1
|
Modulation of hyperglycemia by sodium alginate is associated with changes of serum metabolite and gut microbiota in mice. Carbohydr Polym 2022; 291:119359. [DOI: 10.1016/j.carbpol.2022.119359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022]
|
2
|
Mathakala V, Muppuru MK, Palempalli UMD. Halophila beccarii extract ameliorate glucose uptake in 3T3-L1 adipocyte cells and improves glucose homeostasis in streptozotocin-induced diabetic rats. Heliyon 2022; 8:e10252. [PMID: 36042748 PMCID: PMC9420365 DOI: 10.1016/j.heliyon.2022.e10252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/20/2021] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
The regulation of carbohydrate metabolizing enzymes is an effective way of reducing blood glucose levels and improving glycogen synthesis during the management of type 2 diabetes. The present investigation was conducted to explain the detailed mechanism with which a Seagrass, Halophila beccarii extract (HBE) enhances the glucose uptake in the 3T3-L1 adipocyte cell culture system in invitro. HBE stimulates the glucose uptake by the translocation of glucose transporter 4 (GLUT4) on to plasma cell membrane through induction of insulin receptor substrate 1 (IRS-1)/protein kinase B (Akt) signaling pathways. To assess the effect of HBE on T2DM, we used invivo experimental diabetes rat models induced with streptozotocin (STZ) to perform oral GTT and ITT. Furthermore, we assessed the enzymatic profile of Glycolysis, Pentose phosphate pathway, and gluconeogenesis from liver tissue homogenate. After long-term exposure with HBE, our results confirmed, that HBE improves the glucose uptake in 3T3-L1 cell lines by up-regulation of glucose transporter type 4 (GLUT4) through uptake of glucose by the adipocytes. The resulting data indicated that HBE had a great potentiality in preventing diabetes and maintaining glucose homeostasis through improving glucose uptake. The present data also showed that HBE with its insulin mimetic activity activates glycogen synthesis and enhances glucose utilization by regulating the carbohydrate metabolic enzymes. The similarity between HBE and insulin indicates that the HBE follows the mechanisms same as the insulin signaling pathway to show the antidiabetic activity.
Collapse
Affiliation(s)
- Vani Mathakala
- Department of Applied Microbiology and Biochemistry, Sri Padmavati Mahila Visva vidyalayam, Tirupati, AP, India
| | - Muni Kesavulu Muppuru
- Department of Biosciences, Mohanbabu University, Sree Vidyanikethan Engineering college, Sree Sainath Nagar, Tirupati, AP, India
| | | |
Collapse
|
3
|
Fan C, Liu Y, Wang Y, Zhang A, Xie W, Zhang H, Weng Q, Xu M. Expression of glycogenic genes in the oviduct of Chinese brown frog (Rana dybowskii) during pre-brumation. Theriogenology 2022; 185:78-87. [DOI: 10.1016/j.theriogenology.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
4
|
Nectar-feeding bats and birds show parallel molecular adaptations in sugar metabolism enzymes. Curr Biol 2021; 31:4667-4674.e6. [PMID: 34478643 DOI: 10.1016/j.cub.2021.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
In most vertebrates, the demand for glucose as the primary substrate for cellular respiration is met by the breakdown of complex carbohydrates, or energy is obtained by protein and lipid catabolism. In contrast, a few bat and bird species have convergently evolved to subsist on nectar, a sugar-rich mixture of glucose, fructose, and sucrose.1-4 How these nectar-feeders have adapted to cope with life-long high sugar intake while avoiding the onset of metabolic syndrome and diabetes5-7 is not understood. We analyzed gene sequences obtained from 127 taxa, including 22 nectar-feeding bat and bird genera that collectively encompass four independent origins of nectarivory. We show these divergent taxa have undergone pervasive molecular adaptation in sugar catabolism pathways, including parallel selection in key glycolytic and fructolytic enzymes. We also uncover convergent amino acid substitutions in the otherwise evolutionarily conserved aldolase B (ALDOB), which catalyzes rate-limiting steps in fructolysis and glycolysis, and the mitochondrial gatekeeper pyruvate dehydrogenase (PDH), which links glycolysis and the tricarboxylic acid cycle. Metabolomic profile and enzyme functional assays are consistent with increased respiratory flux in nectar-feeding bats and help explain how these taxa can both sustain hovering flight and efficiently clear simple sugars. Taken together, our results indicate that nectar-feeding bats and birds have undergone metabolic adaptations that have enabled them to exploit a unique energy-rich dietary niche among vertebrates.
Collapse
|
5
|
Cerf ME. Cardiac Glucolipotoxicity and Cardiovascular Outcomes. ACTA ACUST UNITED AC 2018; 54:medicina54050070. [PMID: 30344301 PMCID: PMC6262512 DOI: 10.3390/medicina54050070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/12/2023]
Abstract
Cardiac insulin signaling can be impaired due to the altered fatty acid metabolism to induce insulin resistance. In diabetes and insulin resistance, the metabolic, structural and ultimately functional alterations in the heart and vasculature culminate in diabetic cardiomyopathy, coronary artery disease, ischemia and eventually heart failure. Glucolipotoxicity describes the combined, often synergistic, adverse effects of elevated glucose and free fatty acid concentrations on heart structure, function, and survival. The quality of fatty acid shapes the cardiac structure and function, often influencing survival. A healthy fatty acid balance is therefore critical for maintaining cardiac integrity and function.
Collapse
Affiliation(s)
- Marlon E Cerf
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa.
| |
Collapse
|
6
|
Yan L. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med 2018; 1:7-13. [PMID: 29863179 PMCID: PMC5975374 DOI: 10.1002/ame2.12001] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD+, leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD+ redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.
Collapse
Affiliation(s)
- Liang‐jun Yan
- Department of Pharmaceutical SciencesUNT System College of PharmacyUniversity of North Texas Health Science CenterFort WorthTXUSA
| |
Collapse
|
7
|
Tong QH, Yan TY, Tao T, Zhang L, Xie LQ, Lu HJ. Reductive Amination Combining Dimethylation for Quantitative Analysis of Early-Stage Glycated Proteins. Anal Chem 2018; 90:3752-3758. [DOI: 10.1021/acs.analchem.7b03668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Tian-Yang Yan
- Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | | | | | | | - Hao-Jie Lu
- Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
8
|
Gezginci-Oktayoglu S, Onay-Ucar E, Sancar-Bas S, Karatug-Kacar A, Arda ESN, Bolkent S. Involvement of dying beta cell originated messenger molecules in differentiation of pancreatic mesenchymal stem cells under glucotoxic and glucolipotoxic conditions. J Cell Physiol 2017; 233:4235-4244. [PMID: 29058819 DOI: 10.1002/jcp.26242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Beta cell mass regulation represents a critical issue for understanding and treatment of diabetes. The most important process in the development of diabetes is beta cell death, generally induced by glucotoxicity or glucolipotoxicity, and the regeneration mechanism of new beta cells that will replace dead beta cells is still not fully understood. The aim of this study was to investigate the generation mechanism of new beta cells by considering the compensation phase of type 2 diabetes mellitus. In this study, pancreatic islet derived mesenchymal stem cells (PI-MSCs) were isolated from adult rats and characterized. Then, beta cells isolated from rats were co-cultured with PI-MSCs and they were exposed to glucotoxicity, lipotoxicity and glucolipotoxicity conditions for 72 hr. As the results apoptotic and necrotic cell death were increased in both PI-MSCs and beta cells especially by the exposure of glucotoxic and glucolipotoxic conditions to the co-culture systems. Glucotoxicity induced-differentiated beta cells were functional due to their capability of insulin secretion in response to rising glucose concentrations. Moreover, beta cell proliferation was induced in the glucotoxicity-treated co-culture system whereas suppressed in lipotoxicity or glucolipotoxicity-treated co-culture systems. In addition, 11 novel proteins, that may release from dead beta cells and have the ability to stimulate PI-MSCs in the direction of differentiation, were determined in media of glucotoxicity or glucolipotoxicity-treated co-culture systems. In conclusion, these molecules were considered as important for understanding cellular mechanism of beta cell differentiation and diabetes. Thus, they may be potential targets for diagnosis and cellular or therapeutic treatment of diabetes.
