1
|
van Olst B, Eerden SA, Eštok NA, Roy S, Abbas B, Lin Y, van Loosdrecht MCM, Pabst M. Metaproteomic Profiling of the Secretome of a Granule-forming Ca. Accumulibacter Enrichment. Proteomics 2025; 25:e202400189. [PMID: 40066478 PMCID: PMC12019908 DOI: 10.1002/pmic.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 04/25/2025]
Abstract
Extracellular proteins are supposed to play crucial roles in the formation and structure of biofilms and aggregates. However, often little is known about these proteins, in particular for microbial communities. Here, we use two advanced metaproteomic approaches to study the extracellular proteome in a granular Candidatus Accumulibacter enrichment as a proxy for microbial communities that form solid microbial granules, such as those used in biological wastewater treatment. Limited proteolysis of whole granules and metaproteome isolation from the culture's supernatant successfully classified over 50% of the identified protein biomass to be secreted. Moreover, structural and sequence-based classification identified 387 proteins, corresponding to over 50% of the secreted protein biomass, with characteristics that could aid the formation of aggregates, including filamentous, beta-barrel containing, and cell surface proteins. While various of these aggregate-forming proteins originated from Ca. Accumulibacter, some proteins associated with other taxa. This suggests that not only a range of different proteins but also multiple organisms contribute to granular biofilm formation. Therefore, the obtained extracellular metaproteome data from the granular Ca. Accumulibacter enrichment provides a resource for exploring proteins that potentially support the formation and stability of granular biofilms, whereas the demonstrated approaches can be applied to explore biofilms of microbial communities in general.
Collapse
Affiliation(s)
- Berdien van Olst
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Simon A. Eerden
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Nella A. Eštok
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Samarpita Roy
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Ben Abbas
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Yuemei Lin
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | | | - Martin Pabst
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| |
Collapse
|
2
|
Loivamaa I, Sillanpää A, Deptula P, Chamlagain B, Edelmann M, Auvinen P, Nyman TA, Savijoki K, Piironen V, Varmanen P. Aerobic adaptation and metabolic dynamics of Propionibacterium freudenreichii DSM 20271: insights from comparative transcriptomics and surfaceome analysis. mSystems 2024; 9:e0061524. [PMID: 39345151 PMCID: PMC11494915 DOI: 10.1128/msystems.00615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Propionibacterium freudenreichii (PFR) DSM 20271T is a bacterium known for its ability to thrive in diverse environments and to produce vitamin B12. Despite its anaerobic preference, recent studies have elucidated its ability to prosper in the presence of oxygen, prompting a deeper exploration of its physiology under aerobic conditions. Here, we investigated the response of DSM 20271T to aerobic growth by employing comparative transcriptomic and surfaceome analyses alongside metabolite profiling. Cultivation under controlled partial pressure of oxygen (pO2) conditions revealed significant increases in biomass formation and altered metabolite production, notably of vitamin B12, pseudovitamin-B12, propionate, and acetate, under aerobic conditions. Transcriptomic analysis identified differential expression of genes involved in lactate metabolism, tricarboxylic acid cycle, and electron transport chain, suggesting metabolic adjustments to aerobic environments. Moreover, surfaceome analysis unveiled growth environment-dependent changes in surface protein abundance, with implications for adaptation to atmospheric conditions. Supplementation experiments with key compounds highlighted the potential for enhancing aerobic growth, emphasizing the importance of iron and α-ketoglutarate availability. Furthermore, in liquid culture, FeSO4 supplementation led to increased heme production and reduced vitamin B12 production, highlighting the impact of oxygen and iron availability on the metabolic pathways. These findings deepen our understanding of PFR's physiological responses to oxygen availability and offer insights for optimizing its growth in industrial applications. IMPORTANCE The study of the response of Propionibacterium freudenreichii to aerobic growth is crucial for understanding how this bacterium adapts to different environments and produces essential compounds like vitamin B12. By investigating its physiological changes under aerobic conditions, we can gain insights into its metabolic adjustments and potential for enhanced growth. These findings not only deepen our understanding of P. freudenreichii's responses to oxygen availability but also offer valuable information for optimizing its growth in industrial applications. This research sheds light on the adaptive mechanisms of this bacterium, providing a foundation for further exploration and potential applications in various fields.
Collapse
Affiliation(s)
- Iida Loivamaa
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Annika Sillanpää
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Paulina Deptula
- Department of Food Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Bhawani Chamlagain
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Karlsson A, Alarcón LA, Piñeiro-Iglesias B, Jacobsson G, Skovbjerg S, Moore ERB, Kopparapu PK, Jin T, Karlsson R. Surface-Shaving of Staphylococcus aureus Strains and Quantitative Proteomic Analysis Reveal Differences in Protein Abundance of the Surfaceome. Microorganisms 2024; 12:1725. [PMID: 39203567 PMCID: PMC11357550 DOI: 10.3390/microorganisms12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Staphylococcus aureus is a pathogen known to cause a wide range of infections. To find new targets for identification and to understand host-pathogen interactions, many studies have focused on surface proteins. We performed bacterial-cell surface-shaving, followed by tandem mass tag for quantitative mass spectrometry proteomics, to examine the surfaceome of S. aureus. Two steps were performed, the first step including surface protein-deficient mutants of S. aureus Newman strain lacking important virulence genes (clfA and spa, important for adhesion and immune evasion and srtAsrtB, linking surface-associated virulence factors to the surface) and the second step including isolates of different clinical origin. All strains were compared to the Newman strain. In Step 1, altogether, 7880 peptides were identified, corresponding to 1290 proteins. In Step 2, 4949 peptides were identified, corresponding to 919 proteins and for each strain, approximately 20 proteins showed differential expression compared to the Newman strain. The identified surface proteins were related to host-cell-adherence and immune-system-evasion, biofilm formation, and survival under harsh conditions. The results indicate that surface-shaving of intact S. aureus bacterial strains in combination with quantitative proteomics is a useful tool to distinguish differences in protein abundance of the surfaceome, including the expression of virulence factors.
Collapse
Affiliation(s)
| | - Leonarda Achá Alarcón
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
| | - Beatriz Piñeiro-Iglesias
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
| | - Gunnar Jacobsson
- Department of Infectious Diseases, Skaraborg Hospital, 54185 Skövde, Sweden;
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
- Culture Collection of the University of Gothenburg (CCUG), Sahlgrenska Academy, 41390 Gothenburg, Sweden
| | - Pradeep Kumar Kopparapu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden; (P.K.K.); (T.J.)
- Department of Rheumatology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden; (P.K.K.); (T.J.)
- Department of Rheumatology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Roger Karlsson
- Nanoxis Consulting AB, 40016 Gothenburg, Sweden;
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
4
|
Seixas AMM, Silva C, Marques JMM, Mateus P, Rodríguez-Ortega MJ, Feliciano JR, Leitão JH, Sousa SA. Surface-Exposed Protein Moieties of Burkholderia cenocepacia J2315 in Microaerophilic and Aerobic Conditions. Vaccines (Basel) 2024; 12:398. [PMID: 38675780 PMCID: PMC11054960 DOI: 10.3390/vaccines12040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Burkholderia cepacia complex infections remain life-threatening to cystic fibrosis patients, and due to the limited eradication efficiency of current treatments, novel antimicrobial therapies are urgently needed. Surface proteins are among the best targets to develop new therapeutic strategies since they are exposed to the host's immune system. A surface-shaving approach was performed using Burkholderia cenocepacia J2315 to quantitatively compare the relative abundance of surface-exposed proteins (SEPs) expressed by the bacterium when grown under aerobic and microaerophilic conditions. After trypsin incubation of live bacteria and identification of resulting peptides by liquid chromatography coupled with mass spectrometry, a total of 461 proteins with ≥2 unique peptides were identified. Bioinformatics analyses revealed a total of 53 proteins predicted as localized at the outer membrane (OM) or extracellularly (E). Additionally, 37 proteins were predicted as moonlight proteins with OM or E secondary localization. B-cell linear epitope bioinformatics analysis of the proteins predicted to be OM and E-localized revealed 71 SEP moieties with predicted immunogenic epitopes. The protegenicity higher scores of proteins BCAM2761, BCAS0104, BCAL0151, and BCAL0849 point out these proteins as the best antigens for vaccine development. Additionally, 10 of the OM proteins also presented a high probability of playing important roles in adhesion to host cells, making them potential targets for passive immunotherapeutic approaches. The immunoreactivity of three of the OM proteins identified was experimentally demonstrated using serum samples from cystic fibrosis patients, validating our strategy for identifying immunoreactive moieties from surface-exposed proteins of potential interest for future immunotherapies development.
Collapse
Affiliation(s)
- António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.); (P.M.); (J.R.F.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carolina Silva
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.); (P.M.); (J.R.F.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joana M. M. Marques
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.); (P.M.); (J.R.F.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Patrícia Mateus
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.); (P.M.); (J.R.F.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain;
| | - Joana R. Feliciano
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.); (P.M.); (J.R.F.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.); (P.M.); (J.R.F.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.); (P.M.); (J.R.F.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Yang J, Zhang X, Dong J, Zhang Q, Sun E, Chen C, Miao Z, Zheng Y, Zhang N, Tao P. De novo identification of bacterial antigens of a clinical isolate by combining use of proteosurfaceomics, secretomics, and BacScan technologies. Front Immunol 2023; 14:1274027. [PMID: 38098490 PMCID: PMC10720918 DOI: 10.3389/fimmu.2023.1274027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Background Emerging infectious diseases pose a significant threat to both human and animal populations. Rapid de novo identification of protective antigens from a clinical isolate and development of an antigen-matched vaccine is a golden strategy to prevent the spread of emerging novel pathogens. Methods Here, we focused on Actinobacillus pleuropneumoniae, which poses a serious threat to the pig industry, and developed a general workflow by integrating proteosurfaceomics, secretomics, and BacScan technologies for the rapid de novo identification of bacterial protective proteins from a clinical isolate. Results As a proof of concept, we identified 3 novel protective proteins of A. pleuropneumoniae. Using the protective protein HBS1_14 and toxin proteins, we have developed a promising multivalent subunit vaccine against A. pleuropneumoniae. Discussion We believe that our strategy can be applied to any bacterial pathogen and has the potential to significantly accelerate the development of antigen-matched vaccines to prevent the spread of an emerging novel bacterial pathogen.
