1
|
Costa TGF, de Assis TCS, Caetano Costa JM, Saavedra-Langer R, Santo TS, Bonilla Ferreira CA, Machado-de-Ávila RA, Felicori L, Guerra-Duarte C, Lopes-de-Souza L, Chávez-Olórtegui C. Development of a neutralizing monoclonal antibody targeting Bothrops atrox venom metalloproteinases. Int J Biol Macromol 2025; 311:143608. [PMID: 40300685 DOI: 10.1016/j.ijbiomac.2025.143608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Snakebites are classified as a neglected tropical disease by the World Health Organization. In South America's tropical rainforests, Bothrops genus, particularly Bothrops atrox, is responsible for most incidents. Severe local effects, such as hemorrhage, are primarily caused by snake venom metalloproteinases (SVMPs), which are not fully neutralized by conventional therapy. Here, we report the production of a neutralizing monoclonal antibody (mAb) against the hemorrhagic activity of B. atrox venom metalloproteinases. mAbs were produced by immunization of BALB/c mice using the B. atrox venom (BaV). The resulting hybridomas were screened by ELISA using BaV as antigen. The selected clone 4H4D11 (mAb-BaSVMP) showed cross-reactivity with other medically important species of Bothrops snakes in Brazil and Peru. Western blot assays revealed that the produced mAb binds to proteins with molecular masses of approximately 50 kDa and 20 kDa in BaV and recognizes native Atroxlysin-III and Atroxlysin-I by ELISA. mAb-BaSVMP did not bind to a cellulose membrane containing the primary sequence of a metalloproteinase, suggesting that it may recognize a conformational epitope. Additionally, mAb-BaSVMP neutralizes the in vivo hemorrhagic activity caused by BaV in mice. These results highlight the potential usefulness of mAb-BaSVMP for developing effective antivenoms for passive immunotherapy against bothropic envenomation.
Collapse
Affiliation(s)
| | | | - Julia M Caetano Costa
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Saavedra-Langer
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thalita Silverio Santo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Liza Felicori
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Leticia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Najafi M, Shahbazzadeh D, Yaghmaie P, Mirzahoseini H. Biochemical characterization and activity profiling of recombinant phospholipase A2 from Hemiscorpius lepturus expressed in E. coli with in vivo antibody response. Sci Rep 2025; 15:14609. [PMID: 40287457 PMCID: PMC12033223 DOI: 10.1038/s41598-025-98261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
The structure and function of phospholipase A2 (PLA2) in scorpion venom are relatively unexplored, making further study crucial. This research aims to pave the way for a better understanding of scorpion venom, including the biochemical identification and characterization of PLA2 from Iranian Hemiscorpius lepturus, expressed in E. coli, as well as the in vivo study of polyclonal antibodies against PLA2. The PLA2 gene was cloned into pET-26b (+), expressed in E. coli BL21 (DE3) pLysS, and purified by affinity chromatography. The secondary structure of the recombinant protein was analyzed using CD spectroscopy. Biochemical identification included phospholipase activity, temperature, pH, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. New Zealand Albino male rabbits were immunized with 100 µg/ml at 10-12-day intervals using Complete and Incomplete Freund's Adjuvant. Specific rabbit anti-PLA2 polyclonal antibodies were detected using ELISA. CD spectroscopy analysis revealed the recombinant proteins' unique composition: 45.1% beta-sheet, 36.6% random coil, 10.3% turn, and 8.1% alpha helix. The highest PLA2 activity was at 250 µg/ml. Phospholipase activity peaked at 25 °C (over 70%) and decreased to about 62% at 37 °C. MIC and MBC tests showed antibacterial and lethal properties at 31.25 µg/ml and 0.5 mg/ml, respectively. This enzymatic protein shows promise as a drug or vaccine candidate against H. lepturus envenomation in future clinical studies.
Collapse
Affiliation(s)
- Moslem Najafi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Pasteur Institute of Iran, Biotechnology Research Center, Tehran, 1316943551, Iran
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Pasteur Institute of Iran, Biotechnology Research Center, Tehran, 1316943551, Iran
| | - Parichehreh Yaghmaie
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hasan Mirzahoseini
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Pasteur Institute of Iran, Biotechnology Research Center, Tehran, 1316943551, Iran.
| |
Collapse
|
3
|
Campos Farias BJ, Makoto Kayano A, Barros Luiz M, Maciel DE Lima A, Suelen da Silva Morais M, Moreira Mendes L, Mota Santana H, Reis Prado ND, Andrade Roberto S, Martins Soares A, Pavan Zuliani J, Pereira SDS, Celedonio Fernandes CF. Expanding anti-venom strategies: Camelid polyclonal antibodies with high capacity to recognize snake venom. Toxicon 2024; 247:107837. [PMID: 38945216 DOI: 10.1016/j.toxicon.2024.107837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Camelid immunoglobulins represent a unique facet of antibody biology, challenging conventional understandings of antibody diversification. IgG2 and IgG3 in particular are composed solely of heavy chains and exhibit a reduced molecular weight (90 kDa); their elongated complementarity determining region (CDR) loops play a pivotal role in their functioning, delving deep into enzyme active sites with precision. Serum therapy stands as the primary venom-specific treatment for snakebite envenomation, harnessing purified antibodies available in diverse forms such as whole IgG, monovalent fragment antibody (Fab), or divalent fragment antibody F (ab')2. This investigation looks into the intricacies of IgGs derived from camelid serum previously immunized with crotamine and crotoxin, toxins predominantly in Crotalus durissus venom, exploring their recognition capacity, specificity, and cross-reactivity to snake venoms and its toxins. Initially, IgG purification employed affinity chromatography via protein A and G columns to segregate conventional antibodies (IgG1) from heavy chain antibodies (IgG2 and IgG3) of camelid isotypes sourced from Lama glama serum. Subsequent electrophoretic analysis (SDS-PAGE) revealed distinct bands corresponding to molecular weight profiles of IgG's fractions representing isotypes in Lama glama serum. ELISA cross-reactivity assays demonstrated all three IgG isotypes' ability to recognize the tested venoms. Notably, IgG1 exhibited the lowest interactivity in analyses involving bothropic and crotalic venoms. However, IgG2 and IgG3 displayed notable cross-reactivity, particularly with crotalic venoms and toxins, albeit with exceptions such as PLA2-CB, showing reduced reactivity, and C. atrox, where IgGs exhibited insignificant reactivity. In Western blot assays, IgG2 and IgG3 exhibited recognition of proteins within molecular weight (≈15 kDa) of C. d. collilineatus to C. d. terrificus, with some interaction observed even with bothropic proteins despite lower reactivity. These findings underscore the potential of camelid heavy-chain antibodies, suggesting Lama glama IgGs as prospective candidates for a novel class of serum therapies. However, further investigations are imperative to ascertain their suitability for serum therapy applications.
Collapse
Affiliation(s)
- Braz Junior Campos Farias
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Anderson Makoto Kayano
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - Marcos Barros Luiz
- Instituto Federal de Educação, Ciência e Tecnologia de Rondônia, IFRO, Porto Velho-RO, Brazil
| | - Anderson Maciel DE Lima
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | | | - Laryssa Moreira Mendes
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - Hallison Mota Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Nidiane Dantas Reis Prado
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - Sibele Andrade Roberto
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Andreimar Martins Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Carla Freire Celedonio Fernandes
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Ceará, Eusébio-CE, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil.
| |
Collapse
|
4
|
Yusuf AJ, Bugaje AI, Sadiq M, Salihu M, Adamu HW, Abdulrahman M. Exploring the inhibitory potential of phytochemicals from Vernonia glaberrima leaves against snake venom toxins through computational simulation and experimental validation. Toxicon 2024; 247:107838. [PMID: 38971473 DOI: 10.1016/j.toxicon.2024.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Phospholipase A2 (PLA2) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-β-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA2 enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 23.99 to 72.36 % and 21.97-24.82 % at 0.0625-1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 min incubation at 37 °C. Similar effects were observed after 30 min incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 to 83.73 % and 54.87-59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA2 enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.
Collapse
Affiliation(s)
- A J Yusuf
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - A I Bugaje
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - M Sadiq
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - M Salihu
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - H W Adamu
- Department of Biology, Shehu Shagari College of Education, Sokoto, Nigeria
| | - M Abdulrahman
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
5
|
Alonso LL, van Thiel J, Slagboom J, Dunstan N, Modahl CM, Jackson TNW, Samanipour S, Kool J. Studying Venom Toxin Variation Using Accurate Masses from Liquid Chromatography-Mass Spectrometry Coupled with Bioinformatic Tools. Toxins (Basel) 2024; 16:181. [PMID: 38668606 PMCID: PMC11053424 DOI: 10.3390/toxins16040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
This study provides a new methodology for the rapid analysis of numerous venom samples in an automated fashion. Here, we use LC-MS (Liquid Chromatography-Mass Spectrometry) for venom separation and toxin analysis at the accurate mass level combined with new in-house written bioinformatic scripts to obtain high-throughput results. This analytical methodology was validated using 31 venoms from all members of a monophyletic clade of Australian elapids: brown snakes (Pseudonaja spp.) and taipans (Oxyuranus spp.). In a previous study, we revealed extensive venom variation within this clade, but the data was manually processed and MS peaks were integrated into a time-consuming and labour-intensive approach. By comparing the manual approach to our new automated approach, we now present a faster and more efficient pipeline for analysing venom variation. Pooled venom separations with post-column toxin fractionations were performed for subsequent high-throughput venomics to obtain toxin IDs correlating to accurate masses for all fractionated toxins. This workflow adds another dimension to the field of venom analysis by providing opportunities to rapidly perform in-depth studies on venom variation. Our pipeline opens new possibilities for studying animal venoms as evolutionary model systems and investigating venom variation to aid in the development of better antivenoms.
Collapse
Affiliation(s)
- Luis L. Alonso
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (L.L.A.); (J.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jory van Thiel
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (L.L.A.); (J.S.)
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Julien Slagboom
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (L.L.A.); (J.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | | | - Cassandra M. Modahl
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Timothy N. W. Jackson
- Australian Venom Research Unit, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Saer Samanipour
- Van‘t Hof Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (L.L.A.); (J.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
6
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Slagboom J, Lewis AH, Schouten WM, van Haperen R, Veltman M, Bittenbinder MA, Vonk FJ, Casewell NR, Grosveld F, Drabek D, Kool J. High throughput identification of human monoclonal antibodies and heavy-chain-only antibodies to treat snakebite. Toxicon X 2024; 21:100185. [PMID: 38425752 PMCID: PMC10901844 DOI: 10.1016/j.toxcx.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Snakebite envenoming is a priority Neglected Tropical Disease that causes an estimated 81,000-135,000 fatalities each year. The development of a new generation of safer, affordable, and accessible antivenom therapies is urgently needed. With this goal in mind, rigorous characterisation of the specific toxins in snake venom is key to generating novel therapies for snakebite. Monoclonal antibodies directed against venom toxins are emerging as potentially strong candidates in the development of new snakebite diagnostics and treatment. Venoms comprise many different toxins of which several are responsible for their pathological effects. Due to the large variability of venoms within and between species, formulations of combinations of human antibodies are proposed as the next generation antivenoms. Here a high-throughput screening method employing antibody-based ligand fishing of venom toxins in 384 filter-well plate format has been developed to determine the antibody target/s The approach uses Protein G beads for antibody capture followed by exposure to a full venom or purified toxins to bind their respective ligand toxin(s). This is followed by a washing/centrifugation step to remove non-binding toxins and an in-well tryptic digest. Finally, peptides from each well are analysed by nanoLC-MS/MS and subsequent Mascot database searching to identify the bound toxin/s for each antibody under investigation. The approach was successfully validated to rapidly screen antibodies sourced from hybridomas, derived from venom-immunised mice expressing either regular human antibodies or heavy-chain-only human antibodies (HCAbs).