Collapse
Affiliation(s)
- Selda Gezginci-Oktayoglu
- Molecular Biology Section, Department of Biology, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Evren Onay-Ucar
- Department of Molecular Biology and Genetic, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Serap Sancar-Bas
- Molecular Biology Section, Department of Biology, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Ayse Karatug-Kacar
- Molecular Biology Section, Department of Biology, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Emine S N Arda
- Department of Molecular Biology and Genetic, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Sehnaz Bolkent
- Molecular Biology Section, Department of Biology, Istanbul University, Vezneciler, Istanbul, Turkey
| |
Collapse
|
9
|
Peng X, He X, Liu Q, Sun Y, Liu H, Zhang Q, Liang J, Peng Z, Liu Z, Zhang L. Flight is the key to postprandial blood glucose balance in the fruit bats Eonycteris spelaea and Cynopterus sphinx. Ecol Evol 2017; 7:8804-8811. [PMID: 29152179 PMCID: PMC5677482 DOI: 10.1002/ece3.3416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Excessive sugar consumption could lead to high blood glucose levels that are harmful to mammalian health and life. Despite consuming large amounts of sugar‐rich food, fruit bats have a longer lifespan, raising the question of how these bats overcome potential hyperglycemia. We investigated the change of blood glucose level in nectar‐feeding bats (Eonycteris spelaea) and fruit‐eating bats (Cynopterus sphinx) via adjusting their sugar intake and time of flight. We found that the maximum blood glucose level of C. sphinx was higher than 24 mmol/L that is considered to be pathological in other mammals. After C. sphinx bats spent approximately 75% of their time to fly, their blood glucose levels dropped markedly, and the blood glucose of E. spelaea fell to the fast levels after they spent 70% time of fly. Thus, the level of blood glucose elevated with the quantity of sugar intake but declined with the time of flight. Our results indicate that high‐intensive flight is a key regulator for blood glucose homeostasis during foraging. High‐intensive flight may confer benefits to the fruit bats in foraging success and behavioral interactions and increases the efficiency of pollen and seed disposal mediated by bats.
Collapse
Affiliation(s)
- Xingwen Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Qi Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Yunxiao Sun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Hui Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China.,College of Biology and Environmental Sciences Jishou University Jishou China
| | - Qin Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Jie Liang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Zhen Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Zhixiao Liu
- College of Biology and Environmental Sciences Jishou University Jishou China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| |
Collapse
|
10
|
Schmudlach A, Felton J, Kennedy RT, Dovichi NJ. Bottom-up proteomics analysis of the secretome of murine islets of Langerhans in elevated glucose levels. Analyst 2017; 142:284-291. [PMID: 27966681 DOI: 10.1039/c6an02268e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucotoxicity is a causative agent of type-2 diabetes, where high glucose levels damage the islets of Langerhans resulting in oxidative damage and endoplasmic reticulum stress. We evaluated the secretomes of healthy CD-1 murine islets. Three experimental conditions were investigated in biological triplicate: a control incubated with 11 mM glucose, 1-day incubation with 25 mM glucose, and 2-day incubation with 25 mM glucose. An SDS-based, filter-aided sample preparation protocol was used to prepare secretomes for analysis. A total of 428 protein groups were identified across the nine samples. Each condition generated between 328-349 protein IDs and intracondition protein overlap was between 66-90% for the biological triplicates. 232 protein groups were identified in all three conditions with 184 quantified at least once in each condition. Significant expression changes were observed for proteins associated with the unfolded protein response, such as proteases, chaperones, and elongation factors, as well as proteins associated with peptide hormone processing and small molecule metabolism.
Collapse
Affiliation(s)
- Andrew Schmudlach
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jeremy Felton
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T Kennedy
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
11
|
Wu J, Jin Z, Zheng H, Yan LJ. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes 2016; 9:145-153. [PMID: 27274295 PMCID: PMC4869616 DOI: 10.2147/dmso.s106087] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NAD(+) is a fundamental molecule in metabolism and redox signaling. In diabetes and its complications, the balance between NADH and NAD(+) can be severely perturbed. On one hand, NADH is overproduced due to influx of hyperglycemia to the glycolytic and Krebs cycle pathways and activation of the polyol pathway. On the other hand, NAD(+) can be diminished or depleted by overactivation of poly ADP ribose polymerase that uses NAD(+) as its substrate. Moreover, sirtuins, another class of enzymes that also use NAD(+) as their substrate for catalyzing protein deacetylation reactions, can also affect cellular content of NAD(+). Impairment of NAD(+) regeneration enzymes such as lactate dehydrogenase in erythrocytes and complex I in mitochondria can also contribute to NADH accumulation and NAD(+) deficiency. The consequence of NADH/NAD(+) redox imbalance is initially reductive stress that eventually leads to oxidative stress and oxidative damage to macromolecules, including DNA, lipids, and proteins. Accordingly, redox imbalance-triggered oxidative damage has been thought to be a major factor contributing to the development of diabetes and its complications. Future studies on restoring NADH/NAD(+) redox balance could provide further insights into design of novel antidiabetic strategies.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hong Zheng
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
12
|
Zheng H, Wu J, Jin Z, Yan LJ. Protein Modifications as Manifestations of Hyperglycemic Glucotoxicity in Diabetes and Its Complications. BIOCHEMISTRY INSIGHTS 2016; 9:1-9. [PMID: 27042090 PMCID: PMC4807886 DOI: 10.4137/bci.s36141] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 02/07/2023]
Abstract
Diabetes and its complications are hyperglycemic toxicity diseases. Many metabolic pathways in this array of diseases become aberrant, which is accompanied with a variety of posttranslational protein modifications that in turn reflect diabetic glucotoxicity. In this review, we summarize some of the most widely studied protein modifications in diabetes and its complications. These modifications include glycation, carbonylation, nitration, cysteine S-nitrosylation, acetylation, sumoylation, ADP-ribosylation, O-GlcNAcylation, and succination. All these posttranslational modifications can be significantly attributed to oxidative stress and/or carbon stress induced by diabetic redox imbalance that is driven by activation of pathways, such as the polyol pathway and the ADP-ribosylation pathway. Exploring the nature of these modifications should facilitate our understanding of the pathological mechanisms of diabetes and its associated complications.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, UNT Health Science Center, Fort Worth, TX, USA
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, UNT Health Science Center, Fort Worth, TX, USA
| | - Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, UNT Health Science Center, Fort Worth, TX, USA
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, UNT Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
13
|
Glucotoxicity Induced Oxidative Stress and Inflammation In Vivo and In Vitro in Psammomys obesus: Involvement of Aqueous Extract of Brassica rapa rapifera. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3689208. [PMID: 27047569 PMCID: PMC4800080 DOI: 10.1155/2016/3689208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/29/2015] [Accepted: 01/26/2016] [Indexed: 11/17/2022]
Abstract
Context. Brassica rapa is considered as natural source of antioxidants and is used to treat diabetes. Objective. Our study carried the impact of glucotoxicity induced in vivo and in vitro in vascular smooth muscle cells (VSMCs) in Psammomys and the therapeutic effect of Brassica rapa (AEBr). Materials and Methods. We administered a hyperglucidic diet (30% sucrose) for 9 months and a treatment for 20 days with AEBr at 100 mg/kg. VSMCs were submitted to D-Glucose (0.6%) for 48 hours and treated with AEBr (2100 μg/mL) for 24 hours. We measured, in blood metabolic parameters, the redox statues and inflammatory markers in adipose tissue. Histological study was effectuated in liver. In VSMCs, we measured markers of glucotoxicity (IRS1p Serine, AKT) inflammation (NO, MCP1, TNFα, and NF-κB) and oxidative stress (oxidants and antioxydants markers). Cell viability and apoptosis were estimated by the morphological study. Results. AEBr corrects the metabolic parameters and inflammatory and oxidative markers in blood and homogenate tissue and reduces lipid droplets in liver. It induces, in VSMCs, a significant decrease of IRS1p serine, cyt c, NO, MCP1, TNFα, NF-κB, protein, and lipid oxidation and increases cell viability, AKT, ERK1/2, catalase, and SOD activity. Conclusion. Brassica enhanced the antidiabetic, anti-inflammatory, and antioxidant defense leading to the protection of cardiovascular diseases.
