1
|
Wang Q, Kawano Y. The mutual regulation between the pattern recognition receptor OsCERK1 and the E3 ubiquitin ligase OsCIE1 controls induction and homeostasis of immunity. Sci Bull (Beijing) 2024; 69:3172-3175. [PMID: 39004588 DOI: 10.1016/j.scib.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Affiliation(s)
- Qiong Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yoji Kawano
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan.
| |
Collapse
|
2
|
Xi L, Wu X, Wang J, Zhang Z, He M, Zeeshan Z, Stefan T, Schulze WX. Receptor Kinase Signaling of BRI1 and SIRK1 Is Tightly Balanced by Their Interactomes as Revealed From Domain-Swap Chimaera in AE-MS Approaches. Mol Cell Proteomics 2024; 23:100857. [PMID: 39414233 PMCID: PMC11585773 DOI: 10.1016/j.mcpro.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
At the plasma membrane, in response to biotic and abiotic cues, specific ligands initiate the formation of receptor kinase heterodimers, which regulate the activities of plasma membrane proteins and initiate signaling cascades to the nucleus. In this study, we utilized affinity enrichment mass spectrometry to investigate the stimulus-dependent interactomes of LRR receptor kinases in response to their respective ligands, with an emphasis on exploring structural influences and potential cross-talk events at the plasma membrane. BRI1 and SIRK1 were chosen as receptor kinases with distinct coreceptor preference. By using interactome characteristic of domain-swap chimera following a gradient boosting learning algorithm trained on SIRK1 and BRI1 interactomes, we attribute contributions of extracellular domain, transmembrane domain, juxtamembrane domain, and kinase domain of respective ligand-binding receptors to their interaction with their coreceptors and substrates. Our results revealed juxtamembrane domain as major structural element defining the specific substrate recruitment for BRI1 and extracellular domain for SIRK1. Furthermore, the learning algorithm enabled us to predict the phenotypic outcomes of chimeric receptors based on different domain combinations, which was verified by dedicated experiments. As a result, our work reveals a tightly controlled balance of signaling cascade activation dependent on ligand-binding receptors domains and the internal ligand status of the plant. Moreover, our study shows the robust utility of machine learning classification as a quantitative metric for studying dynamic interactomes, dissecting the contribution of specific domains and predicting their phenotypic outcome.
Collapse
Affiliation(s)
- Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Xuna Wu
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany; State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Zhaoxia Zhang
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Zeeshan Zeeshan
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
3
|
Mühlenbeck H, Tsutsui Y, Lemmon MA, Bender KW, Zipfel C. Allosteric activation of the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling. eLife 2024; 12:RP92110. [PMID: 39028038 PMCID: PMC11259431 DOI: 10.7554/elife.92110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.
Collapse
Affiliation(s)
- Henning Mühlenbeck
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Yuko Tsutsui
- Department of Pharmacology, Yale University School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Yale University West CampusWest HavenUnited States
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Yale University West CampusWest HavenUnited States
| | - Kyle W Bender
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
4
|
Mühlenbeck H, Tsutsui Y, Lemmon MA, Bender KW, Zipfel C. Allosteric activation of the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554490. [PMID: 37662281 PMCID: PMC10473708 DOI: 10.1101/2023.08.23.554490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic (pseudo)kinase signaling mechanisms have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (ELONGATION FACTOR TU RECEPTOR) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.
Collapse
|
5
|
Hurst CH, Turnbull D, Xhelilaj K, Myles S, Pflughaupt RL, Kopischke M, Davies P, Jones S, Robatzek S, Zipfel C, Gronnier J, Hemsley PA. S-acylation stabilizes ligand-induced receptor kinase complex formation during plant pattern-triggered immune signaling. Curr Biol 2023; 33:1588-1596.e6. [PMID: 36924767 DOI: 10.1016/j.cub.2023.02.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023]
Abstract
Plant receptor kinases are key transducers of extracellular stimuli, such as the presence of beneficial or pathogenic microbes or secreted signaling molecules. Receptor kinases are regulated by numerous post-translational modifications.1,2,3 Here, using the immune receptor kinases FLS24 and EFR,5 we show that S-acylation at a cysteine conserved in all plant receptor kinases is crucial for function. S-acylation involves the addition of long-chain fatty acids to cysteine residues within proteins, altering their biochemical properties and behavior within the membrane environment.6 We observe S-acylation of FLS2 at C-terminal kinase domain cysteine residues within minutes following the perception of its ligand, flg22, in a BAK1 co-receptor and PUB12/13 ubiquitin ligase-dependent manner. We demonstrate that S-acylation is essential for FLS2-mediated immune signaling and resistance to bacterial infection. Similarly, mutating the corresponding conserved cysteine residue in EFR suppressed elf18-triggered signaling. Analysis of unstimulated and activated FLS2-containing complexes using microscopy, detergents, and native membrane DIBMA nanodiscs indicates that S-acylation stabilizes, and promotes retention of, activated receptor kinase complexes at the plasma membrane to increase signaling efficiency.