Collapse
Affiliation(s)
- Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Abigail H. Lewis
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Wietse M. Schouten
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Rien van Haperen
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
- Harbour BioMed, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
| | - Mieke Veltman
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
- Harbour BioMed, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
| | - Mátyás A. Bittenbinder
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
- Naturalis Biodiversity Center, 2333 CR, Leiden, the Netherlands
| | - Freek J. Vonk
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
- Naturalis Biodiversity Center, 2333 CR, Leiden, the Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Frank Grosveld
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
- Harbour BioMed, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
| | - Dubravka Drabek
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
- Harbour BioMed, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| |
Collapse
|
8
|
Serino-Silva C, Bittencourt Rodrigues CF, Miyamoto JG, Hatakeyama DM, Kavazoi VK, Da Rocha MMT, Tanaka AS, Tashima AK, de Morais-Zani K, Grego KF, Tanaka-Azevedo AM. Proteomics and life-history variability of Endogenous Phospholipases A2 Inhibitors (PLIs) in Bothrops jararaca plasma. PLoS One 2024; 19:e0295806. [PMID: 38319909 PMCID: PMC10846723 DOI: 10.1371/journal.pone.0295806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024] Open
Abstract
In Brazil, the genus Bothrops is responsible for most ophidian accidents. Snake venoms have a wide variety of proteins and peptides exhibiting a broad repertoire of pharmacological and toxic effects that elicit systemic injury and characteristic local effects. The snakes' natural resistance to envenomation caused by the presence of inhibitory compounds on their plasma have been extensively studied. However, the presence of these inhibitors in different developmental stages is yet to be further discussed. The aim of this study was to evaluate the ontogeny of Bothrops jararaca plasma inhibitor composition and, to this end, plasma samples of B. jararaca were obtained from different developmental stages (neonates, youngs, and adults) and sexes (female and male). SDS-PAGE, Western blotting, affinity chromatography, and mass spectrometry were performed to analyze the protein profile and interaction between B. jararaca plasma and venom proteins. In addition, the presence of γBjPLI, a PLA2 inhibitor previously identified and characterized in B. jararaca serum, was confirmed by Western blotting. According to our results, 9-17% of plasma proteins were capable of binding to venom proteins in the three developmental stages. The presence of different endogenous inhibitors and, more specifically, different PLA2 inhibitor (PLI) classes and antihemorrhagic factors were confirmed in specimens of B. jararaca from newborn by mass spectrometry. For the first time, the αPLI and βPLI were detected in B. jararaca plasma, although low or no ontogenetic and sexual correlation were found. The γPLI were more abundant in adult female, than in neonate and young female, but similar to neonate, young and adult male according to the results of mass spectrometry analysis. Our results suggest that there are proteins in the plasma of these animals that can help counteract the effects of self-envenomation from birth.
Collapse
Affiliation(s)
- Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Daniela Miki Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Victor Koiti Kavazoi
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Aparecida Sadae Tanaka
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alexandre Keiji Tashima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
9
|
Jati SR, dos Anjos Martins TA, Rocha AM, Melo-dos-Santos G, de Oliveira IS, Ferreira IG, de Farias AS, Filardi ETM, Cerni FA, Sartim MA, de Almeida Gonçalves Sachett J, Monteiro WM, Pucca MB. The State-of-the-Art of the Humoral Memory Response to Snakebites: Insights from the Yanomami Population. Toxins (Basel) 2023; 15:638. [PMID: 37999502 PMCID: PMC10675402 DOI: 10.3390/toxins15110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Snakebite envenomation (SBE)-induced immunity refers to individuals who have been previously bitten by a snake and developed a protective immune response against subsequent envenomations. The notion stems from observations of individuals, including in the indigenous population, who present only mild signs and symptoms after surviving multiple SBEs. Indeed, these observations have engendered scientific interest and prompted inquiries into the potential development of a protective immunity from exposure to snake toxins. This review explores the evidence of a protective immune response developing following SBE. Studies suggest that natural exposure to snake toxins can trigger protection from the severity of SBEs, mediated by specific antibodies. However, the evaluation of the immune memory response in SBE patients remains challenging. Further research is needed to elucidate the immune response dynamics and identify potential targets for therapeutic interventions. Furthermore, the estimation of the effect of previous exposures on SBE epidemiology in hyperendemic areas, such as in the indigenous villages of the Amazon region (e.g., the Yanomami population) is a matter of debate.
Collapse
Affiliation(s)
- Sewbert Rodrigues Jati
- Graduate Program in Tropical Medicine (PPGMT), State University of Amazonas, Manaus 69850-000, Brazil; (S.R.J.); (T.A.d.A.M.); (A.M.R.); (A.S.d.F.); (F.A.C.); (M.A.S.); (J.d.A.G.S.); (W.M.M.)
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69850-000, Brazil
- Department of Education and Sports of Roraima, Boa Vista 69301-130, Brazil
| | - Thais Andréa dos Anjos Martins
- Graduate Program in Tropical Medicine (PPGMT), State University of Amazonas, Manaus 69850-000, Brazil; (S.R.J.); (T.A.d.A.M.); (A.M.R.); (A.S.d.F.); (F.A.C.); (M.A.S.); (J.d.A.G.S.); (W.M.M.)
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69850-000, Brazil
| | - Anderson Maciel Rocha
- Graduate Program in Tropical Medicine (PPGMT), State University of Amazonas, Manaus 69850-000, Brazil; (S.R.J.); (T.A.d.A.M.); (A.M.R.); (A.S.d.F.); (F.A.C.); (M.A.S.); (J.d.A.G.S.); (W.M.M.)
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69850-000, Brazil
| | - Guilherme Melo-dos-Santos
- Graduate Program in Bioscience and Biotechnology Applied to Pharmacy, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Campus Araraquara, São Paulo 19060-900, Brazil; (G.M.-d.-S.); (E.T.M.F.)
| | - Isadora Sousa de Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 19040-903, Brazil; (I.S.d.O.); (I.G.F.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Isabela Gobbo Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 19040-903, Brazil; (I.S.d.O.); (I.G.F.)
| | - Altair Seabra de Farias
- Graduate Program in Tropical Medicine (PPGMT), State University of Amazonas, Manaus 69850-000, Brazil; (S.R.J.); (T.A.d.A.M.); (A.M.R.); (A.S.d.F.); (F.A.C.); (M.A.S.); (J.d.A.G.S.); (W.M.M.)
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69850-000, Brazil
| | - Eloise T. M. Filardi
- Graduate Program in Bioscience and Biotechnology Applied to Pharmacy, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Campus Araraquara, São Paulo 19060-900, Brazil; (G.M.-d.-S.); (E.T.M.F.)
| | - Felipe Augusto Cerni
- Graduate Program in Tropical Medicine (PPGMT), State University of Amazonas, Manaus 69850-000, Brazil; (S.R.J.); (T.A.d.A.M.); (A.M.R.); (A.S.d.F.); (F.A.C.); (M.A.S.); (J.d.A.G.S.); (W.M.M.)
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69850-000, Brazil
| | - Marco Aurélio Sartim
- Graduate Program in Tropical Medicine (PPGMT), State University of Amazonas, Manaus 69850-000, Brazil; (S.R.J.); (T.A.d.A.M.); (A.M.R.); (A.S.d.F.); (F.A.C.); (M.A.S.); (J.d.A.G.S.); (W.M.M.)
- Pro-Rectory of Research and Graduate Studies, Nilton Lins University, Manaus 69850-000, Brazil
| | - Jacqueline de Almeida Gonçalves Sachett
- Graduate Program in Tropical Medicine (PPGMT), State University of Amazonas, Manaus 69850-000, Brazil; (S.R.J.); (T.A.d.A.M.); (A.M.R.); (A.S.d.F.); (F.A.C.); (M.A.S.); (J.d.A.G.S.); (W.M.M.)
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69850-000, Brazil
| | - Wuelton Marcelo Monteiro
- Graduate Program in Tropical Medicine (PPGMT), State University of Amazonas, Manaus 69850-000, Brazil; (S.R.J.); (T.A.d.A.M.); (A.M.R.); (A.S.d.F.); (F.A.C.); (M.A.S.); (J.d.A.G.S.); (W.M.M.)
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69850-000, Brazil
| | - Manuela Berto Pucca
- Graduate Program in Tropical Medicine (PPGMT), State University of Amazonas, Manaus 69850-000, Brazil; (S.R.J.); (T.A.d.A.M.); (A.M.R.); (A.S.d.F.); (F.A.C.); (M.A.S.); (J.d.A.G.S.); (W.M.M.)
- Graduate Program in Bioscience and Biotechnology Applied to Pharmacy, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Campus Araraquara, São Paulo 19060-900, Brazil; (G.M.-d.-S.); (E.T.M.F.)
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 19060-900, Brazil
| |
Collapse
|
10
|
Immunoprofiling of Equine Plasma against Deinagkistrodon acutus in Taiwan: Key to Understanding Differential Neutralization Potency in Immunized Horses. Trop Med Infect Dis 2023; 8:tropicalmed8010051. [PMID: 36668958 PMCID: PMC9866385 DOI: 10.3390/tropicalmed8010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Snakebite envenoming is a public health issue linked to high mortality and morbidity rates worldwide. Although antivenom has been the mainstay treatment for envenomed victims receiving medical care, the diverse therapeutic efficacy of the produced antivenom is a major limitation. Deinagkistrodon acutus is a venomous snake that poses significant concern of risks to human life in Taiwan, and successful production of antivenom against D. acutus envenoming remains a considerable challenge. Among groups of horses subjected to immunization schedules, few or none subsequently meet the quality required for further scale-up harvesting. The determinants underlying the variable immune responses of horses to D. acutus venom are currently unknown. In this study, we assessed the immunoprofiles of high-potency and low-potency horse plasma against D. acutus venom and explored the conspicuous differences between these two groups. Based on the results of liquid chromatography with tandem mass spectrometry (LC-MS/MS), acutolysin A was identified as the major component of venom proteins that immunoreacted differentially with the two plasma samples. Our findings indicate underlying differences in antivenoms with variable neutralization efficacies, and may provide valuable insights for improvement of antivenom production in the future.
Collapse
|
11
|
A current perspective on snake venom composition and constituent protein families. Arch Toxicol 2023; 97:133-153. [PMID: 36437303 DOI: 10.1007/s00204-022-03420-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species-68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake's venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.