Collapse
|
14
|
Chen F, Sha M, Wang Y, Wu T, Shan W, Liu J, Zhou W, Zhu Y, Sun Y, Shi Y, Bleich D, Han X. Transcription factor Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in rodent models. Diabetologia 2016; 59:316-24. [PMID: 26564177 DOI: 10.1007/s00125-015-3805-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS 'Glucotoxicity' is a term used to convey the negative effect of hyperglycaemia on beta cell function; however, the underlying molecular mechanisms that impair insulin secretion and gene expression are poorly defined. Our objective was to define the role of transcription factor v-ets avian erythroblastosis virus E26 oncogene homologue 1 (Ets-1) in beta cell glucotoxicity. METHODS Primary islets and Min6 cells were exposed to high glucose and Ets-1 expression was measured. Recombinant adenovirus and transgenic mice were used to upregulate Ets-1 expression in beta cells in vitro and in vivo, and insulin secretion was assessed. The binding activity of H3/H4 histone on the Ets-1 promoter, and that of forkhead box (FOX)A2, FOXO1 and Ets-1 on the Pdx-1 promoter was measured by chromatin immunoprecipitation and quantitative real-time PCR assay. RESULTS High glucose induced upregulation of Ets-1 expression and hyperacetylation of histone H3 and H4 at the Ets-1 gene promoter in beta cells. Ets-1 overexpression dramatically suppressed insulin secretion and biosynthesis both in vivo and in vitro. Besides, Ets-1 overexpression increased the activity of FOXO1 but decreased that of FOXA2 binding to the pancreatic and duodenal homeobox 1 (PDX-1) homology region 2 (PH2), resulting in inhibition of Pdx-1 promoter activity and downregulation of PDX-1 expression and activity. In addition, high glucose promoted the interaction of Ets-1 and FOXO1, and the activity of Ets-1 binding to the Pdx-1 promoter. Importantly, PDX-1 overexpression reversed the defect in pancreatic beta cells induced by Ets-1 excess, while knockdown of Ets-1 prevented hyperglycaemia-induced dysfunction of pancreatic beta cells. CONCLUSIONS/INTERPRETATION Our observations suggest that Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in type 2 diabetes.
Collapse
MESH Headings
- Animals
- Blood Glucose/physiology
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Gene Expression Regulation
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Hyperglycemia/blood
- Hyperglycemia/genetics
- Hyperglycemia/physiopathology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Proto-Oncogene Protein c-ets-1/physiology
- Rats
- Rats, Sprague-Dawley
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Min Sha
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Yanyang Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Wei Shan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Jia Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Wenbo Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Yujie Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Yuguang Shi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - David Bleich
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
15
|
Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic Stress and Carbon Stress in Diabetic Glucotoxicity. Aging Dis 2016; 7:90-110. [PMID: 26816666 DOI: 10.14336/ad.2015.0702] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetes and its complications are caused by chronic glucotoxicity driven by persistent hyperglycemia. In this article, we review the mechanisms of diabetic glucotoxicity by focusing mainly on hyperglycemic stress and carbon stress. Mechanisms of hyperglycemic stress include reductive stress or pseudohypoxic stress caused by redox imbalance between NADH and NAD(+) driven by activation of both the polyol pathway and poly ADP ribose polymerase; the hexosamine pathway; the advanced glycation end products pathway; the protein kinase C activation pathway; and the enediol formation pathway. Mechanisms of carbon stress include excess production of acetyl-CoA that can over-acetylate a proteome and excess production of fumarate that can over-succinate a proteome; both of which can increase glucotoxicity in diabetes. For hyperglycemia stress, we also discuss the possible role of mitochondrial complex I in diabetes as this complex, in charge of NAD(+) regeneration, can make more reactive oxygen species (ROS) in the presence of excess NADH. For carbon stress, we also discuss the role of sirtuins in diabetes as they are deacetylases that can reverse protein acetylation thereby attenuating diabetic glucotoxicity and improving glucose metabolism. It is our belief that targeting some of the stress pathways discussed in this article may provide new therapeutic strategies for treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Xiaoting Luo
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; 2 Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi province, China, 341000
| | - Jinzi Wu
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siqun Jing
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; 3 College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China, 830046
| | - Liang-Jun Yan
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
16
|
Vasu S, Moffett RC, McClenaghan NH, Flatt PR. Differential molecular and cellular responses of GLP-1 secreting L-cells and pancreatic alpha cells to glucotoxicity and lipotoxicity. Exp Cell Res 2015; 336:100-8. [DOI: 10.1016/j.yexcr.2015.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
|
17
|
Balamurugan R, Vendan SE, Aravinthan A, Kim JH. Isolation and structural characterization of 2R, 3R taxifolin 3-O-rhamnoside from ethyl acetate extract of Hydnocarpus alpina and its hypoglycemic effect by attenuating hepatic key enzymes of glucose metabolism in streptozotocin-induced diabetic rats. Biochimie 2015; 111:70-81. [DOI: 10.1016/j.biochi.2015.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/03/2015] [Indexed: 11/16/2022]
|
18
|
Zhu L, Yin Q, Irwin DM, Zhang S. Phosphoenolpyruvate carboxykinase 1 gene (Pck1) displays parallel evolution between Old World and New World fruit bats. PLoS One 2015; 10:e0118666. [PMID: 25807515 PMCID: PMC4373879 DOI: 10.1371/journal.pone.0118666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/15/2014] [Indexed: 11/19/2022] Open
Abstract
Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle.
Collapse
Affiliation(s)
- Lei Zhu
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| | - Qiuyuan Yin
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| |
Collapse
|
19
|
Peinado JR, Diaz-Ruiz A, Frühbeck G, Malagon MM. Mitochondria in metabolic disease: getting clues from proteomic studies. Proteomics 2014; 14:452-66. [PMID: 24339000 DOI: 10.1002/pmic.201300376] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/08/2013] [Accepted: 11/21/2013] [Indexed: 01/11/2023]
Abstract
Mitochondria play a key role as major regulators of cellular energy homeostasis, but in the context of mitochondrial dysfunction, mitochondria may generate reactive oxidative species and induce cellular apoptosis. Indeed, altered mitochondrial status has been linked to the pathogenesis of several metabolic disorders and specially disorders related to insulin resistance, such as obesity, type 2 diabetes, and other comorbidities comprising the metabolic syndrome. In the present review, we summarize information from various mitochondrial proteomic studies of insulin-sensitive tissues under different metabolic states. To that end, we first focus our attention on the pancreas, as mitochondrial malfunction has been shown to contribute to beta cell failure and impaired insulin release. Furthermore, proteomic studies of mitochondria obtained from liver, muscle, and adipose tissue are summarized, as these tissues constitute the primary insulin target metabolic tissues. Since recent advances in proteomic techniques have exposed the importance of PTMs in the development of metabolic disease, we also present information on specific PTMs that may directly affect mitochondria during the pathogenesis of metabolic disease. Specifically, mitochondrial protein acetylation, phosphorylation, and other PTMs related to oxidative damage, such as nitrosylation and carbonylation, are discussed.
Collapse
Affiliation(s)
- Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine, Ciudad Real, Spain
| | | | | | | |
Collapse
|
20
|
Schvartz D, Couté Y, Sanchez JC. Quantitative proteomics reveals the link between minichromosome maintenance complex and glucose-induced proliferation of rat pancreatic INS-1E β-cells. J Proteomics 2014; 108:163-70. [DOI: 10.1016/j.jprot.2014.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022]
|
21
|
Parallel Evolution of the Glycogen Synthase 1 (Muscle) Gene Gys1 Between Old World and New World Fruit Bats (Order: Chiroptera). Biochem Genet 2014; 52:443-58. [DOI: 10.1007/s10528-014-9659-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/06/2014] [Indexed: 01/09/2023]
|
22
|
Identification of proteins involved in the pancreatic exocrine by exogenous ghrelin administration in Sprague-Dawley rats. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2014; 56:6. [PMID: 26290695 PMCID: PMC4534188 DOI: 10.1186/2055-0391-56-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 11/30/2022]
Abstract
The aims of study were to investigate the effects of intraperitoneal (i.p.) infusion of ghrelin on pancreatic α-amylase outputs and the responses of pancreatic proteins to ghrelin that may relate to the pancreatic exocrine. Six male Sprague-Dawley rats (300 g) were randomly divided into two groups, a control group (C, n = 3) and a treatment group (T, 10.0μg/kg BW, n = 3). Blood samples were collected from rat caudal vein once time after one hour injection. The concentrations of plasma ghrelin, cholecystokinin (CCK) and alfa-amylase activity were evaluated by enzyme immunoassay (EIA) kit. Two-dimensional gel electrophoresis (2-DE) analysis was conducted to separate the proteins in pancreas tissue. Results showed that the i.p. infusion of ghrelin at doses of 10.0 μg/kg body weight (BW) increased the plasma ghrelin concentrations (p = 0.07) and elevated the plasma CCK level significantly (p < 0.05). Although there was no statistically significant, the α-amylase activity tended to increase. The proteomics analysis indicated that some pancreatic proteins with various functions were up- or down- regulated compared with control group. In conclusion, ghrelin may have role in the pancreatic exocrine, but the signaling pathway was still not clear. Therefore, much more functional studies focus on these found proteins are needed in the near future.