Collapse
Affiliation(s)
- Charlotte H Hurst
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Dionne Turnbull
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kaltra Xhelilaj
- ZMBP Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Sally Myles
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Robin L Pflughaupt
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Michaela Kopischke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Davies
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Susan Jones
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Julien Gronnier
- ZMBP Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany; Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
6
|
Song W, Hu L, Ma Z, Yang L, Li J. Importance of Tyrosine Phosphorylation in Hormone-Regulated Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23126603. [PMID: 35743047 PMCID: PMC9224382 DOI: 10.3390/ijms23126603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Protein phosphorylation is the most frequent post-translational modification (PTM) that plays important regulatory roles in a wide range of biological processes. Phosphorylation mainly occurs on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues, with the phosphorylated Tyr sites accounting for ~1–2% of all phosphorylated residues. Tyr phosphorylation was initially believed to be less common in plants compared to animals; however, recent investigation indicates otherwise. Although they lack typical protein Tyr kinases, plants possess many dual-specificity protein kinases that were implicated in diverse cellular processes by phosphorylating Ser, Thr, and Tyr residues. Analyses of sequenced plant genomes also identified protein Tyr phosphatases and dual-specificity protein phosphatases. Recent studies have revealed important regulatory roles of Tyr phosphorylation in many different aspects of plant growth and development and plant interactions with the environment. This short review summarizes studies that implicated the Tyr phosphorylation in biosynthesis and signaling of plant hormones.
Collapse
Affiliation(s)
- Weimeng Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Lei Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
7
|
Shi H, Li Q, Luo M, Yan H, Xie B, Li X, Zhong G, Chen D, Tang D. BRASSINOSTEROID-SIGNALING KINASE1 modulates MAP KINASE15 phosphorylation to confer powdery mildew resistance in Arabidopsis. THE PLANT CELL 2022; 34:1768-1783. [PMID: 35099562 PMCID: PMC9048930 DOI: 10.1093/plcell/koac027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 05/10/2023]
Abstract
Perception of pathogen-associated molecular patterns (PAMPs) by plant cell surface-localized pattern-recognition receptors (PRRs) triggers the first line of plant innate immunity. In Arabidopsis thaliana, the receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALING KINASE1 (BSK1) physically associates with PRR FLAGELLIN SENSING2 and plays an important role in defense against multiple pathogens. However, how BSK1 transduces signals to activate downstream immune responses remains elusive. Previously, through whole-genome phosphorylation analysis using mass spectrometry, we showed that phosphorylation of the mitogen-activated protein kinase (MAPK) MPK15 was affected in the bsk1 mutant compared with the wild-type plants. Here, we demonstrated that MPK15 is important for powdery mildew fungal resistance. PAMPs and fungal pathogens significantly induced the phosphorylation of MPK15 Ser-511, a key phosphorylation site critical for the functions of MPK15 in powdery mildew resistance. BSK1 physically associates with MPK15 and is required for basal and pathogen-induced MPK15 Ser-511 phosphorylation, which contributes to BSK1-mediated fungal resistance. Taken together, our data identified MPK15 as a player in plant defense against powdery mildew fungi and showed that BSK1 promotes fungal resistance in part by enhancing MPK15 Ser-511 phosphorylation. These results uncovered a mechanism of BSK1-mediated disease resistance and provided new insight into the role of MAPK phosphorylation in plant immunity.
Collapse
Affiliation(s)
- Hua Shi
- Author for correspondence: (D.T.), (H.S.)
| | - Qiuyi Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyu Luo
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haojie Yan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Xie
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guitao Zhong
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Desheng Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | |
Collapse
|
8
|
Activation loop phosphorylaton of a non-RD receptor kinase initiates plant innate immune signaling. Proc Natl Acad Sci U S A 2021; 118:2108242118. [PMID: 34531323 PMCID: PMC8463890 DOI: 10.1073/pnas.2108242118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/01/2023] Open
Abstract
Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in antibacterial immunity. These results reveal a noncatalytic role for EFR in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RKs with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor, which could initiate signaling either allosterically or through driving the dissociation of negative regulators of the complex.