Collapse
|
12
|
Arrahman A, Kazandjian TD, Still KBM, Slagboom J, Somsen GW, Vonk FJ, Casewell NR, Kool J. A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib. Toxins (Basel) 2022; 14:736. [PMID: 36355986 PMCID: PMC9695013 DOI: 10.3390/toxins14110736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Envenomation by elapid snakes primarily results in neurotoxic symptoms and, consequently, are the primary focus of therapeutic research concerning such venoms. However, mounting evidence suggests these venoms can additionally cause coagulopathic symptoms, as demonstrated by some Asian elapids and African spitting cobras. This study sought to investigate the coagulopathic potential of venoms from medically important elapids of the genera Naja (true cobras), Hemachatus (rinkhals), and Dendroaspis (mambas). Crude venoms were bioassayed for coagulant effects using a plasma coagulation assay before RPLC/MS was used to separate and identify venom toxins in parallel with a nanofractionation module. Subsequently, coagulation bioassays were performed on the nanofractionated toxins, along with in-solution tryptic digestion and proteomics analysis. These experiments were then repeated on both crude venoms and on the nanofractionated venom toxins with the addition of either the phospholipase A2 (PLA2) inhibitor varespladib or the snake venom metalloproteinase (SVMP) inhibitor marimastat. Our results demonstrate that various African elapid venoms have an anticoagulant effect, and that this activity is significantly reduced for cobra venoms by the addition of varespladib, though this inhibitor had no effect against anticoagulation caused by mamba venoms. Marimastat showed limited capacity to reduce anticoagulation in elapids, affecting only N. haje and H. haemachatus venom at higher doses. Proteomic analysis of nanofractionated toxins revealed that the anticoagulant toxins in cobra venoms were both acidic and basic PLA2s, while the causative toxins in mamba venoms remain uncertain. This implies that while PLA2 inhibitors such as varespladib and metalloproteinase inhibitors such as marimastat are viable candidates for novel snakebite treatments, they are not likely to be effective against mamba envenomings.
Collapse
Affiliation(s)
- Arif Arrahman
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
- Faculty of Pharmacy, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia
| | - Taline D. Kazandjian
- Centre for Snakebite Research and Interventions. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Kristina B. M. Still
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Govert W. Somsen
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Freek J. Vonk
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Naturalis Biodiversity Centre, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
13
|
Virus-like particles displaying conserved toxin epitopes stimulate polyspecific, murine antibody responses capable of snake venom recognition. Sci Rep 2022; 12:11328. [PMID: 35790745 PMCID: PMC9256628 DOI: 10.1038/s41598-022-13376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Antivenom is currently the first-choice treatment for snakebite envenoming. However, only a low proportion of antivenom immunoglobulins are specific to venom toxins, resulting in poor dose efficacy and potency. We sought to investigate whether linear venom epitopes displayed on virus like particles can stimulate an antibody response capable of recognising venom toxins from diverse medically important species. Bioinformatically-designed epitopes, corresponding to predicted conserved regions of group I phospholipase A2 and three finger toxins, were engineered for display on the surface of hepatitis B core antigen virus like particles and used to immunise female CD1 mice over a 14 weeks. Antibody responses to all venom epitope virus like particles were detectable by ELISA by the end of the immunisation period, although total antibody and epitope specific antibody titres were variable against the different epitope immunogens. Immunoblots using pooled sera demonstrated recognition of various venom components in a diverse panel of six elapid venoms, representing three continents and four genera. Insufficient antibody yields precluded a thorough assessment of the neutralising ability of the generated antibodies, however we were able to test polyclonal anti-PLA2 IgG from three animals against the PLA2 activity of Naja nigricollis venom, all of which showed no neutralising ability. This study demonstrates proof-of-principle that virus like particles engineered to display conserved toxin linear epitopes can elicit specific antibody responses in mice which are able to recognise a geographically broad range of elapid venoms.
Collapse
|
14
|
Manson EZ, Kyama MC, Kimani J, Bocian A, Hus KK, Petrilla V, Legáth J, Kimotho JH. Development and Characterization of Anti- Naja ashei Three-Finger Toxins (3FTxs)-Specific Monoclonal Antibodies and Evaluation of Their In Vitro Inhibition Activity. Toxins (Basel) 2022; 14:285. [PMID: 35448894 PMCID: PMC9030397 DOI: 10.3390/toxins14040285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Antivenom immunotherapy is the mainstay of treatment for snakebite envenoming. Most parts of the world affected by snakebite envenoming depend on broad-spectrum polyspecific antivenoms that are known to contain a low content of case-specific efficacious immunoglobulins. Thus, advances in toxin-specific antibodies production hold much promise in future therapeutic strategies of snakebite envenoming. We report anti-3FTxs monoclonal antibodies developed against N. ashei venom in mice. All the three test mAbs (P4G6a, P6D9a, and P6D9b) were found to be IgG antibodies, isotyped as IgG1. SDS-PAGE analysis of the test mAbs showed two major bands at approximately 55 and 29 kDa, suggestive of immunoglobulin heavy and light chain composition, respectively. The immunoaffinity-purified test mAbs demonstrated higher binding efficacy to the target antigen compared to negative control. Similarly, a cocktail of the test mAbs was found to induce a significantly higher inhibition (p-value < 0.0001) compared to two leading commercial brands of antivenoms on the Kenyan market, implying a higher specificity for the target antigen. Both the test mAbs and 3FTxs polyclonal antibodies induced comparable inhibition (p-value = 0.9029). The inhibition induced by the 3FTxs polyclonal antibodies was significantly different from the two antivenoms (p-value < 0.0001). Our results demonstrate the prospects of developing toxin-specific monoclonal-based antivenoms for snakebite immunotherapy.
Collapse
Affiliation(s)
- Ernest Z. Manson
- Institute for Basic Sciences, Technology & Innovation, Pan African University, Nairobi 00100, Kenya
| | - Mutinda C. Kyama
- Department of Medical Laboratory Science, College of Health Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi 00100, Kenya;
| | - Josephine Kimani
- Department of Biochemistry, College of Health Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi 00100, Kenya;
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
| | - Konrad K. Hus
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
| | - Vladimír Petrilla
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, 041-81 Košice, Slovakia;
- Zoological Department, Zoological Garden Košice, Široká 31, 040-06 Košice-Kavečany, Slovakia
| | - Jaroslav Legáth
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, 041-81 Košice, Slovakia
| | | |
Collapse
|
15
|
Zdenek CN, Chowdhury A, Haw GYH, Violette A, Fourmy R, Christ T, Vonk FJ, Fry BG. Taxon-selective venom variation in adult and neonate Daboia russelii (Russell's Viper), and antivenom efficacy. Toxicon 2022; 205:11-19. [PMID: 34752826 DOI: 10.1016/j.toxicon.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Major variations in venom composition can occur between juvenile and adult venomous snakes. However, due to logistical constraints, antivenoms are produced using adult venoms in immunising mixtures, possibly resulting in limited neutralisation of juvenile snake venoms. Daboia russelii is one of the leading causes of snakebite death across South Asia. Its venom is potently procoagulant, causing stroke in prey animals but causing in humans consumptive coagulopathy-a net anticoagulant state-and sometimes death resulting from hemorrhage. In this in vitro study, we compared the venom activity of-and antivenom efficacy against-six 2-week-old D. russelii relative to that of their parents. Using a coagulation analyser, we quantified the relative coagulotoxicity of these venoms in human, avian, and amphibian plasma. The overall potency on human plasma was similar across all adult and neonate venoms, and SII (Serum Institute of India) antivenom was equipotent in neutralising these coagulotoxic effects. In addition, all venoms were also similar in their action upon avian plasma. In contrast, the neonate venoms were more potent on amphibian plasma, suggesting amphibians make up a larger proportion of neonate diet than adult diet. A similar venom potency in human and avian plasmas but varying selectivity for amphibian plasma suggests ontogenetic differences in toxin isoforms within the factor X or factor V activating classes, thereby providing a testable hypothesis for future transcriptomics work. By providing insights into the functional venom differences between adult and neonate D. russelii venoms, we hope to inform clinical treatment of patients envenomated by this deadly species and to shed new light on the natural history of these extremely medically important snakes.
Collapse
Affiliation(s)
- Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Grace Y H Haw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911, Montroeul-au-bois, Belgium
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911, Montroeul-au-bois, Belgium
| | | | - Freek J Vonk
- Naturalis Biodiversity Center, Leiden, the Netherlands; Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia.
| |
Collapse
|
16
|
Alomran N, Alsolaiss J, Albulescu LO, Crittenden E, Harrison RA, Ainsworth S, Casewell NR. Pathology-specific experimental antivenoms for haemotoxic snakebite: The impact of immunogen diversity on the in vitro cross-reactivity and in vivo neutralisation of geographically diverse snake venoms. PLoS Negl Trop Dis 2021; 15:e0009659. [PMID: 34407084 PMCID: PMC8423360 DOI: 10.1371/journal.pntd.0009659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/07/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Snakebite is a neglected tropical disease that causes high global rates of mortality and morbidity. Although snakebite can cause a variety of pathologies in victims, haemotoxic effects are particularly common and are typically characterised by haemorrhage and/or venom-induced consumption coagulopathy. Antivenoms are the mainstay therapeutic for treating the toxic effects of snakebite, but despite saving thousands of lives annually, these therapies are associated with limited cross-snake species efficacy due to venom variation, which ultimately restricts their therapeutic utility to particular geographical regions. METHODOLOGY/PRINCIPAL FINDINGS In this study we explored the feasibility of generating globally effective pathology-specific antivenoms to counteract the haemotoxic signs of snakebite envenoming. Two different immunogen mixtures, consisting of seven and twelve haemotoxic venoms sourced from geographically diverse and/or medically important snakes, were used to raise ovine polyclonal antibodies, prior to characterisation of their immunological binding characteristics and in vitro neutralisation profiles against each of the venoms. Despite variability of the immunogen mixtures, both experimental antivenoms exhibited broadly comparable in vitro venom binding and neutralisation profiles against the individual venom immunogens in immunological and functional assays. However, in vivo assessments using a murine preclinical model of antivenom efficacy revealed substantial differences in venom neutralisation. The experimental antivenom generated from the seven venom immunogen mixture outperformed the comparator, by providing protective effects against venom lethality caused by seven of the eight geographically diverse venoms tested, including three distinct venoms that were not used as immunogens to generate this antivenom. These findings suggest that a core set of venom immunogens may be sufficient to stimulate antibodies capable of broadly neutralising a geographically diverse array of haemotoxic snake venoms, and that adding additional venom immunogens may impact negatively on the dose efficacy of the resulting antivenom. CONCLUSIONS/SIGNIFICANCE Although selection of appropriate immunogens that encapsulate venom toxin diversity without diluting antivenom potency remains challenging and further optimisation is required, the findings from this pilot study suggest that the generation of pathology-specific antivenoms with global utility is likely to feasible, thereby highlighting their promise as future modular treatments for the world's tropical snakebite victims.
