspects of cell-cycle progression with generation of signals for differentiation and may therefore be fundamental in commitment of intestinal epithelial cells to differentiation pathways during their maturation.
Collapse
Affiliation(s)
- Michael Papetti
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467, USA.
| | | |
Collapse
|
36
|
Yang C, Albin DM, Wang Z, Stoll B, Lackeyram D, Swanson KC, Yin Y, Tappenden KA, Mine Y, Yada RY, Burrin DG, Fan MZ, Arrese M, Riquelme A. Apical Na+-D-glucose cotransporter 1 (SGLT1) activity and protein abundance are expressed along the jejunal crypt-villus axis in the neonatal pig. Am J Physiol Gastrointest Liver Physiol 2011; 300:G60-70. [PMID: 21030609 PMCID: PMC3025512 DOI: 10.1152/ajpgi.00208.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut apical Na(+)-glucose cotransporter 1 (SGLT1) activity is high at the birth and during suckling, thus contributing substantially to neonatal glucose homeostasis. We hypothesize that neonates possess high SGLT1 maximal activity by expressing apical SGLT1 protein along the intestinal crypt-villus axis via unique control mechanisms. Kinetics of SGLT1 activity in apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from neonatal piglets by the distended intestinal sac method, were measured. High levels of maximal SGLT1 uptake activity were shown to exist along the jejunal crypt-villus axis in the piglets. Real-time RT-PCR analyses showed that SGLT1 mRNA abundance was lower (P < 0.05) by 30-35% in crypt cells than in villus cells. There were no significant differences in SGLT1 protein abundances on the jejunal apical membrane among upper villus, middle villus, and crypt cells, consistent with the immunohistochemical staining pattern. Higher abundances (P < 0.05) of total eukaryotic initiation factor 4E (eIF4E) protein and eIE4E-binding protein 1 γ-isoform in contrast to a lower (P < 0.05) abundance of phosphorylated (Pi) eukaryotic elongation factor 2 (eEF2) protein and the eEF2-Pi to total eEF2 abundance ratio suggest higher global protein translational efficiency in the crypt cells than in the upper villus cells. In conclusion, neonates have high intestinal apical SGLT1 uptake activity by abundantly expressing SGLT1 protein in the epithelia and on the apical membrane along the entire crypt-villus axis in association with enhanced protein translational control mechanisms in the crypt cells.
Collapse
Affiliation(s)
- Chengbo Yang
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | - David M. Albin
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois;
| | - Zirong Wang
- 3College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China;
| | - Barbara Stoll
- 4Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
| | - Dale Lackeyram
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | - Kendall C. Swanson
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | - Yulong Yin
- 5Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Kelly A. Tappenden
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois;
| | - Yoshinori Mine
- 6Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rickey Y. Yada
- 6Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Douglas G. Burrin
- 4Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
| | - Ming Z. Fan
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | | | | |
Collapse
|
37
|
Hansson J, Panchaud A, Favre L, Bosco N, Mansourian R, Benyacoub J, Blum S, Jensen ON, Kussmann M. Time-resolved quantitative proteome analysis of in vivo intestinal development. Mol Cell Proteomics 2010; 10:M110.005231. [PMID: 21191033 DOI: 10.1074/mcp.m110.005231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Postnatal intestinal development is a very dynamic process characterized by substantial morphological changes that coincide with functional adaption to the nutritional change from a diet rich in fat (milk) to a diet rich in carbohydrates on from weaning. Time-resolved studies of intestinal development have so far been limited to investigation at the transcription level or to single or few proteins at a time. In the present study, we elucidate proteomic changes of primary intestinal epithelial cells from jejunum during early suckling (1-7 days of age), middle suckling (7-14 days), and weaning period (14-35 days) in mice, using a label-free proteomics approach. We show differential expression of 520 proteins during intestinal development and a pronounced change of the proteome during the middle suckling period and weaning. Proteins involved in several metabolic processes were found differentially expressed along the development. The temporal expression profiles of enzymes of the glycolysis were found to correlate with the increase in carbohydrate uptake at weaning, whereas the abundance changes of proteins involved in fatty acid metabolism as well as lactose metabolism indicated a nondiet driven preparation for the nutritional change at weaning. Further, we report the developmental abundance changes of proteins playing a vital role in the neonatal acquisition of passive immunity. In addition, different isoforms of several proteins were quantified, which may contribute to a better understanding of the roles of the specific isoforms in the small intestine. In summary, we provide a first, time-resolved proteome profile of intestinal epithelial cells along postnatal intestinal development.
