1
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Lou F, Zhang Y, Xu A, Gao T. Transcriptional responses of liver and spleen in Lota lota to polyriboinosinic polyribocytidylic acid. Front Immunol 2023; 14:1272393. [PMID: 37901224 PMCID: PMC10611466 DOI: 10.3389/fimmu.2023.1272393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The cultured Lota lota can meet the market demand in the context of the decline of wild resources, but the disease in the high-density culture process also deserves attention. Therefore, understanding the immune regulation mechanisms of L. lota will be the basis for obtaining high benefits in artificial culture. Methods To explore the viral response mechanism of L. lota, RNA-seq was applied to identify the transcriptomic changes of the liver and spleen in L. lota by poly (I:C) stress. Results The DEGs (liver: 2186 to 3123; spleen 1542 to 2622) and up-regulated genes (liver: 1231 to 1776; spleen 769 to 1502) in the liver and spleen increased with the prolongation (12h to 48h) of poly (I:C)-stimulation time. This means L. lota needs to mobilize more functional genes in response to longer periods of poly (I:C)-stimulation. Despite the responses of L. lota to poly (I:C) showed tissue-specificity, we hypothesized that both liver and spleen of L. lota can respond to poly (I:C) challenge may be through promoting apoptosis of DNA-damaged cells, increasing the activity of immune-enhancing enzymes, and increasing energy supply based on DEGs annotation information. Conclusions Our results demonstrate the transcriptional responses of L. lota to poly (I:C)-stimulation, and these data provide the first resource on the genetic regulation mechanisms of L. lota against viruses. Furthermore, the present study can provide basic information for the prevention of viral diseases in L. lota artificial culture process.
Collapse
Affiliation(s)
- Fangrui Lou
- School of Ocean, Yantai University, Yantai, Shandong, China
| | - Yuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, China
| | - Anle Xu
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
3
|
Chen Y, Cheng B, Liu Y, Bai Y, Yang X, Xu S. Metabolic responses of golden trout (Oncorhynchus mykiss aguabonita) after acute exposure to waterborne copper. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106236. [PMID: 35842982 DOI: 10.1016/j.aquatox.2022.106236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Despite the broad knowledge of copper-induced stress and toxicity, data on the physiological responses to acute copper exposure and the correlation of those activities to a generalized stress response are still limited. The present study aimed to assess the physiological responses of golden trout to overcome copper stress at concentrations of 60 µg/L and 120 µg/L after 96 h, respectively. The activities of glucose-6-phosphate dehydrogenase (G6PD) phosphoenolpyruvate carboxykinase (PEPCK) and NADPH/NADP+ ratio were significantly increased, and metabolites including glucose 6-phosphate, fructose 1-phosphate and fatty acids significantly accumulated in fish liver, indicating that gluconeogenesis, the pentose-phosphate pathway, as well as alteration of the membrane fatty acid composition were activated to serve as a defense mechanism against 60 µg/L of copper after 96 h. After exposure to 120 µg/L of copper for 96 h, the NAD+ and ATP contents, the activities of enzymes in the glycolytic pathway (phosphofructokinase, PFK and pyruvate kinase, PK) and mitochondrial respiratory chain complex I decreased significantly in fish liver. In addition, carbohydrates and MDA accumulated in golden trout after 120 µg/L copper treatment. These results indicated that 120 µg/L of copper exposure may induce a metabolic stress in golden trout after 96 h. The multi-marker approach allows us to reach a greater understanding of the effects of copper on physiological responses of golden trout.
Collapse
Affiliation(s)
- Yan Chen
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Bo Cheng
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, PR China
| | - Yang Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, PR China
| | - Yucen Bai
- China Rural Technology Development Center, No.54 Sanlihe Road, Xicheng District, Beijing 100045, PR China.