Collapse
Affiliation(s)
- Jinyue Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Xueting Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Junhua Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Qian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Erchao Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Cen Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Zhuangxia Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Yifei Zheng
- Veterinary Diagnostic Laboratory, Neixiang Center for Animal Disease Control and Prevention, Nanyang, Henan, China
| | - Nan Zhang
- Neixiang Animal Health Supervision, Neixiang Animal Husbandry Bureau, Nanyang, Henan, China
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| |
Collapse
|
6
|
Cocorullo M, Chiarelli LR, Stelitano G. Improving Protection to Prevent Bacterial Infections: Preliminary Applications of Reverse Vaccinology against the Main Cystic Fibrosis Pathogens. Vaccines (Basel) 2023; 11:1221. [PMID: 37515037 PMCID: PMC10384294 DOI: 10.3390/vaccines11071221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reverse vaccinology is a powerful tool that was recently used to develop vaccines starting from a pathogen genome. Some bacterial infections have the necessity to be prevented then treated. For example, individuals with chronic pulmonary diseases, such as Cystic Fibrosis, are prone to develop infections and biofilms in the thick mucus that covers their lungs, mainly caused by Burkholderia cepacia complex, Haemophilus influenzae, Mycobacterium abscessus complex, Pseudomonas aeruginosa and Staphylococcus aureus. These infections are complicated to treat and prevention remains the best strategy. Despite the availability of vaccines against some strains of those pathogens, it is necessary to improve the immunization of people with Cystic Fibrosis against all of them. An effective approach is to develop a broad-spectrum vaccine to utilize proteins that are well conserved across different species. In this context, reverse vaccinology, a method based on computational analysis of the genome of various microorganisms, appears as one of the most promising tools for the identification of putative targets for broad-spectrum vaccine development. This review provides an overview of the vaccines that are under development by reverse vaccinology against the aforementioned pathogens, as well as the progress made so far.
Collapse
Affiliation(s)
- Mario Cocorullo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
7
|
de Jong E, Kocer A. Current Methods for Identifying Plasma Membrane Proteins as Cancer Biomarkers. MEMBRANES 2023; 13:409. [PMID: 37103836 PMCID: PMC10142483 DOI: 10.3390/membranes13040409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Plasma membrane proteins are a special class of biomolecules present on the cellular membrane. They provide the transport of ions, small molecules, and water in response to internal and external signals, define a cell's immunological identity, and facilitate intra- and intercellular communication. Since they are vital to almost all cellular functions, their mutants, or aberrant expression is linked to many diseases, including cancer, where they are a part of cancer cell-specific molecular signatures and phenotypes. In addition, their surface-exposed domains make them exciting biomarkers for targeting by imaging agents and drugs. This review looks at the challenges in identifying cancer-related cell membrane proteins and the current methodologies that solve most of the challenges. We classified the methodologies as biased, i.e., search cells for the presence of already known membrane proteins. Second, we discuss the unbiased methods that can identify proteins without prior knowledge of what they are. Finally, we discuss the potential impact of membrane proteins on the early detection and treatment of cancer.
Collapse
|
8
|
Yan Z, Yao X, Pan R, Zhang J, Ma X, Dong N, Wei J, Liu K, Qiu Y, Sealey K, Nichols H, Jarvis MA, Upton M, Li X, Ma Z, Liu J, Li B. Subunit Vaccine Targeting Phosphate ABC Transporter ATP-Binding Protein, PstB, Provides Cross-Protection against Streptococcus suis Serotype 2, 7, and 9 in Mice. Vet Sci 2023; 10:vetsci10010048. [PMID: 36669049 PMCID: PMC9953333 DOI: 10.3390/vetsci10010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Streptococcus suis is a significant pathogen in pigs and a newly emerging zoonotic agent in humans. The presence of multiple serotypes and strains with diversified sequence types in pig herds highlights the need for the identification of broadly cross-reactive universal vaccine antigen targets, capable of providing cross-protection against S. suis infection. Subunit vaccines based on the conserved proteins shared between different S. suis serotypes are potential candidates for such a universally protective vaccine. In the present study, phosphate ABC transporter ATP-binding protein PstB (PstB), an immunogenic protein of the S. suis bacterium, was expressed and purified, and then subjected to cross-protection evaluation in mice. The PstB protein showed nearly 100% amino acid similarity across a panel of 31 S. suis isolates representing different serotypes, which were collected from different countries. A recombinant PstB (rPstB) protein (S. suis serotype 2) was recognized by rabbit sera specific to this serotype, and induced high levels of IFN-γ and IL-4 in mice immunized with the recombinant protein. These cytokines are considered important for protection against S. suis infection. Immunization of mice with rPstB resulted in an 87.5% protection against challenge with S. suis serotype 2 and 9 strains, suggesting a high level of cross-protection for S. suis serotypes 2 and 9. A lower protection rate (62.5%) was observed in mice challenged with the S. suis serotype 7 strain. These data demonstrate that PstB is a promising target antigen for development as a component of a universal subunit vaccine against multiple S. suis serotypes.
Collapse
Affiliation(s)
- Zujie Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ruyi Pan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Nihua Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Katie Sealey
- School of Biomedical Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
| | - Hester Nichols
- The Vaccine Group Ltd., Plymouth, Derriford Research Facility, Devon PL6 8BX, UK
| | - Michael A. Jarvis
- School of Biomedical Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
- The Vaccine Group Ltd., Plymouth, Derriford Research Facility, Devon PL6 8BX, UK
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
| | - Xiangdong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (J.L.); (B.L.)
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
- Correspondence: (J.L.); (B.L.)
| |
Collapse
|
9
|
Cell Proteins Obtained by Peptic Shaving of Two Phenotypically Different Strains of Streptococcus thermophilus as a Source of Anti-Inflammatory Peptides. Nutrients 2022; 14:nu14224777. [PMID: 36432464 PMCID: PMC9695010 DOI: 10.3390/nu14224777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus thermophilus, a food grade bacterium, is extensively used in the manufacture of fermented products such as yogurt and cheeses. It has been shown that S. thermophilus strains exhibited varying anti-inflammatory activities in vitro. Our previous study displayed that this activity could be partially due to peptide(s) generated by trypsin hydrolysis of the surface proteins of S. thermophilus LMD-9. Surface protease PrtS could be the source of these peptides during gastrointestinal digestion. Therefore, peptide hydrolysates were obtained by shaving two phenotypically distinct strains of S. thermophilus (LMD-9 PrtS+ and CNRZ-21N PrtS-) with pepsin, a gastric protease, followed or not by trypsinolysis. The peptide hydrolysates of both strains exhibited anti-inflammatory action through the modulation of pro-inflammatory mediators in LPS-stimulated THP-1 macrophages (COX-2, Pro-IL-1β, IL-1β, and IL-8) and LPS-stimulated HT-29 cells (IL-8). Therefore, peptides released from either PrtS+ or PrtS- strains in the gastrointestinal tract during digestion of a product containing this bacterium may display anti-inflammatory effects and reduce the risk of inflammation-related chronic diseases.
Collapse
|
10
|
Abstract
Multiple membrane-shaping and remodeling processes are associated with tetraspanin proteins by yet unknown mechanisms. Tetraspanins constitute a family of proteins with four transmembrane domains present in every cell type. Prominent examples are tetraspanin4 and CD9, which are required for the fundamental cellular processes of migrasome formation and fertilization, respectively. These proteins are enriched in curved membrane structures, such as cellular retraction fibers and oocyte microvilli. The factors driving this enrichment are, however, unknown. Here, we revealed that tetraspanin4 and CD9 are curvature sensors with a preference for positive membrane curvature. To this end, we used a biomimetic system emulating membranes of cell retraction fibers and oocyte microvilli by membrane tubes pulled out of giant plasma membrane vesicles with controllable membrane tension and curvature. We developed a simple thermodynamic model for the partitioning of curvature sensors between flat and tubular membranes, which allowed us to estimate the individual intrinsic curvatures of the two proteins. Overall, our findings illuminate the process of migrasome formation and oocyte microvilli shaping and provide insight into the role of tetraspanin proteins in membrane remodeling processes.
Collapse
|
11
|
Pauwels J, Fijałkowska D, Eyckerman S, Gevaert K. Mass spectrometry and the cellular surfaceome. MASS SPECTROMETRY REVIEWS 2022; 41:804-841. [PMID: 33655572 DOI: 10.1002/mas.21690] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The collection of exposed plasma membrane proteins, collectively termed the surfaceome, is involved in multiple vital cellular processes, such as the communication of cells with their surroundings and the regulation of transport across the lipid bilayer. The surfaceome also plays key roles in the immune system by recognizing and presenting antigens, with its possible malfunctioning linked to disease. Surface proteins have long been explored as potential cell markers, disease biomarkers, and therapeutic drug targets. Despite its importance, a detailed study of the surfaceome continues to pose major challenges for mass spectrometry-driven proteomics due to the inherent biophysical characteristics of surface proteins. Their inefficient extraction from hydrophobic membranes to an aqueous medium and their lower abundance compared to intracellular proteins hamper the analysis of surface proteins, which are therefore usually underrepresented in proteomic datasets. To tackle such problems, several innovative analytical methodologies have been developed. This review aims at providing an extensive overview of the different methods for surfaceome analysis, with respective considerations for downstream mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Jarne Pauwels
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Piletska E, Magumba K, Joseph L, Garcia Cruz A, Norman R, Singh R, Tabasso AFS, Jones DJL, Macip S, Piletsky S. Molecular imprinting as a tool for determining molecular markers: a lung cancer case. RSC Adv 2022; 12:17747-17754. [PMID: 35765329 PMCID: PMC9200412 DOI: 10.1039/d2ra01830f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Determining which cancer patients will be sensitive to a given therapy is essential for personalised medicine. Thus, it is important to develop new tools that will allow us to stratify patients according to their predicted response to treatment. The aim of work presented here was to use molecular imprinting for determining the sensitivity of lung cancer cell lines to ionising radiation based on cell surface proteomic differences. Molecularly imprinted polymer nanoparticles (nanoMIPs) were formed in the presence of whole cells. Following trypsinolysis, protein epitopes protected by complexing with MIPs were eluted from the nanoparticles and analysed by LC-MS/MS. The analysis identified two membrane proteins, neutral amino acid transporter B (0) and 4F2 cell-surface antigen heavy chain, the abundance of which in the lung cancer cells could indicate resistance of these cells to radiotherapy. This proof-of-principle experiments shows that this technology can be used in the discovery of new biomarkers and in development of novel diagnostic and therapeutic tools for a personalised medicine approach to treating cancer. A first use of molecular imprinting for characterisation of surfaceome of the lung cancer cells and discovery of the molecular markers for radiosensitivity: towards development of an effective tool for cancer therapy and personalised medicine.![]()
Collapse
Affiliation(s)
- Elena Piletska
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Kirabo Magumba
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Lesslly Joseph
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Alvaro Garcia Cruz
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Rachel Norman
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK
| | - Rajinder Singh
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK
| | - Antonella F S Tabasso
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK.,Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK.,Department of Cardiovascular Sciences, University of Leicester Leicester UK.,National Institute for Health Research, Leicester Biomedical Research Centre, Glenfield Hospital Leicester UK
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester UK.,FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya Barcelona Spain
| | - Sergey Piletsky
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| |
Collapse
|
13
|
Challenges in Serologic Diagnostics of Neglected Human Systemic Mycoses: An Overview on Characterization of New Targets. Pathogens 2022; 11:pathogens11050569. [PMID: 35631090 PMCID: PMC9143782 DOI: 10.3390/pathogens11050569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic mycoses have been viewed as neglected diseases and they are responsible for deaths and disabilities around the world. Rapid, low-cost, simple, highly-specific and sensitive diagnostic tests are critical components of patient care, disease control and active surveillance. However, the diagnosis of fungal infections represents a great challenge because of the decline in the expertise needed for identifying fungi, and a reduced number of instruments and assays specific to fungal identification. Unfortunately, time of diagnosis is one of the most important risk factors for mortality rates from many of the systemic mycoses. In addition, phenotypic and biochemical identification methods are often time-consuming, which has created an increasing demand for new methods of fungal identification. In this review, we discuss the current context of the diagnosis of the main systemic mycoses and propose alternative approaches for the identification of new targets for fungal pathogens, which can help in the development of new diagnostic tests.