Collapse
Affiliation(s)
- Nessrin Alomran
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jaffer Alsolaiss
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Edouard Crittenden
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Stuart Ainsworth
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
17
|
Clinical implications of ontogenetic differences in the coagulotoxic activity of Bothrops jararacussu venoms. Toxicol Lett 2021; 348:59-72. [PMID: 34044056 DOI: 10.1016/j.toxlet.2021.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
Is snake venom activity influenced by size? This is a long-standing question that can have important consequences for the treatment of snake envenomation. Ontogenetic shifts in venom composition are a well-documented characteristic of numerous snake species. Although snake venoms can cause a range of pathophysiological disturbances, establishing the coagulotoxic profiles related to such shifts is a justified approach because coagulotoxicity can be deadly, and its neutralisation is a challenge for current antivenom therapy. Thus, we aimed to assess the coagulotoxicity patterns on plasma and fibrinogen produced by B othrops jararacussu venoms from individuals of different sizes and sex, and the neutralisation potential of SAB (anti bothropic serum produced by Butantan Institute). The use of a metalloproteinase inhibitor (Prinomastat) and a serine proteinase inhibitor (AEBSF) enabled us to determine the toxin class responsible for the observed coagulopathy: activity on plasma was found to be metalloprotease driven, while the activity on fibrinogen is serine protease driven. To further explore differences in venom activity, the activation of Factor X and prothrombin as a function of snake size was also evaluated. All the venoms exhibited a potent procoagulant effect upon plasma and were less potent in their pseudo-procoagulant clotting effect upon fibrinogen. On human plasma, the venoms from smaller snakes produced more rapid clotting than the larger ones. In contrast, the venom activity on fibrinogen had no relation with size or sex. The difference in procoagulant potency was correlated with the bigger snakes being proportionally better neutralized by antivenom due to the lower levels of procoagulant toxins, than the smaller. Thus, while the antivenom ultimately neutralized the venoms, proportionally more would be needed for an equal mass of venom from a small snake than a large one. Similarly, the neutralisation by SAB of the pseudo-procoagulant clotting effects was also correlated with relative potency, with the smaller and bigger snakes being neutralized proportional to potency, but with no correlation to size. Thromboelastography (TEG) tests on human and toad plasma revealed that small snakes' venoms acted quicker than large snakes' venom on both plasmas, with the action upon amphibian plasma consistent with smaller snakes taking a larger proportion of anuran prey than adults. Altogether, the ontogenetic differences regarding coagulotoxic potency and corresponding impact upon relative antivenom neutralisation of snakes with different sizes were shown, underscoring the medical importance of investigating ontogenetic changes in order to provide data crucial for evidence-based design of clinical management strategies.
Collapse
|
18
|
Kadkhodazadeh M, Rajabibazl M, Motedayen M, Shahidi S, Veisi Malekshahi Z, Rahimpour A, Yarahmadi M. Isolation of Polyclonal Single-Chain Fragment Variable (scFv) Antibodies Against Venomous Snakes of Iran and Evaluation of Their Capability in Neutralizing the Venom. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:288-296. [PMID: 33680030 PMCID: PMC7758004 DOI: 10.22037/ijpr.2019.14400.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several species of dangerous snakes are found in Iran and, according to the Emergency Response Center of Iran from 2002 to 2011, 53,787 Iranians have suffered from snakebite. Although the mortalities caused by snakebite are very low, snakebite-related amputations are still a major concern. Currently, anti-venom polyclonal antibodies derived from animals, such as horses are used to treat snakebites; however, in some cases they can cause anaphylactic shock and serum sickness. In line with this premise, generation of recombinant anti-venom antibodies can be considered as an alternative strategy. Single-chain fragment variable (scFv) antibodies offer several advantages compared to the whole antibodies, including ease of production, high affinity and specificity. In the present study, scFv antibodies were selected against the venom of the most poisonous snakes in Iran using phage display technology. Phage particles harboring anti-venom specific scFv were separated and scFv antibodies were produced in bacteria. In-vitro assay showed that polyclonal scFvs specifically bind to the venom. Furthermore, in-vivo experiment in mice BALB/c indicated effective toxin neutralization using 20 µg of polyclonal scFv. Our study indicates the neutralizing capacity of anti-venom polyclonal scFvs, although further neutralization assays are needed to confirm their effectiveness.
Collapse
Affiliation(s)
- Maryam Kadkhodazadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Motedayen
- Department of Serotherapy, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Solmaz Shahidi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Modak BK, Gorai P, Pandey DK, Dey A, Malik T. An evidence based efficacy and safety assessment of the ethnobiologicals against poisonous and non-poisonous bites used by the tribals of three westernmost districts of West Bengal, India: Anti-phospholipase A2 and genotoxic effects. PLoS One 2020; 15:e0242944. [PMID: 33253320 PMCID: PMC7703885 DOI: 10.1371/journal.pone.0242944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION To explore the ethnobiological wisdom of the tribals of three western districts of West Bengal, India against poisonous and non-poisonous bites and stings, a quantitative approach was adopted. These age-old yet unexplored knowledge can be utilized in finding lead-molecules against poisonous and non-poisonous animal-bites. Further, an evidence-based approach is needed to assess the venom-neutralization ability of plants by experimental studies. MATERIALS AND METHODS During 2008-2009 and 2012-2017, 11 ethnomedicinal surveys were carried out to explore the use of medicinal flora and fauna via conducting open semi-structured interviews with 47 traditional healers (THs) or informants. The retrieved dataset was statistically evaluated using seven quantitative-indexes: use-value (UV), informants'-consensus-factor (ICF), fidelity-level (FL), relative-importance (RI), cultural importance-index (CI), index of agreement on remedies (IAR) and cultural agreement-index (CAI). Anti-phospholipaseA2 (PLA2) properties of selected plant extracts were also examined. In addition, the cytotoxicity and genotoxicity of the water extract of the plants showing high FL as well as significant PLA2 inhibitory potential were investigated using Allium cepa root tip assay. RESULTS A total of 41 traditional-formulations (TFs) containing 40 plant species (of 39 genera from 28 families) and 3 animal species were prescribed by the THs. Fabaceae exhibited most number of medicinal plants. Piper nigrum (1.78) and Apis cerana indica and Crossopriza lyoni (both 0.21) exhibited the highest UV among the plants and the animals respectively. Stinging of centipede and dog/cat/hyena bite displayed highest ICF (1.00 each). Among the plants, the maximum RI (0.91) and CI (4.98) values were observed for Aristolochia indica. IAR (1.00) was recorded maximum for Achyranthes aspera, Gloriosa superba, Lycopodium cernuum, Smilax zeylanica and Streblus asper. Maximum CAI value was noted for Piper nigrum (5.5096). Among the animals, Apis cerana indica (0.31) and Crossopriza lyoni (1.52) displayed the highest RI and CI values respectively. Crossopriza lyoni (0.99) and Apis cerana indica (1.3871) exhibited maximum IAR and CAI values respectively. Plants showing higher FL exhibited higher anti-PLA2 activity via selective inhibition of human-group PLA2. In addition, Allium cepa root tip assay has indicated the safety and/or toxicity of the plant parts prescribed by the THs. Root water extracts of Aristolochia indica and Gloriosa superba exhibited significant genotoxicity and cytotoxicity. CONCLUSIONS Three western districts of West Bengal is the natural abode for many tribal and non-tribal communities. A noteworthy correlation was established between the plants used against poisonous-bites and their anti-PLA2 activity. A few plant parts used by the THs also exhibited high toxicity. Such alternative medical practices serve as the only option in these underprivileged and backward areas during medical-exigencies.
Collapse
Affiliation(s)
- Biplob Kumar Modak
- Department of Zoology, Sidho-Kanho-Birsha University, Lagda, West Bengal, India
| | - Partha Gorai
- Department of Zoology, Sidho-Kanho-Birsha University, Lagda, West Bengal, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Tabarak Malik
- Department of Medical Biochemistry, College of Medicine & Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
20
|
D Vaz de Melo P, de Almeida Lima S, Araújo P, Medina Santos R, Gonzalez E, Alves Belo A, Machado-de-Ávila RA, Costal-Oliveira F, T Soccol V, Guerra-Duarte C, Rezende L, Chavez-Olortegui C. Immunoprotection against lethal effects of Crotalus durissus snake venom elicited by synthetic epitopes trapped in liposomes. Int J Biol Macromol 2020; 161:299-307. [PMID: 32464201 DOI: 10.1016/j.ijbiomac.2020.05.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
Snakebites caused by Crotalus genus are the second most frequent in Brazil. Crotoxin is a beta-neurotoxin responsible for the main envenomation effects of Crotalus biting, while crotamine immobilizes the animal hind limbs, contributing to prey immobilization and to envenoming symptoms. As crotoxin and crotamine represent about 90% of Crotalus venom dry weight, these toxins are of great importance for antivenom therapy. In this sense, knowledge regarding the antigenicity/immunogenicity at the molecular level of these toxins can provide valuable information for the improvement of specific antivenoms. Therefore, the aims of this study are the identification of the B-cell epitopes from crotoxin and crotamine; and the characterization of the neutralizing potency of antibodies directed against the corresponding synthetic epitopes defined in the current study. Linear B-cell epitopes were identified using the Spot Synthesis technique probed with specific anti-C. d. terrificus venom horse IgG. One epitope of crotamine (F12PKEKICLPPSSDFGKMDCRW32) and three of crotoxin (L10LVGVEGHLLQFNKMIKFETR30; Y43CGWGGRGRPKDATDRCCFVH63 and T118YKYGYMFYPDSRCRGPSETC138) were identified. After synthesis in their soluble form, the peptides mixture correspondent to the mapped epitopes was entrapped in liposomes and used as immunogens for antibody production in rabbits. Anti-synthetic peptide antibodies were able to protect mice from the lethal activity of C. d. terrificus venom.
Collapse
Affiliation(s)
- Patrícia D Vaz de Melo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil; Labtest Diagnostica SA, Minas Gerais, Brazil
| | - Sabrina de Almeida Lima
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Priscila Araújo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Raíssa Medina Santos
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Edgar Gonzalez
- Icahn School of Medicine at Mount Sinai, NY, United States of America
| | - Andreza Alves Belo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil; Labtest Diagnostica SA, Minas Gerais, Brazil
| | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | | | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010 Belo Horizonte, MG, Brazil
| | | | - Carlos Chavez-Olortegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
21
|
From molecules to macroevolution: Venom as a model system for evolutionary biology across levels of life. Toxicon X 2020; 6:100034. [PMID: 32550589 PMCID: PMC7285901 DOI: 10.1016/j.toxcx.2020.100034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/21/2022] Open
Abstract
Biological systems are inherently hierarchical. Consequently, any field which aims to understand an aspect of biology holistically requires investigations at each level of the hierarchy of life, and venom research is no exception. This article aims to illustrate the structure of the field in light of a ‘levels of life’ perspective. In doing so, I highlight how traditional fields and approaches fit into this structure as focussing on describing levels or investigating links between levels, and emphasise where implicit assumptions are made due to lack of direct information. Taking a ‘levels of life’ perspective to venom research enables us to understand the complementarity of different research programmes and identify avenues for future research. Moreover, it provides a broader view that, in itself, shows how new questions can be addressed. For instance, understanding how adaptations develop and function from molecular to organismal scales, and what the consequences are of those adaptations at scales from molecular to macroevolutionary, is a general question relevant to a great deal of biology. As a trait which is molecular in nature and has clearer and more direct links between genotype and phenotype than many other traits, venom provides a relatively simple system to address such questions. Furthermore, because venom is also diverse at each level of life, the complexity within the hierarchical structure provides variation that enables powerful analytical approaches to answering questions. As a result, venom provides an excellent model system for understanding big questions in evolutionary biology. Venom is a molecular trait used directly in fitness-relevant ecological interaction. Venom is consequently an ideal model system for evolutionary biology. A ‘levels of life’ perspective is well suited to research in venom biology. This structure of the field provides many advantages to guide future studies. Clinical implications can arise from studies of venom at all levels of life.