| | - Xiaofei Yang
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Shaogang Xu
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| |
Collapse
|
4
|
Du C, Zheng S, Yang Y, Feng X, Chen J, Tang Y, Wang H, Yang F. Chronic exposure to low concentration of MC-LR caused hepatic lipid metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113649. [PMID: 35605325 DOI: 10.1016/j.ecoenv.2022.113649] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Microcystin-LR (MC-LR), a potent hepatotoxin can cause liver damages. However, research on hepatic lipid metabolism caused by long-term exposure to environmental concentrations MC-LR is limited. In the current study, mice were exposed to various low concentrations of MC-LR (0, 1, 30, 60, 90, 120 μg/L in the drinking water) for 9 months. The general parameters, serum and liver lipids, liver tissue pathology, lipid metabolism-related genes and proteins of liver were investigated. The results show that chronic MC-LR exposure had increased the levels of triglyceride (TG) and total cholesterol (TC) in serum and liver. In addition, histological observation revealed that hepatic lobules were disordered with obvious inflammatory cell infiltration and lipid droplets. More importantly, the mRNA and proteins expression levels of lipid synthesis-related nuclear sterol regulatory element binding protein-1c (nSREBP-1c), SREBP-1c, cluster of differentiation 36 (CD36), acetyl-CoA-carboxylase1 (ACC1), stearoyl-CoA desaturase1 (SCD1) and fatty acid synthase (FASN) were increased in MC-LR treated groups, the expression levels of fatty acids β-oxidation related genes peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) was decreased after exposure to 60-120 μg/L MC-LR. Furthermore, the inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were higher than that in the control group. All the findings indicated that mice were exposed to chronic low concentrations MC-LR caused liver inflammation and hepatic lipid metabolism disorder .
Collapse
Affiliation(s)
- Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
In Vitro Toxicity Evaluation of Cyanotoxins Cylindrospermopsin and Microcystin-LR on Human Kidney HEK293 Cells. Toxins (Basel) 2022; 14:toxins14070429. [PMID: 35878167 PMCID: PMC9316492 DOI: 10.3390/toxins14070429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Cyanotoxins are secondary metabolites produced by different types of cyanobacteria. Among them, Cylindrospermopsin (CYN) and Microcystins (MCs) stand out due to their wide geographical distribution and toxicity in various organs, including the kidney, which is involved in their distribution and elimination. However, the renal toxicity caused by CYN and MCs has hardly been studied. The aim of this work was to assess the cytotoxicity effects caused by CYN and MC-LR in the renal cell line HEK293, and for the first time, the influence of CYN on the gene expression of selected genes in these cells by quantitative real-time PCR (qRT-PCR). CYN caused an upregulation in the gene expression after exposure to the highest concentration (5 µg/mL) and the longest time of exposure (24 h). Moreover, shotgun proteomic analysis was used to assess the molecular responses of HEK293 cells after exposure to the individuals and combinations of CYN + MC-LR. The simultaneous exposure to both cyanotoxins caused a greater number of alterations in protein expression compared to single toxins, causing changes in the cellular, lipid and protein metabolism and in protein synthesis and transport. Further studies are needed to complete the toxicity molecular mechanisms of both CYN and MC-LR at the renal level.
Collapse
|
6
|
Lin W, Hung TC, Kurobe T, Wang Y, Yang P. Microcystin-Induced Immunotoxicity in Fishes: A Scoping Review. Toxins (Basel) 2021; 13:765. [PMID: 34822549 PMCID: PMC8623247 DOI: 10.3390/toxins13110765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A). Immunity is known as one of the most important physiological functions in the neuroendocrine-immune network to prevent infections and maintain internal homoeostasis in fish. The present review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish, and put forward some suggestions for future research. The immunomodulatory effects of MCs in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous field and laboratory studies provided strong evidence of the associations between MC-induced immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic microbial pathogens.
Collapse
Affiliation(s)
- Wang Lin
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
- Department of Fisheries Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA;
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Pinhong Yang
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
| |
Collapse
|
7
|
Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2021; 13:toxins13100711. [PMID: 34679003 PMCID: PMC8540411 DOI: 10.3390/toxins13100711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, they have been shown to induce deleterious effects in a wide range of organs. However, their effects on the immune system are as yet scarcely investigated. Thus, to know the impact of cyanotoxins on the immune system, due to its importance in organisms’ homeostasis, is considered of interest. A review of the scientific literature dealing with the immunotoxicity of MCs and CYN has been performed, and both in vitro and in vivo studies have been considered. Results have confirmed the scarcity of reports on the topic, particularly for CYN. Decreased cell viability, apoptosis or altered functions of immune cells, and changed levels and mRNA expression of cytokines are among the most common effects reported. Underlying mechanisms, however, are still not yet fully elucidated. Further research is needed in order to have a full picture of cyanotoxin immunotoxicity.