Collapse
|
14
|
Montemari AL, Marzano V, Essa N, Levi Mortera S, Rossitto M, Gardini S, Selan L, Vrenna G, Onetti Muda A, Putignani L, Fiscarelli EV. A Shaving Proteomic Approach to Unveil Surface Proteins Modulation of Multi-Drug Resistant Pseudomonas aeruginosa Strains Isolated From Cystic Fibrosis Patients. Front Med (Lausanne) 2022; 9:818669. [PMID: 35355602 PMCID: PMC8959810 DOI: 10.3389/fmed.2022.818669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most common rare disease caused by a mutation of the CF transmembrane conductance regulator gene encoding a channel protein of the apical membrane of epithelial cells leading to alteration of Na+ and K+ transport, hence inducing accumulation of dense and sticky mucus and promoting recurrent airway infections. The most detected bacterium in CF patients is Pseudomonas aeruginosa (PA) which causes chronic colonization, requiring stringent antibiotic therapies that, in turn induces multi-drug resistance. Despite eradication attempts at the first infection, the bacterium is able to utilize several adaptation mechanisms to survive in hostile environments such as the CF lung. Its adaptive machinery includes modulation of surface molecules such as efflux pumps, flagellum, pili and other virulence factors. In the present study we compared surface protein expression of PA multi- and pan-drug resistant strains to wild-type antibiotic-sensitive strains, isolated from the airways of CF patients with chronic colonization and recent infection, respectively. After shaving with trypsin, microbial peptides were analyzed by tandem-mass spectrometry on a high-resolution platform that allowed the identification of 174 differentially modulated proteins localized in the region from extracellular space to cytoplasmic membrane. Biofilm assay was performed to characterize all 26 PA strains in term of biofilm production. Among the differentially expressed proteins, 17 were associated to the virulome (e.g., Tse2, Tse5, Tsi1, PilF, FliY, B-type flagellin, FliM, PyoS5), six to the resistome (e.g., OprJ, LptD) and five to the biofilm reservoir (e.g., AlgF, PlsD). The biofilm assay characterized chronic antibiotic-resistant isolates as weaker biofilm producers than wild-type strains. Our results suggest the loss of PA early virulence factors (e.g., pili and flagella) and later expression of virulence traits (e.g., secretion systems proteins) as an indicator of PA adaptation and persistence in the CF lung environment. To our knowledge, this is the first study that, applying a shaving proteomic approach, describes adaptation processes of a large collection of PA clinical strains isolated from CF patients in early and chronic infection phases.
Collapse
Affiliation(s)
- Anna Lisa Montemari
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valeria Marzano
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nour Essa
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Martina Rossitto
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Andrea Onetti Muda
- Department of Diagnostics and Laboratory Medicine, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
15
|
Unravelling the Initial Triggers of Botrytis cinerea Infection: First Description of Its Surfactome. J Fungi (Basel) 2021; 7:jof7121021. [PMID: 34947003 PMCID: PMC8708654 DOI: 10.3390/jof7121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Botrytis cinerea is a critically important phytopathogenic fungus, causing devastating crop losses; signal transduction cascades mediate the “dialogue” among the fungus, plant, and environment. Surface proteins play important roles as front-line receptors. We report the first description of the surfactome of a filamentous fungus. To obtain a complete view of these cascades during infection of B. cinerea, its surfactome has been described by optimization of the “shaving” process and LC–MS/MS at two different infection stages, and with both rapid and late responses to environmental changes. The best results were obtained using PBS buffer in the “shaving” protocol. The surfactome obtained comprises 1010 identified proteins. These have been categorized by gene ontology and protein–protein interactions to reveal new potential pathogenicity/virulence factors. From these data, the percentage of total proteins predicted for the genome of the fungus represented by proteins identified in this and other proteomics studies is calculated at 54%, a big increase over the previous 12%. The new data may be crucial for understanding better its biological activity and pathogenicity. Given its extensive exposure to plants and environmental conditions, the surfactome presents innumerable opportunities for interactions between the fungus and external elements, which should offer the best targets for fungicide development.
Collapse
|
16
|
Techawiwattanaboon T, Thaibankluay P, Kreangkaiwal C, Sathean-Anan-Kun S, Khaenam P, Makjaroen J, Pisitkun T, Patarakul K. Surface proteomics and label-free quantification of Leptospira interrogans serovar Pomona. PLoS Negl Trop Dis 2021; 15:e0009983. [PMID: 34843470 PMCID: PMC8659334 DOI: 10.1371/journal.pntd.0009983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/09/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Leptospirosis is a re-emerging zoonosis with a global distribution. Surface-exposed outer membrane proteins (SE-OMPs) are crucial for bacterial-host interactions. SE-OMPs locate and expose their epitope on cell surface where is easily accessed by host molecules. This study aimed to screen for surface-exposed proteins and their abundance profile of pathogenic Leptospira interrogans serovar Pomona. Two complementary approaches, surface biotinylation and surface proteolytic shaving, followed by liquid chromatography tandem-mass spectrometry (LC-MS/MS) were employed to identify SE-OMPs of intact leptospires. For quantitative comparison, in-depth label-free analysis of SE-OMPs obtained from each method was performed using MaxQuant. The total number of proteins identified was 1,001 and 238 for surface biotinylation and proteinase K shaving, respectively. Among these, 39 were previously known SE-OMPs and 68 were predicted to be localized on the leptospiral surface. Based on MaxQuant analysis for relative quantification, six known SE-OMPs including EF- Tu, LipL21, LipL41, LipL46, Loa22, and OmpL36, and one predicted SE-OMPs, LipL71 were found in the 20 most abundant proteins, in which LipL41 was the highest abundant SE-OMP. Moreover, uncharacterized LIC14011 protein (LIP3228 ortholog in serovar Pomona) was identified as a novel predicted surface βb-OMP. High-abundance leptospiral SE-OMPs identified in this study may play roles in virulence and infection and are potential targets for development of vaccine or diagnostic tests for leptospirosis.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Praparat Thaibankluay
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Medical Science, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Chahya Kreangkaiwal
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Suwitra Sathean-Anan-Kun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Prasong Khaenam
- Center for Standardization and Product Validation, Faculty of Medical Technology, Mahidol University, Bangkok-Noi, Bangkok, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
17
|
Lee S, Kang TW, Hwang IJ, Kim HI, Jeon SJ, Yim D, Choi C, Son W, Kim H, Yang CS, Lee H, Kim JH. Transition-Metal Dichalcogenide Artificial Antibodies with Multivalent Polymeric Recognition Phases for Rapid Detection and Inactivation of Pathogens. J Am Chem Soc 2021; 143:14635-14645. [PMID: 34410692 DOI: 10.1021/jacs.1c05458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibodies are recognition molecules that can bind to diverse targets ranging from pathogens to small analytes with high binding affinity and specificity, making them widely employed for sensing and therapy. However, antibodies have limitations of low stability, long production time, short shelf life, and high cost. Here, we report a facile approach for the design of luminescent artificial antibodies with nonbiological polymeric recognition phases for the sensitive detection, rapid identification, and effective inactivation of pathogenic bacteria. Transition-metal dichalcogenide (TMD) nanosheets with a neutral dextran phase at the interfaces selectively recognized S. aureus, whereas the nanosheets bearing a carboxymethylated dextran phase selectively recognized E. coli O157:H7 with high binding affinity. The bacterial binding sites recognized by the artificial antibodies were thoroughly identified by experiments and molecular dynamics simulations, revealing the significance of their multivalent interactions with the bacterial membrane components for selective recognition. The luminescent WS2 artificial antibodies could rapidly detect the bacteria at a single copy from human serum without any purification and amplification. Moreover, the MoSe2 artificial antibodies selectively killed the pathogenic bacteria in the wounds of infected mice under light irradiation, leading to effective wound healing. This work demonstrates the potential of TMD artificial antibodies as an alternative to antibodies for sensing and therapy.
Collapse
Affiliation(s)
- Sin Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Tae Woog Kang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - In-Jun Hwang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hye-In Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Su-Ji Jeon
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - DaBin Yim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Chanhee Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Wooic Son
- Department of Molecular and Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
18
|
Approaching In Vivo Models of Pneumococcus-Host Interaction: Insights into Surface Proteins, Capsule Production, and Extracellular Vesicles. Pathogens 2021; 10:pathogens10091098. [PMID: 34578131 PMCID: PMC8471892 DOI: 10.3390/pathogens10091098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Infections caused by the Gram-positive bacterium Streptococcus pneumoniae have become a major health problem worldwide because of their high morbidity and mortality rates, especially in developing countries. This microorganism colonizes the human upper respiratory tract and becomes pathogenic under certain circumstances, which are not well known. In the interaction with the host, bacterial surface structures and proteins play major roles. To gain knowledge into gradual changes and adaptive mechanisms that this pathogen undergoes from when it enters the host, we mimicked several in vivo situations representing interaction with epithelial and macrophage cells, as well as a condition of presence in blood. Then, we analyzed, in four pneumococcal strains, two major surface structures, the capsule and extracellular vesicles produced by the pneumococci, as well as surface proteins by proteomics, using the “shaving” approach, followed by LC-MS/MS. We found important differences in both surface ultrastructures and proteins among the culture conditions and strains used. Thus, this work provides insights into physiological adaptations of the pneumococcus when it interacts with the host, which may be useful for the design of strategies to combat infections caused by this pathogen.