Collapse
|
23
|
Vinoy S, Normand S, Meynier A, Sothier M, Louche-Pelissier C, Peyrat J, Maitrepierre C, Nazare JA, Brand-Miller J, Laville M. Cereal processing influences postprandial glucose metabolism as well as the GI effect. J Am Coll Nutr 2014; 32:79-91. [PMID: 24015715 PMCID: PMC4673596 DOI: 10.1080/07315724.2013.789336] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objective: Technological processes may influence the release of glucose in starch. The aim of this study was to compare the metabolic response and the kinetics of appearance of exogenous glucose from 2 cereal products consumed at breakfast. Methods: Twenty-five healthy men were submitted to a randomized, open, crossover study that was divided into 2 parts: 12 of the 25 subjects were included in the “isotope part,” and the 13 other subjects were included in the “glycemic part.” On test days, subjects received biscuits (low glycemic index [GI], high slowly available glucose [SAG]) or extruded cereals (medium GI, low SAG) as part of a breakfast similar in terms of caloric and macronutrient content. The postprandial phase lasted 270 minutes. Results: The rate of appearance (RaE) of exogenous glucose was significantly lower after consumption of biscuits in the first part of the morning (90–150 minutes) than after consumption of extruded cereals (p ≤ 0.05). Conversely, at 210 minutes, it was significantly higher with biscuits (p ≤ 0.01). For the first 2 hours, plasma glucose and insulin were significantly lower after biscuits during the glycemic part. C-peptide plasma concentrations were significantly lower at 90, 120, and 150 minutes after ingestion of the biscuits (p ≤ 0.05). Conclusion: The consumption of biscuits with a high content of slowly digestible starch reduces the appearance rate of glucose in the first part of the morning and prolongs this release in the late phase of the morning (210 minutes). Our results also emphasize that modulation of glucose availability at breakfast is an important factor for metabolic control throughout the morning in healthy subjects due to the lowering of blood glucose and insulin excursions.
Collapse
Affiliation(s)
- Sophie Vinoy
- a Mondelez International R&D, Nutrition Department , Saclay , FRANCE
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Priego-Capote F, Ramírez-Boo M, Finamore F, Gluck F, Sanchez JC. Quantitative Analysis of Glycated Proteins. J Proteome Res 2014; 13:336-47. [DOI: 10.1021/pr4000398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Feliciano Priego-Capote
- Translational Biomarker Group (TBG), Department of Human Protein
Sciences, University Medical Centre, University of Geneva, 1211 Geneva 4, Switzerland
- Department of Analytical Chemistry, Annex C-3 Building, Campus of
Rabanales, University of Córdoba, E-14071, Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, E-14004, Cordoba, Spain
| | - María Ramírez-Boo
- Translational Biomarker Group (TBG), Department of Human Protein
Sciences, University Medical Centre, University of Geneva, 1211 Geneva 4, Switzerland
| | - Francesco Finamore
- Translational Biomarker Group (TBG), Department of Human Protein
Sciences, University Medical Centre, University of Geneva, 1211 Geneva 4, Switzerland
| | - Florent Gluck
- Translational Biomarker Group (TBG), Department of Human Protein
Sciences, University Medical Centre, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean-Charles Sanchez
- Translational Biomarker Group (TBG), Department of Human Protein
Sciences, University Medical Centre, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
25
|
The Glycogen Synthase 2 Gene (Gys2) Displays Parallel Evolution Between Old World and New World Fruit Bats. J Mol Evol 2013; 78:66-74. [DOI: 10.1007/s00239-013-9600-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 11/12/2013] [Indexed: 01/02/2023]
|
26
|
Annadurai T, Thomas PA, Geraldine P. Ameliorative effect of naringenin on hyperglycemia-mediated inflammation in hepatic and pancreatic tissues of Wistar rats with streptozotocin- nicotinamide-induced experimental diabetes mellitus. Free Radic Res 2013; 47:793-803. [PMID: 23841752 DOI: 10.3109/10715762.2013.823643] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In diabetes mellitus (DM), sustained hyperglycemia results in the generation of reactive oxygen species, ultimately leading to increased oxidative stress and inflammation in vital tissues. In the present study, possible ameliorative effects of naringenin on hyperglycemia-mediated inflammation in experimental streptozocin (STZ)-nicotinamide-induced DM were sought. DM was induced experimentally in overnight-fasted Wistar rats (150-180 g) by intra-peritoneal injection of STZ (50 mg/kg.b.w) and of nicotinamide (110 mg/kg.b.w); control rats (n = 6) received only vehicle (0.5 ml of 0.1 M of cold citrate buffer; pH 4.5). One group of diabetic rats (n = 6) was left untreated while another group of diabetic rats (n = 6) received naringenin (50 mg/kg b.w./day) orally for 21 days. At this time, hemotological indices (erythrocyte sedimentation rate [ESR], total white blood cell [WBC] count, differential WBC percentage, and platelet count) were measured. Significant alterations in expression of gene and protein biomarkers of inflammation in hepatic and pancreatic tissues were determined by measuring mRNA levels and the level of protein expressed, respectively, as was the total nitric oxide level in these tissues. Diabetic rats showed significantly higher mean ESR values, total WBC counts, differential WBC percentages, and platelet counts than those in control rats; similarly, mean mRNA levels of C-reactive protein, pro-inflammatory cytokine, nuclear factor-κB and inducible nitric oxide synthase genes and mean intensities of expression of the corresponding proteins in the hepatic and pancreatic tissue samples from diabetic rats significantly exceeded those in control rats. However, in diabetic rats treated with naringenin, the values of hematological, mRNA transcript and protein indices of inflammation were all lower than those in diabetic rats. These results suggest that naringenin possibly alleviates hyperglycemia-mediated inflammation in experimental STZ-nicotinamide-induced DM in Wistar rats.
Collapse
Affiliation(s)
- T Annadurai
- Department of Animal Science, School of Life Sciences, Bharathidasan University , Tiruchirappalli , Tamil Nadu , India
| | | | | |
Collapse
|
27
|
Vasu S, McClenaghan NH, McCluskey JT, Flatt PR. Cellular responses of novel human pancreatic β-cell line, 1.1B4 to hyperglycemia. Islets 2013; 5:170-7. [PMID: 23985558 DOI: 10.4161/isl.26184] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The novel human-derived pancreatic β-cell line, 1.1B4 exhibits insulin secretion and β-cell enriched gene expression. Recent investigations of the cellular responses of this novel cell line to lipotoxicity and cytokine toxicity revealed similarities to primary human β cells. The current study has investigated the responses of 1.1B4 cells to chronic 48 and 72 h exposure to hyperglycemia to probe mechanisms of human β-cell dysfunction and cell death. Exposure to 25 mM glucose significantly reduced insulin content (p<0.05) and glucokinase activity (p<0.01) after 72 h. Basal insulin release was unaffected but acute secretory response to 16.7 mM glucose was impaired (p<0.05). Insulin release stimulated by alanine, GLP-1, KCl, elevated Ca (2+) and forskolin was also markedly reduced after exposure to hyperglycemia (p<0.001). In addition, PDX1 protein expression was reduced by 58% by high glucose (p<0.05). Effects of hyperglycemia on secretory function were accompanied by decreased mRNA expression of INS, GCK, PCSK1, PCSK2, PPP3CB, GJA1, ABCC8, and KCNJ11. In contrast, exposure to hyperglycemia upregulated the transcription of GPX1, an antioxidant enzyme involved in detoxification of hydrogen peroxide and HSPA4, a molecular chaperone involved in ER stress response. Hyperglycemia-induced DNA damage was demonstrated by increased % tail DNA and olive tail moment, assessed by comet assay. Hyperglycemia-induced apoptosis was evident from increased activity of caspase 3/7 and decreased BCL2 protein. These observations reveal significant changes in cellular responses and gene expression in novel human pancreatic 1.1B4 β cells exposed to hyperglycemia, illustrating the usefulness of this novel human-derived cell line for studying human β-cell biology and diabetes.
Collapse
Affiliation(s)
- Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes; University of Ulster; Coleraine, Northern Ireland, UK
| | | | | | | |
Collapse
|
28
|
Blaak EE, Antoine JM, Benton D, Björck I, Bozzetto L, Brouns F, Diamant M, Dye L, Hulshof T, Holst JJ, Lamport DJ, Laville M, Lawton CL, Meheust A, Nilson A, Normand S, Rivellese AA, Theis S, Torekov SS, Vinoy S. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 2012; 13:923-84. [PMID: 22780564 PMCID: PMC3494382 DOI: 10.1111/j.1467-789x.2012.01011.x] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/11/2012] [Accepted: 04/27/2012] [Indexed: 12/11/2022]
Abstract
Postprandial glucose, together with related hyperinsulinemia and lipidaemia, has been implicated in the development of chronic metabolic diseases like obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). In this review, available evidence is discussed on postprandial glucose in relation to body weight control, the development of oxidative stress, T2DM, and CVD and in maintaining optimal exercise and cognitive performance. There is mechanistic evidence linking postprandial glycaemia or glycaemic variability to the development of these conditions or in the impairment in cognitive and exercise performance. Nevertheless, postprandial glycaemia is interrelated with many other (risk) factors as well as to fasting glucose. In many studies, meal-related glycaemic response is not sufficiently characterized, or the methodology with respect to the description of food or meal composition, or the duration of the measurement of postprandial glycaemia is limited. It is evident that more randomized controlled dietary intervention trials using effective low vs. high glucose response diets are necessary in order to draw more definite conclusions on the role of postprandial glycaemia in relation to health and disease. Also of importance is the evaluation of the potential role of the time course of postprandial glycaemia.