Collapse
Affiliation(s)
- Jenny Hansson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bebek G, Patel V, Chance MR. PETALS: Proteomic Evaluation and Topological Analysis of a mutated Locus' Signaling. BMC Bioinformatics 2010; 11:596. [PMID: 21144021 PMCID: PMC3016410 DOI: 10.1186/1471-2105-11-596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/13/2010] [Indexed: 11/19/2022] Open
Abstract
Background Colon cancer is driven by mutations in a number of genes, the most notorious of which is Apc. Though much of Apc's signaling has been mechanistically identified over the years, it is not always clear which functions or interactions are operative in a particular tumor. This is confounded by the presence of mutations in a number of other putative cancer driver (CAN) genes, which often synergize with mutations in Apc. Computational methods are, thus, required to predict which pathways are likely to be operative when a particular mutation in Apc is observed. Results We developed a pipeline, PETALS, to predict and test likely signaling pathways connecting Apc to other CAN-genes, where the interaction network originating at Apc is defined as a "blossom," with each Apc-CAN-gene subnetwork referred to as a "petal." Known and predicted protein interactions are used to identify an Apc blossom with 24 petals. Then, using a novel measure of bimodality, the coexpression of each petal is evaluated against proteomic (2 D differential In Gel Electrophoresis, 2D-DIGE) measurements from the Apc1638N+/-mouse to test the network-based hypotheses. Conclusions The predicted pathways linking Apc and Hapln1 exhibited the highest amount of bimodal coexpression with the proteomic targets, prioritizing the Apc-Hapln1 petal over other CAN-gene pairs and suggesting that this petal may be involved in regulating the observed proteome-level effects. These results not only demonstrate how functional 'omics data can be employed to test in silico predictions of CAN-gene pathways, but also reveal an approach to integrate models of upstream genetic interference with measured, downstream effects.
Collapse
Affiliation(s)
- Gurkan Bebek
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
39
|
Prediction and testing of biological networks underlying intestinal cancer. PLoS One 2010; 5. [PMID: 20824133 PMCID: PMC2931697 DOI: 10.1371/journal.pone.0012497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 07/26/2010] [Indexed: 11/19/2022] Open
Abstract
Colorectal cancer progresses through an accumulation of somatic mutations, some of which reside in so-called "driver" genes that provide a growth advantage to the tumor. To identify points of intersection between driver gene pathways, we implemented a network analysis framework using protein interactions to predict likely connections--both precedented and novel--between key driver genes in cancer. We applied the framework to find significant connections between two genes, Apc and Cdkn1a (p21), known to be synergistic in tumorigenesis in mouse models. We then assessed the functional coherence of the resulting Apc-Cdkn1a network by engineering in vivo single node perturbations of the network: mouse models mutated individually at Apc (Apc(1638N+/-)) or Cdkn1a (Cdkn1a(-/-)), followed by measurements of protein and gene expression changes in intestinal epithelial tissue. We hypothesized that if the predicted network is biologically coherent (functional), then the predicted nodes should associate more specifically with dysregulated genes and proteins than stochastically selected genes and proteins. The predicted Apc-Cdkn1a network was significantly perturbed at the mRNA-level by both single gene knockouts, and the predictions were also strongly supported based on physical proximity and mRNA coexpression of proteomic targets. These results support the functional coherence of the proposed Apc-Cdkn1a network and also demonstrate how network-based predictions can be statistically tested using high-throughput biological data.