Collapse
|
19
|
Fostering "Education": Do Extracellular Vesicles Exploit Their Own Delivery Code? Cells 2021; 10:cells10071741. [PMID: 34359911 PMCID: PMC8305232 DOI: 10.3390/cells10071741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), comprising large microvesicles (MVs) and exosomes (EXs), play a key role in intercellular communication, both in physiological and in a wide variety of pathological conditions. However, the education of EV target cells has so far mainly been investigated as a function of EX cargo, while few studies have focused on the characterization of EV surface membrane molecules and the mechanisms that mediate the addressability of specific EVs to different cell types and tissues. Identifying these mechanisms will help fulfill the diagnostic, prognostic, and therapeutic promises fueled by our growing knowledge of EVs. In this review, we first discuss published studies on the presumed EV “delivery code” and on the combinations of the hypothesized EV surface membrane “sender” and “recipient” molecules that may mediate EV targeting in intercellular communication. Then we briefly review the main experimental approaches and techniques, and the bioinformatic tools that can be used to identify and characterize the structure and functional role of EV surface membrane molecules. In the final part, we present innovative techniques and directions for future research that would improve and deepen our understandings of EV-cell targeting.
Collapse
|
20
|
Comparative Exoproteome Analysis of Streptococcus suis Human Isolates. Microorganisms 2021; 9:microorganisms9061287. [PMID: 34204746 PMCID: PMC8231589 DOI: 10.3390/microorganisms9061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
The swine pathogen Streptococcus suis is a Gram-positive bacterium which causes infections in pigs, with an impact in animal health and in the livestock industry, and it is also an important zoonotic agent. During the infection process, surface and secreted proteins are essential in the interaction between microorganisms and their hosts. Here, we report a comparative proteomic analysis of the proteins released to the extracellular milieu in six human clinical isolates belonging to the highly prevalent and virulent serotype 2. The total secreted content was precipitated and analyzed by GeLC-MS/MS. In the six strains, 144 proteins assigned to each of the categories of extracellular or surface proteins were identified, as well as 680 predicted cytoplasmic proteins, many of which are putative moonlighting proteins. Of the nine predicted signal peptide-I secreted proteins, seven had relevant antigenic potential when they were analyzed through bioinformatic analysis. This is the first work comparing the exoproteome fraction of several human isolates of this important pathogen.
Collapse
|
21
|
Abstract
The cellular surfaceome and its residing extracellularly exposed proteins are involved in a multitude of molecular signaling processes across the viral infection cycle. Successful viral propagation, including viral entry, immune evasion, virion release and viral spread rely on dynamic molecular interactions with the surfaceome. Decoding of these viral-host surfaceome interactions using advanced technologies enabled the discovery of fundamental new functional insights into cellular and viral biology. In this review, we highlight recently developed experimental strategies, with a focus on spatial proteotyping technologies, aiding in the rational design of theranostic strategies to combat viral infections.
Collapse
|
22
|
Lozančić M, Žunar B, Hrestak D, Lopandić K, Teparić R, Mrša V. Systematic Comparison of Cell Wall-Related Proteins of Different Yeasts. J Fungi (Basel) 2021; 7:jof7020128. [PMID: 33572482 PMCID: PMC7916363 DOI: 10.3390/jof7020128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Yeast cell walls have two major roles, to preserve physical integrity of the cell, and to ensure communication with surrounding molecules and cells. While the first function requires evolutionary conserved polysaccharide network synthesis, the second needs to be flexible and provide adaptability to different habitats and lifestyles. In this study, the comparative in silico analysis of proteins required for cell wall biosynthesis and functions containing 187 proteins of 92 different yeasts was performed in order to assess which proteins were broadly conserved among yeasts and which were more species specific. Proteins were divided into several groups according to their role and localization. As expected, many Saccharomyces cerevisiae proteins involved in protein glycosylation, glycosylphosphatidylinositol (GPI) synthesis and the synthesis of wall polysaccharides had orthologues in most other yeasts. Similarly, a group of GPI anchored proteins involved in cell wall biosynthesis (Gas proteins and Dfg5p/Dcw1p) and other non-GPI anchored cell wall proteins involved in the wall synthesis and remodeling were highly conserved. However, GPI anchored proteins involved in flocculation, aggregation, cell separation, and those of still unknown functions were not highly conserved. The proteins localized in the cell walls of various yeast species were also analyzed by protein biotinylation and blotting. Pronounced differences were found both in the patterns, as well as in the overall amounts of different groups of proteins. The amount of GPI-anchored proteins correlated with the mannan to glucan ratio of the wall. Changes of the wall proteome upon temperature shift to 42 °C were detected.
Collapse
Affiliation(s)
- Mateja Lozančić
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Bojan Žunar
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Dora Hrestak
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Ksenija Lopandić
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, 1180 Vienna, Austria;
| | - Renata Teparić
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Vladimir Mrša
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
- Correspondence:
| |
Collapse
|
23
|
Wang W, Liu J, Guo S, Liu L, Yuan Q, Guo L, Pan S. Identification of Vibrio parahaemolyticus and Vibrio spp. Specific Outer Membrane Proteins by Reverse Vaccinology and Surface Proteome. Front Microbiol 2021; 11:625315. [PMID: 33633699 PMCID: PMC7901925 DOI: 10.3389/fmicb.2020.625315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of outer membrane proteins (OMPs) with desirable specificity and surface availability is a fundamental challenge to develop accurate immunodiagnostic assay and multivalent vaccine of pathogenic Vibrio species in food and aquaculture. Herein 101 OMPs were systemically screened from 4,831 non-redundant proteins of Vibrio parahaemolyticus by bioinformatical predication of signaling peptides, transmembrane (TM) α-helix, and subcellular location. The sequence homology analysis with 32 species of Vibrio spp. and all the non-Vibrio strains revealed that 15 OMPs were conserved in at least 23 Vibrio species, including BamA (VP2310), GspD (VP0133), Tolc (VP0425), OmpK (VP2362), OmpW (VPA0096), LptD (VP0339), Pal (VP1061), flagellar L-ring protein (VP0782), flagellar protein MotY (VP2111), hypothetical protein (VP1713), fimbrial assembly protein (VP2746), VacJ lipoprotein (VP2214), agglutination protein (VP1634), and lipoprotein (VP1267), Chitobiase (VP0755); high adhesion probability of flgH, LptD, OmpK, and OmpW indicated they were potential multivalent Vibrio vaccine candidates. V. parahaemolyticus OMPs were found to share high homology with at least one or two Vibrio species, 19 OMPs including OmpA like protein (VPA073), CsuD (VPA1504), and MtrC (VP1220) were found relatively specific to V. parahaemolyticus. The surface proteomic study by enzymatical shaving the cells showed the capsular polysaccharides most likely limited the protease action, while the glycosidases improved the availability of OMPs to trypsin. The OmpA (VPA1186, VPA0248, VP0764), Omp (VPA0166), OmpU (VP2467), BamA (VP2310), TolC (VP0425), GspD (VP0133), OmpK (VP2362), lpp (VPA1469), Pal (VP1061), agglutination protein (VP1634), and putative iron (III) compound receptor (VPA1435) have better availability on the cell surface.
Collapse
Affiliation(s)
- Wenbin Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Jianxin Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shanshan Guo
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Qianyun Yuan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
24
|
Olaya-Abril A, Rodríguez-Ortega MJ. Glass Slide-Printed Protein Arrays as a Platform to Discover Serodiagnostic Antigens Against Bacterial Infections. Methods Mol Biol 2021; 2344:151-161. [PMID: 34115358 DOI: 10.1007/978-1-0716-1562-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Infectious diseases represent a major cause of morbidity and mortality worldwide. Early detection of infections is capital for managing life-threatening cases. So far, traditional diagnostic methods such as microbiological cultures are slow and, sometimes, inaccurate. In the molecular era, high-throughput techniques are essential for providing tools that are able to diagnose in a fast and reliable way, as well as they can be used for monitoring the humoral response of groups of people in a program of epidemiological surveillance when an outbreak occurs, or when a vaccine is being evaluated. Antigen-based protein microarrays are an ideal means for these purposes, as they can carry up to thousands of protein antigens from pathogenic sources and be probed with sera from different human groups (acute or chronic infected people, convalescent, controls). For the diagnosis of bacterial infections, the best antigens are in principle the surface proteins, as they have the highest chances to raise an effective immune response. Here we describe a general protocol for fabricating a glass slide-based protein microarray using recombinant bacterial surface antigens, according to our own expertise in the study of pneumococcal disease. The probing with human sera aims to evaluate differences between diseased and healthy people, in order to discover discriminating antigens that can be used, after appropriate validation, in further easy-to-use formats such as immunostrips.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio "Severo Ochoa" Planta Baja, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Edificio "Severo Ochoa" Planta Baja, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain.
- Campus de Excelencia Internacional CeiA3, Córdoba, Spain.
| |
Collapse
|
25
|
Optimized GAPDH-truncated immunogen of Streptococcus equi elicits an enhanced immune response and provides effective protection in a mouse model. Vet Microbiol 2020; 254:108953. [PMID: 33647714 DOI: 10.1016/j.vetmic.2020.108953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022]
Abstract
Strangles is an acute and frequently diagnosed infectious disease caused by Streptococcus equi subsp. equi. Infection with this pathogen can cause grave losses to the equine industry. The present work investigates glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important surface-localized virulence factor of S. equi, to determine whether it could be developed into an efficacious and suitable subunit vaccine against strangles. Two different recombinant fragments of S. equi GAPDH, namely, GAPDH-L and GAPDH-S, were constructed and expressed. Further, the antigenicity and immunogenicity of these two recombinant proteins were compared and evaluated in a mouse model. Our results revealed that immune responses were efficiently induced by the proteins in immunized mice. Remarkably, higher survival rates and significantly lower bacterial loads in the lung, liver, kidney, and spleen were observed in the GAPDH-S group compared with the GAPDH-L group after challenge with S. equi. High levels of specific antibodies, elevated antibody titers, and increased proportions of CD8 + T cells further indicated that GAPDH-S elicited better humoral and cellular immune responses than GAPDH-L. Furthermore, the induction of TCR, TLR-2, TLR-3, and TLR-4 significantly increased in the GAPDH-S group compared with those in the GAPDH-L and negative control groups. In summary, our results indicate that the optimized recombinant protein GAPDH-S is a promising candidate construct that may be further developed into a multivalent subunit vaccine for strangles.