Collapse
|
8
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
9
|
Shen W, Lou B, Xu C, Yang G, Yu R, Wang X, Li X, Wang Q, Wang Y. Lethal toxicity and gene expression changes in embryonic zebrafish upon exposure to individual and mixture of malathion, chlorpyrifos and lambda-cyhalothrin. CHEMOSPHERE 2020; 239:124802. [PMID: 31521933 DOI: 10.1016/j.chemosphere.2019.124802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Pesticides are usually present as mixtures in water environments. Evaluating the toxic effects of individual pesticide may not be enough for protecting ecological environment due to interactions among substances. In this study, we aimed to examine the lethal doses and gene expression changes in zebrafish (Danio rerio) upon exposure to individual and mixture pesticides [malathion (MAL), chlorpyrifos (CHL) and lambda-cyhalothrin (LCY)]. Individual pesticide toxicity evaluation manifested that the toxicity of the three pesticides to D. rerio at various developmental stages (embryonic, larval, juvenile and adult stages) followed the order of LCY > CHL > MAL. On the contrary, the least toxicity to the animals was discovered from MAL. Most of the tested pesticides displayed lower toxicities to the embryonic stage compared with other life stages of zebrafish. Synergistic effects were monitored from two binary mixtures of LCY in combination with MAL or CHL and ternary mixture of MAL + CHL + LCY. The expressions of 16 genes involved in oxidative stress, immunity system, cell apoptosis and endocrine disruption at the mRNA level revealed that embryonic zebrafish were influenced by the individual or mixture pesticides. The expressions of Tnf, P53, TRα, Crh and Cyp19a exerted greater variations upon exposure to pesticide mixtures compared with their individual compounds. Collectively, the transcriptional responses of these genes might afford early warning biomarkers for identifying pollutant exposure, and the data acquired from this study provided valuable insights into the comprehensive toxicity of pesticide mixtures to zebrafish.
Collapse
Affiliation(s)
- Weifeng Shen
- State Key Laboratory for Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Bao Lou
- State Key Laboratory for Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310021, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Ruixian Yu
- State Key Laboratory for Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinfang Li
- State Key Laboratory for Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
10
|
Li X, Li J, Meng F, Yao L. Hepatotoxicity and immunotoxicity of MC-LR on silver carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:28-32. [PMID: 30412895 DOI: 10.1016/j.ecoenv.2018.10.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/27/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Microcystins produced by some cyanobacteria can cause damages to the liver and kidneys of aquatic animals. In the natural water with cyanobacterial blooms, silver carp may suffer from the most serious affect of the bloom due to their filtering these cyanobacteria and ingesting them as food. In the present study, silver carp was exposed to microcystin-LR by using the method of intraperitoneal injection first to determine the acute toxicity of microcystin-LR on silver carp and then to determine the activity of inflammatory protein and content of inflammatory factors from the serum of silver carp following a subacute exposure of microcystin-LR at doses of 104.9 μg kg-1 (1/5 of LD50) or 262.1 μg kg-1 (1/2 of LD50). The results showed that MC-LR exposure increased fish liver index and promoted the activities of fish serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating the hepatotoxicity of MC-LR on the fish. Moreover, MC-LR exposure also increased the number of leukocytes, complement C3 level, lysozyme activity (at the first 9 h of exposure), and the contents of cytokines TNF-α, IL-1β and IFN-γ in fish serum. In addition, a significant increase in IgM level was observed in the serum and head kidney of silver carp following MC-LR exposure. This result suggests that semi-lethal doses of MC-LR exposure is not only hepatotoxic but also immunotoxic to silver carp.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jing Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fanxiao Meng
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lan Yao
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Zhao S, Sun H, Yan W, Xu D, Shen T. A proteomic study of the pulmonary injury induced by microcystin-LR in mice. Toxicon 2018; 150:304-314. [PMID: 29908261 DOI: 10.1016/j.toxicon.2018.06.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022]
Abstract
MCLR has been shown to act as potent hepatotoxin, and recent studies showed that MCs can accumulate in lung tissue and exert adverse effects. However, the exact mechanism still remain unclear. The present study mainly focuses on the impairments of respiratory system after MCLR exposure in mice. After intratracheal instillation with MCLR (0, 10 and 25 μg/kg bw), histological change was examined in MCLR exposure groups. Results indicated that exposure of MCLR led to serious histopathology alteration and apoptosis in lung of mice. To further our understanding of the toxic effects of MCLR on the lung, we employed a proteomic method to search the mechanisms behind MCLR-induced pulmonary injury. In total, 38 proteins were identified to be significantly altered after MCLR exposure. These proteins involved in inflammatory response, apoptosis, cytoskeleton, and energetic metabolism, suggesting MCLR exerts complex toxic effects contributing to pulmonary injury. Furthermore, MCLR also induced pulmonary inflammation, as manifested by up-regulating the protein levels of interleukin-1β (IL-1β) and p65 subunit. Our results indicated that MCLR exerts lung injury mainly by generating inflammation and apoptosis.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hong Sun
- Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China.