Collapse
|
9
|
Gough C, Sadanandom A. Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules 2021; 11:1122. [PMID: 34439788 PMCID: PMC8392720 DOI: 10.3390/biom11081122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK;
| |
Collapse
|
10
|
Yu TY, Sun MK, Liang LK. Receptors in the Induction of the Plant Innate Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:587-601. [PMID: 33512246 DOI: 10.1094/mpmi-07-20-0173-cr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants adjust amplitude and duration of immune responses via different strategies to maintain growth, development, and resistance to pathogens. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) play vital roles. Pattern recognition receptors, comprising a large number of receptor-like protein kinases and receptor-like proteins, recognize related ligands and trigger immunity. PTI is the first layer of the innate immune system, and it recognizes PAMPs at the plasma membrane to prevent infection. However, pathogens exploit effector proteins to bypass or directly inhibit the PTI immune pathway. Consistently, plants have evolved intracellular nucleotide-binding domain and leucine-rich repeat-containing proteins to detect pathogenic effectors and trigger a hypersensitive response to activate ETI. PTI and ETI work together to protect plants from infection by viruses and other pathogens. Diverse receptors and the corresponding ligands, especially several pairs of well-studied receptors and ligands in PTI immunity, are reviewed to illustrate the dynamic process of PTI response here.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Meng-Kun Sun
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Li-Kun Liang
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
11
|
Pang Q, Zhang T, Zhang A, Lin C, Kong W, Chen S. Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. PLANTA 2020; 252:66. [PMID: 32979085 DOI: 10.1007/s00425-020-03474-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/15/2020] [Indexed: 05/20/2023]
Abstract
Dynamic protein and phosphoprotein profiles uncovered the overall regulation of stomata movement against pathogen invasion and phosphorylation states of proteins involved in ABA, SA, calcium and ROS signaling, which may modulate the stomatal immune response. Stomatal openings represent a major route of pathogen entry into the plant, and plants have evolved mechanisms to regulate stomatal aperture as innate immune response against bacterial invasion. However, the mechanisms underlying stomatal immunity are not fully understood. Taking advantage of high-throughput liquid chromatography mass spectrometry (LC-MS), we performed label-free proteomic and phosphoproteomic analyses of enriched guard cells in response to a bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In total, 495 proteins and 1229 phosphoproteins were identified as differentially regulated. These proteins are involved in a variety of signaling pathways, including abscisic acid and salicylic acid hormone signaling, calcium and reactive oxygen species signaling. We also showed that dynamic changes of phosphoprotein WRKY transcription factors may play a crucial role in regulating stomata movement in plant immunity. The identified proteins/phosphoproteins and the pathways form interactive molecular networks to regulate stomatal immunity. This study has provided new insights into the multifaceted mechanisms of stomatal immunity. The differential proteins and phosphoproteins are potential targets for engineering or breeding of crops for enhanced pathogen defense.
Collapse
Affiliation(s)
- Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tong Zhang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Aiqin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Wenwen Kong
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA.
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Mao J, Li J. Regulation of Three Key Kinases of Brassinosteroid Signaling Pathway. Int J Mol Sci 2020; 21:E4340. [PMID: 32570783 PMCID: PMC7352359 DOI: 10.3390/ijms21124340] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Brassinosteroids (BRs) are important plant growth hormones that regulate a wide range of plant growth and developmental processes. The BR signals are perceived by two cell surface-localized receptor kinases, Brassinosteroid-Insensitive1 (BRI1) and BRI1-Associated receptor Kinase (BAK1), and reach the nucleus through two master transcription factors, bri1-EMS suppressor1 (BES1) and Brassinazole-resistant1 (BZR1). The intracellular transmission of the BR signals from BRI1/BAK1 to BES1/BZR1 is inhibited by a constitutively active kinase Brassinosteroid-Insensitive2 (BIN2) that phosphorylates and negatively regulates BES1/BZR1. Since their initial discoveries, further studies have revealed a plethora of biochemical and cellular mechanisms that regulate their protein abundance, subcellular localizations, and signaling activities. In this review, we provide a critical analysis of the current literature concerning activation, inactivation, and other regulatory mechanisms of three key kinases of the BR signaling cascade, BRI1, BAK1, and BIN2, and discuss some unresolved controversies and outstanding questions that require further investigation.