Collapse
|
26
|
Martínez-García E, Fraile S, Rodríguez Espeso D, Vecchietti D, Bertoni G, de Lorenzo V. Naked Bacterium: Emerging Properties of a Surfome-Streamlined Pseudomonas putida Strain. ACS Synth Biol 2020; 9:2477-2492. [PMID: 32786355 DOI: 10.1021/acssynbio.0c00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Environmental bacteria are most often endowed with native surface-attachment programs that frequently conflict with efforts to engineer biofilms and synthetic communities with given tridimensional architectures. In this work, we report the editing of the genome of Pseudomonas putida KT2440 for stripping the cells of most outer-facing structures of the bacterial envelope that mediate motion, binding to surfaces, and biofilm formation. To this end, 23 segments of the P. putida chromosome encoding a suite of such functions were deleted, resulting in the surface-naked strain EM371, the physical properties of which changed dramatically in respect to the wild type counterpart. As a consequence, surface-edited P. putida cells were unable to form biofilms on solid supports and, because of the swimming deficiency and other alterations, showed a much faster sedimentation in liquid media. Surface-naked bacteria were then used as carriers of interacting partners (e.g., Jun-Fos domains) ectopically expressed by means of an autotransporter display system on the now easily accessible cell envelope. Abstraction of individual bacteria as adhesin-coated spherocylinders enabled rigorous quantitative description of the multicell interplay brought about by thereby engineered physical interactions. The model was then applied to parametrize the data extracted from automated analysis of confocal microscopy images of the experimentally assembled bacterial flocks for analyzing their structure and distribution. The resulting data not only corroborated the value of P. putida EM371 over the parental strain as a platform for display artificial adhesins but also provided a strategy for rational engineering of catalytic communities.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sofía Fraile
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - David Rodríguez Espeso
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Davide Vecchietti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
27
|
Li Q, Lv Y, Li YA, Du Y, Guo W, Chu D, Wang X, Wang S, Shi H. Live attenuated Salmonella enterica serovar Choleraesuis vector delivering a conserved surface protein enolase induces high and broad protection against Streptococcus suis serotypes 2, 7, and 9 in mice. Vaccine 2020; 38:6904-6913. [PMID: 32907758 DOI: 10.1016/j.vaccine.2020.08.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/11/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023]
Abstract
Streptococcus suis, a major zoonotic pathogen in swine, can be classified into 35 serotypes. However, no universal vaccine against the multiple serotypes of S. suis is available, though some studies have shown homologous protection. Hence, developing an effective universal vaccine to protect pigs against multiple S. suis serotypes is necessary, or at the very least, to protect pigs against diseases caused by the dominant pathogenic serotypes. Enolase, a highly conserved surface protein, is present in all of the described S. suis serotypes. rSC0016 is an improved recombinant attenuated S. Choleraesuis vaccine vector, combining a sopB mutation with regulated delayed systems, achieving an adequate balance between host safety and immunogenicity. In order to develop a universal vaccine against the multiple serotypes of S. suis, a novel recombinant vaccine strain rSC0016 that carries a heterologous antigen enolase was developed in this study. According, it was found that the recombinant vaccine strain rSC0016(pS-Enolase) exhibited better colonization compared to the vaccine control strain rSC0018(pYA3493). In addition, a mouse model immunized with the strain rSC0016(pS-Enolase) elicited significant IgG antibody responses against both enolase and Salmonella antigens, while inducing good mucosal, humoral, and cellular immune responses against enolase. Finally, immunization with rSC0016(pS-Enolase) was shown to confer 100%, 80%, and 100% protection against the serotypes of SS2, SS7, and SS9, respectively, and significantly reduced histopathological lesions in mice. Overall, this study provides a promising universal vaccine candidate for use against the multiple serotypes of S. suis.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yifan Lv
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yuanzhao Du
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China
| | - Weiwei Guo
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China
| | - Dianfeng Chu
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China.
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, China; Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, China.
| |
Collapse
|
28
|
Sousa SA, Seixas AM, Mandal M, Rodríguez-Ortega MJ, Leitão JH. Characterization of the Burkholderia cenocepacia J2315 Surface-Exposed Immunoproteome. Vaccines (Basel) 2020; 8:vaccines8030509. [PMID: 32899969 PMCID: PMC7565204 DOI: 10.3390/vaccines8030509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Infections by the Burkholderia cepacia complex (Bcc) remain seriously life threatening to cystic fibrosis (CF) patients, and no effective eradication is available. A vaccine to protect patients against Bcc infections is a highly attractive therapeutic option, but none is available. A strategy combining the bioinformatics identification of putative surface-exposed proteins with an experimental approach encompassing the “shaving” of surface-exposed proteins with trypsin followed by peptide identification by liquid chromatography and mass spectrometry is here reported. The methodology allowed the bioinformatics identification of 263 potentially surface-exposed proteins, 16 of them also experimentally identified by the “shaving” approach. Of the proteins identified, 143 have a high probability of containing B-cell epitopes that are surface-exposed. The immunogenicity of three of these proteins was demonstrated using serum samples from Bcc-infected CF patients and Western blotting, validating the usefulness of this methodology in identifying potentially immunogenic surface-exposed proteins that might be used for the development of Bcc-protective vaccines.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-2184-19986 (S.A.S.); +351-2184-17688 (J.H.L.)
| | - António M.M. Seixas
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
| | - Manoj Mandal
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
| | | | - Jorge H. Leitão
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-2184-19986 (S.A.S.); +351-2184-17688 (J.H.L.)
| |
Collapse
|
29
|
Galán-Relaño Á, Gómez-Gascón L, Rodríguez-Franco A, Luque I, Huerta B, Tarradas C, Rodríguez-Ortega MJ. Search of Potential Vaccine Candidates against Trueperella pyogenes Infections through Proteomic and Bioinformatic Analysis. Vaccines (Basel) 2020; 8:vaccines8020314. [PMID: 32560444 PMCID: PMC7350218 DOI: 10.3390/vaccines8020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022] Open
Abstract
Trueperella pyogenes is an opportunistic pathogen, responsible for important infections in pigs and significant economic losses in swine production. To date, there are no available commercial vaccines to control diseases caused by this bacterium. In this work, we performed a comparative proteomic analysis of 15 T. pyogenes clinical isolates, by “shaving” live cells, followed by LC-MS/MS, aiming at the identification of the whole set of surface proteins (i.e., the “pan-surfome”) as a source of antigens to be tested in further studies as putative vaccine candidates, or used in diagnostic tools. A total of 140 surface proteins were detected, comprising 25 cell wall proteins, 10 secreted proteins, 23 lipoproteins and 82 membrane proteins. After describing the “pan-surfome”, the identified proteins were ranked in three different groups based on the following criteria: to be (i) surface-exposed, (ii) highly conserved and (iii) widely distributed among different isolates. Two cell wall proteins, three lipoproteins, four secreted and seven membrane proteins were identified in more than 70% of the studied strains, were highly expressed and highly conserved. These proteins are potential candidates, alone or in combination, to obtain effective vaccines against T. pyogenes or to be used in the diagnosis of this pathogen.
Collapse
Affiliation(s)
- Ángela Galán-Relaño
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Lidia Gómez-Gascón
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
- Correspondence:
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, and Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (A.R.-F.); (M.J.R.-O.)
| | - Inmaculada Luque
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Belén Huerta
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Carmen Tarradas
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, and Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (A.R.-F.); (M.J.R.-O.)
| |
Collapse
|
30
|
Proteomic and Bioinformatic Analysis of Streptococcus suis Human Isolates: Combined Prediction of Potential Vaccine Candidates. Vaccines (Basel) 2020; 8:vaccines8020188. [PMID: 32325736 PMCID: PMC7348792 DOI: 10.3390/vaccines8020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium responsible for major infections in pigs and economic losses in the livestock industry, but also an emerging zoonotic pathogen causing serious diseases in humans. No vaccine is available so far against this microorganism. Conserved surface proteins are among the most promising candidates for new and effective vaccines. Until now, research on this pathogen has focused on swine isolates, but there is a lack of studies to identify and characterize surface proteins from human clinical isolates. In this work, we performed a comparative proteomic analysis of six clinical isolates from human patients, all belonging to the major serotype 2, by “shaving” the live bacterial cells with trypsin, followed by LC-MS/MS analysis. We identified 131 predicted surface proteins and carried out a label-free semi-quantitative analysis of protein abundances within the six strains. Then, we combined our proteomics results with bioinformatic tools to help improving the selection of novel antigens that can enter the pipeline of vaccine candidate testing. Our work is then a complement to the reverse vaccinology concept.
Collapse
|
31
|
Wolden R, Pain M, Karlsson R, Karlsson A, Aarag Fredheim EG, Cavanagh JP. Identification of surface proteins in a clinical Staphylococcus haemolyticus isolate by bacterial surface shaving. BMC Microbiol 2020; 20:80. [PMID: 32264835 PMCID: PMC7137321 DOI: 10.1186/s12866-020-01778-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The skin commensal Staphylococcus haemolyticus is an emerging nosocomial pathogen. Despite its clinical relevance, published information about S. haemolyticus virulence factors is scarce. In this study, the adhesive and biofilm forming properties of ten clinical and ten commensal S. haemolyticus strains were examined using standard adhesion and biofilm assays. One of the clinical strains was used to identify expressed surface proteins using bacterial surface shaving. Protein abundance was examined by a comparative analysis between bacterial protein expression after human keratinocyte (HaCaT) colonization and growth in cell culture media supplemented with serum. Relative protein quantification was performed by labeling peptides with tandem mass tags (TMT) prior to Mass Spectrometry analysis. Surface proteins can be used as novel targets for antimicrobial treatment and in diagnostics. RESULTS Adherence to fibronectin, collagen and plastic was low in all tested strains, but with significantly higher adhesion to fibronectin (p = 0.041) and collagen (p = 0.001) in the commensal strains. There was a trend towards higher degree of biofilm formation in the clinical strains (p = 0.059). By using surface shaving, 325 proteins were detected, of which 65 were classified as surface proteins. Analyses showed that the abundance of nineteen (5.8%) proteins were significantly changed following HaCaT colonization. The bacterial Toll/interleukin-1 like (TIRs) domain containing protein (p = 0.04), the transglycosylase SceD (p = 0.01), and the bifunctional autolysin Atl (p = 0.04) showed a 1.4, 1.6- and 1.5-fold increased abundance. The staphylococcal secretory antigen (SsaA) (p = 0.04) was significantly downregulated (- 1.5 fold change) following HaCaT colonization. Among the 65 surface proteins the elastin binding protein (Ebps), LPXAG and LPXSG domain containing proteins and five LPXTG domain containing proteins were identified; three Sdr-like proteins, the extracellular matrix binding protein Embp and a SasH-like protein. CONCLUSIONS This study has provided novel knowledge about expression of S. haemolyticus surface proteins after direct contact with eukaryotic cells and in media supplemented with serum. We have identified surface proteins and immune evasive proteins previously only functionally described in other staphylococcal species. The identification of expressed proteins after host-microbe interaction offers a tool for the discovery and design of novel targets for antimicrobial treatment.