Collapse
|
40
|
Stephens AN, Pereira-Fantini PM, Wilson G, Taylor RG, Rainczuk A, Meehan KL, Sourial M, Fuller PJ, Stanton PG, Robertson DM, Bines JE. Proteomic analysis of the intestinal adaptation response reveals altered expression of fatty acid binding proteins following massive small bowel resection. J Proteome Res 2010; 9:1437-49. [PMID: 19943703 DOI: 10.1021/pr900976f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intestinal adaptation in response to the loss of the small intestine is essential to restore enteral autonomy in patients who have undergone massive small bowel resection (MSBR). In a proportion of patients, intestinal function is not restored, resulting in chronic intestinal failure (IF). Early referral of such patients for transplant provides the best prognosis; however, the molecular mechanisms underlying intestinal adaptation remain elusive and there is currently no convenient marker to predict whether patients will develop IF. We have investigated the adaptation response in a well-characterized porcine model of intestinal adaptation. 2D DIGE analysis of ileal epithelium from piglets recovering from massive small bowel resection (MSBR) identified over 60 proteins that changed specifically in MSBR animals relative to nonoperational or sham-operated controls. Three fatty acid binding proteins (L-FABP, FABP-6, and I-FABP) showed changes in MSBR animals. The expression changes and localization of each FABP were validated by immunoblotting and immunohistochemical analysis. FABP expression changes in MSBR animals occurred concurrently with altered triglyceride and bile acid metabolism as well as weight gain. The observed FABP expression changes in the ileal epithelium occur as part of the intestinal adaptation response and could provide a clinically useful marker to evaluate adaptation following MSBR.
Collapse
Affiliation(s)
- Andrew N Stephens
- Prince Henry's Institute of Medical Research, Monash Medical Centre, Clayton, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hill DP, Berardini TZ, Howe DG, Van Auken KM. Representing ontogeny through ontology: a developmental biologist's guide to the gene ontology. Mol Reprod Dev 2010; 77:314-29. [PMID: 19921742 DOI: 10.1002/mrd.21130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developmental biology, like many other areas of biology, has undergone a dramatic shift in the perspective from which developmental processes are viewed. Instead of focusing on the actions of a handful of genes or functional RNAs, we now consider the interactions of large functional gene networks and study how these complex systems orchestrate the unfolding of an organism, from gametes to adult. Developmental biologists are beginning to realize that understanding ontogeny on this scale requires the utilization of computational methods to capture, store and represent the knowledge we have about the underlying processes. Here we review the use of the Gene Ontology (GO) to study developmental biology. We describe the organization and structure of the GO and illustrate some of the ways we use it to capture the current understanding of many common developmental processes. We also discuss ways in which gene product annotations using the GO have been used to ask and answer developmental questions in a variety of model developmental systems. We provide suggestions as to how the GO might be used in more powerful ways to address questions about development. Our goal is to provide developmental biologists with enough background about the GO that they can begin to think about how they might use the ontology efficiently and in the most powerful ways possible.