Collapse
Affiliation(s)
- Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Structural Consequences of Multisite Phosphorylation in the BAK1 Kinase Domain. Biophys J 2020; 118:698-707. [PMID: 31962105 DOI: 10.1016/j.bpj.2019.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/09/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
Multisite phosphorylation is an important mechanism of post-translational control of protein kinases. The effects of combinations of possible phosphorylation states on protein kinase activity are difficult to study experimentally because of challenges in isolating a particular phosphorylation state; surprising little effort on this topic has been expended in computational studies. To understand the effects of multisite phosphorylation on the plant protein kinase brassinosteroid insensitive 1-associated kinase 1 (BAK1) conformational ensemble, we performed Gaussian accelerated molecular dynamics simulations on eight BAK1 mod-forms involving phosphorylation of the four activation-loop threonine residues and binding of ATP-Mg2+. We find that unphosphorylated BAK1 transitions into an inactive conformation with a "cracked" activation loop and with the αC helix swung away from the active site. T450 phosphorylation can prevent the activation loop from cracking and keep the αC helix in an active-like conformation, whereas phosphorylation of T455 only slightly stabilizes the activation loop. There is a general trend of reduced flexibility in interlobe motion with increased phosphorylation. Interestingly, the αC helix is destabilized when the activation loop is fully phosphorylated but is again stabilized with ATP-Mg2+ bound. Our results provide insight into the mechanism of phosphorylation-controlled BAK1 activation while at the same time represent the first, to our knowledge, comprehensive, comparative study of the effects of combinatorial phosphorylation states on protein kinase conformational dynamics.
Collapse
|
14
|
Li B, Ferreira MA, Huang M, Camargos LF, Yu X, Teixeira RM, Carpinetti PA, Mendes GC, Gouveia-Mageste BC, Liu C, Pontes CSL, Brustolini OJB, Martins LGC, Melo BP, Duarte CEM, Shan L, He P, Fontes EPB. The receptor-like kinase NIK1 targets FLS2/BAK1 immune complex and inversely modulates antiviral and antibacterial immunity. Nat Commun 2019; 10:4996. [PMID: 31676803 PMCID: PMC6825196 DOI: 10.1038/s41467-019-12847-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/04/2019] [Indexed: 01/23/2023] Open
Abstract
Plants deploy various immune receptors to recognize pathogens and defend themselves. Crosstalk may happen among receptor-mediated signal transduction pathways in the same host during simultaneous infection of different pathogens. However, the related function of the receptor-like kinases (RLKs) in thwarting different pathogens remains elusive. Here, we report that NIK1, which positively regulates plant antiviral immunity, acts as an important negative regulator of antibacterial immunity. nik1 plants exhibit dwarfed morphology, enhanced disease resistance to bacteria and increased PAMP-triggered immunity (PTI) responses, which are restored by NIK1 reintroduction. Additionally, NIK1 negatively regulates the formation of the FLS2/BAK1 complex. The interaction between NIK1 and FLS2/BAK1 is enhanced upon flg22 perception, revealing a novel PTI regulatory mechanism by an RLK. Furthermore, flg22 perception induces NIK1 and RPL10A phosphorylation in vivo, activating antiviral signalling. The NIK1-mediated inverse modulation of antiviral and antibacterial immunity may allow bacteria and viruses to activate host immune responses against each other. Plants deploy numerous receptor-like kinases (RLKs) to respond to pathogens. Here the authors show that NIK1, an RLK that positively regulates antiviral immunity, negatively regulates the response to bacteria by modulating FLS2/BAK1 complex formation, suggesting crosstalk between bacterial and viral immunity.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Marco Aurélio Ferreira
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Luiz Fernando Camargos
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil.,Federal Institute of Education from Goias, Science and Technology, Urutaí, GO, 75790-000, Brazil
| | - Xiao Yu
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Ruan M Teixeira
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Paola A Carpinetti
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Giselle C Mendes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Rio do Sul, SC, 89163-356, Brazil
| | - Bianca C Gouveia-Mageste
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil
| | - Chenglong Liu
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Claudia S L Pontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil
| | - Otávio J B Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Laboratório Nacional de Computação Cientifica (LNCC), Petrópolis, RJ, Brazil
| | - Laura G C Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Bruno P Melo
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Christiane E M Duarte
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil. .,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil.