Collapse
|
22
|
Slagboom J, Mladić M, Xie C, Kazandjian TD, Vonk F, Somsen GW, Casewell NR, Kool J. High throughput screening and identification of coagulopathic snake venom proteins and peptides using nanofractionation and proteomics approaches. PLoS Negl Trop Dis 2020; 14:e0007802. [PMID: 32236099 PMCID: PMC7153897 DOI: 10.1371/journal.pntd.0007802] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/13/2020] [Accepted: 03/01/2020] [Indexed: 11/19/2022] Open
Abstract
Snakebite is a neglected tropical disease that results in a variety of systemic and local pathologies in envenomed victims and is responsible for around 138,000 deaths every year. Many snake venoms cause severe coagulopathy that makes victims vulnerable to suffering life-threating haemorrhage. The mechanisms of action of coagulopathic snake venom toxins are diverse and can result in both anticoagulant and procoagulant effects. However, because snake venoms consist of a mixture of numerous protein and peptide components, high throughput characterizations of specific target bioactives is challenging. In this study, we applied a combination of analytical and pharmacological methods to identify snake venom toxins from a wide diversity of snake species that perturb coagulation. To do so, we used a high-throughput screening approach consisting of a miniaturised plasma coagulation assay in combination with a venom nanofractionation approach. Twenty snake venoms were first separated using reversed-phase liquid chromatography, and a post-column split allowed a small fraction to be analyzed with mass spectrometry, while the larger fraction was collected and dispensed onto 384-well plates. After fraction collection, any solvent present in the wells was removed by means of freeze-drying, after which it was possible to perform a plasma coagulation assay in order to detect coagulopathic activity. Our results demonstrate that many snake venoms simultaneously contain both procoagulant and anticoagulant bioactives that contribute to coagulopathy. In-depth identification analysis from seven medically-important venoms, via mass spectrometry and nanoLC-MS/MS, revealed that phospholipase A2 toxins are frequently identified in anticoagulant venom fractions, while serine protease and metalloproteinase toxins are often associated with procoagulant bioactivities. The nanofractionation and proteomics approach applied herein seems likely to be a valuable tool for the rational development of next-generation snakebite treatments by facilitating the rapid identification and fractionation of coagulopathic toxins, thereby enabling specific targeting of these toxins by new therapeutics such as monoclonal antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marija Mladić
- Animal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Chunfang Xie
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Taline D. Kazandjian
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Freek Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Govert W. Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Jain A, Kumar A, Shikhi M, Kumar A, Nair DT, Salunke DM. The structure of MP-4 from Mucuna pruriens at 2.22 Å resolution. Acta Crystallogr F Struct Biol Commun 2020; 76:47-57. [PMID: 32039885 PMCID: PMC7010354 DOI: 10.1107/s2053230x20000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 11/10/2022] Open
Abstract
The structure of the MP-4 protein was previously determined at a resolution of 2.8 Å. Owing to the unavailability of gene-sequence information at the time, the side-chain assignment was carried out on the basis of a partial sequence available through Edman degradation, sequence homology to orthologs and electron density. The structure of MP-4 has now been determined at a higher resolution (2.22 Å) in another space group and all of the structural inferences that were presented in the previous report of the structure were validated. In addition, the present data allowed an improved assignment of side chains and enabled further analysis of the MP-4 structure, and the accuracy of the assignment was confirmed by the recently available gene sequence. The study reinforces the traditional concept that conservative interpretations of relatively low-resolution structures remain correct even with the availability of high-resolution data.
Collapse
Affiliation(s)
- Abha Jain
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad 121 001, India
| | - Amit Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Meha Shikhi
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad 121 001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751 024, India
| | - Ashish Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad 121 001, India
| | - Deepak T. Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad 121 001, India
| | - Dinakar M. Salunke
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
24
|
Xie C, Slagboom J, Albulescu LO, Bruyneel B, Still KBM, Vonk FJ, Somsen GW, Casewell NR, Kool J. Antivenom Neutralization of Coagulopathic Snake Venom Toxins Assessed by Bioactivity Profiling Using Nanofractionation Analytics. Toxins (Basel) 2020; 12:E53. [PMID: 31963329 PMCID: PMC7020444 DOI: 10.3390/toxins12010053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
Venomous snakebite is one of the world's most lethal neglected tropical diseases. Animal-derived antivenoms are the only standardized specific therapies currently available for treating snakebite envenoming, but due to venom variation, often this treatment is not effective in counteracting all clinical symptoms caused by the multitude of injected toxins. In this study, the coagulopathic toxicities of venoms from the medically relevant snake species Bothropsasper, Calloselasmarhodostoma, Deinagkistrodonacutus, Daboiarusselii, Echiscarinatus and Echisocellatus were assessed. The venoms were separated by liquid chromatography (LC) followed by nanofractionation and parallel mass spectrometry (MS). A recently developed high-throughput coagulation assay was employed to assess both the pro- and anticoagulant activity of separated venom toxins. The neutralization capacity of antivenoms on separated venom components was assessed and the coagulopathic venom peptides and enzymes that were either neutralized or remained active in the presence of antivenom were identified by correlating bioassay results with the MS data and with off-line generated proteomics data. The results showed that most snake venoms analyzed contained both procoagulants and anticoagulants. Most anticoagulants were identified as phospholipases A2s (PLA2s) and most procoagulants correlated with snake venom metalloproteinases (SVMPs) and serine proteases (SVSPs). This information can be used to better understand antivenom neutralization and can aid in the development of next-generation antivenom treatments.
Collapse
Affiliation(s)
- Chunfang Xie
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK (N.R.C.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ben Bruyneel
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Kristina B. M. Still
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Freek J. Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands;
| | - Govert W. Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK (N.R.C.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (J.S.); (B.B.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
25
|
Suryamohan K, Krishnankutty SP, Guillory J, Jevit M, Schröder MS, Wu M, Kuriakose B, Mathew OK, Perumal RC, Koludarov I, Goldstein LD, Senger K, Dixon MD, Velayutham D, Vargas D, Chaudhuri S, Muraleedharan M, Goel R, Chen YJJ, Ratan A, Liu P, Faherty B, de la Rosa G, Shibata H, Baca M, Sagolla M, Ziai J, Wright GA, Vucic D, Mohan S, Antony A, Stinson J, Kirkpatrick DS, Hannoush RN, Durinck S, Modrusan Z, Stawiski EW, Wiley K, Raudsepp T, Kini RM, Zachariah A, Seshagiri S. The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nat Genet 2020; 52:106-117. [PMID: 31907489 PMCID: PMC8075977 DOI: 10.1038/s41588-019-0559-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022]
Abstract
Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the 'venom-ome' and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 'venom-ome-specific toxins' (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- MedGenome Inc., Foster City, CA, USA
| | | | - Joseph Guillory
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Matthew Jevit
- Molecular Cytogenetics laboratory, Texas A&M University, College Station, TX, USA
| | - Markus S Schröder
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Meng Wu
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | - Ivan Koludarov
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Leonard D Goldstein
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Kate Senger
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | | | | | - Derek Vargas
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- MedGenome Inc., Foster City, CA, USA
| | - Subhra Chaudhuri
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | | | - Ridhi Goel
- AgriGenome Labs Private Ltd, Kochi, India
| | - Ying-Jiun J Chen
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Peter Liu
- Department of Microchemistry Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Brendan Faherty
- Department of Microchemistry Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Guillermo de la Rosa
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuouka, Japan
| | - Miriam Baca
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Meredith Sagolla
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - James Ziai
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Gus A Wright
- College of Veterinary Medicine, Flow Cytometry Shared Resource Laboratory, Texas A&M University, College Station, TX, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Sangeetha Mohan
- Department of Molecular Biology, SciGenom Labs, Kochi, India
| | - Aju Antony
- Department of Molecular Biology, SciGenom Labs, Kochi, India
| | - Jeremy Stinson
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Steffen Durinck
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Eric W Stawiski
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- MedGenome Inc., Foster City, CA, USA
| | | | - Terje Raudsepp
- Molecular Cytogenetics laboratory, Texas A&M University, College Station, TX, USA
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Arun Zachariah
- SciGenom Research Foundation, Bangalore, India
- Wayanad Wildlife Sanctuary, Sultan Bathery, India
| | - Somasekar Seshagiri
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA.
- SciGenom Research Foundation, Bangalore, India.
| |
Collapse
|
26
|
Abd El-Aziz TM, Shoulkamy MI, Hegazy AM, Stockand JD, Mahmoud A, Mashaly AMA. Comparative study of the in vivo toxicity and pathophysiology of envenomation by three medically important Egyptian snake venoms. Arch Toxicol 2019; 94:335-344. [DOI: 10.1007/s00204-019-02619-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
|
27
|
Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins (Basel) 2019; 11:toxins11100611. [PMID: 31652611 PMCID: PMC6832493 DOI: 10.3390/toxins11100611] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
This review gives an overview on the development of research on spider venoms with a focus on structure and function of venom components and techniques of analysis. Major venom component groups are small molecular mass compounds, antimicrobial (also called cytolytic, or cationic) peptides (only in some spider families), cysteine-rich (neurotoxic) peptides, and enzymes and proteins. Cysteine-rich peptides are reviewed with respect to various structural motifs, their targets (ion channels, membrane receptors), nomenclature, and molecular binding. We further describe the latest findings concerning the maturation of antimicrobial, and cysteine-rich peptides that are in most known cases expressed as propeptide-containing precursors. Today, venom research, increasingly employs transcriptomic and mass spectrometric techniques. Pros and cons of venom gland transcriptome analysis with Sanger, 454, and Illumina sequencing are discussed and an overview on so far published transcriptome studies is given. In this respect, we also discuss the only recently described cross contamination arising from multiplexing in Illumina sequencing and its possible impacts on venom studies. High throughput mass spectrometric analysis of venom proteomes (bottom-up, top-down) are reviewed.
Collapse
|
28
|
Knudsen C, Ledsgaard L, Dehli RI, Ahmadi S, Sørensen CV, Laustsen AH. Engineering and design considerations for next-generation snakebite antivenoms. Toxicon 2019; 167:67-75. [DOI: 10.1016/j.toxicon.2019.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
|
29
|
Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, Vaiyapuri S. The Urgent Need to Develop Novel Strategies for the Diagnosis and Treatment of Snakebites. Toxins (Basel) 2019; 11:E363. [PMID: 31226842 PMCID: PMC6628419 DOI: 10.3390/toxins11060363] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Snakebite envenoming (SBE) is a priority neglected tropical disease, which kills in excess of 100,000 people per year. Additionally, many millions of survivors also suffer through disabilities and long-term health consequences. The only treatment for SBE, antivenom, has a number of major associated problems, not least, adverse reactions and limited availability. This emphasises the necessity for urgent improvements to the management of this disease. Administration of antivenom is too frequently based on symptomatology, which results in wasting crucial time. The majority of SBE-affected regions rely on broad-spectrum polyvalent antivenoms that have a low content of case-specific efficacious immunoglobulins. Research into small molecular therapeutics such as varespladib/methyl-varespladib (PLA2 inhibitors) and batimastat/marimastat (metalloprotease inhibitors) suggest that such adjunctive treatments could be hugely beneficial to victims. Progress into toxin-specific monoclonal antibodies as well as alternative binding scaffolds such as aptamers hold much promise for future treatment strategies. SBE is not implicit during snakebite, due to venom metering. Thus, the delay between bite and symptom presentation is critical and when symptoms appear it may often already be too late to effectively treat SBE. The development of reliable diagnostical tools could therefore initiate a paradigm shift in the treatment of SBE. While the complete eradication of SBE is an impossibility, mitigation is in the pipeline, with new treatments and diagnostics rapidly emerging. Here we critically review the urgent necessity for the development of diagnostic tools and improved therapeutics to mitigate the deaths and disabilities caused by SBE.