Collapse
|
42
|
Chance MR, Chang J, Liu S, Gokulrangan G, Chen DHC, Lindsay A, Geng R, Zheng QY, Alagramam K. Proteomics, bioinformatics and targeted gene expression analysis reveals up-regulation of cochlin and identifies other potential biomarkers in the mouse model for deafness in Usher syndrome type 1F. Hum Mol Genet 2010; 19:1515-27. [PMID: 20097680 DOI: 10.1093/hmg/ddq025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Proteins and protein networks associated with cochlear pathogenesis in the Ames waltzer (av) mouse, a model for deafness in Usher syndrome 1F (USH1F), were identified. Cochlear protein from wild-type and av mice at postnatal day 30, a time point in which cochlear pathology is well established, was analyzed by quantitative 2D gel electrophoresis followed by mass spectrometry (MS). The analytic gel resolved 2270 spots; 69 spots showed significant changes in intensity in the av cochlea compared with the control. The cochlin protein was identified in 20 peptide spots, most of which were up-regulated, while a few were down-regulated. Analysis of MS sequence data showed that, in the av cochlea, a set of full-length isoforms of cochlin was up-regulated, while isoforms missing the N-terminal FCH/LCCL domain were down-regulated. Protein interaction network analysis of all differentially expressed proteins was performed with Metacore software. That analysis revealed a number of statistically significant candidate protein networks predicted to be altered in the affected cochlea. Quantitative PCR (qPCR) analysis of select candidates from the proteomic and bioinformatic investigations showed up-regulation of Coch mRNA and those of p53, Brn3a and Nrf2, transcription factors linked to stress response and survival. Increased mRNA of Brn3a and Nrf2 has previously been associated with increased expression of cochlin in human glaucomatous trabecular meshwork. Our report strongly suggests that increased level of cochlin is an important etiologic factor leading to the degeneration of cochlear neuroepithelia in the USH1F model.
Collapse
Affiliation(s)
- Mark R Chance
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nibbe RK, Koyutürk M, Chance MR. An integrative -omics approach to identify functional sub-networks in human colorectal cancer. PLoS Comput Biol 2010; 6:e1000639. [PMID: 20090827 PMCID: PMC2797084 DOI: 10.1371/journal.pcbi.1000639] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 12/11/2009] [Indexed: 02/03/2023] Open
Abstract
Emerging evidence indicates that gene products implicated in human cancers often cluster together in “hot spots” in protein-protein interaction (PPI) networks. Additionally, small sub-networks within PPI networks that demonstrate synergistic differential expression with respect to tumorigenic phenotypes were recently shown to be more accurate classifiers of disease progression when compared to single targets identified by traditional approaches. However, many of these studies rely exclusively on mRNA expression data, a useful but limited measure of cellular activity. Proteomic profiling experiments provide information at the post-translational level, yet they generally screen only a limited fraction of the proteome. Here, we demonstrate that integration of these complementary data sources with a “proteomics-first” approach can enhance the discovery of candidate sub-networks in cancer that are well-suited for mechanistic validation in disease. We propose that small changes in the mRNA expression of multiple genes in the neighborhood of a protein-hub can be synergistically associated with significant changes in the activity of that protein and its network neighbors. Further, we hypothesize that proteomic targets with significant fold change between phenotype and control may be used to “seed” a search for small PPI sub-networks that are functionally associated with these targets. To test this hypothesis, we select proteomic targets having significant expression changes in human colorectal cancer (CRC) from two independent 2-D gel-based screens. Then, we use random walk based models of network crosstalk and develop novel reference models to identify sub-networks that are statistically significant in terms of their functional association with these proteomic targets. Subsequently, using an information-theoretic measure, we evaluate synergistic changes in the activity of identified sub-networks based on genome-wide screens of mRNA expression in CRC. Cross-classification experiments to predict disease class show excellent performance using only a few sub-networks, underwriting the strength of the proposed approach in discovering relevant and reproducible sub-networks. Intensive research on cancer has led to an understanding of many individual genes that may be important for the initiation and progression of tumors. However, since cancer is a progressive disease that results from accumulation of multiple mutations likely acting in concert, individual markers can only provide limited insights into cellular mechanisms that underlie tumorigenesis. For this reason, recent studies focus on identification of “sub-network markers”, that is, functionally associated genes that exhibit coordinate changes in molecular expression during cancer progression. However, expression of genes is most frequently interrogated at the mRNA level, which captures functional activity of genes only to a limited extent. Screening of protein expression, on the other hand, provides information on the abundance of functional gene products, but its scale is often limited compared to screening of mRNA expression. In this article, we develop a proteomics-driven computational method that searches for sub-network markers in human colorectal cancer, based on a seed of differentially expressed proteins identified by proteomic screening. Our results show that significant changes in the expression of these proteins is likely to be associated with coordinate changes in the expression of the genes whose products are functionally associated with these proteins. This analysis leads to novel insights in the synergistic processes that underlie tumorigenesis.