| |
Collapse
|
15
|
Post-Translational Modifications of Proteins Have Versatile Roles in Regulating Plant Immune Responses. Int J Mol Sci 2019; 20:ijms20112807. [PMID: 31181758 PMCID: PMC6600372 DOI: 10.3390/ijms20112807] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
To protect themselves from pathogens, plants have developed an effective innate immune system. Plants recognize pathogens and then rapidly alter signaling pathways within individual cells in order to achieve an appropriate immune response, including the generation of reactive oxygen species, callose deposition, and transcriptional reprogramming. Post-translational modifications (PTMs) are versatile regulatory changes critical for plant immune response processes. Significantly, PTMs are involved in the crosstalk that serves as a fine-tuning mechanism to adjust cellular responses to pathogen infection. Here, we provide an overview of PTMs that mediate defense signaling perception, signal transduction in host cells, and downstream signal activation.
Collapse
|
16
|
Perraki A, DeFalco TA, Derbyshire P, Avila J, Séré D, Sklenar J, Qi X, Stransfeld L, Schwessinger B, Kadota Y, Macho AP, Jiang S, Couto D, Torii KU, Menke FLH, Zipfel C. Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature 2018; 561:248-252. [PMID: 30177827 PMCID: PMC6250601 DOI: 10.1038/s41586-018-0471-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/17/2018] [Indexed: 11/09/2022]
Abstract
Multicellular organisms employ cell-surface receptor kinases (RKs) to sense and process extracellular signals. Many plant RKs form ligand-induced complexes with shape-complementary co-receptors for their activation1. The best-characterized co-receptor is BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), which associates with numerous leucine-rich repeat (LRR)-RKs to control immunity, growth, and development2. Here, we report key regulatory events controlling the functionality of BAK1 and, more generally, LRR-RKs. Through a combination of phospho-proteomics and targeted mutagenesis, we identified conserved phosphosites that are required for BAK1 immune function in Arabidopsis thaliana (hereafter Arabidopsis). Strikingly, these phosphosites are not required for BAK1-dependent brassinosteroid (BR)-regulated growth. In addition to revealing a critical role for BAK1 C-terminal tail phosphorylation, we identified a conserved tyrosine phosphosite that may be required for functionality of the majority of Arabidopsis LRR-RKs, and separates them into two distinct functional classes. Our results suggest a phosphocode-based dichotomy of BAK1 functionality in plant signaling, and provide novel insights into receptor kinase activation, which have broad implications for our understanding of how plants respond to their changing environment.
Collapse
Affiliation(s)
- Artemis Perraki
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Thomas A DeFalco
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Paul Derbyshire
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Julian Avila
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA.,Metabolomics Platform, The Broad Institute, Cambridge, MA, USA
| | - David Séré
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Montpellier, France
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Xingyun Qi
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA
| | - Lena Stransfeld
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Benjamin Schwessinger
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,The Australian National University, Research School of Biology, Acton, Australian Capital Territory, Australia
| | - Yasuhiro Kadota
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Alberto P Macho
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shushu Jiang
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daniel Couto
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Keiko U Torii
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA
| | - Frank L H Menke
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK. .,Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
17
|
Abstract
Eukaryotic protein kinases (PKs) are a large family of proteins critical for cellular response to external signals, acting as molecular switches. PKs propagate biochemical signals by catalyzing phosphorylation of other proteins, including other PKs, which can undergo conformational changes upon phosphorylation and catalyze further phosphorylations. Although PKs have been studied thoroughly across the domains of life, the structures of these proteins are sparsely understood in numerous groups of organisms, including plants. In addition to efforts towards determining crystal structures of PKs, research on human PKs has incorporated molecular dynamics (MD) simulations to study the conformational dynamics underlying the switching of PK function. This approach of experimental structural biology coupled with computational biophysics has led to improved understanding of how PKs become catalytically active and why mutations cause pathological PK behavior, at spatial and temporal resolutions inaccessible to current experimental methods alone. In this review, we argue for the value of applying MD simulation to plant PKs. We review the basics of MD simulation methodology, the successes achieved through MD simulation in animal PKs, and current work on plant PKs using MD simulation. We conclude with a discussion of the future of MD simulations and plant PKs, arguing for the importance of molecular simulation in the future of plant PK research.