Collapse
Affiliation(s)
| | | | - Thomas Vallance
- School of Pharmacy, University of Reading, Reading RG6 6AH, UK.
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | - Andrew B Bicknell
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | | | | |
Collapse
|
30
|
Dunbar JP, Sulpice R, Dugon MM. The kiss of (cell) death: can venom-induced immune response contribute to dermal necrosis following arthropod envenomations? Clin Toxicol (Phila) 2019; 57:677-685. [PMID: 30806093 DOI: 10.1080/15563650.2019.1578367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Snakes, insects, arachnids and myriapods have been linked to necrosis following envenomation. However, the pathways involved in arthropod venom-induced necrosis remain a highly controversial topic among toxinologists, clinicians and the public. On the one hand, clinicians report on alleged envenomations based on symptoms and the victims' information. On the other hand, toxinologists and zoologists argue that symptoms are incompatible with the known venom activity of target species. This review draws from the literature on arthropod envenomations, snakebite, and inflammatory processes to suggest that envenomation by a range of organisms might trigger an intense inflammatory cascade that ultimately lead to necrosis. If confirmed, these processes would have important implications for the treatment of venom-induced necrosis. Objectives: To describe two inflammatory pathways of regulated necrosis, tumour necrosis factor (necroptosis) and Neutrophil Extracellular Traps (NETosis); to discuss existing knowledge about snake venom and arachnid-induced necrosis demonstrating the involvement of tumour necrosis factor and neutrophils in the development of tissue necrosis following envenomation and to contribute to the understanding of venom-induced necrosis by arthropods and provide clinicians with an insight into little known inflammatory processes which may occur post envenomation. Methods: ISI Web of Science databases were searched using the terms "spider bite necrosis", "arthropod envenomation necrosis", "venom necrosis", "venom immune response", "loxoscelism", "arachnidism", "necroptosis venom", "necroptosis dermatitis", "tumour necrosis factor TNF venom", "scorpionism", "scolopendrism", "centipede necrosis", "NETosis venom", "NETosis necrosis". Searches produced 1737 non-duplicate citations of which 74 were considered relevant to this manuscript. Non-peer-reviewed sources or absence of voucher material identifying the organism were excluded. What is necrosis? Necrosis is the breakdown of cell membrane integrity followed by inflowing extracellular fluid, organelle swelling and the release of proteolytic enzymes into the cytosol. Necrosis was historically considered an unregulated process; however, recent studies demonstrate that necrosis can also be a programmed event resulting from a controlled immune response (necroptosis). Tumour necrosis factor and the necroptosis pathway: Tumour necrosis factor is a pro-inflammatory cytokine involved in regulating immune response, inflammation and cell death/survival. The pro-inflammatory cytokine TNF-α participates in the development of necrosis after envenomation by vipers. Treatment with TNF-α-antibodies may significantly reduce the manifestation of necrosis. Neutrophil Extracellular Traps and the NETosis pathway: The process by which neutrophils discharge a mesh of DNA strands in the extracellular matrix to entangle ("trap") pathogens, preventing them from disseminating. Neutrophil Extracellular Traps have been recently described as important in venom-induced necrosis. Trapped venom accumulates at the bite site, resulting in significant localized necrosis. Arthropod venom driving necrosis: Insects, myriapods and arachnids can induce necrosis following envenomation. So far, the processes involved have only been investigated in two arachnids: Loxosceles spp. (recluse spiders) and Hemiscorpius lepturus (scorpion). Loxosceles venom contains phospholipases D which hydrolyse sphingomyelin, resulting in lysis of muscle fibers. Subsequently liberated ceramides act as intermediaries that regulate TNF-α and recruit neutrophils. Experiments show that immune-deficient mice injected with Loxosceles venom experience less venom-induced inflammatory response and survive longer than control mice. Necrosis following Hemiscorpius lepturus stings correlates with elevated concentrations of TNF-α. These observations suggest that necrosis may be indirectly triggered or worsened by pathways of regulated necrosis in addition to necrotic venom compounds. Conclusions: Envenomation often induce an intense inflammatory cascade, which under certain circumstances may produce necrotic lesions independently from direct venom activity. This could explain the inconsistent and circumstantial occurrence of necrosis following envenomation by a range of organisms. Future research should focus on identifying pathways to regulated necrosis following envenomation and determining more efficient ways to manage inflammation. We suggest that clinicians should consider the victim's immune response as an integral part of the envenomation syndrome.
Collapse
Affiliation(s)
- John P Dunbar
- a Venom Systems and Proteomics Lab, School of Natural Sciences , Ryan Institute, National University of Ireland Galway , Galway , Ireland
| | - Ronan Sulpice
- b Plant Systems Biology Laboratory , Plant AgriBiosciences Research Centre, School of Natural Science, Ryan Institute, National University of Ireland Galway , Galway , Ireland
| | - Michel M Dugon
- a Venom Systems and Proteomics Lab, School of Natural Sciences , Ryan Institute, National University of Ireland Galway , Galway , Ireland
| |
Collapse
|
31
|
White J, Mahmood MA, Alfred S, Thwin KT, Kyaw KM, Zaw A, Warrell D, Cumming R, Moody J, Eagles D, Ragas K, Dunstan N, Bacon D, Hurtado P, Peh CA. A comprehensive approach to managing a neglected, neglected tropical disease; The Myanmar Snakebite Project (MSP). Toxicon X 2018; 1:100001. [PMID: 32831344 PMCID: PMC7285917 DOI: 10.1016/j.toxcx.2018.100001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 11/27/2022] Open
Abstract
Snakebite is predominantly an occupational disease affecting poor rural farmers in tropical regions and was recently added to the World Health Organisation list of Neglected Tropical Diseases (NTD). We document an overview of methodologies developed and deployed in the Myanmar Snakebite Project, a foreign aid project largely funded by the Australian Government, with the core aim to “improve outcomes for snakebite patients”. A multidisciplinary team of experts was assembled that worked in a collaborative manner with colleagues in Myanmar, first to identify problems related to managing snakebite and then develop interventions aimed to improve selected problem areas. A broad approach was adopted, covering antivenom production, antivenom distribution and health system management of snakebite. Problems identified in antivenom production included poor snake husbandry resulting in poor survival of captive specimens, lack of geographical diversity; poor horse husbandry, resulting in high mortality, inadequate stock acquisition protocols and data collection, and inappropriate immunisation and bleeding techniques; and inadequate production capacity for freeze dried antivenoms and quality control systems. These problems were addressed in various ways, resulting in some substantial improvements. Antivenom distribution is being reorganised to achieve better availability and utilisation of stock. Health system management of snakebite was assessed across all levels within the area selected for the study, in Mandalay region. A comprehensive community survey indicated that hospital statistics substantially underestimated the snakebite burden, and that access to care by local villagers was delayed by transport and cost issues compounded by lack of antivenom at the most peripheral level of the health service. A health system survey confirmed under-resourcing at the local village level. Prospective case data collection initiated at tertiary hospitals indicated the extent of the snakebite burden on health resources. Interventions initiated or planned include training of health staff, development of a core of senior trainers who can “train the trainers” nationwide in a sustainable way, development and deployment of management guidelines and algorithms for snakebite and a distribution of solar powered fridges to remote health facilities to allow storage of antivenom and prompt treatment of snakebite cases before transfer to major hospitals, thereby reducing the “bite to needle” time. Documents an international aid project in Myanmar to improve outcomes for snakebite patients. 3 focus areas; improving antivenom production, availability, and care of snakebite patients. Emphasizes a broad approach and importance of inter-ministerial government collaboration. Emphasizes sustainable improvements through health services strengthening and training. Community involvement, education and use of local community surveys are described and advocated.
Collapse
Affiliation(s)
- Julian White
- Toxinology Dept., Women's & Children's Hospital, North Adelaide, SA 5006, Australia.,University of Adelaide, Adelaide SA 5000, Australia
| | | | - Sam Alfred
- University of Adelaide, Adelaide SA 5000, Australia.,Emergency Department, Royal Adelaide Hospital, Adelaide SA 5000, Australia
| | | | | | - Aung Zaw
- Burma Pharmaceutical Industry, Ministry of Industry, Myanmar
| | - David Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, UK
| | | | - John Moody
- Seqirus Ltd, Parkville, Melbourne, Australia
| | - Debbie Eagles
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | | | | | - David Bacon
- Myanmar Snakebite Project Mandalay Office, Mandalay, Myanmar
| | - Plinio Hurtado
- University of Adelaide, Adelaide SA 5000, Australia.,Department of Renal Medicine, Royal Adelaide Hospital, Adelaide SA 5000, Australia
| | - Chen Au Peh
- University of Adelaide, Adelaide SA 5000, Australia.,Department of Renal Medicine, Royal Adelaide Hospital, Adelaide SA 5000, Australia
| |
Collapse
|
32
|
Identification of a linear B-cell epitope in the catalytic domain of bothropasin, a metalloproteinase from Bothrops jararaca snake venom. Mol Immunol 2018; 104:20-26. [DOI: 10.1016/j.molimm.2018.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/22/2022]
|
33
|
Guiding recombinant antivenom development by omics technologies. N Biotechnol 2018; 45:19-27. [DOI: 10.1016/j.nbt.2017.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 11/23/2022]
|
34
|
Nanobodies as novel therapeutic agents in envenomation. Biochim Biophys Acta Gen Subj 2018; 1862:2955-2965. [PMID: 30309831 DOI: 10.1016/j.bbagen.2018.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND An effective therapy against envenoming should be a priority in view of the high number scorpion stings and snakebites. Serum therapy is still widely applied to treat the envenomation victims; however this approach suffers from several shortcomings. The employment of monoclonal antibodies might be an outcome as these molecules are at the core of a variety of applications from protein structure determination to cancer treatment. The progress of activities in the twilight zone between genetic and antibody engineering have led to the development of a unique class of antibody fragments. These molecules possess several benefits and lack many possible disadvantages over classical antibodies. Within recombinant antibody formats, nanobodies or single domain antigen binding fragments derived from heavy chain only antibodies in camelids occupy a privileged position. SCOPE OF REVIEW In this paper we will briefly review the common methods of envenomation treatment and focus on details of various in vivo research activities that investigate the performance of recombinant, monoclonal nanobodies in venom neutralization. MAJOR CONCLUSIONS Nanobodies bind to their cognate target with high specificity and affinity, they can be produced in large quantities from microbial expression systems and are very robust even when challenged with harsh environmental conditions. Upon administering, they rapidly distribute throughout the body and seem to be well tolerated in humans posing low immunogenicity. GENERAL SIGNIFICANCE Scorpion and snake envenomation is a major issue in developing countries and nanobodies as a venom-neutralizing agent can be considered as a valuable and promising candidate in envenomation therapy.
