1
|
Zhai Q, Liu Y, Zheng L, Xiao Y, Wu Y, Zhang H, Chen J. Elucidation of molecular mechanisms underlying degradation of nicosulfuron and its derivative by Klebsiella jilinsis 2N3 using multiomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137838. [PMID: 40056522 DOI: 10.1016/j.jhazmat.2025.137838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Nicosulfuron is a herbicide used in agricultural production. Its prolonged application causes significant ecological risks to soil and water environment. In this study, the molecular mechanisms underlying degradation of nicosulfuron and its derivative by Klebsiella jilinsis 2N3 was determined. Strain 2N3 degraded nicosulfuron primarily via cleavage of the sulfonylurea bridge and deamination and demethoxylation of its derivative, 2-amino-4,6-dimethoxypyrimidine (ADMP). Multiomic analysis indicated significant alterations in genes and proteins predominantly associated with glycolysis, tricarboxylic acid cycle, quorum sensing, signal transduction, energy metabolism, and nucleotide synthesis. Heterologous expression and gene knockout confirmed that degradation of the sulfonylurea bridge in nicosulfuron by strain 2N3 was accompanied by a hydrolysis process, in which arginine hydrolase Kj-CY657_RS10725 participated in nicosulfuron degradation Deletion of its gene decreased the biodegradation rate of nicosulfuron by 11.04 % in 24 h. Moreover, our study demonstrated that nicosulfuron derivative ADMP can effectively dock within the active site of the Kj-CY657_RS01600 protein, forming hydrogen bonds that enhanced the catalytic activity. Kj-CY657_RS01600 could degrade 10 mg mL-1 ADMP by 43.08 % within 30 min, resulting in the formation of 4,6-dimethoxypyrimidine as a byproduct. Additionally, after Kj-CY657_RS01600 knockout, the ability of strain 2N3 to biodegrade ADMP decreased by 52.48 %. This study provided molecular mechanism for comprehensive understanding the biodegradation of nicosulfuron and its derivative ADMP by strain 2N3.
Collapse
Affiliation(s)
- Qianhang Zhai
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yue Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Lining Zheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yufeng Xiao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yulin Wu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Jingyuan Chen
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
2
|
Ghimire N, Kim B, Han SR, Oh TJ. Comparative genomics based exploration of xenobiotic degradation patterns in Glutamicibacter, Arthrobacter, and Pseudarthrobacter isolated from diverse ecological habitats. Heliyon 2024; 10:e40280. [PMID: 39584100 PMCID: PMC11585801 DOI: 10.1016/j.heliyon.2024.e40280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Xenobiotics pose a substantial threat to environmental integrity by disrupting normal ecosystems. The genus Arthrobacter, known for its metabolic versatility can degrade several xenobiotic compounds. Arthrobacter strains have also undergone frequent taxonomic revisions and reclassifications to strains including Pseudarthrobacter and Glutamicibacter. Here, we present the complete genome sequence of Glutamicibacter protophormiae strain NG4, isolated from a coastal area surrounded by chemical plants. Further, through comparative genomics involving 55 strains from Glutamicibacter, Arthrobacter, and Pseudarthrobacter, we elucidated taxonomic relationships and xenobiotic degradation potential. Our genomics-based findings revealed a generally even distribution of xenobiotic-degrading genes and pathways among the studied strains. Glutamicibacter species emerged as potential candidate for steroid degradation. A significant number of host-specific and environmental isolates predominantly possessed pathways for 4-hydroxybenzoate (4-HB) degradation and only the environmental isolates possessed benzoate degradation pathway. Certain Arthrobacter and Pseudarthrobacter species isolated from the environmental settings were identified as potential degraders of toluene, xylene, and phenanthrene. Notably, most strains contained pathways for azathioprine, capecitabine, and 5-fluorouridine pharmaceutical drug metabolism. Overall, our findings shed light on microbial metabolic diversity among 55 strains isolated from diverse sources and hint the importance of strict environmental monitoring. Further, for the application of the putative xenobiotic degrading strains, experimental validation is required in the future.