Collapse
Affiliation(s)
- Runa Wolden
- Pediatric Research group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maria Pain
- Pediatric Research group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Roger Karlsson
- Nanoxis Consulting AB, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46, Gothenburg, Region Västra Götaland, Sweden
| | | | - Elizabeth G Aarag Fredheim
- Microbial Pharmacology and Population Biology, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn Pauline Cavanagh
- Pediatric Research group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
- Department of Pediatrics, The University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
32
|
An amplification strategy for detecting HER2 with a quasi-targeted proteomics approach coupled with aptamer-triggered hybridization chain reaction. Talanta 2020; 215:120918. [PMID: 32312461 DOI: 10.1016/j.talanta.2020.120918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive is a particularly aggressive type of the breast cancer. Because of the evidence has revealed that accurate HER2 status detection is crucial for prognosis and treatment strategy selection, great effort has been taken to develop assays for sensitive and accurate quantification of HER2. However, nonspecific amplification effect of most current assays limits the quantification accuracy of low abundance HER2. In the present work, we developed an LC-MS/MS-based quasi-targeted proteomics strategy coupled with hybridization chain reaction (HCR) for amplification of the HER2 protein signal. In the described strategy, the aptamer triggered the HCR system to undergo a cascade of hybridization events, with the two locked hairpins conjugated to the substrate peptide to form aptamer-HCR peptide probes. The membrane protein HER2 was recognized by probe and the signal was to be converted and then amplified into the mass response of the reporter peptide, which could be quantified using LC-MS/MS. The signal intensity was approximately five fold greater than that without signal amplification. Finally, the developed assay was applied for the quantitative analysis of HER2 in breast cell lines and monitor the dynamic change of HER2 in drug induced HER2 negative cells. The result demonstrated that combination of HCR signal amplification and mass spectrometry provides a novel approach for simple, accurate, and quantitative monitoring of low abundance protein.
Collapse
|
33
|
Sandoval DR, Gomez Toledo A, Painter CD, Tota EM, Sheikh MO, West AMV, Frank MM, Wells L, Xu D, Bicknell R, Corbett KD, Esko JD. Proteomics-based screening of the endothelial heparan sulfate interactome reveals that C-type lectin 14a (CLEC14A) is a heparin-binding protein. J Biol Chem 2020; 295:2804-2821. [PMID: 31964714 DOI: 10.1074/jbc.ra119.011639] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Animal cells express heparan sulfate proteoglycans that perform many important cellular functions by way of heparan sulfate-protein interactions. The identification of membrane heparan sulfate-binding proteins is challenging because of their low abundance and the need for extensive enrichment. Here, we report a proteomics workflow for the identification and characterization of membrane-anchored and extracellular proteins that bind heparan sulfate. The technique is based on limited proteolysis of live cells in the absence of denaturation and fixation, heparin-affinity chromatography, and high-resolution LC-MS/MS, and we designate it LPHAMS. Application of LPHAMS to U937 monocytic and primary murine and human endothelial cells identified 55 plasma membrane, extracellular matrix, and soluble secreted proteins, including many previously unidentified heparin-binding proteins. The method also facilitated the mapping of the heparin-binding domains, making it possible to predict the location of the heparin-binding site. To validate the discovery feature of LPHAMS, we characterized one of the newly-discovered heparin-binding proteins, C-type lectin 14a (CLEC14A), a member of the C-type lectin family that modulates angiogenesis. We found that the C-type lectin domain of CLEC14A binds one-to-one to heparin with nanomolar affinity, and using molecular modeling and mutagenesis, we mapped its heparin-binding site. CLEC14A physically interacted with other glycosaminoglycans, including endothelial heparan sulfate and chondroitin sulfate E, but not with neutral or sialylated oligosaccharides. The LPHAMS technique should be applicable to other cells and glycans and provides a way to expand the repertoire of glycan-binding proteins for further study.
Collapse
Affiliation(s)
- Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - Alejandro Gomez Toledo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| | - Chelsea D Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - Ember M Tota
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - M Osman Sheikh
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Alan M V West
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | | | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York 14214
| | - Roy Bicknell
- College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
34
|
Multivalent HER2-binding polymer conjugates facilitate rapid endocytosis and enhance intracellular drug delivery. J Control Release 2019; 319:285-299. [PMID: 31899273 DOI: 10.1016/j.jconrel.2019.12.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023]
Abstract
Incorporating targeting moieties that recognize cancer-specific cellular markers can enhance specificity of anticancer nanomedicines. The HER2 receptor is overexpressed on numerous cancers, making it an attractive target. However, unlike many receptors that trigger endocytosis upon ligand binding, HER2 is an internalization-resistant receptor. As most chemotherapeutics act on intracellular targets, this presents a significant challenge for exploiting HER2 overexpression for improved tumor killing. However, hyper-crosslinking of HER2 has been shown to override the receptor's native behavior and trigger internalization. This research co-opts this crosslinking-mediated internalization for efficient intracellular delivery of an anticancer nanomedicine - specifically a HPMA copolymer-based drug delivery system. This polymeric carrier was conjugated with a small (7 kDa) HER2-binding affibody peptide to produce a panel of polymer-affibody conjugates with valences from 2 to 10 peptides per polymer chain. The effect of valence on surface binding and uptake was evaluated separately. All conjugates demonstrated similar (nanomolar) binding affinity towards HER2-positive ovarian carcinoma cells, but higher-valence conjugates induced more rapid endocytosis, with over 90% of the surface-bound conjugate internalized within 4 h. Furthermore, this enhancement was sensitive to crowding - high surface loading reduced conjugates' ability to crosslink receptors. Collectively, this evidence strongly supports a crosslinking-mediated endocytosis mechanism. Lead candidates from this panel achieved high intracellular delivery even at picomolar treatment concentrations; untargeted HPMA copolymers required 1000-fold higher treatment concentrations to achieve similar levels of intracellular accumulation. This increased intracellular delivery also translated to a more potent nanomedicine against HER2-positive cells; incorporation of the chemotherapeutic paclitaxel into this targeted carrier enhanced cytotoxicity over untargeted polymer-drug conjugate.
Collapse
|
35
|
Hornburg D, Kruse T, Anderl F, Daschkin C, Semper RP, Klar K, Guenther A, Mejías-Luque R, Schneiderhan-Marra N, Mann M, Meissner F, Gerhard M. A mass spectrometry guided approach for the identification of novel vaccine candidates in gram-negative pathogens. Sci Rep 2019; 9:17401. [PMID: 31758014 PMCID: PMC6874673 DOI: 10.1038/s41598-019-53493-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
Vaccination is the most effective method to prevent infectious diseases. However, approaches to identify novel vaccine candidates are commonly laborious and protracted. While surface proteins are suitable vaccine candidates and can elicit antibacterial antibody responses, systematic approaches to define surfomes from gram-negatives have rarely been successful. Here we developed a combined discovery-driven mass spectrometry and computational strategy to identify bacterial vaccine candidates and validate their immunogenicity using a highly prevalent gram-negative pathogen, Helicobacter pylori, as a model organism. We efficiently isolated surface antigens by enzymatic cleavage, with a design of experiment based strategy to experimentally dissect cell surface-exposed from cytosolic proteins. From a total of 1,153 quantified bacterial proteins, we thereby identified 72 surface exposed antigens and further prioritized candidates by computational homology inference within and across species. We next tested candidate-specific immune responses. All candidates were recognized in sera from infected patients, and readily induced antibody responses after vaccination of mice. The candidate jhp_0775 induced specific B and T cell responses and significantly reduced colonization levels in mouse therapeutic vaccination studies. In infected humans, we further show that jhp_0775 is immunogenic and activates IFNγ secretion from peripheral CD4+ and CD8+ T cells. Our strategy provides a generic preclinical screening, selection and validation process for novel vaccine candidates against gram-negative bacteria, which could be employed to other gram-negative pathogens.
Collapse
Affiliation(s)
- Daniel Hornburg
- Max-Planck-Institute for Biochemistry, Martinsried, Germany
- Stanford University, School of Medicine, San Francisco, USA
| | - Tobias Kruse
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- ImevaX GmbH, Munich, Germany
| | - Florian Anderl
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- ImevaX GmbH, Munich, Germany
| | - Christina Daschkin
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Raphaela P Semper
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for infection research, partner site Munich, Munich, Germany
| | | | - Anna Guenther
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for infection research, partner site Munich, Munich, Germany
| | | | - Matthias Mann
- Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Felix Meissner
- Max-Planck-Institute for Biochemistry, Martinsried, Germany.
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.
- ImevaX GmbH, Munich, Germany.
- German Center for infection research, partner site Munich, Munich, Germany.
| |
Collapse
|
36
|
Luu LDW, Octavia S, Aitken C, Zhong L, Raftery MJ, Sintchenko V, Lan R. Surfaceome analysis of Australian epidemic Bordetella pertussis reveals potential vaccine antigens. Vaccine 2019; 38:539-548. [PMID: 31703933 DOI: 10.1016/j.vaccine.2019.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
Since acellular vaccines (ACV) were introduced in Australia, epidemic Bordetella pertussis strains changed from single nucleotide polymorphism (SNP) cluster II to SNP cluster I. Our previous proteomic analysis identified potential proteomic adaptations in the whole cell and secretome of SNP cluster I. Additionally, current ACVs were shown to be less efficacious against cluster I in mice models and there is a pressing need to discover new antigens to improve the ACV. One important source of novel antigens is the surfaceome. Therefore, in this study we established surface shaving in B. pertussis to compare the surfaceome of SNP cluster I (L1423) and II (L1191), and identify novel surface antigens for vaccine development. Surface shaving using 1 μg of trypsin for 5 min identified 126 proteins with the most abundant being virulence-associated and known outer membrane proteins. Cell viability counts showed minimal lysis from shaving. The proportion of immunogenic proteins was higher in the surfaceome than in the whole cell and secretome. Key differences in the surfaceome were identified between SNP cluster I and II, consistent with those identified in the whole cell proteome and secretome. These differences include unique transport proteins and decreased immunogenic proteins in L1423, and provides further evidence of proteomic adaptation in SNP cluster I. Finally, a comparison of proteins in each sub-proteome identified 22 common proteins. These included 11 virulence proteins (Prn, PtxA, FhaB, CyaA, TcfA, SphB1, Vag8, BrkA, BopD, Bsp22 and BipA) and 11 housekeeping proteins (TuF, CtpA, TsF, OmpH, GltA, SucC, SucD, FusA, GroEL, BP3330 and BP3561) which were immunogenic, essential and consistently expressed thus demonstrating their potential as future targets. This study established surface shaving in B. pertussis, confirmed key expression differences and identified unknown surface proteins which may be potential vaccine antigens.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chelsea Aitken
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - Pathology West, Westmead Hospital, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
37
|
McConnell MJ. Where are we with monoclonal antibodies for multidrug-resistant infections? Drug Discov Today 2019; 24:1132-1138. [PMID: 30853568 DOI: 10.1016/j.drudis.2019.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2019] [Accepted: 03/01/2019] [Indexed: 01/17/2023]
Abstract
Widespread antibiotic resistance threatens the continued efficacy of antimicrobial therapy based on small-molecule antibiotics. Infections caused by multidrug-resistant Gram-negative bacteria are particularly worrisome owing to the lack of antimicrobials retaining sufficient activity against these microorganisms. Despite the explosion in monoclonal antibody therapies that have been developed for oncologic and rheumatic indications, only three antibacterial monoclonal antibodies have been approved for clinical use. In the present review, the therapeutic potential of this drug class for treating multidrug-resistant infections is discussed, and considerations for the development of antibacterial monoclonal antibodies are presented. Finally, the state of development of monoclonal antibody therapies for some of the most problematic multidrug-resistant Gram-negative infections is summarized.