Collapse
Affiliation(s)
- Rod K Nibbe
- Center for Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America.
| | | | | |
Collapse
|
44
|
Chopra DP, Dombkowski AA, Stemmer PM, Parker GC. Intestinal epithelial cells in vitro. Stem Cells Dev 2010; 19:131-42. [PMID: 19580443 PMCID: PMC3136723 DOI: 10.1089/scd.2009.0109] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/06/2009] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the biology of stem cells has resulted in significant interest in the development of normal epithelial cell lines from the intestinal mucosa, both to exploit the therapeutic potential of stem cells in tissue regeneration and to develop treatment models of degenerative disorders of the digestive tract. However, the difficulty of propagating cell lines of normal intestinal epithelium has impeded research into the molecular mechanisms underlying differentiation of stem/progenitor cells into the various intestinal lineages. Several short-term organ/organoid and epithelial cell culture models have been described. There is a dearth of long-term epithelial and/or stem cell cultures of intestine. With an expanding role of stem cells in the treatment of degenerative disorders, there is a critical need for additional efforts to develop in vitro models of stem/progenitor epithelial cells of intestine. The objective of this review is to recapitulate the current status of technologies and knowledge for in vitro propagation of intestinal epithelial cells, markers of the intestinal stem cells, and gene and protein expression profiles of the intestinal cellular differentiation.
Collapse
Affiliation(s)
- Dharam P. Chopra
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Alan A. Dombkowski
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Graham C. Parker
- Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan
| |
Collapse
|
45
|
Yohannes E, Chang J, Tar MT, Davies KP, Chance MR. Molecular targets for diabetes mellitus-associated erectile dysfunction. Mol Cell Proteomics 2009; 9:565-78. [PMID: 20007950 DOI: 10.1074/mcp.m900286-mcp200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protein expression profiles in rat corporal smooth muscle tissue were compared between animal models of streptozotocin-induced diabetes mellitus (STZ-DM) and age-matched controls (AMCs) at 1 week and 2 months after induction of hyperglycemia with STZ treatment. At each time point, protein samples from four STZ-DM and four AMC rat corpora tissues were prepared independently and analyzed together across multiple quantitative two-dimensional gels using a pooled internal standard sample to quantify expression changes with statistical confidence. A total of 170 spots were differential expressed among the four experimental groups. A subsequent mass spectrometry analysis of the 170 spots identified a total of 57 unique proteins. Network analysis of these proteins using MetaCore suggested altered activity of transcriptional factors that are of too low abundance to be detected by the two-dimensional gel method. The proteins that were down-regulated with diabetes include isoforms of collagen that are precursors to fibril-forming collagen type 1; Hsp47, which assists and mediates the proper folding of procollagen; and several proteins whose abundance is controlled by sex hormones (e.g. CRP1 and A2U). On the other hand, proteins seen or predicted to be up-regulated include proteins involved in cell apoptosis (e.g. p53, 14-3-3-gamma, Serpinf1, Cct4, Cct5, and Sepina3n), proteins that neutralize the biological activity of nerve growth factor (e.g. anti-NGF 30), and proteins involved in lipid metabolism (e.g. apoA-I and apoA-IV). Subsequent Western blot validation analysis of p53, 14-3-3-gamma, and Hsp47 confirmed increased p53 and 14-3-3-gamma and decreased Hsp47 levels in separate samples. According to the results from the Western blot analysis, Hsp47 protein showed a approximately 3-fold decrease at 1 week and was virtually undetectable at 2 months in diabetic versus control. Taken together, our results identify novel candidate proteins playing a role in erectile dysfunction in diabetes resulting from STZ treatment.
Collapse
Affiliation(s)
- Elizabeth Yohannes
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|