Collapse
Affiliation(s)
- Nisha Ghimire
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea
| | - Byeollee Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea
| |
Collapse
|
3
|
Liu Y, Qin R, Jia X. Design and construction of an artificial labor-division consortium for phenanthrene degradation with three-functional modules. CHEMOSPHERE 2024; 366:143439. [PMID: 39357657 DOI: 10.1016/j.chemosphere.2024.143439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are highly toxic organic pollutants. Phenanthrene often serves as a model compound for studying PAHs biodegradation. In this work, we firstly engineered Escherichia coli M01 containing seven phenanthrene degradation genes and combined it with existing engineered strains E. coli M2 and M3 to form an artificial three-bacteria consortium, named M0123, which exhibited a degradation ratio of 64.66% for 100 mg/L of phenanthrene over 8 days. Subsequently, we constructed engineered Pseudomonas putida KTRL02 which could produce 928.49 mg/L rhamnolipids and integrated it with M0123, forming a four-bacteria consortium with an impressive 81.62% phenanthrene degradation ratio. Assessment of extracellular adenosine levels during the degradation process indicated high cellular energy demand in the four-bacteria consortium. Then, we introduced Bacillus subtilis RH33, a riboflavin-producing strain, as an energy-supplying bacterium, to create a five-bacteria consortium, which exhibited an 88.19% degradation ratio for phenanthrene. The NADH/NAD+ ratio in the five-bacteria consortium during the degradation process was monitored, which was consistently higher than that of the four-bacteria consortium over the eight-day period, indicating a higher overall intracellular reduction capacity. Furthermore, the five-bacteria consortium displayed good tolerance to phenanthrene, even achieving a degradation ratio of 79.38% for 500 mg/L of phenanthrene. This study demonstrates that designing and constructing artificial consortia from the functional perspective and various angles can effectively enhance the degradation of phenanthrene after the addition of the energy-supplying bacterium. This study demonstrates that designing and constructing artificial labor-division consortia from the functional perspective and various angles can effectively enhance the degradation of phenanthrene.
Collapse
Affiliation(s)
- Yiyang Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ruolin Qin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Peng C, Tang J, Zhou X, Zhou H, Zhang Y, Wang S, Wang W, Xiang W, Zhang Q, Yu X, Cai T. Quantitative proteomic analysis reveals the mechanism and key esterase of β-cypermethrin degradation in a bacterial strain from fermented food. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105858. [PMID: 38685237 DOI: 10.1016/j.pestbp.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
Beta-cypermethrin (β-CY) residues in food are an important threat to human health. Microorganisms can degrade β-CY residues during fermentation of fruits and vegetables, while the mechanism is not clear. In this study, a comprehensively investigate of the degradation mechanism of β-CY in a food microorganism was conducted based on proteomics analysis. The β-CY degradation bacteria Gordonia alkanivorans GH-1 was derived from fermented Pixian Doubanjiang. Its crude enzyme extract could degrade 77.11% of β-CY at a concentration of 45 mg/L within 24 h. Proteomics analysis revealed that the ester bond of β-CY is broken under the action of esterase to produce 3-phenoxy benzoic acid, which was further degraded by oxidoreductase and aromatic degrading enzyme. The up-regulation expression of oxidoreductase and esterase was confirmed by transcriptome and quantitative reverse transcription PCR. Meanwhile, the expression of esterase Est280 in Escherichia coli BL21 (DE3) resulted in a 48.43% enhancement in the degradation efficiency of β-CY, which confirmed that this enzyme was the key enzyme in the process of β-CY degradation. This study reveals the degradation mechanism of β-CY by microorganisms during food fermentation, providing a theoretical basis for the application of food microorganisms in β-CY residues.