Collapse
|
18
|
Cai W, Zhang D. The role of receptor-like kinases in regulating plant male reproduction. PLANT REPRODUCTION 2018; 31:77-87. [PMID: 29508076 DOI: 10.1007/s00497-018-0332-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 05/21/2023]
Abstract
RLKs in anther development. The cell-to-cell communication is essential for specifying different cell types during plant growth, development and adaption to the ever-changing environment. Plant male reproduction, in particular, requires the exquisitely synchronized development of different cell layers within the male tissue, the anther. Receptor-like kinases (RLKs) belong to a large group of kinases localized on the cell surfaces, perceiving extracellular signals and thereafter regulating intracellular processes. Here we update the role of RLKs in early anther development by defining the cell fate and anther patterning, responding to the changing environment and controlling anther carbohydrate metabolism. We provide speculation of the poorly characterized ligands and substrates of these RLKs. The conserved and diversified aspects underlying the function of RLKs in anther development are discussed.
Collapse
Affiliation(s)
- Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
19
|
Withers J, Dong X. Post-translational regulation of plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:124-132. [PMID: 28538164 PMCID: PMC5644497 DOI: 10.1016/j.pbi.2017.05.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 05/20/2023]
Abstract
Plants have evolved multi-layered molecular defense strategies to protect against pathogens. Plant immune signaling largely relies on post-translational modifications (PTMs) to induce rapid alterations of signaling pathways to achieve a response that is appropriate to the type of pathogen and infection pressure. In host cells, dynamic PTMs have emerged as powerful regulatory mechanisms that cells use to adjust their immune response. PTM is also a virulence strategy used by pathogens to subvert host immunity through the activities of effector proteins secreted into the host cell. Recent studies focusing on deciphering post-translational mechanisms underlying plant immunity have offered an in-depth view of how PTMs facilitate efficient immune responses and have provided a more dynamic and holistic view of plant immunity.
Collapse
Affiliation(s)
- John Withers
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
20
|
Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EPB. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants. Front Microbiol 2017; 7:2139. [PMID: 28105028 PMCID: PMC5214455 DOI: 10.3389/fmicb.2016.02139] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of antiviral defense that is specific to plant DNA viruses and relies on transmembrane receptor-mediated translational suppression for defense.
Collapse
Affiliation(s)
- Bianca C. Gouveia
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Iara P. Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - João Paulo B. Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Anésia A. Santos
- Department of General Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Elizabeth P. B. Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| |
Collapse
|
21
|
Suzuki M, Shibuya M, Shimada H, Motoyama N, Nakashima M, Takahashi S, Suto K, Yoshida I, Matsui S, Tsujimoto N, Ohnishi M, Ishibashi Y, Fujimoto Z, Desaki Y, Kaku H, Kito K, Shibuya N. Autophosphorylation of Specific Threonine and Tyrosine Residues in Arabidopsis CERK1 is Essential for the Activation of Chitin-Induced Immune Signaling. PLANT & CELL PHYSIOLOGY 2016; 57:2312-2322. [PMID: 27565204 DOI: 10.1093/pcp/pcw150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/17/2016] [Indexed: 05/06/2023]
Abstract
Pattern recognition receptors on the plant cell surface mediate the recognition of microbe/damage-associated molecular patterns (MAMPs/DAMPs) and activate downstream immune signaling. Autophosphorylation of signaling receptor-like kinases is a critical event for the activation of downstream responses but the function of each phosphorylation site in the regulation of immune signaling is not well understood. In this study, 41 Ser/Thr/Tyr and 15 Ser/Thr residues were identified as in vitro and in vivo autophosphorylation sites of Arabidopsis CERK1, which is essential for chitin signaling. Comprehensive analysis of transgenic plants expressing mutated CERK1 genes for each phosphorylation site in the cerk1-2 background indicated that the phosphorylation of T479 in the activation segment and Y428 located upstream of the catalytic loop is important for the activation of chitin-triggered defense responses. Contribution of the phosphorylation of T573 to the chitin responses was also suggested. In vitro evaluation of kinase activities of mutated kinase domains indicated that the phosphorylation of T479 and T573 is directly involved in the regulation of kinase activity of CERK1 but the phosphorylation of Y428 regulates chitin signaling independently of the regulation of kinase activity. These results indicated that the phosphorylation of specific residues in the kinase domain contributes to the regulation of downstream signaling either through the regulation of kinase activity or the different mechanisms, e.g. regulation of protein-protein interactions.