Collapse
Affiliation(s)
- Michael J McConnell
- Antimicrobial Resistance and Hospital Acquired Infections Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
38
|
El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M. Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants. Mol Cell Proteomics 2019; 18:127-150. [PMID: 30352803 PMCID: PMC6317477 DOI: 10.1074/mcp.ra118.001125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The sexually transmitted disease gonorrhea (causative agent: Neisseria gonorrhoeae) remains an urgent public health threat globally because of its reproductive health repercussions, high incidence, widespread antimicrobial resistance (AMR), and absence of a vaccine. To mine gonorrhea antigens and enhance our understanding of gonococcal AMR at the proteome level, we performed the first large-scale proteomic profiling of a diverse panel (n = 15) of gonococcal strains, including the 2016 World Health Organization (WHO) reference strains. These strains show all existing AMR profiles - established through phenotypic characterization and reference genome publication - and are intended for quality assurance in laboratory investigations. Herein, these isolates were subjected to subcellular fractionation and labeling with tandem mass tags coupled to mass spectrometry and multi-combinatorial bioinformatics. Our analyses detected 904 and 723 common proteins in cell envelope and cytoplasmic subproteomes, respectively. We identified nine novel gonorrhea vaccine candidates. Expression and conservation of new and previously selected antigens were investigated. In addition, established gonococcal AMR determinants were evaluated for the first time using quantitative proteomics. Six new proteins, WHO_F_00238, WHO_F_00635c, WHO_F_00745, WHO_F_01139, WHO_F_01144c, and WHO_F_01126, were differentially expressed in all strains, suggesting that they represent global proteomic AMR markers, indicate a predisposition toward developing or compensating gonococcal AMR, and/or act as new antimicrobial targets. Finally, phenotypic clustering based on the isolates' defined antibiograms and common differentially expressed proteins yielded seven matching clusters between established and proteome-derived AMR signatures. Together, our investigations provide a reference proteomics data bank for gonococcal vaccine and AMR research endeavors, which enables microbiological, clinical, or epidemiological projects and enhances the utility of the WHO reference strains.
Collapse
Affiliation(s)
- Fadi E El-Rami
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Teodora Wi
- §Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;; ¶Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon;.
| | - Magnus Unemo
- ‖World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
39
|
Abstract
Proteomics studies that characterize hundreds or thousands of proteins in parallel can play an important part in the identification of moonlighting proteins, proteins that perform two or more distinct and physiologically relevant biochemical or biophysical functions. Functional assays, including ligand-binding assays, can find a surprising second function for a protein that was previously identified as performing a different function, for example, a DNA-binding ability for an enzyme in amino acid metabolism. The results of large-scale assays of protein-protein interactions, gene knockouts, or subcellular protein localizations, or bioinformatics analysis of amino acid sequences and three-dimensional structures, can also be used to predict that a protein has additional functions, but in these cases it is important to use biochemical and biophysical methods to confirm the protein can perform each function.
Collapse
Affiliation(s)
- Constance Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
40
|
Fagerquist CK, Zaragoza WJ. Proteolytic Surface-Shaving and Serotype-Dependent Expression of SPI-1 Invasion Proteins in Salmonella enterica Subspecies enterica. Front Nutr 2018; 5:124. [PMID: 30619870 PMCID: PMC6295468 DOI: 10.3389/fnut.2018.00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
We performed proteolytic surface-shaving with trypsin on three strains/sevovars of Salmonella enterica enterica (SEE): Newport, Kentucky, and Thompson. Surfaced-exposed proteins of live bacterial cells were digested for 15 min. A separate 20 h re-digestion was also performed on the supernatant of each shaving experiment to more completely digest protein fragments into detectable peptides for proteomic analysis by nano-liquid chromatography-electrospray ionization-Orbitrap mass spectrometry. Control samples (i.e., no trypsin during surface-shaving step) were also performed in parallel. We detected peptides of flagella proteins: FliC (filament), FliD (cap), and FlgL (hook-filament junction) as well as peptides of FlgM (anti-σ28 factor), i.e., the negative regulator of flagella synthesis. For SEE Newport and Thompson, we detected Salmonella pathogenicity island 1 (SPI-1) secreted effector/invasion proteins: SipA, SipB, SipC, and SipD, whereas no Sip proteins were detected in control samples. No Sip proteins were detected for SEE Kentucky (or its control) although sip genes were confirmed to be present. Our results may suggest a biological response (<15 min) to proteolysis of live cells for these SEE strains and, in the case of Newport and Thompson, a possible invasion response.
Collapse
Affiliation(s)
- Clifton K Fagerquist
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| | - William J Zaragoza
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| |
Collapse
|
41
|
Esbelin J, Santos T, Ribière C, Desvaux M, Viala D, Chambon C, Hébraud M. Comparison of three methods for cell surface proteome extraction of Listeria monocytogenes biofilms. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:779-787. [PMID: 30457927 DOI: 10.1089/omi.2018.0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cell surface proteome of the foodborne pathogen Listeria monocytogenes, the etiological agent of listeriosis, is critical for understanding the physiological processes associated with stress resistance and persistence in the environment. In this context, the most widespread mode of growth for bacterial cells in natural and industrial environments is in biofilms. Cell surface proteins are, however, challenging to characterize because of their low abundance and poor solubility. Moreover, cell surface protein extracts are usually contaminated with cytoplasmic proteins that constitute the main signal in proteomic analysis. This study aimed to compare the efficiency of three methods to extract and explore surface proteins of L. monocytogenes growing in a biofilm: trypsin shaving, biotinylation, and cell fractionation. Peptide separation and identification were performed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The biotinylation method was the most effective in extracting surface proteins, with the lowest rate of contamination by cytoplasmic proteins. Although presenting a higher contamination rate in cytoplasmic proteins, the other two techniques allowed the identification of additional surface proteins. Seven proteins were commonly retrieved by the three methods. The extracted proteins belong to several functional classes, involved in virulence, transport, or metabolic pathways. Finally, the three extraction methods seemed complementary and their combined use improved the exploration of the bacterial surface proteome. These new findings collectively inform future discovery and translational proteomics for clinical, environmental health, and industrial applications.
Collapse
Affiliation(s)
- Julia Esbelin
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Tiago Santos
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Céline Ribière
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Mickaël Desvaux
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Didier Viala
- 2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| | - Christophe Chambon
- 2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| | - Michel Hébraud
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France.,2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| |
Collapse
|
42
|
Zhu W, Wu C, Kang C, Cai C, Wang Y, Li J, Zhang Q, Sun X, Jin M. Evaluation of the protective efficacy of four newly identified surface proteins of Erysipelothrix rhusiopathiae. Vaccine 2018; 36:8079-8083. [PMID: 30446176 DOI: 10.1016/j.vaccine.2018.10.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
Abstract
Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and human erysipeloid. Bacterial surface proteins are promising vaccine candidates. We recently identified 3 E. rhusiopathiae surface proteins (GAPDH, HP0728, and HP1472) and characterized their roles as virulence factors. However, their efficacy as protective antigens is still unknown. The N-terminal region of a previously identified surface protein, CbpB (CbpB-N), is speculated to be a protective antigen, but this needs to be verified. The aim of this study was to evaluate the protective efficacy of GAPDH, HP0728, HP1472, and CbpB-N. Immunization with recombinant GAPDH provided complete protection in a mouse model, recombinant CbpB-N provided partial protection, while recombinant HP0728 and HP1472 provided no protection. Recombinant GAPDH also provided good protection in a pig model. GAPDH antiserum exhibited significant blood bactericidal activity against E. rhusiopathiae. In conclusion, GAPDH and CbpB-N were found to be protective antigens of E. rhusiopathiae, and GAPDH is a promising vaccine candidate.
Collapse
Affiliation(s)
- Weifeng Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chao Wu
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chao Kang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengzhi Cai
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ya Wang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingtao Li
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiang Zhang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Meilin Jin
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
43
|
Enrichment of Cell Surface-Associated Proteins in Gram-Positive Bacteria by Biotinylation or Trypsin Shaving for Mass Spectrometry Analysis. Methods Mol Biol 2018. [PMID: 30259478 DOI: 10.1007/978-1-4939-8695-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In microbial cells surface-exposed proteins represent a physiologically important class of molecules as they enable these cells to interact with their environment both as free-living organisms and during interactions with a host. However, the characteristics of these proteins are quite divergent, which makes attempts to enrich, analyze, and quantify these molecules a challenging task. In this chapter two complementary methods for the enrichment and identification of cell surface-associated proteins, namely the biotinylation and the shaving approaches, are presented. Both protocols have been optimized for Gram-positive bacteria, and we provide a step-by-step guide for sample generation. Possible pitfalls during protein preparation are discussed.