| | - Wei Yan
- China Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
12
|
Wang Y, Wu S, Chen J, Zhang C, Xu Z, Li G, Cai L, Shen W, Wang Q. Single and joint toxicity assessment of four currently used pesticides to zebrafish (Danio rerio) using traditional and molecular endpoints. CHEMOSPHERE 2018; 192:14-23. [PMID: 29091792 DOI: 10.1016/j.chemosphere.2017.10.129] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 05/24/2023]
Abstract
Pesticides usually present in mixtures in surface waters, although they are traditionally regulated on an individual basis in aquatic ecosystems. In this study, we aimed to investigate the lethal and transcriptional responses of individual and combined pesticides (iprodione, pyrimethanil, pyraclostrobin and acetamiprid) on zebrafish (Danio rerio). Semi-static toxicity test indicated that the greatest toxicity to the four life stages (embryonic, larval, juvenile and adult stages) of D. rerio was detected from pyraclostrobin, followed by iprodione and pyrimethanil. In contrast, the lowest toxicity to the organisms was found from acetamiprid. Most of the selected pesticides exerted greater toxicities to D. rerio of embryonic stage compared with other life stages. Synergistic responses were observed from all binary mixtures of iprodione in combination with pyrimethanil or acetamiprid and ternary mixtures of iprodione+pyraclostrobin in combination with pyrimethanil or acetamiprid. The expressions of 16 genes related to cell apoptosis pathway, oxidative stress response, innate immunity and endocrine disruption at the mRNA level showed that zebrafish embryos were affected by the individual or combined pesticides. The expressions of P53, Tnf, TRβ, Tsh and Cyp19a exhibited greater changes upon exposure to combined pesticides compared with individual pesticides. Taken together, increased toxicity might be triggered by the simultaneous presence of several pesticides in the aquatic environment, which seriously damaged the non-target organisms.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Shenggan Wu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jine Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changpeng Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Zhenlan Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Gang Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Leiming Cai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Weifeng Shen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Qiang Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
13
|
Lin W, Hou J, Guo H, Qiu Y, Li L, Li D, Tang R. Dualistic immunomodulation of sub-chronic microcystin-LR exposure on the innate-immune defense system in male zebrafish. CHEMOSPHERE 2017; 183:315-322. [PMID: 28551208 DOI: 10.1016/j.chemosphere.2017.05.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Microcystins (MCs), produced by toxic cyanobacterial blooms that appeared world wildly in eutrophication waters, have often caused fish illness and even massive death cases. Among at least 90 structural variants, microcystin-LR (MC-LR) is the most common and toxic variant. In order to better understand innate immune responses in fish disrupted by environmental concentrations of MC-LR, male zebrafish (Danio rerio) were exposed to 0, 0.3, 1, 3, 10 and 30 μg/L MC-LR for 30 d, and the changes in splenic pathology and immunological gene expression as well as serum immune parameters were studied. In the low concentration groups (0.3, 1 and 3 μg/L), zebrafish displayed splenic inflammatory changes including the formation of melano-macrophage centers and the increase of macrophage pseudopodia, remarkable elevation of serum C3 levels, and significantly upregulated expression of innate immune-related genes (c3b, lyz, il1β, tnfα and ifnγ). In contrast, high concentrations of MC-LR (10 and 30 μg/L) resulted in the degeneration of splenic lymphocytes and macrophages, and down-regulation of immune-related genes as well as significant decreases in the level of serum C3. Furthermore, significant increases in the activity of serum ACP and ALP suggested that high concentrations of MC-LR increased permeability of macrophage plasma membrane or cellular necrosis, and subsequently decreased innate immune function. Our findings illustrated that sub-chronic exposure of MC-LR has dualistic influences on fish innate immune system with inflammatory activation at low exposure concentrations but turned to immune inhibition with the increases of exposure concentration.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| |