Collapse
Affiliation(s)
- Chuanning Peng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China.
| | - Xuerui Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Hu Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Yingyue Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Su Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Wanting Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Wenliang Xiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Qing Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Xuan Yu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Ting Cai
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| |
Collapse
|
5
|
Anju VT, Busi S, Mohan MS, Salim SA, Ar S, Imchen M, Kumavath R, Dyavaiah M, Prasad R. Surveillance and mitigation of soil pollution through metagenomic approaches. Biotechnol Genet Eng Rev 2024; 40:589-622. [PMID: 36881114 DOI: 10.1080/02648725.2023.2186330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Soil pollution is one of the serious global threats causing risk to environment and humans. The major cause of accumulation of pollutants in soil are anthropogenic activities and some natural processes. There are several types of soil pollutants which deteriorate the quality of human life and animal health. They are recalcitrant hydrocarbon compounds, metals, antibiotics, persistent organic compounds, pesticides and different kinds of plastics. Due to the detrimental properties of pollutants present in soil on human life and ecosystem such as carcinogenic, genotoxic and mutagenic effects, alternate and effective methods to degrade the pollutants are recommended. Bioremediation is an effective and inexpensive method of biological degradation of pollutants using plants, microorganisms and fungi. With the advent of new detection methods, the identification and degradation of soil pollutants in different ecosystems were made easy. Metagenomic approaches are a boon for the identification of unculturable microorganisms and to explore the vast bioremediation potential for different pollutants. Metagenomics is a power tool to study the microbial load in polluted or contaminated land and its role in bioremediation. In addition, the negative ecosystem and health effect of pathogens, antibiotic and metal resistant genes found in the polluted area can be studied. Also, the identification of novel compounds/genes/proteins involved in the biotechnology and sustainable agriculture practices can be performed with the integration of metagenomics.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mahima S Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sabna Ar
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ranjith Kumavath
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Bihar, India
| |
Collapse
|
6
|
Yessentayeva K, Reinhard A, Berzhanova R, Mukasheva T, Urich T, Mikolasch A. Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support. Appl Microbiol Biotechnol 2024; 108:189. [PMID: 38305872 PMCID: PMC10837267 DOI: 10.1007/s00253-024-13010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.
Collapse
Affiliation(s)
- Kuralay Yessentayeva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Anne Reinhard
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Ramza Berzhanova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Tim Urich
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Annett Mikolasch
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| |
Collapse
|
7
|
Tsagogiannis E, Asimakoula S, Drainas AP, Marinakos O, Boti VI, Kosma IS, Koukkou AI. Elucidation of 4-Hydroxybenzoic Acid Catabolic Pathways in Pseudarthrobacter phenanthrenivorans Sphe3. Int J Mol Sci 2024; 25:843. [PMID: 38255919 PMCID: PMC10815724 DOI: 10.3390/ijms25020843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
4-hydroxybenzoic acid (4-HBA) is an aromatic compound with high chemical stability, being extensively used in food, pharmaceutical and cosmetic industries and therefore widely distributed in various environments. Bioremediation constitutes the most sustainable approach for the removal of 4-hydroxybenzoate and its derivatives (parabens) from polluted environments. Pseudarthrobacter phenanthrenivorans Sphe3, a strain capable of degrading several aromatic compounds, is able to grow on 4-HBA as the sole carbon and energy source. Here, an attempt is made to clarify the catabolic pathways that are involved in the biodegradation of 4-hydroxybenzoate by Sphe3, applying a metabolomic and transcriptomic analysis of cells grown on 4-HBA. It seems that in Sphe3, 4-hydroxybenzoate is hydroxylated to form protocatechuate, which subsequently is either cleaved in ortho- and/or meta-positions or decarboxylated to form catechol. Protocatechuate and catechol are funneled into the TCA cycle following either the β-ketoadipate or protocatechuate meta-cleavage branches. Our results also suggest the involvement of the oxidative decarboxylation of the protocatechuate peripheral pathway to form hydroxyquinol. As a conclusion, P. phenanthrenivorans Sphe3 seems to be a rather versatile strain considering the 4-hydroxybenzoate biodegradation, as it has the advantage to carry it out effectively following different catabolic pathways concurrently.