Collapse
Affiliation(s)
- E E Blaak
- Department of Human Biology, School of Nutrition & Toxicology Research and Metabolism (NUTRIM), Maastricht UniversityMaastricht, the Netherlands
| | | | - D Benton
- Department of Psychology, University of SwanseaWales, UK
| | - I Björck
- Division of Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund UniversityLund, Sweden
| | - L Bozzetto
- Department of Clinical and Experimental Medicine, University Federico IINaples, Italy
| | - F Brouns
- Department of Human Biology, School of Nutrition & Toxicology Research and Metabolism (NUTRIM), Maastricht UniversityMaastricht, the Netherlands
| | - M Diamant
- Diabetes Center, Department of Internal Medicine, VU University Medical CenterAmsterdam, the Netherlands
| | - L Dye
- Institute of Psychological Sciences, University of LeedsLeeds, UK
| | - T Hulshof
- Kellogg EuropeDen Bosch, the Netherlands
| | - J J Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation Centre of Basic Metabolic Research, University of CopenhagenCopenhagen, Denmark
| | - D J Lamport
- Institute of Psychological Sciences, University of LeedsLeeds, UK
| | - M Laville
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Centre Hospitalier Lyon SudLyon, France
| | - C L Lawton
- Institute of Psychological Sciences, University of LeedsLeeds, UK
| | | | - A Nilson
- Division of Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund UniversityLund, Sweden
| | - S Normand
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Centre Hospitalier Lyon SudLyon, France
| | - A A Rivellese
- Department of Clinical and Experimental Medicine, University Federico IINaples, Italy
| | - S Theis
- Südzucker/BENEO GroupObrigheim, Germany
| | - S S Torekov
- Department of Biomedical Sciences and Novo Nordisk Foundation Centre of Basic Metabolic Research, University of CopenhagenCopenhagen, Denmark
| | - S Vinoy
- Kraft Foods, R&D Centre, Nutrition DepartmentSaclay, France
| |
Collapse
|
29
|
Dadon D, Tornovsky-Babaey S, Furth-Lavi J, Ben-Zvi D, Ziv O, Schyr-Ben-Haroush R, Stolovich-Rain M, Hija A, Porat S, Granot Z, Weinberg-Corem N, Dor Y, Glaser B. Glucose metabolism: key endogenous regulator of β-cell replication and survival. Diabetes Obes Metab 2012; 14 Suppl 3:101-8. [PMID: 22928570 DOI: 10.1111/j.1463-1326.2012.01646.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies in mice have shown that pancreatic β-cells have a significant potential for regeneration, suggesting that regenerative therapy for diabetes is feasible. Genetic lineage tracing studies indicate that β-cell regeneration is based on the replication of fully differentiated, insulin-positive β-cells. Thus, a major challenge for this field is to identify and enhance the molecular pathways that control β-cell replication and mass. We review evidence, from human genetics and mouse models, that glucose is a major signal for β-cell replication. The mitogenic effect of blood glucose is transmitted via glucose metabolism within β-cells, and through a signalling cascade that resembles the pathway for glucose-stimulated insulin secretion. We introduce the concept that the individual β-cell workload, defined as the amount of insulin that an individual β-cell must secrete to maintain euglycaemia, is the primary determinant of replication, survival and mass. We also propose that a cell-autonomous pathway, similar to that regulating replication, appears to be responsible for at least some of the toxic effects of glucose on β-cells. Understanding and uncoupling the mitogenic and toxic effects of glucose metabolism on β-cells may allow for the development of effective regenerative therapies for diabetes.
Collapse
Affiliation(s)
- D Dadon
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sundaram R, Naresh R, Shanthi P, Sachdanandam P. Efficacy of 20-OH-ecdysone on hepatic key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:725-729. [PMID: 22484004 DOI: 10.1016/j.phymed.2012.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/02/2012] [Accepted: 02/28/2012] [Indexed: 05/31/2023]
Abstract
The aim of the present investigation was to evaluate the anti-diabetic activity of 20-OH-ecdysone on glucose metabolic key enzymes in control and streptozotocin induced diabetic rats. On oral administration of 20-OH-ecdysone at a dose of 5mg/kg body weight per day to diabetic rats for 30 days resulted in a significant decrease in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and an increase in the levels of insulin and hemoglobin. Administration of 20-OH-ecdysone showed significant increase in the levels of glycolytic enzyme (hexokinase) and hepatic shunt enzyme (glucose-6-phosphate dehydrogenase) whereas significant decrease in the levels of gluconeogenic enzymes (glucose-6-phosphatase and fructose-1,6-bisphosphatase) in diabetic treated rats. Furthermore, protection against body weight loss of diabetic animals also observed. This study indicates that the administration of 20-OH-ecdysone to diabetic rats resulted in alterations in the metabolism of glucose with subsequent reduction in plasma glucose levels. A comparison was made between the action of 20-OH-ecdysone and antidiabetic drug-glibenclamide. The effects produced by the 20-OH-ecdysone were comparable to that of glibenclamide.
Collapse
Affiliation(s)
- Ramalingam Sundaram
- Department of Medical Biochemistry, Dr ALM P-G, Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India
| | | | | | | |
Collapse
|
31
|
Schvartz D, Brunner Y, Couté Y, Foti M, Wollheim CB, Sanchez JC. Improved characterization of the insulin secretory granule proteomes. J Proteomics 2012; 75:4620-31. [PMID: 22569486 DOI: 10.1016/j.jprot.2012.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/22/2012] [Accepted: 04/20/2012] [Indexed: 11/15/2022]
Abstract
Insulin secretory granules (ISGs) are pivotal organelles of pancreatic ß-cells and represent a key participant to glucose homeostasis. Indeed, insulin is packed and processed within these vesicles before its release by exocytosis. It is therefore crucial to acquire qualitative and quantitative data on the ISG proteome, in order to increase our knowledge on ISG biogenesis, maturation and exocytosis. Despites efforts made in the past years, the coverage of the ISG proteome is still incomplete and comprises many potential protein contaminants most likely coming from suboptimal sample preparations. We developed here a 3-step gradient purification procedure combined to Stable Isotope Labeling with Amino acids in Cell culture (SILAC) to further characterize the ISG protein content. Our results allowed to build three complementary proteomes containing 1/ proteins which are enriched in mature ISGs, 2/ proteins sharing multiple localizations including ISGs, and finally 3/ proteins sorted out from immature ISGs and/or co-purifying contaminants. As a proof of concept, the ProSAAS, a neuronal protein found in ISGs was further characterized and its granular localization proved. ProSAAS might represent a novel potential target allowing to better understand the defaults in insulin processing and secretion observed during type 2 diabetes progression. This article is part of a special issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Domitille Schvartz
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, University Medical Center, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Shen B, Han X, Zhang J, Rossiter SJ, Zhang S. Adaptive evolution in the glucose transporter 4 gene Slc2a4 in Old World fruit bats (family: Pteropodidae). PLoS One 2012; 7:e33197. [PMID: 22493665 PMCID: PMC3320886 DOI: 10.1371/journal.pone.0033197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/06/2012] [Indexed: 11/19/2022] Open
Abstract
Frugivorous and nectarivorous bats are able to ingest large quantities of sugar in a short time span while avoiding the potentially adverse side-effects of elevated blood glucose. The glucose transporter 4 protein (GLUT4) encoded by the Slc2a4 gene plays a critical role in transmembrane skeletal muscle glucose uptake and thus glucose homeostasis. To test whether the Slc2a4 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Slc2a4 gene in a number of bat species, including four Old World fruit bats (Pteropodidae) and three New World fruit bats (Phyllostomidae). Our molecular evolutionary analyses revealed evidence that Slc2a4 has undergone a change in selection pressure in Old World fruit bats with 11 amino acid substitutions detected on the ancestral branch, whereas, no positive selection was detected in the New World fruit bats. We noted that in the former group, amino acid replacements were biased towards either Serine or Isoleucine, and, of the 11 changes, six were specific to Old World fruit bats (A133S, A164S, V377F, V386I, V441I and G459S). Our study presents preliminary evidence that the Slc2a4 gene has undergone adaptive changes in Old World fruit bats in relation to their ability to meet the demands of a high sugar diet.