Collapse
|
14
|
Chen XM, Guo GL, Sun L, Yang QS, Wang GQ, Zhang DM. Modulatory role of L-carnitine against microcystin-LR-induced immunotoxicity and oxidative stress in common carp. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1081-1093. [PMID: 28315160 DOI: 10.1007/s10695-017-0354-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
Microcystin-LR (MCLR), one of the most popular microcystins (MCs) found in many field water bodies around the world, poses great health risks to animals and humans. In the present study, healthy common carp (initial weight 24.8 ± 2.3 g) were randomly assigned to five groups. Group I was fed on normal diet as control. Group II was maintained on normal diet and received MCLR intraperitoneal injection (150 μg kg-1 BW). Common carp in groups III, IV, and V were daily pretreated with L-carnitine (LC) at doses of 0.5, 1.0, and 2.0 g kg-1 of the diet for 4 weeks prior to MCLR intraperitoneal injection. The results showed that MCLR alone led to a significant downregulation in immune response, including serum complement C3, lysozyme, and bactericidal activity. However, oxidative stress response: catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and lipid peroxidation (LPO) levels were significantly increased. Similarly, gene expressions of inflammatory IL-1β, TNF-α, IFN I, and heat shock proteins (HSP70 and HSP90) were also upregulated after challenged with MCLR. However, LC pretreated group caused a significant elevation in immune response (C3, lysozyme, and bactericidal activity) and gene expressions of inflammatory IL-1β, TNF-α, IFN I, and heat shock proteins (HSP70 and HSP90) after MCLR stress. Antioxidant activities (CAT, SOD, GSH, GPx, and LPO) were returned to background levels at 96 h after MCLR challenge. Strikingly, LC supplementation at 2.0 g kg-1 has been considered the optimum for common carp since it exhibited enhancement of immune response and antioxidant activity over the level 0.5 and 1.0 g kg-1, and even better than that of control level. It was concluded that LC as a functional feed additive significantly inhibited the progression of MCLR-induced immunotoxicity and oxidative stress in common carp.
Collapse
Affiliation(s)
- Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Liang Guo
- Testing Center of Quality and Safety in Aquatic Product, 777 CaiYu Road, Changchun, Jilin, China
| | - Li Sun
- Testing Center of Quality and Safety in Aquatic Product, 777 CaiYu Road, Changchun, Jilin, China
| | - Qiu-Shi Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Dong-Ming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
15
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
16
|
Luo Z, Fu J, Li N, Liu Z, Qin T, Zhang X, Nie P. Immunogenic proteins and their vaccine development potential evaluation in outer membrane proteins (OMPs) of Flavobacterium columnare. AQUACULTURE AND FISHERIES 2016. [DOI: 10.1016/j.aaf.2016.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Tuo X, Chen J, Zhao S, Xie P. Chemical proteomic analysis of the potential toxicological mechanisms of microcystin-RR in zebrafish (Danio rerio) liver. ENVIRONMENTAL TOXICOLOGY 2016; 31:1206-1216. [PMID: 25854999 DOI: 10.1002/tox.22128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
Microcystins (MCs) are common toxins produced by freshwater cyanobacteria, and they represent a potential health risk to aquatic organisms and animals, including humans. Specific inhibition of protein phosphatases 1 and 2A is considered the typical mechanism of MCs toxicity, but the exact mechanism has not been fully elucidated. To further our understanding of the toxicological mechanisms induced by MCs, this study is the first to use a chemical proteomic approach to screen proteins that exhibit special interactions with MC-arginine-arginine (MC-RR) from zebrafish (Danio rerio) liver. Seventeen proteins were identified via affinity blocking test. Integration of the results of previous studies and this study revealed that these proteins play a crucial role in various toxic phenomena of liver induced by MCs, such as the disruption of cytoskeleton assembly, oxidative stress, and metabolic disorder. Moreover, in addition to inhibition of protein phosphate activity, the overall toxicity of MCs was simultaneously modulated by the distribution of MCs in cells and their interactions with other target proteins. These results provide new insight into the mechanisms of hepatotoxicity induced by MCs. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1206-1216, 2016.