Collapse
Affiliation(s)
- Maruya Suzuki
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
- These authors contributed equally to this work
| | - Masatoshi Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
- These authors contributed equally to this work
| | - Hikaru Shimada
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
- These authors contributed equally to this work
| | - Noriko Motoyama
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
- These authors contributed equally to this work
| | - Masato Nakashima
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Shohei Takahashi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Kenkichi Suto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Issei Yoshida
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Saki Matsui
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Natsumi Tsujimoto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Mihoko Ohnishi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Yuko Ishibashi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Zui Fujimoto
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| |
Collapse
|
22
|
Fan M, Wang M, Bai MY. Diverse roles of SERK family genes in plant growth, development and defense response. SCIENCE CHINA-LIFE SCIENCES 2016; 59:889-96. [PMID: 27525989 DOI: 10.1007/s11427-016-0048-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
Plant receptor-like protein kinases (RLKs) are transmembrane proteins with an extracellular domain and an intracellular kinase domain, which enable plant perceiving diverse extracellular stimuli to trigger the intracellular signal transduction. The somatic embryogenesis receptor kinases (SERKs) code the leucine-rich-repeat receptor-like kinase (LRR-RLK), and have been demonstrated to associate with multiple ligand-binding receptors to regulate plant growth, root development, male fertility, stomatal development and movement, and immune responses. Here, we focus on the progress made in recent years in understanding the versatile functions of Arabidopsis SERK proteins, and review SERK proteins as co-receptor to perceive different endogenous and environmental cues in different signaling pathway, and discuss how the kinase activity of SERKs is regulated by various modification.
Collapse
Affiliation(s)
- Min Fan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Minmin Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Ming-Yi Bai
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
23
|
Tunc-Ozdemir M, Urano D, Jaiswal DK, Clouse SD, Jones AM. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex. J Biol Chem 2016; 291:13918-13925. [PMID: 27235398 DOI: 10.1074/jbc.c116.736702] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 01/17/2023] Open
Abstract
Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daisuke Urano
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dinesh Kumar Jaiswal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695-7609
| | - Alan M Jones
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
24
|
Pfeilmeier S, Saur IML, Rathjen JP, Zipfel C, Malone JG. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity. MOLECULAR PLANT PATHOLOGY 2016; 17:521-31. [PMID: 26202381 PMCID: PMC4982027 DOI: 10.1111/mpp.12297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Isabel Marie-Luise Saur
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - John Paul Rathjen
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jacob George Malone
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
25
|
Berckmans B, Simon R. A Feed-Forward Regulation Sets Cell Fates in Roots. TRENDS IN PLANT SCIENCE 2016; 21:373-375. [PMID: 27079491 DOI: 10.1016/j.tplants.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Formative cell divisions generate new cell types and tissues during development, and are controlled by receptor kinase signalling pathways. The phosphatase PP2A has now been shown to be both a target and positive regulator of the receptor kinase ACR4, thus creating a feed-forward loop that serves to establish new cell fates.
Collapse
Affiliation(s)
- Barbara Berckmans
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany.
| |
Collapse
|
26
|
Li W, Liu Y, Wang J, He M, Zhou X, Yang C, Yuan C, Wang J, Chern M, Yin J, Chen W, Ma B, Wang Y, Qin P, Li S, Ronald P, Chen X. The durably resistant rice cultivar Digu activates defence gene expression before the full maturation of Magnaporthe oryzae appressorium. MOLECULAR PLANT PATHOLOGY 2016; 17:354-68. [PMID: 26095454 PMCID: PMC6638526 DOI: 10.1111/mpp.12286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice blast caused by the fungal pathogen Magnaporthe oryzae is one of the most destructive diseases worldwide. Although the rice-M. oryzae interaction has been studied extensively, the early molecular events that occur in rice before full maturation of the appressorium during M. oryzae invasion are unknown. Here, we report a comparative transcriptomics analysis of the durably resistant rice variety Digu and the susceptible rice variety Lijiangxintuanheigu (LTH) in response to infection by M. oryzae (5, 10 and 20 h post-inoculation, prior to full development of the appressorium). We found that the transcriptional responses differed significantly between these two rice varieties. Gene ontology and pathway analyses revealed that many biological processes, including extracellular recognition and biosynthesis of antioxidants, terpenes and hormones, were specifically activated in Digu shortly after infection. Forty-eight genes encoding receptor kinases (RKs) were significantly differentially regulated by M. oryzae infection in Digu. One of these genes, LOC_Os08g10300, encoding a leucine-rich repeat RK from the LRR VIII-2 subfamily, conferred enhanced resistance to M. oryzae when overexpressed in rice. Our study reveals that a multitude of molecular events occur in the durably resistant rice Digu before the full maturation of the appressorium after M. oryzae infection and that membrane-associated RKs play important roles in the early response.