Collapse
Affiliation(s)
- Bin Shen
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Xiuqun Han
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Junpeng Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
33
|
Schvartz D, Couté Y, Brunner Y, Wollheim CB, Sanchez JC. Modulation of neuronal pentraxin 1 expression in rat pancreatic β-cells submitted to chronic glucotoxic stress. Mol Cell Proteomics 2012; 11:244-54. [PMID: 22427704 DOI: 10.1074/mcp.m112.018051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Insulin secretory granules are β-cell vesicles dedicated to insulin processing, storage, and release. The secretion of insulin secretory granule content in response to an acute increase of glucose concentration is a highly regulated process allowing normal glycemic homeostasis. Type 2 diabetes is a metabolic disease characterized by chronic hyperglycemia. The consequent prolonged glucose exposure is known to exert deleterious effects on the function of various organs, notably impairment of insulin secretion by pancreatic β-cells and induction of apoptosis. It has also been described as modifying gene and protein expression in β-cells. Therefore, we hypothesized that a modulation of insulin secretory granule protein expression induced by chronic hyperglycemia may partially explain β-cell dysfunction. To identify the potential early molecular mechanisms underlying β-cell dysfunction during chronic hyperglycemia, we performed SILAC and mass spectrometry experiments to monitor changes in the insulin secretory granule proteome from INS-1E rat insulinoma β-cells cultivated either with 11 or 30 mm of glucose for 24 h. Fourteen proteins were found to be differentially expressed between these two conditions, and several of these proteins were not described before to be present in β-cells. Among them, neuronal pentraxin 1 was only described in neurons so far. Here we investigated its expression and intracellular localization in INS-1E cells. Furthermore, its overexpression in glucotoxic conditions was confirmed at the mRNA and protein levels. According to its role in hypoxia-ischemia-induced apoptosis described in neurons, this suggests that neuronal pentraxin 1 might be a new β-cell mediator in the AKT/GSK3 apoptotic pathway. In conclusion, the modification of specific β-cell pathways such as apoptosis and oxidative stress may partially explain the impairment of insulin secretion and β-cell failure, observed after prolonged exposure to high glucose concentrations.
Collapse
Affiliation(s)
- Domitille Schvartz
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, University Medical Center, Geneva 1211, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Pathobiochemical changes in diabetic skeletal muscle as revealed by mass-spectrometry-based proteomics. J Nutr Metab 2012; 2012:893876. [PMID: 22523676 PMCID: PMC3317182 DOI: 10.1155/2012/893876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance in skeletal muscle tissues and diabetes-related muscle weakness are serious pathophysiological problems of increasing medical importance. In order to determine global changes in the protein complement of contractile tissues due to diabetes mellitus, mass-spectrometry-based proteomics has been applied to the investigation of diabetic muscle. This review summarizes the findings from recent proteomic surveys of muscle preparations from patients and established animal models of type 2 diabetes. The potential impact of novel biomarkers of diabetes, such as metabolic enzymes and molecular chaperones, is critically examined. Disease-specific signature molecules may be useful for increasing our understanding of the molecular and cellular mechanisms of insulin resistance and possibly identify new therapeutic options that counteract diabetic abnormalities in peripheral organ systems. Importantly, the biomedical establishment of biomarkers promises to accelerate the development of improved diagnostic procedures for characterizing individual stages of diabetic disease progression, including the early detection of prediabetic complications.
Collapse
|
35
|
Sihem B, Leila S, Kheira O, Samia N, Nadjiba H, Saliha B, Abdelhamid S, Ghouti K, Mahdi HE, Yasmina B, Souhila AB. Impact of glucotoxicity induced <i>in vivo</i> and <i>in vitro</i> in <i>Psammomys obesus</i>. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jdm.2012.21010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Teixeira de Lemos E, Pinto R, Oliveira J, Garrido P, Sereno J, Mascarenhas-Melo F, Páscoa-Pinheiro J, Teixeira F, Reis F. Differential effects of acute (extenuating) and chronic (training) exercise on inflammation and oxidative stress status in an animal model of type 2 diabetes mellitus. Mediators Inflamm 2011; 2011:253061. [PMID: 22174491 PMCID: PMC3235883 DOI: 10.1155/2011/253061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/20/2011] [Indexed: 11/23/2022] Open
Abstract
This study compares the effects of a single bout of exercise (acute extenuating) with those promoted by an exercise training program (chronic), focusing on low-grade chronic inflammation profile and on oxidative stress status, using the obese ZDF rats as a model of type 2 diabetes mellitus (T2DM). Animals were sacrificed after 12 weeks of a swimming training program and after a single bout of acute extenuating exercise. Glycaemic, insulinemic, and lipidic profile (triglycerides, total-cholesterol) were evaluated, as well as inflammatory (serum CRPhs, TNF-α, adiponectin) and oxidative (lipidic peroxidation and uric acid) status. When compared to obese diabetic sedentary rats, the animals submitted to acute exercise presented significantly lower values of glycaemia and insulinaemia, with inflammatory profile and oxidative stress significantly aggravated. The trained animals showed amelioration of glycaemic and lipidic dysmetabolism, accompanied by remarkable reduction of inflammatory and oxidative markers. In conclusion, the results presented herein suggessted that exercise pathogenesis-oriented interventions should not exacerbate underlying inflammatory stress associated with T2DM.
Collapse
Affiliation(s)
- Edite Teixeira de Lemos
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Research on Light and Image (IBILI), Medicine Faculty, Coimbra University, 3000-548 Coimbra, Portugal
- Educational, Technologies and Health Study Center, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Rui Pinto
- Unit of Pharmacology and Pharmacotoxicology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Jorge Oliveira
- Educational, Technologies and Health Study Center, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
- Agrarian School of Viseu, Polytechnic Institute of Viseu, 3500-606 Viseu, Portugal
| | - Patrícia Garrido
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Research on Light and Image (IBILI), Medicine Faculty, Coimbra University, 3000-548 Coimbra, Portugal
| | - José Sereno
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Research on Light and Image (IBILI), Medicine Faculty, Coimbra University, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Research on Light and Image (IBILI), Medicine Faculty, Coimbra University, 3000-548 Coimbra, Portugal
| | - João Páscoa-Pinheiro
- Rehabilitation Medicine & Sports Medicine, Medicine Faculty, Coimbra University, 3000-548 Coimbra, Portugal
| | - Frederico Teixeira
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Research on Light and Image (IBILI), Medicine Faculty, Coimbra University, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Research on Light and Image (IBILI), Medicine Faculty, Coimbra University, 3000-548 Coimbra, Portugal
| |
Collapse
|
37
|
Pan CJ, Chen SY, Jun HS, Lin SR, Mansfield BC, Chou JY. SLC37A1 and SLC37A2 are phosphate-linked, glucose-6-phosphate antiporters. PLoS One 2011; 6:e23157. [PMID: 21949678 PMCID: PMC3176764 DOI: 10.1371/journal.pone.0023157] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/07/2011] [Indexed: 11/25/2022] Open
Abstract
Blood glucose homeostasis between meals depends upon production of glucose within the endoplasmic reticulum (ER) of the liver and kidney by hydrolysis of glucose-6-phosphate (G6P) into glucose and phosphate (Pi). This reaction depends on coupling the G6P transporter (G6PT) with glucose-6-phosphatase-α (G6Pase-α). Only one G6PT, also known as SLC37A4, has been characterized, and it acts as a Pi-linked G6P antiporter. The other three SLC37 family members, predicted to be sugar-phosphate:Pi exchangers, have not been characterized functionally. Using reconstituted proteoliposomes, we examine the antiporter activity of the other SLC37 members along with their ability to couple with G6Pase-α. G6PT- and mock-proteoliposomes are used as positive and negative controls, respectively. We show that SLC37A1 and SLC37A2 are ER-associated, Pi-linked antiporters, that can transport G6P. Unlike G6PT, neither is sensitive to chlorogenic acid, a competitive inhibitor of physiological ER G6P transport, and neither couples to G6Pase-α. We conclude that three of the four SLC37 family members are functional sugar-phosphate antiporters. However, only G6PT/SLC37A4 matches the characteristics of the physiological ER G6P transporter, suggesting the other SLC37 proteins have roles independent of blood glucose homeostasis.