Collapse
Affiliation(s)
- Xun Tuo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
- Basic Chemistry Experimental Center, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
| | - Sujuan Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
| |
Collapse
|
18
|
Yang Y, Qi S, Wang D, Wang K, Zhu L, Chai T, Wang C. Toxic effects of thifluzamide on zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2016; 307:127-136. [PMID: 26780700 DOI: 10.1016/j.jhazmat.2015.12.055] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/10/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Thifluzamide is a fungicide widely used to control crop diseases, and it therefore constitutes a hazard to the environment. In this study, zebrafish were selected to assess the aquatic toxicity of thifluzamide. The acute and development toxicity of thifluzamide to embryos, larvae, and adult zebrafish were measured and the corresponding 96h-LC50 values were as follows: adult fish (4.19mg/L) <larvae (3.52mg/L) <embryos (3.08mg/L). A large suite of symptoms was found in these three stages of zebrafish, including abnormal spontaneous movement, slow heartbeat, hatching inhibition, growth regression, and morphological deformities. In addition, for adult zebrafish, distinct pathological changes were noted in liver and kidney 21 days post exposure (dpe) to 0.19, 1.33, and 2.76mg/L. Liver damage was more severe than kidney damage. In another 28 days exposure of adult zebrafish to 0.019, 0.19, and 1.90mg/L, negative changes in mitochondrial structure and enzymes activities [succinate dehydrogenase (SDH) and respiratory chain complexes] were found. These might be responsible for the adverse expansion of the apoptosis- and immune-related genes, which would facilitate the action of these factors in programmed cell death and might play a key role during the toxic events.
Collapse
Affiliation(s)
- Yang Yang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Suzhen Qi
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Donghui Wang
- Plant Developmental Biology, College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, People's Republic of China
| | - Kai Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Lizhen Zhu
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Tingting Chai
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
19
|
Valério E, Campos A, Osório H, Vasconcelos V. Proteomic and Real-Time PCR analyses of Saccharomyces cerevisiae VL3 exposed to microcystin-LR reveals a set of protein alterations transversal to several eukaryotic models. Toxicon 2016; 112:22-8. [PMID: 26806210 DOI: 10.1016/j.toxicon.2016.01.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 02/01/2023]
Abstract
Some of the most common toxins present in freshwater, in particular microcystins (MCs), are produced by cyanobacteria. These toxins have a negative impact on human health, being associated with episodes of acute hepatotoxicity and being considered potentially carcinogenic to humans. To date the exact mechanisms of MC-induced toxicity and tumor promotion were not completely elucidated. To get new insights underlying microcystin-LR (MCLR) molecular mechanisms of toxicity we have performed the proteomic profiling using two-dimensional electrophoresis and MALDI-TOF/TOF of Saccharomyces cerevisiae cells exposed for 4 h-1 nM and 1 μM of MCLR, and compared them to the control (cells not exposed to MCLR). We identified 14 differentially expressed proteins. The identified proteins are involved in metabolism, genotoxicity, cytotoxicity and stress response. Furthermore, we evaluated the relative expression of yeast's PP1 and PP2A genes and also of genes from the Base Excision Repair (BER) DNA-repair system, and observed that three out of the five genes analyzed displayed dose-dependent responses. Overall, the different proteins and genes affected are related to oxidative stress and apoptosis, thus reinforcing that it is probably the main mechanism of MCLR toxicity transversal to several organisms, especially at lower doses. Notwithstanding these MCLR responsive proteins could be object of further studies to evaluate their suitability as biomarkers of exposure to the toxin.