Collapse
|
35
|
Modahl CM, Mrinalini, Frietze S, Mackessy SP. Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proc Biol Sci 2018; 285:rspb.2018.1003. [PMID: 30068680 DOI: 10.1098/rspb.2018.1003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Venom proteins evolve rapidly, and as a trophic adaptation are excellent models for predator-prey evolutionary studies. The key to a deeper understanding of venom evolution is an integrated approach, combining prey assays with analysis of venom gene expression and venom phenotype. Here, we use such an approach to study venom evolution in the Amazon puffing snake, Spilotes sulphureus, a generalist feeder. We identify two novel three-finger toxins: sulditoxin and sulmotoxin 1. These new toxins are not only two of the most abundant venom proteins, but are also functionally intriguing, displaying distinct prey-specific toxicities. Sulditoxin is highly toxic towards lizard prey, but is non-toxic towards mammalian prey, even at greater than 22-fold higher dosage. By contrast, sulmotoxin 1 exhibits the reverse trend. Furthermore, evolutionary analysis and structural modelling show highest sequence variability in the central loop of these proteins, probably driving taxon-specific toxicity. This is, to our knowledge, the first case in which a bimodal and contrasting pattern of toxicity has been shown for proteins in the venom of a single snake in relation to diet. Our study is an example of how toxin gene neofunctionalization can result in a venom system dominated by one protein superfamily and still exhibit flexibility in prey capture efficacy.
Collapse
Affiliation(s)
- Cassandra M Modahl
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, Greeley, CO 80639-0017, USA
| | - Mrinalini
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Seth Frietze
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, Greeley, CO 80639-0017, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, Greeley, CO 80639-0017, USA
| |
Collapse
|
36
|
Laustsen AH, Dorrestijn N. Integrating Engineering, Manufacturing, and Regulatory Considerations in the Development of Novel Antivenoms. Toxins (Basel) 2018; 10:E309. [PMID: 30065185 PMCID: PMC6115708 DOI: 10.3390/toxins10080309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that requires immediate attention. Conventional plasma-derived snakebite antivenoms have existed for more than 120 years and have been instrumental in saving thousands of lives. However, both a need and an opportunity exist for harnessing biotechnology and modern drug development approaches to develop novel snakebite antivenoms with better efficacy, safety, and affordability. For this to be realized, though, development approaches, clinical testing, and manufacturing must be feasible for any novel treatment modality to be brought to the clinic. Here, we present engineering, manufacturing, and regulatory considerations that need to be taken into account for any development process for a novel antivenom product, with a particular emphasis on novel antivenoms based on mixtures of monoclonal antibodies. We highlight key drug development challenges that must be addressed, and we attempt to outline some of the important shifts that may have to occur in the ways snakebite antivenoms are designed and evaluated.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Netty Dorrestijn
- Utrecht Center for Affordable Biotherapeutics, Department of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
37
|
Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH. Basics of Antibody Phage Display Technology. Toxins (Basel) 2018; 10:E236. [PMID: 29890762 PMCID: PMC6024766 DOI: 10.3390/toxins10060236] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023] Open
Abstract
Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | | | | | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|
38
|
|
39
|
Fry BG. Snakebite: When the Human Touch Becomes a Bad Touch. Toxins (Basel) 2018; 10:E170. [PMID: 29690533 PMCID: PMC5923336 DOI: 10.3390/toxins10040170] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Many issues and complications in treating snakebite are a result of poor human social, economic and clinical intervention and management. As such, there is scope for significant improvements for reducing incidence and increasing patient outcomes. Snakes do not target humans as prey, but as our dwellings and farms expand ever farther and climate change increases snake activity periods, accidental encounters with snakes seeking water and prey increase drastically. Despite its long history, the snakebite crisis is neglected, ignored, underestimated and fundamentally misunderstood. Tens of thousands of lives are lost to snakebites each year and hundreds of thousands of people will survive with some form of permanent damage and reduced work capacity. These numbers are well recognized as being gross underestimations due to poor to non-existent record keeping in some of the most affected areas. These underestimations complicate achieving the proper recognition of snakebite’s socioeconomic impact and thus securing foreign aid to help alleviate this global crisis. Antivenoms are expensive and hospitals are few and far between, leaving people to seek help from traditional healers or use other forms of ineffective treatment. In some cases, cheaper, inappropriately manufactured antivenom from other regions is used despite no evidence for their efficacy, with often robust data demonstrating they are woefully ineffective in neutralizing many venoms for which they are marketed for. Inappropriate first-aid and treatments include cutting the wound, tourniquets, electrical shock, immersion in ice water, and use of ineffective herbal remedies by traditional healers. Even in the developed world, there are fundamental controversies including fasciotomy, pressure bandages, antivenom dosage, premedication such as adrenalin, and lack of antivenom for exotic snakebites in the pet trade. This review explores the myriad of human-origin factors that influence the trajectory of global snakebite causes and treatment failures and illustrate that snakebite is as much a sociological and economic problem as it is a medical one. Reducing the incidence and frequency of such controllable factors are therefore realistic targets to help alleviate the global snakebite burden as incremental improvements across several areas will have a strong cumulative effect.
Collapse
Affiliation(s)
- Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
40
|
Ainsworth S, Slagboom J, Alomran N, Pla D, Alhamdi Y, King SI, Bolton FMS, Gutiérrez JM, Vonk FJ, Toh CH, Calvete JJ, Kool J, Harrison RA, Casewell NR. The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms. Commun Biol 2018; 1:34. [PMID: 30271920 PMCID: PMC6123674 DOI: 10.1038/s42003-018-0039-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/26/2018] [Indexed: 01/19/2023] Open
Abstract
Snake envenoming causes several potentially lethal pathologies. The specific pathology is dictated by the toxin composition of venom, which varies by species, geography and ontogeny. This variation severely restricts the paraspecific efficacy of antivenoms used to treat snakebite victims. With a view to devising pathology-specific snakebite treatments, we assessed the procoagulant activity of 57 snake venoms and investigated the efficacy of various antivenoms. We find that procoagulant venoms act differentially on key steps of the coagulation cascade, and that certain monospecific antivenoms work in a previously unrecognised paraspecific manner to neutralise this activity, despite conventional assumptions of congener-restricted efficacy. Moreover, we demonstrate that the metal chelator EDTA is also capable of neutralising venom-induced lethality in vivo. This study illustrates the exciting potential of developing new, broad-spectrum, toxin-targeting antivenoms capable of treating key snakebite pathologies, and advocates a thorough re-examination of enzyme inhibiting compounds as alternative therapies for treating snakebite victims.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Julien Slagboom
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Nessrin Alomran
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Davinia Pla
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, 46010, Spain
| | - Yasir Alhamdi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sarah I King
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Fiona M S Bolton
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
| | - Cheng-Hock Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
- Roald Dahl Haemostasis and Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Juan J Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, 46010, Spain
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
41
|
Madrigal M, Alape-Girón A, Barboza-Arguedas E, Aguilar-Ulloa W, Flores-Díaz M. Identification of B cell recognized linear epitopes in a snake venom serine proteinase from the central American bushmaster Lachesis stenophrys. Toxicon 2017; 140:72-82. [PMID: 29111117 DOI: 10.1016/j.toxicon.2017.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
Snake venom serine proteinases are toxins that perturb hemostasis acting on proteins from the blood coagulation cascade, the fibrinolytic or the kallikrein-kinin system. Despite the relevance of these enzymes in envenomations by viper bites, the characterization of the antibody response to these toxins at the molecular level has not been previously addressed. In this work surface-located B cell recognized linear epitopes from a Lachesis stenophrys venom serine proteinase (UniProt accession number Q072L7) were predicted using an artificial neuronal network at the ABCpred server, the corresponding peptides were synthesized and their immunoreactivity was analyzed against a panel of experimental and therapeutic antivenoms. A molecular model of the L. stenophrys enzyme was built using as a template the structure of the D. acutus Dav-PA serine proteinase (Q9I8X1), which displays the highest degree of sequence similarity to the L. stenophrys enzyme among proteins of known 3D structure, and the surface-located epitopes were identified in the protein model using iCn3D. A total of 13 peptides corresponding to the surface exposed predicted epitopes from L. stenophrys serine proteinase were synthesized and, their reactivity with a rabbit antiserum against the recombinant enzyme and a panel of antivenoms was evaluated by a capture ELISA. Some of the epitopes recognized by monospecific and polyspecific antivenoms comprise sequences overlapping motifs conserved in viper venom serine proteinases. The identification and characterization of relevant epitopes recognized by B cells in snake venom toxins may provide valuable information for the preparation of immunogens that help in the production of improved therapeutic antivenoms.
Collapse
Affiliation(s)
- M Madrigal
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Departamento de Bioquímica, Facultad de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - A Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Departamento de Bioquímica, Facultad de Medicina, Universidad de Costa Rica, San José, Costa Rica.
| | - E Barboza-Arguedas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - W Aguilar-Ulloa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - M Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
42
|
Abstract
Snakebite envenoming is a neglected tropical disease that kills >100,000 people and maims >400,000 people every year. Impoverished populations living in the rural tropics are particularly vulnerable; snakebite envenoming perpetuates the cycle of poverty. Snake venoms are complex mixtures of proteins that exert a wide range of toxic actions. The high variability in snake venom composition is responsible for the various clinical manifestations in envenomings, ranging from local tissue damage to potentially life-threatening systemic effects. Intravenous administration of antivenom is the only specific treatment to counteract envenoming. Analgesics, ventilator support, fluid therapy, haemodialysis and antibiotic therapy are also used. Novel therapeutic alternatives based on recombinant antibody technologies and new toxin inhibitors are being explored. Confronting snakebite envenoming at a global level demands the implementation of an integrated intervention strategy involving the WHO, the research community, antivenom manufacturers, regulatory agencies, national and regional health authorities, professional health organizations, international funding agencies, advocacy groups and civil society institutions.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, PO Box 11501-2060, San José, Costa Rica
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | - Robert A Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David J Williams
- Charles Campbell Toxinology Centre, School of Medicine &Health Sciences, University of Papua New Guinea, Boroko, National Capital District, Papua New Guinea
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - David A Warrell
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Engmark M, Jespersen MC, Lomonte B, Lund O, Laustsen AH. High-density peptide microarray exploration of the antibody response in a rabbit immunized with a neurotoxic venom fraction. Toxicon 2017; 138:151-158. [PMID: 28867663 DOI: 10.1016/j.toxicon.2017.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022]
Abstract
Polyvalent snakebite antivenoms derive their therapeutic success from the ability of their antibodies to neutralize venom toxins across multiple snake species. This ability results from a production process involving immunization of large mammals with a broad suite of toxins present in venoms. As a result of immunization with this wide range of toxins, many polyvalent antivenoms have a high degree of cross-reactivity to similar toxins in other snake venoms - a cross-reactivity which cannot easily be deconvoluted. As a proof of concept, we aimed at exploring the opposite scenario by performing a high-throughput evaluation of the extent of cross-reactivity of a polyclonal mixture of antibodies that was raised against only a single snake venom fraction. For this purpose, a venom fraction containing short neurotoxin 1 (SN-1; Uniprot accession number P01416, three-finger toxin (3FTx) family), which is the medically most important toxin from the notorious black mamba (Dendroaspis polylepis), was employed. Following immunization of a rabbit, a specific polyclonal antibody response was confirmed by ELISA and immunodiffusion. Subsequently, these antibodies were investigated by high-density peptide microarray to reveal linear elements of recognized epitopes across 742 3FTxs and 10 dendrotoxins. This exploratory study demonstrates in a single immunized animal that cross-reactivity between toxins of high similarity may be difficult to obtain when immunizing with a single 3FTx containing venom fraction. Additionally, this study explored the influence of employing different lengths of peptides in high-density peptide microarray experiments for identification of toxin epitopes. Using 8-mer, 12-mer, and 15-mer peptides, a single linear epitope element was identified in SN-1 with high precision.