Collapse
Affiliation(s)
- Weitao Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ya Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min He
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaogang Zhou
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chao Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Can Yuan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jichun Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Junjie Yin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bingtian Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuping Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu, Sichuan, 611130, China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu, Sichuan, 611130, China
| | - Pamela Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Xuewei Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Major Crop Diseases, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu, Sichuan, 611130, China
| |
Collapse
|
27
|
Ding L, Yang R, Yang G, Cao J, Li P, Zhou Y. Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum. PLANTA 2016; 243:719-31. [PMID: 26669597 PMCID: PMC4757628 DOI: 10.1007/s00425-015-2441-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/03/2015] [Indexed: 05/10/2023]
Abstract
Phosphorylation and dephosphorylation events were initiated in wheat scab resistance. The putative FHB-responsive phosphoproteins are mainly involved in three functional groups and contain at least one tyrosine, serine, or threonine phosphorylation site. Fusarium head blight (FHB), caused by Fusarium graminearum, is a severe disease in wheat. Protein phosphorylation plays an important role in plant-pathogen interactions, however, a global analysis of protein phosphorylation in response to FHB infection remains to be explored. To study the effect of FHB on the phosphorylation state of wheat proteins, proteins extracted from spikes of a resistant wheat cultivar after 6 h of inoculation with F. graminearum or sterile H2O were separated by two-dimensional gel electrophoresis, and then the immunodetection of putative phosphoproteins was conducted by Western blotting using specific anti-phosphotyrosine antibody, anti-phosphothreonine antibody and anti-phosphoserine antibody. A total of 35 phosphorylated signals was detected and protein identities of 28 spots were determined. Functional categorization showed that the putative FHB-responsive phosphoproteins were mainly involved in defense/stress response, signal transduction, and metabolism. The phosphorylation status of proteins associated with signaling pathways mediated by salicylic acid, calcium ions, small GTPase, as well as with detoxification, reactive oxygen species scavenging, antimicrobial compound synthesis, and cell wall fortification was regulated in wheat spikes in response to F. graminearum infection. The present study reveals dynamics of wheat phosphoproteome in response to F. graminearum infection and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of wheat scab resistance.
Collapse
Affiliation(s)
- Lina Ding
- College of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Ruiying Yang
- Laboratory Middle School, Juancheng, 274600, Shandong, China
| | - Guoxing Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Cao
- College of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Peng Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yang Zhou
- College of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
28
|
Liu N, Xiong Y, Li S, Ren Y, He Q, Gao S, Zhou J, Shui W. New HDAC6-mediated deacetylation sites of tubulin in the mouse brain identified by quantitative mass spectrometry. Sci Rep 2015; 5:16869. [PMID: 26581825 PMCID: PMC4652237 DOI: 10.1038/srep16869] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/17/2015] [Indexed: 01/07/2023] Open
Abstract
The post-translational modifications (PTMs) occurring on microtubules have been implicated in the regulation of microtubule properties and functions. Acetylated K40 of α-tubulin, a hallmark of long-lived stable microtubules, is known to be negatively controlled by histone deacetylase 6 (HDAC6). However, the vital roles of HDAC6 in microtubule-related processes such as cell motility and cell division cannot be fully explained by the only known target site on tubulin. Here, we attempt to comprehensively map lysine acetylation sites on tubulin purified from mouse brain tissues. Furthermore, mass spectrometry-based quantitative comparison of acetylated peptides from wild-type vs HDAC6 knockout mice allowed us to identify six new deacetylation sites possibly mediated by HDAC6. Thus, adding new sites to the repertoire of HDAC6-mediated tubulin deacetylation events would further our understanding of the multi-faceted roles of HDAC6 in regulating microtubule stability and cellular functions.
Collapse
Affiliation(s)
- Ningning Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yun Xiong
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shanshan Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yiran Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qianqian He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenqing Shui
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
29
|
Macho AP, Lozano-Durán R, Zipfel C. Importance of tyrosine phosphorylation in receptor kinase complexes. TRENDS IN PLANT SCIENCE 2015; 20:269-272. [PMID: 25795237 DOI: 10.1016/j.tplants.2015.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 05/09/2023]
Abstract
Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants.
Collapse
Affiliation(s)
- Alberto P Macho
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|