Collapse
Affiliation(s)
- Elisabete Valério
- Unidade de Água e Solo, Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Hugo Osório
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-465, Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| |
Collapse
|
20
|
Chen L, Chen J, Zhang X, Xie P. A review of reproductive toxicity of microcystins. JOURNAL OF HAZARDOUS MATERIALS 2016; 301:381-99. [PMID: 26521084 DOI: 10.1016/j.jhazmat.2015.08.041] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 05/25/2023]
Abstract
Animal studies provide strong evidence of positive associations between microcystins (MCs) exposure and reproductive toxicity, representing a threat to human reproductive health and the biodiversity of wild life. This paper reviews current knowledge of the reproductive toxicity of MCs, with regard to mammals, fishes, amphibians, and birds, mostly in males. Toxicity of MCs is primarily governed by the inhibition of protein phosphatases 1 and 2A (PP1 and PP2A) and disturbance of cellular phosphorylation balance. MCs exposure is related to excessive production of reactive oxygen species (ROS) and oxidative stress, leading to cytoskeleton disruption, mitochondria dysfunction, endoplasmic reticulum (ER) stress, and DNA damage. MCs induce cell apoptosis mediated by the mitochondrial and ROS and ER pathways. Through PP1/2A inhibition and oxidative stress, MCs lead to differential expression/activity of transcriptional factors and proteins involved in the pathways of cellular differentiation, proliferation, and tumor promotion. MC-induced DNA damage is also involved in carcinogenicity. Apart from a direct effect on testes and ovaries, MCs indirectly affect sex hormones by damaging the hypothalamic-pituitary-gonad (HPG) axis and liver. Parental exposure to MCs may result in hepatotoxicity and neurotoxicity of offspring. We also summarize the current research gaps which should be addressed by further studies.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
21
|
Li S, Chen J, Xie P, Guo X, Fan H, Yu D, Zeng C, Chen L. The role of glutathione detoxification pathway in MCLR-induced hepatotoxicity in SD rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:1470-80. [PMID: 24964298 DOI: 10.1002/tox.22017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 05/18/2023]
Abstract
In the present study, we investigated the role of glutathione (GSH) and its related enzymes in Sprague Dawley (SD) rats subjected to microcystin-leucine-arginine (MCLR)-induced hepatotoxicity. SD rats were intraperitoneally (i.p.) injected with MCLR after pretreating with or without buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH synthesis. The depletion of GSH with BSO enhanced MCLR-induced oxidative stress, resulting in more severe liver damage and higher MCLR accumulation. Similarly, the contents of malondialdehyde (MDA), total GSH (T-GSH), oxidized GSH (GSSG) and GSH were significantly enhanced in BSO pretreated rats following MCLR treatment. The study showed that the transcription of GSH-related enzymes such as glutathione-S-transferase (GST), γ-glutamylcysteine synthetase (γ-GCS), glutathione reductase (GR) varied in different ways (expect for glutathione peroxidase (GPx), whose gene expression was induced in all treated groups) with or without BSO pretreatment before MCLR exposure, suggesting an adaptative response of GSH-related enzymes at transcription level to combat enhancement of oxidative stress induced by MCLR when pretreated with BSO. These data suggested the tissues with low GSH concentration are highly vulnerable to MCLR toxicity and GSH was critical for the detoxification in MCLR-induced hepatotoxicity in vivo.
Collapse
Affiliation(s)
- Shangchun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Xiaochun Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huihui Fan
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dezhao Yu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Cheng Zeng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
22
|
Huang X, Chen L, Liu W, Qiao Q, Wu K, Wen J, Huang C, Tang R, Zhang X. Involvement of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:41-50. [PMID: 26022555 DOI: 10.1016/j.aquatox.2015.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
The outbreak of cyanobacterial blooms induces the production and release of microcystins (MCs) into water, representing a health hazard to aquatic organisms and even humans. Some recent studies have suggested that kidney is another important target organ of MCs except liver, however, the potential toxicity mechanisms are still unclear. In this study, we first investigated the collaborative effect of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK (Ctenopharyngodon idellus kidney) cells in vitro. CIK cells were treated with 0, 1, 10, and 100μg/L microcystin-LR (MC-LR) for 24 and 48h. Cell viability was increased by MC-LR in 1μg/L group, while decreased in 100μg/L group at 48h. Cell cycle assay showed that 1 and 10μg/L MC-LR induced cell cycle through G1 into S and G2/M phases, while 100μg/L MC-LR reduced G2/M phase population. MC-LR markedly induced apoptosis in 10 and 100μg/L groups. Elevated reactive oxygen species (ROS) production, increased malondialdehyde (MDA) contents, decreased glutathione (GSH) levels, and modulated antioxidant enzymes including catalase (CAT) and superoxide dismutase (SOD) were observed in CIK cells exposed to MC-LR. These alterations were more pronounced at higher doses (10 and 100μg/L), indicating that oxidative stress was induced by MC-LR. Laser scanning confocal microscope observation showed aggregation and collapse of microfilaments (MFs) and microtubules (MTs) in CIK cells, and even loss of some cytoskeleton structure. Moreover, transcriptional changes of cytoskeletal genes (β-actin, lc3a, and keratin) were also determined, which have a high probability with cytoskeleton structure damage. Our data suggest that oxidative stress and cytoskeletal disruption may interact with each other and jointly lead to apoptosis and renal toxicity induced by MCs.