Collapse
Affiliation(s)
- Mikael Engmark
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Martin C Jespersen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Ole Lund
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
44
|
Ainsworth S, Petras D, Engmark M, Süssmuth RD, Whiteley G, Albulescu LO, Kazandjian TD, Wagstaff SC, Rowley P, Wüster W, Dorrestein PC, Arias AS, Gutiérrez JM, Harrison RA, Casewell NR, Calvete JJ. The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms. J Proteomics 2017; 172:173-189. [PMID: 28843532 DOI: 10.1016/j.jprot.2017.08.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/05/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022]
Abstract
Mambas (genus Dendroaspis) are among the most feared of the medically important elapid snakes found in sub-Saharan Africa, but many facets of their biology, including the diversity of venom composition, remain relatively understudied. Here, we present a reconstruction of mamba phylogeny, alongside genus-wide venom gland transcriptomic and high-resolution top-down venomic analyses. Whereas the green mambas, D. viridis, D. angusticeps, D. j. jamesoni and D. j. kaimosae, express 3FTx-predominant venoms, black mamba (D. polylepis) venom is dominated by dendrotoxins I and K. The divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas makes it plausible that this major difference in venom composition is due to dietary variation. The pattern of intrageneric venom variability across Dendroaspis represented a valuable opportunity to investigate, in a genus-wide context, the variant toxicity of the venom, and the degree of paraspecific cross-reactivity between antivenoms and mamba venoms. To this end, the immunological profiles of the five mamba venoms were assessed against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview of which available antivenoms may be more efficacious in neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the notably different potency and pharmacological profiles of Dendroaspis venoms at locus resolution. This understanding will allow selection and design of toxin immunogens with a view to generating a safer and more efficacious pan-specific antivenom against any mamba envenomation. BIOLOGICAL SIGNIFICANCE The mambas (genus Dendroaspis) comprise five especially notorious medically important venomous snakes endemic to sub-Saharan Africa. Their highly potent venoms comprise a high diversity of pharmacologically active peptides, including extremely rapid-acting neurotoxins. Previous studies on mamba venoms have focused on the biochemical and pharmacological characterisation of their most relevant toxins to rationalize the common neurological and neuromuscular symptoms of envenomings caused by these species, but there has been little work on overall venom composition or comparisons between them. Only very recently an overview of the composition of the venom of two Dendroaspis species, D. angusticeps and D. polylepis, has been unveiled through venomics approaches. Here we present the first genus-wide transcriptomic-proteomic analysis of mamba venom composition. The transcriptomic analyses described in this paper have contributed 29 (D. polylepis), 23 (D. angusticeps), 40 (D. viridis), 25 (D. j. jamesoni) and 21 (D. j. kaimosae), novel full-length toxin sequences to the non-redundant Dendroaspis sequence database. The mamba genus-wide venomic analysis demonstrated that major D. polylepis venom components are Kunitz-fold family toxins. This feature is unique in relation to the relatively conserved three-finger toxin (3FTx)-dominated venom compositions of the green mambas. Venom variation was interpreted in the context of dietary variation due to the divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas. Additionally, the degree of cross-reactivity conservation of mamba venoms was assessed by antivenomics against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview to infer which available antivenoms may be capable of neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the pharmacological profiles of mamba venoms at locus resolution. This understanding will contribute to the generation of a safer and more efficacious pan-Dendroaspis therapeutic antivenom against any mamba envenomation.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Daniel Petras
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Dr, La Jolla, CA 92093, USA; Technische Universität Berlin, Institut für Chemie, Straße des 17.Juni 124, 10623 Berlin, Germany
| | - Mikael Engmark
- Technical University of Denmark, Department of Bio and Health Informatics, 2800 Kgs. Lyngby, Denmark
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Straße des 17.Juni 124, 10623 Berlin, Germany
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Laura-Oana Albulescu
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Taline D Kazandjian
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Simon C Wagstaff
- Bioinformatics Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Paul Rowley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Pieter C Dorrestein
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Ana Silvia Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José M Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom.
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010, Valencia, Spain.
| |
Collapse
|
45
|
Tanwar P, Ghorui S, Kochar S, Singh R, Patil N. Production and preclinical assessment of camelid immunoglobulins against Echis sochureki venom from desert of Rajasthan, India. Toxicon 2017; 134:1-5. [DOI: 10.1016/j.toxicon.2017.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
|
46
|
Slagboom J, Kool J, Harrison RA, Casewell NR. Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise. Br J Haematol 2017; 177:947-959. [PMID: 28233897 PMCID: PMC5484289 DOI: 10.1111/bjh.14591] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
Snake venoms are mixtures of numerous proteinacious components that exert diverse functional activities on a variety of physiological targets. Because the toxic constituents found in venom vary from species to species, snakebite victims can present with a variety of life-threatening pathologies related to the neurotoxic, cytotoxic and haemotoxic effects of venom. Of the 1·8 million people envenomed by snakes every year, up to 125 000 die, while hundreds of thousands survive only to suffer with life-changing long-term morbidity. Consequently, snakebite is one of the world's most severe neglected tropical diseases. Many snake venoms exhibit strong haemotoxic properties by interfering with blood pressure, clotting factors and platelets, and by directly causing haemorrhage. In this review we provide an overview of the functional activities of haemotoxic venom proteins, the pathologies they cause in snakebite victims and how their exquisite selectivity and potency make them amenable for use as therapeutic and diagnostic tools relevant for human medicine.
Collapse
Affiliation(s)
- Julien Slagboom
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, UK
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
47
|
Xu N, Zhao HY, Yin Y, Shen SS, Shan LL, Chen CX, Zhang YX, Gao JF, Ji X. Combined venomics, antivenomics and venom gland transcriptome analysis of the monocoled cobra ( Naja kaouthia ) from China. J Proteomics 2017; 159:19-31. [DOI: 10.1016/j.jprot.2017.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 11/15/2022]
|
48
|
Kalita B, Patra A, Mukherjee AK. Unraveling the Proteome Composition and Immuno-profiling of Western India Russell's Viper Venom for In-Depth Understanding of Its Pharmacological Properties, Clinical Manifestations, and Effective Antivenom Treatment. J Proteome Res 2017; 16:583-598. [PMID: 27936776 DOI: 10.1021/acs.jproteome.6b00693] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proteome composition of western India (WI) Russell's viper venom (RVV) was correlated with pharmacological properties and pathological manifestations of RV envenomation. Proteins in the 5-19 and 100-110 kDa mass ranges were the most predominate (∼35.1%) and least abundant (∼3.4%) components, respectively, of WI RVV. Non-reduced SDS-PAGE indicated the occurrence of multiple subunits, non-covalent oligomers, self-aggregation, and/or interactions among the RVV proteins. A total of 55 proteins belonging to 13 distinct snake venom families were unambiguously identified by ESI-LC-MS/MS analysis. Phospholipase A2 (32.5%) and Kunitz-type serine protease inhibitors (12.5%) represented the most abundant enzymatic and non-enzymatic proteins, respectively. However, ATPase, ADPase, and hyaluronidase, detected by enzyme assays, were not identified by proteomic analysis owing to limitations in protein database deposition. Several biochemical and pharmacological properties of WI RVV were also investigated. Neurological symptoms exhibited by some RV-bite patients in WI may be correlated to the presence of neurotoxic phospholipase A2 enzymes and Kunitz-type serine protease inhibitor complex in this venom. Monovalent antivenom was found to be better than polyvalent antivenom in immuno-recognition and neutralization of the tested pharmacological properties and enzyme activities of WI RVV; nevertheless, both antivenoms demonstrated poor cross-reactivity and neutralization of pharmacological activities shown by low-molecular-mass proteins (<18 kDa) of this venom.
Collapse
Affiliation(s)
- Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur 784028, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur 784028, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur 784028, Assam, India
| |
Collapse
|
49
|
Harrison RA, Gutiérrez JM. Priority Actions and Progress to Substantially and Sustainably Reduce the Mortality, Morbidity and Socioeconomic Burden of Tropical Snakebite. Toxins (Basel) 2016; 8:toxins8120351. [PMID: 27886134 PMCID: PMC5198546 DOI: 10.3390/toxins8120351] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 11/16/2022] Open
Abstract
The deliberations and conclusions of a Hinxton Retreat convened in September 2015, entitled “Mechanisms to reverse the public health neglect of snakebite victims” are reported. The participants recommended that the following priority actions be included in strategies to reduce the global impact of snake envenoming: (a) collection of accurate global snakebite incidence, mortality and morbidity data to underpin advocacy efforts and help design public health campaigns; (b) promotion of (i) public education prevention campaigns; (ii) transport systems to improve access to hospitals and (iii) establishment of regional antivenom-efficacy testing facilities to ensure antivenoms’ effectiveness and safety; (c) exploration of funding models for investment in the production of antivenoms to address deficiencies in some regions; (d) establishment of (i) programs for training in effective first aid, hospital management and post-treatment care of victims; (ii) a clinical network to generate treatment guidelines and (iii) a clinical trials system to improve the clinical management of snakebite; (e) development of (i) novel treatments of the systemic and local tissue-destructive effects of envenoming and (ii) affordable, simple, point-of-care snakebite diagnostic kits to improve the accuracy and rapidity of treatment; (f) devising and implementation of interventions to help the people and communities affected by physical and psychological sequelae of snakebite.
Collapse
Affiliation(s)
- Robert A Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical, Liverpool L35QA, UK.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| |
Collapse
|
50
|
Engmark M, Andersen MR, Laustsen AH, Patel J, Sullivan E, de Masi F, Hansen CS, Kringelum JV, Lomonte B, Gutiérrez JM, Lund O. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays. Sci Rep 2016; 6:36629. [PMID: 27824133 PMCID: PMC5100549 DOI: 10.1038/srep36629] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
Snakebite envenoming is a serious condition requiring medical attention and administration of antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against other antigens. In order to better understand the molecular interactions between antivenom antibodies and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually curated toxins from Dendroaspis species and selected African Naja species was performed based on custom-made high-density peptide microarrays displaying linear toxin fragments. By detection of binding for three different antivenoms and performing an alanine scan, linear elements of epitopes and the positions important for binding were identified. A strong tendency of antivenom antibodies recognizing and binding to epitopes at the functional sites of toxins was observed. With these results, high-density peptide microarray technology is for the first time introduced in the field of toxinology and molecular details of the evolution of antibody-toxin interactions based on molecular recognition of distinctive toxic motifs are elucidated.
Collapse
Affiliation(s)
- Mikael Engmark
- Technical University of Denmark, Department of Bio and Health Informatics, Kgs. Lyngby, 2800, Denmark.,Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, 2800, Denmark
| | - Mikael R Andersen
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, 2800, Denmark
| | - Andreas H Laustsen
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, 2800, Denmark.,University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen East, 2100, Denmark
| | - Jigar Patel
- Roche NimbleGen, Madison, Wisconsin 53719, USA
| | | | - Federico de Masi
- Technical University of Denmark, Department of Bio and Health Informatics, Kgs. Lyngby, 2800, Denmark
| | - Christian S Hansen
- Technical University of Denmark, Department of Bio and Health Informatics, Kgs. Lyngby, 2800, Denmark
| | - Jens V Kringelum
- Technical University of Denmark, Department of Bio and Health Informatics, Kgs. Lyngby, 2800, Denmark
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Ole Lund
- Technical University of Denmark, Department of Bio and Health Informatics, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|