Collapse
Affiliation(s)
- Chi-Jiunn Pan
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shih-Yin Chen
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hyun Sik Jun
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Su Ru Lin
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian C. Mansfield
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Janice Y. Chou
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Priego-Capote F, Ramírez-Boo M, Hochstrasser D, Sanchez JC. Qualitative and quantitative analysis of glycated proteins in human plasma by glucose isotopic labeling with ¹³C6-reducing sugars. Methods Mol Biol 2011; 728:219-32. [PMID: 21468951 DOI: 10.1007/978-1-61779-068-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glucose is the predominant source of energy in cells. However, a chronic high glucose exposure of proteins modifies a number of biological pathways, known as glucotoxicity. Several studies have suggested that this impaired protein function is associated in part to protein glycation. However, despite the evidence of this glucotoxicity on tissues and cells, the exact mechanisms underlying the loss of protein function by glycation are not well understood. Strategies that will allow the discovery of the identity and function of the glycated plasma proteins generated by chronic hyperglycemia would be of a considerable help to further understand the underlying mechanisms implicated in protein dysfunction associated with glucotoxicity. The present chapter describes an innovative and interdisciplinary proteomics strategy to achieve a comprehensive identification and quantification of glycated proteins in plasma. This should provide new molecular insights into protein glycation mechanisms and identify new targets to improve the subsequent defective protein function.
Collapse
Affiliation(s)
- Feliciano Priego-Capote
- Department of Structural Biology and Bioinformatics, Biomedical Proteomics Research Group, University Medical Centre, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
39
|
Priego-Capote F, Ramirez-Boo M, Hoogland C, Scherl A, Mueller M, Lisacek F, Sanchez JC. Human hemolysate glycated proteome. Anal Chem 2011; 83:5673-80. [PMID: 21630644 DOI: 10.1021/ac200864b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite continuous advances in hyperglycemia treatments, a precise control through monitoring of glucose and glycated hemoglobin remains in most diabetic patients as the diagnosis/prognosis tool. An alternative perspective could be the discovery and quantitation of new blood glycated proteins formed by nonenzymatic reaction with circulatory glucose. As a result, the human hemolysate is an incomparable source of glycated proteins to further monitor glycemia and interpret changes at the level of this post-translational modification. The human hemolysate is here studied based on the differential labeling of proteins with isotopically labeled-glucose ([(13)C(6)] glucose), named glycation isotopic labeling. Due to the chemoselectivity of glycation, only preferential targets are labeled by this protocol. The approach provides qualitative data through the detection of preferential protein glycation sites as well as quantitative information to evaluate the abundance of this modification. This strategy was applied to human hemolysate samples corresponding to different glycemic states estimated by laboratory-certified concentrations of glycated hemoglobin. The glycation level of each protein can then be employed to interpret the effect of glucose exposition as a consequence of glycemic unbalance. This information should provide new molecular insights into protein glycation mechanisms that might generate a new hypothesis to clinicians to improve the understanding of underlying pathologies associated to prolonged hyperglycemia.
Collapse
Affiliation(s)
- Feliciano Priego-Capote
- Department of Human Protein Sciences, University Medical Centre, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
Kelm DH, Simon R, Kuhlow D, Voigt CC, Ristow M. High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats. Proc Biol Sci 2011; 278:3490-6. [PMID: 21490011 DOI: 10.1098/rspb.2011.0465] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High blood glucose levels caused by excessive sugar consumption are detrimental to mammalian health and life expectancy. Despite consuming vast quantities of sugar-rich floral nectar, nectar-feeding bats are long-lived, provoking the question of how they regulate blood glucose. We investigated blood glucose levels in nectar-feeding bats (Glossophaga soricina) in experiments in which we varied the amount of dietary sugar or flight time. Blood glucose levels increased with the quantity of glucose ingested and exceeded 25 mmol l(-1) blood in resting bats, which is among the highest values ever recorded in mammals fed sugar quantities similar to their natural diet. During normal feeding, blood glucose values decreased with increasing flight time, but only fell to expected values when bats spent 75 per cent of their time airborne. Either nectar-feeding bats have evolved mechanisms to avoid negative health effects of hyperglycaemia, or high activity is key to balancing blood glucose levels during foraging. We suggest that the coevolutionary specialization of bats towards a nectar diet was supported by the high activity and elevated metabolic rates of these bats. High activity may have conferred benefits to the bats in terms of behavioural interactions and foraging success, and is simultaneously likely to have increased their efficiency as plant pollinators.
Collapse
Affiliation(s)
- Detlev H Kelm
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Organs are complex structures that consist of multiple tissues with different levels of gene expression. To achieve comprehensive coverage and accurate quantitation data, organs ideally should be separated into morphologic and/or functional substructures before gene or protein expression analysis. However, because of complex morphology and elaborate isolation protocols, to date this often has been difficult to achieve. Kidneys are organs in which functional and morphologic subdivision is especially important. Each subunit of the kidney, the nephron, consists of more than 10 subsegments with distinct morphologic and functional characteristics. For a full understanding of kidney physiology, global gene and protein expression analyses have to be performed at the level of the nephron subsegments; however, such studies have been extremely rare to date. Here we describe the latest approaches in quantitative high-accuracy mass spectrometry-based proteomics and their application to quantitative proteomics studies of the whole kidney and nephron subsegments, both in human beings and in animal models. We compare these studies with similar studies performed on other organ substructures. We argue that the newest technologies used for preparation, processing, and measurement of small amounts of starting material are finally enabling global and subsegment-specific quantitative measurement of protein levels in the kidney and other organs. These new technologies and approaches are making a decisive impact on our understanding of the (patho)physiological processes at the molecular level.
Collapse
|
42
|
Hansson SF, Henriksson Å, Johansson L, Korsgren O, Eriksson JW, Tornqvist H, Davidsson P. Membrane Protein Profiling of Human Islets of Langerhans Using Several Extraction Methods. Clin Proteomics 2010. [DOI: 10.1007/s12014-010-9060-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Introduction
Proteomic characterization of the human pancreatic islets, containing the insulin producing beta-cells, is likely to be of great importance for improved treatment and understanding of the pathophysiology of diabetes mellitus.
Objective
The focus of this study was to characterize the human islet membrane proteome.
Methods
In order to identify as many membrane proteins as possible, five different extraction procedures were used, i.e., phase separation using Triton X-114, a plasma membrane protein kit, cell surface protein biotinylation, total protein extraction, and lipid-based protein immobilization flow cell. Digested protein extracts were analyzed by nanoflow liquid chromatography tandem mass spectrometry. Then the identified proteins were categorized according to cellular location using their gene ontology annotation and by prediction of transmembrane helices in the sequence. This information was used to estimate the amount of membrane proteins identified.
Results
By combining the results from all extraction procedures, the total number of membrane proteins identified from the human islets was increased, accentuating that a combination of methods usually gives a higher coverage of the proteome. A total of 1,700 proteins were identified (≥2 unique peptides), and 735 of these proteins were annotated as membrane proteins while 360 proteins had at least one predicted transmembrane helix. The extraction method using phase separation with Triton X-114 yielded both the highest number and the highest proportion of membrane proteins.
Conclusion
This study gave an enhanced characterization of the human islet membrane proteome which may contribute to a better understanding of islet biology.
Collapse
|
43
|
D’Hertog W, Maris M, Ferreira GB, Verdrengh E, Lage K, Hansen DA, Cardozo AK, Workman CT, Moreau Y, Eizirik DL, Waelkens E, Overbergh L, Mathieu C. Novel Insights into the Global Proteome Responses of Insulin-Producing INS-1E Cells To Different Degrees of Endoplasmic Reticulum Stress. J Proteome Res 2010; 9:5142-52. [DOI: 10.1021/pr1004086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wannes D’Hertog
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Michael Maris
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Gabriela B. Ferreira
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Eefje Verdrengh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Kasper Lage
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Daniel A. Hansen
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Alessandra K. Cardozo
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Christopher T. Workman
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Yves Moreau
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Decio L. Eizirik
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Etienne Waelkens
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Lutgart Overbergh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Chantal Mathieu
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| |
Collapse
|
44
|
Carey C, Purohit S, She JX. Advances and challenges in biomarker development for type 1 diabetes prediction and prevention using omic technologies. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2010; 4:397-410. [PMID: 20885991 PMCID: PMC2946241 DOI: 10.1517/17530059.2010.508492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD: Biomarkers are essential for the identification of high risk children as well as monitoring of prevention outcomes for type 1 diabetes (T1D). AREAS COVERED IN THIS REVIEW: This review discusses progress, opportunities and challenges in biomarker discovery and validation using high throughput genomic, transcriptomic and proteomic technologies. The authors also suggest potential solutions to deal with the current challenges. WHAT THE READER WILL GAIN: Readers will gain an overview of the current status on T1D biomarkers, an integrated review of three omic technologies, their applications and limitations for biomarker discovery and validation, and a critical discussion of the major issues encountered in biomarker development. TAKE HOME MESSAGE: Better biomarkers are still urgently needed for T1D prediction and prevention. The high throughput omic technologies offer great opportunities but also face significant challenges that have to be solved before their potential for biomarker development is fully realized.