Collapse
|
44
|
Jiménez-Munguía I, Calderón-Santiago M, Rodríguez-Franco A, Priego-Capote F, Rodríguez-Ortega MJ. Multi-omic profiling to assess the effect of iron starvation in Streptococcus pneumoniae TIGR4. PeerJ 2018; 6:e4966. [PMID: 29915696 PMCID: PMC6004102 DOI: 10.7717/peerj.4966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
We applied multi-omics approaches (transcriptomics, proteomics and metabolomics) to study the effect of iron starvation on the Gram-positive human pathogen Streptococcus pneumoniae to elucidate global changes in the bacterium in a condition similar to what can be found in the host during an infectious episode. We treated the reference strain TIGR4 with the iron chelator deferoxamine mesylate. DNA microarrays revealed changes in the expression of operons involved in multiple biological processes, with a prevalence of genes coding for ion binding proteins. We also studied the changes in protein abundance by 2-DE followed by MALDI-TOF/TOF analysis of total cell extracts and secretome fractions. The main proteomic changes were found in proteins related to the primary and amino sugar metabolism, especially in enzymes with divalent cations as cofactors. Finally, the metabolomic analysis of intracellular metabolites showed altered levels of amino sugars involved in the cell wall peptidoglycan metabolism. This work shows the utility of multi-perspective studies that can provide complementary results for the comprehension of how a given condition can influence global physiological changes in microorganisms.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Mónica Calderón-Santiago
- Departamento de Química Analítica, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Feliciano Priego-Capote
- Departamento de Química Analítica, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| |
Collapse
|
45
|
Gómez-Gascón L, Luque I, Tarradas C, Olaya-Abril A, Astorga RJ, Huerta B, Rodríguez-Ortega MJ. Comparative immunosecretome analysis of prevalent Streptococcus suis serotypes. Comp Immunol Microbiol Infect Dis 2018; 57:55-61. [PMID: 30017079 DOI: 10.1016/j.cimid.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/13/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
Streptococcus suis is a major Gram-positive swine pathogen associated with a wide variety of diseases in pigs. The efforts made to develop vaccines against this pathogen have failed because of lack of common cross-reactive antigens against different serotypes. Nowadays the interest has moved to surface and secreted proteins, as they have the highest chances to raise an effective immune response because they are in direct contact with host cells and are really exposed and accessible to antibodies. In this work, we have performed a comparative immunosecretomic approach to identify a set of immunoreactive secreted proteins common to the most prevalent serotypes of S. suis. Among the 67 proteins identified, three (SSU0020, SSU0934, and SSU0215) were those predicted extracellular proteins most widely found within the studied serotypes. These immunoreactive proteins may be interesting targets for future vaccine development as they could provide possible cross-reactivity among different serotypes of this pathogen.
Collapse
Affiliation(s)
- Lidia Gómez-Gascón
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Inmaculada Luque
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Carmen Tarradas
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Rafael J Astorga
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Belén Huerta
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain.
| |
Collapse
|
46
|
Postgenomic Approaches and Bioinformatics Tools to Advance the Development of Vaccines against Bacteria of the Burkholderia cepacia Complex. Vaccines (Basel) 2018; 6:vaccines6020034. [PMID: 29890657 PMCID: PMC6027386 DOI: 10.3390/vaccines6020034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among patients suffering from cystic fibrosis. Eradication of these pathogens by antimicrobial therapy often fails, highlighting the need to develop novel strategies to eradicate infections. Vaccines are attractive since they can confer protection to particularly vulnerable patients, as is the case of cystic fibrosis patients. Several studies have identified specific virulence factors and proteins as potential subunit vaccine candidates. So far, no vaccine is available to protect from Bcc infections. In the present work, we review the most promising postgenomic approaches and selected web tools available to speed up the identification of immunogenic proteins with the potential of conferring protection against Bcc infections.
Collapse
|
47
|
Marín E, Haesaert A, Padilla L, Adán J, Hernáez ML, Monteoliva L, Gil C. Unraveling Gardnerella vaginalis Surface Proteins Using Cell Shaving Proteomics. Front Microbiol 2018; 9:975. [PMID: 29867878 PMCID: PMC5962675 DOI: 10.3389/fmicb.2018.00975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Gardnerella vaginalis is one of the main etiologic agents of bacterial vaginosis (BV). This infection is responsible for a wide range of public health costs and is associated with several adverse outcomes during pregnancy. Improving our understanding of G. vaginalis protein cell surface will assist in BV diagnosis. This study represents the first proteomic approach that has analyzed the exposed proteins on G. vaginalis cell surface using a shaving approach. The 261 G. vaginalis proteins identified using this approach were analyzed with bioinformatic tools to detect characteristic motifs from surface-exposed proteins, such as signal peptides (36 proteins), lipobox domains (17 proteins), LPXTG motifs (5 proteins) and transmembrane alpha-helices (66 proteins). One third of the identified proteins were found to have at least one typical motif of surface-exposed proteins. Furthermore, the subcellular location was examined using two predictors (PSORT and Gpos-mPLoc). These bioinformatic tools classified 17% of the identified proteins as surface-associated proteins. Interestingly, we identified 13 members of the ATP-binding cassette (ABC) superfamily, which were mainly involved in the translocation of various substrates across membranes. To validate the location of the G. vaginalis surface-exposed proteins, an immunofluorescence assay with antibodies against Escherichia coli GroEL was performed to reveal the extracellular location of the moonlighting GroEL. In addition, monoclonal antibodies (mAb) against G. vaginalis Cna protein were produced and used to validate the location of Cna on the surface of the G. vaginalis. These high affinity anti-Cna mAb represent a useful tool for the study of this pathogenic microorganism and the BV.
Collapse
Affiliation(s)
- Elvira Marín
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Annelies Haesaert
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Padilla
- Health and Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - Jaume Adán
- Health and Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - María L Hernáez
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
48
|
Jiménez-Munguía I, Pulzova L, Kanova E, Tomeckova Z, Majerova P, Bhide K, Comor L, Sirochmanova I, Kovac A, Bhide M. Proteomic and bioinformatic pipeline to screen the ligands of S. pneumoniae interacting with human brain microvascular endothelial cells. Sci Rep 2018; 8:5231. [PMID: 29588455 PMCID: PMC5869694 DOI: 10.1038/s41598-018-23485-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 01/17/2023] Open
Abstract
The mechanisms by which Streptococcus pneumoniae penetrates the blood-brain barrier (BBB), reach the CNS and causes meningitis are not fully understood. Adhesion of bacterial cells on the brain microvascular endothelial cells (BMECs), mediated through protein-protein interactions, is one of the crucial steps in translocation of bacteria across BBB. In this work, we proposed a systematic workflow for identification of cell wall associated ligands of pneumococcus that might adhere to the human BMECs. The proteome of S. pneumoniae was biotinylated and incubated with BMECs. Interacting proteins were recovered by affinity purification and identified by data independent acquisition (DIA). A total of 44 proteins were identified from which 22 were found to be surface-exposed. Based on the subcellular location, ontology, protein interactive analysis and literature review, five ligands (adhesion lipoprotein, endo-β-N-acetylglucosaminidase, PhtA and two hypothetical proteins, Spr0777 and Spr1730) were selected to validate experimentally (ELISA and immunocytochemistry) the ligand-BMECs interaction. In this study, we proposed a high-throughput approach to generate a dataset of plausible bacterial ligands followed by systematic bioinformatics pipeline to categorize the protein candidates for experimental validation. The approach proposed here could contribute in the fast and reliable screening of ligands that interact with host cells.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Lucia Pulzova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Evelina Kanova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Zuzana Tomeckova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Lubos Comor
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Ivana Sirochmanova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic.
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
49
|
Rodríguez-Ortega MJ. "Shaving" Live Bacterial Cells with Proteases for Proteomic Analysis of Surface Proteins. Methods Mol Biol 2018; 1722:21-29. [PMID: 29264796 DOI: 10.1007/978-1-4939-7553-2_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface proteins are essential molecules for the interplay between cells and the environment. They participate in many biological processes including transport, adhesion, cell-cell recognition, signaling, and other cell interactions. In pathogenic microorganisms, these molecules may act as virulence or cytotoxicity factors. Analyzing the set of surface proteins is critical to understand these processes and to identify possible targets that can be the starting point for other studies or discoveries (e.g., vaccines or diagnostics). Here I describe a proteomic procedure to identify in a fast and reliable way a set of surface-exposed proteins in bacteria, the methodology of which can be adapted to other biological systems (unicellular fungi, parasites). The protocol presented here involves "shaving" the cells cultured in broth with proteases followed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and analysis of the generated peptides. This method overcomes some important limitations of the first-generation, gel based proteomics techniques, and the "shaving" approach allows one to identify which domains from identified proteins are more accessible to proteases. These identified proteins have the highest potential to be recognized by antibodies, and thus permits the identification of potential epitopes or antigens.
Collapse
|
50
|
Romero Pastrana F, Thompson JM, Heuker M, Hoekstra H, Dillen CA, Ortines RV, Ashbaugh AG, Pickett JE, Linssen MD, Bernthal NM, Francis KP, Buist G, van Oosten M, van Dam GM, Thorek DLJ, Miller LS, van Dijl JM. Noninvasive optical and nuclear imaging of Staphylococcus-specific infection with a human monoclonal antibody-based probe. Virulence 2017; 9:262-272. [PMID: 29166841 PMCID: PMC5955194 DOI: 10.1080/21505594.2017.1403004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus infections are a major threat in healthcare, requiring adequate early-stage diagnosis and treatment. This calls for novel diagnostic tools that allow noninvasive in vivo detection of staphylococci. Here we performed a preclinical study to investigate a novel fully-human monoclonal antibody 1D9 that specifically targets the immunodominant staphylococcal antigen A (IsaA). We show that 1D9 binds invariantly to S. aureus cells and may further target other staphylococcal species. Importantly, using a human post-mortem implant model and an in vivo murine skin infection model, preclinical feasibility was demonstrated for 1D9 labeled with the near-infrared fluorophore IRDye800CW to be applied for direct optical imaging of in vivo S. aureus infections. Additionally, 89Zirconium-labeled 1D9 could be used for positron emission tomography imaging of an in vivo S. aureus thigh infection model. Our findings pave the way towards clinical implementation of targeted imaging of staphylococcal infections using the human monoclonal antibody 1D9.
Collapse
Affiliation(s)
- Francisco Romero Pastrana
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - John M Thompson
- b Department of Orthopaedic Surgery , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Marjolein Heuker
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Hedzer Hoekstra
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Carly A Dillen
- c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Roger V Ortines
- c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Alyssa G Ashbaugh
- c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Julie E Pickett
- d Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Matthijs D Linssen
- e Department of Gastroentrology and Hepatology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands.,f Department of clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Nicholas M Bernthal
- g Department of Orthopaedic Surgery , David Geffen School of Medicine at the University of California, Los Angeles Medical Center , Santa Monica , CA , USA
| | - Kevin P Francis
- g Department of Orthopaedic Surgery , David Geffen School of Medicine at the University of California, Los Angeles Medical Center , Santa Monica , CA , USA.,h PerkinElmer , Alameda , California , CA , USA.,i Department of Surgery , Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Girbe Buist
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Marleen van Oosten
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Gooitzen M van Dam
- i Department of Surgery , Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Daniel L J Thorek
- d Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,j Department of Oncology , Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Lloyd S Miller
- b Department of Orthopaedic Surgery , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,k Division of Infectious Disease, Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Jan Maarten van Dijl
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| |
Collapse
|