Collapse
Affiliation(s)
- Xiao Huang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Qin Qiao
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Kang Wu
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Jing Wen
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Cuihong Huang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
23
|
Mechanisms of microcystin-LR-induced cytoskeletal disruption in animal cells. Toxicon 2015; 101:92-100. [DOI: 10.1016/j.toxicon.2015.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
|
24
|
Hou J, Li L, Xue T, Long M, Su Y, Wu N. Hepatic positive and negative antioxidant responses in zebrafish after intraperitoneal administration of toxic microcystin-LR. CHEMOSPHERE 2015; 120:729-736. [PMID: 25462319 DOI: 10.1016/j.chemosphere.2014.09.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Microcystin-LR (MC-LR) is the most toxic and common among microcystins. In order to understand the possible molecular mechanisms of hepatic antioxidation and detoxification, the activities and transcriptional levels of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferases (GST), and glutathione (GSH) contents as well as histopathological changes were studied in the liver of female zebrafish injected intraperitoneally (i.p.) at doses of 50 and 200 μg MC-LR kg(-1) body weight (BW) respectively. In the low dose group (50 μg MC-LR kg(-1)), zebrafish displayed a little unease at the initial 1h post-injection (hpi), slight hepatic injury and quick recovery, and enhanced enzymatic activities and up-regulated gene expression of antioxidant enzymes. In contrast, high dose of MC-LR (200 μg MC-LR kg(-1)) resulted in uneasiness and frantic swimming, severe hepatic injury, and suppressed enzymatic activities and down-regulated gene expression of antioxidant enzymes. GSH depletion in both dose groups may be explained by enhanced antioxidant reactions and higher rates of MC conjugation, suggesting the crucial roles of GSH in both cellular antioxidant protection and MC-LR detoxification. This study demonstrated that administration of MC-LR caused a positive response in the low dose group but a negative response in the high dose group. Hepatic positive/negative responses in the low/high dose group might result from an increased/decreased synthesis of antioxidant enzymes at the molecular level, respectively. These results illustrated that antioxidant status played an important role in zebrafish protection against MC-LR-caused oxidative stress through regulating antioxidant enzyme gene expression and activities.
Collapse
Affiliation(s)
- Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| | - Ting Xue
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Meng Long
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Yujing Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Ning Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| |
Collapse
|
25
|
Liu W, Qiao Q, Chen Y, Wu K, Zhang X. Microcystin-LR exposure to adult zebrafish (Danio rerio) leads to growth inhibition and immune dysfunction in F1 offspring, a parental transmission effect of toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:360-367. [PMID: 25105566 DOI: 10.1016/j.aquatox.2014.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Microcystins (MCs) are algal toxins produced intracellularly within the cyanobacteria cells. MCs exposure exerts great harm to the reproductive system of fish and deteriorates the quality of eggs and sperms, and has further adverse effects on early developmental stages of fish. Whether the MC toxicity can be parentally transmitted to offspring, even though the embryos and larvae are free of MC exposure? In the present study, adult zebrafish were continuously exposed to MC-LR (with dose of 1, 5 and 20 μg/L) for 30 days. After MC-LR exposure, fertilized eggs were collected and the following F1 generation was reared in water containing no MC-LR until 60 days post fertilization (dpf). In F1 offspring, both body weight and body length were evidently dropped. Some growth and immune related genes were detected using the real-time PCR. The transcriptional levels of these genes significantly decreased in F1 offspring of zebrafish whose parents were treated with 5 and 20 μg/L MC-LR. The activities of some antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) significantly dropped in 5 and 20 μg/L MC-LR groups, and the malondialdehyde (MDA) levels markedly increased in all the three treatment groups. Furthermore, distinct pathological changes in liver were observed in F1 zebrafish. Our findings show that the MC-LR exposure to parental zebrafish results in liver damage and evidently influences the growth and immune function in F1 offspring. We consider this damage as a parental transmission effect of microcystin toxicity. Further mechanism studies are necessary to elucidate this transmission effect.
Collapse
Affiliation(s)
- Wanjing Liu
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Qin Qiao
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Yuanyuan Chen
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Kang Wu
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Xuezhen Zhang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China.
| |
Collapse
|
26
|
Meneely JP, Elliott CT. Microcystins: measuring human exposure and the impact on human health. Biomarkers 2013; 18:639-49. [DOI: 10.3109/1354750x.2013.841756] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|