Collapse
Affiliation(s)
- Colleen Carey
- Medical College of Georgia, Center for Biotechnology and Genomic Medicine, 1120 15th St., Augusta, 30912, USA
| | | | | |
Collapse
|
45
|
Zhang X, Tong N, Li Y. Concurrently using rosiglitazone prevents glucosamine-induced islet beta-cell apoptosis and dysfunction. Cell Biochem Funct 2010; 28:509-514. [PMID: 20803707 DOI: 10.1002/cbf.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Diabetes has merged as a significant health problem. This study aims to examine the effect of concurrently using rosiglitazone (RSG) on inhibiting glucosamine (GlcN)-induced islet beta cell apoptosis and dysfunction. Using an islet beta cell line, HIT-T15 cells, as a study platform, the inhibitory effect of RSG on GlcN-induced pathophysiological changes in islet beta cells was examined. The results showed that treatment with GlcN induced HIT-T15 cell death via apoptotic pathway, inhibited the expression of Bcl-2 and Bcl-xL, enhanced the expression of Bax, Bid and caspase-3, reduced the production of ATP and decreased in insulin secretion. The changes were in a GlcN dose-dependent manner. Concurrently using RSG with GlcN, the induced pathogenic changes in HIT-T15 cells were abrogated. We conclude that concurrently using RSG can be useful in reducing the GlcN-induced side effects on islet beta cells that has potential to prevent the complications caused by GlcN in the treatment of diabetes.
Collapse
Affiliation(s)
- Xinxia Zhang
- Division of Teaching & Research in Western Internal Medicine, Clinical College, Chengdu University of Traditional Chinese Medicine, China
| | | | | |
Collapse
|
46
|
Ferreira L, Teixeira-de-Lemos E, Pinto F, Parada B, Mega C, Vala H, Pinto R, Garrido P, Sereno J, Fernandes R, Santos P, Velada I, Melo A, Nunes S, Teixeira F, Reis F. Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). Mediators Inflamm 2010; 2010:592760. [PMID: 20652060 PMCID: PMC2905949 DOI: 10.1155/2010/592760] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/17/2010] [Accepted: 04/28/2010] [Indexed: 11/17/2022] Open
Abstract
The purpose of this paper is to evaluate the chronic effect of sitagliptin on metabolic profile, inflammation, and redox status in the Zucker Diabetic Fatty (ZDF) rat, an animal model of obese type 2 diabetes. Diabetic and obese ZDF (fa/fa) rats and their controls (ZDF +/+) were treated during 6 weeks with vehicle (control) and sitagliptin (10 mg/kg/bw). Glucose, HbA1c, insulin, Total-c, TGs, IL-1beta, TNF-alpha, CRPhs, and adiponectin were assessed in serum and MDA and TAS in serum, pancreas, and heart. Pancreatic histology was also evaluated. Sitagliptin in diabetic rats promoted a decrease in glucose, HbA1c, Total-c, and TGs accompanied by a partial prevention of insulinopenia, together, with a decrease in CRPhs and IL-1beta. Sitagliptin also showed a positive impact on lipid peroxidation and hypertension prevention. In conclusion, chronic sitagliptin treatment corrected the glycaemic dysmetabolism, hypertriglyceridaemia, inflammation, and hypertension, reduced the severity of the histopathological lesions of pancreatic endocrine and exocrine tissues, together with a favourable redox status, which might be a further advantage in the management of diabetes and its proatherogenic comorbidities.
Collapse
Affiliation(s)
- Liliana Ferreira
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Edite Teixeira-de-Lemos
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, 3500 Viseu, Portugal
| | - Filipa Pinto
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Belmiro Parada
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Cristina Mega
- ESAV, Polytechnic Institute of Viseu, 3500 Viseu, Portugal
| | - Helena Vala
- ESAV, Polytechnic Institute of Viseu, 3500 Viseu, Portugal
| | - Rui Pinto
- Pharmacology & Pharmacotoxicology Unit, Faculty of Pharmacy, Lisbon University, 1649-003 Lisboa, Portugal
| | - Patrícia Garrido
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
| | - José Sereno
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Paulo Santos
- Functional Genomics Laboratory, Center of Histocompatibility of the Centre, 3001-301 Coimbra, Portugal
| | - Isabel Velada
- Functional Genomics Laboratory, Center of Histocompatibility of the Centre, 3001-301 Coimbra, Portugal
| | - Andreia Melo
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Frederico Teixeira
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
- Institute for Molecular and Cellular Biology, Porto University, 4150 Porto, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, University of Coimbra, 3000-354 Coimbra, Portugal
- Institute for Molecular and Cellular Biology, Porto University, 4150 Porto, Portugal
| |
Collapse
|
47
|
Couté Y, Brunner Y, Schvartz D, Hernandez CÃ, Masselot A, Lisacek F, Wollheim CB, Sanchez JC. Early activation of the fatty acid metabolism pathway by chronic high glucose exposure in rat insulin secretory β-cells. Proteomics 2010; 10:59-71. [DOI: 10.1002/pmic.200900080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Cerf ME. High fat programming of beta-cell failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:77-89. [PMID: 20217495 DOI: 10.1007/978-90-481-3271-3_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High saturated fat intake contributes to insulin resistance, beta-cell failure, and type 2 diabetes. Developmental programming refers to a stimulus or insult during critical periods of life which includes fetal and subsequent early neonatal life. Programming alters offspring physiology and metabolism with both immediate and lasting consequences. Maternal nutrition in gestation and lactation shapes offspring development and health. A high saturated fat diet ingested by mothers during gestation and/or lactation is a form of nutritional insult that induces diabetogenic changes in offspring physiology and metabolism. High fat programming is induced by maternal high saturated fat intake during defined periods of gestation and/or lactation and programs the physiology and metabolism of the offspring in early life. This more recently adopted form of developmental programming reflects society in both affluent and developing countries. High fat programming induces adverse changes in beta-cell development and function in neonatal and weanling offspring. These changes are characterized by compromised beta-cell development and function, evident by altered expression of key factors that maintain the beta-cell phenotype. High fat programming is likely to result in beta-cell failure and eventual type 2 diabetes.
Collapse
Affiliation(s)
- Marlon E Cerf
- Diabetes Discovery Platform, Medical Research Council, Tygerberg, 7505, Cape Town, South Africa.
| |
Collapse
|
49
|
Pari L, Sankaranarayanan C. Beneficial effects of thymoquinone on hepatic key enzymes in streptozotocin–nicotinamide induced diabetic rats. Life Sci 2009; 85:830-4. [DOI: 10.1016/j.lfs.2009.10.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/05/2009] [Accepted: 10/30/2009] [Indexed: 12/13/2022]
|
50
|
Priego-Capote F, Scherl A, Müller M, Waridel P, Lisacek F, Sanchez JC. Glycation isotopic labeling with 13C-reducing sugars for quantitative analysis of glycated proteins in human plasma. Mol Cell Proteomics 2009; 9:579-92. [PMID: 19955080 DOI: 10.1074/mcp.m900439-mcp200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Non-enzymatic glycation of proteins is a post-translational modification produced by a reaction between reducing sugars and amino groups located in lysine and arginine residues or in the N-terminal position. This modification plays a relevant role in medicine and food industry. In the clinical field, this undesired role is directly linked to blood glucose concentration and therefore to pathological conditions derived from hyperglycemia (>11 mm glucose) such as diabetes mellitus or renal failure. An approach for qualitative and quantitative analysis of glycated proteins is here proposed to achieve the three information levels for their complete characterization. These are: 1) identification of glycated proteins, 2) elucidation of sugar attachment sites, and 3) quantitative analysis to compare glycemic states. Qualitative analysis was carried out by tandem mass spectrometry after endoproteinase Glu-C digestion and boronate affinity chromatography for isolation of glycated peptides. For this purpose, two MS operational modes were used: higher energy collisional dissociation-MS2 and CID-MS3 by neutral loss scan monitoring of two selective neutral losses (162.05 and 84.04 Da for the glucose cleavage and an intermediate rearrangement of the glucose moiety). On the other hand, quantitative analysis was based on labeling of proteins with [(13)C(6)]glucose incubation to evaluate the native glycated proteins labeled with [(12)C(6)]glucose. As glycation is chemoselective, it is exclusively occurring in potential targets for in vivo modifications. This approach, named glycation isotopic labeling, enabled differentiation of glycated peptides labeled with both isotopic forms resulting from enzymatic digestion by mass spectrometry (6-Da mass shift/glycation site). The strategy was then applied to a reference plasma sample, revealing the detection of 50 glycated proteins and 161 sugar attachment positions with identification of preferential glycation sites for each protein. A predictive approach was also tested to detect potential glycation sites under high glucose concentration.
Collapse
Affiliation(s)
- Feliciano Priego-Capote
- Biomedical Proteomics Research Group, Department of Structural Biology and Bioinformatics, University Medical Centre, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|