Collapse
Affiliation(s)
- Epameinondas Tsagogiannis
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Stamatia Asimakoula
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Alexandros P. Drainas
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Orfeas Marinakos
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Vasiliki I. Boti
- Unit of Environmental, Organic and Biochemical High-Resolution Analysis-Orbitrap-LC-MS, University of Ioannina, 451110 Ioannina, Greece;
| | - Ioanna S. Kosma
- Laboratory of Food Chemistry, Sector of Industrial Chemistry and Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| |
Collapse
|
8
|
Dong B, Lu J, Liu Y, Zhang R, Xing B. A multi-omics approach to unravelling the coupling mechanism of nitrogen metabolism and phenanthrene biodegradation in soil amended with biochar. ENVIRONMENT INTERNATIONAL 2024; 183:108435. [PMID: 38217902 DOI: 10.1016/j.envint.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/13/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
The presence of polycyclic aromatic hydrocarbons (PAHs) in soil negatively affects the environment and the degradation of these contaminants is influenced by nitrogen metabolism. However, the mechanisms underlying the interrelationships between the functional genes involved in nitrogen metabolism and phenanthrene (PHE) biodegradation, as well as the effects of biochar on these mechanisms, require further study. Therefore, this study utilised metabolomic and metagenomic analysis to investigate primary nitrogen processes, associated functional soil enzymes and functional genes, and differential soil metabolites in PHE-contaminated soil with and without biochar amendment over a 45-day incubation period. Results showed that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification were the dominant nitrogen metabolism processes in PHE-contaminated soil. The addition of biochar enhanced nitrogen modules, exhibiting discernible temporal fluctuations in denitrification and DNRA proportions. Co-occurrence networks and correlation heatmap analysis revealed potential interactions among functional genes and enzymes responsible for PHE biodegradation and nitrogen metabolism. Notably, enzymes associated with denitrification and DNRA displayed significant positive correlation with enzymes involved in downstream phenanthrene degradation. Of particular interest was stronger correlation observed with the addition of biochar. However, biochar amendment inhibited the 9-phenanthrol degradation pathway, resulting in elevated levels of glutathione (GSH) in response to environmental stress. These findings provide new insights into the interactions between nitrogen metabolism and PHE biodegradation in soil and highlight the dual effects of biochar on these processes.
Collapse
Affiliation(s)
- Biya Dong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuexian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruili Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
9
|
Zhang Y, Gao Y, Xi B, Yuan Y, Tan W. Influence of leachate microenvironment on the occurrence of phthalate esters in landfills. CHEMOSPHERE 2023; 343:140278. [PMID: 37758088 DOI: 10.1016/j.chemosphere.2023.140278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Phthalate esters (PAEs) are added to various products as plasticizers. Plastic waste containing PAEs enters landfills as they age with use. However, the influence of microenvironmental changes on the occurrence of PAEs during landfill stabilization is still unknown. In this study, we evaluated the relationship between the physical and chemical properties of leachate, the structure of bacterial communities and the chemical structure of dissolved organic matter (DOM), and the occurrence of PAEs and the mechanism underlying their responses to changes. Landfill leachate in different stabilization states had high Cl- and NH4+ contents and its metal element (Cr, Pb, and Zn) contents generally decreased with the increase in landfill ages. Proteobacteria, Bacteroidetes, and Firmicutes were important phyla and had an average relative abundance of 68.63%. The lignin/carboxylate-rich alicyclic molecule structure was the main component of DOM (56%-64%). Of the 6-priority controlled PAEs in leachate, di-n-butyl phthalate was the most abundant (1046 μg L-1), while butyl phthalate was not detected. The results showed that pH, the relative abundance of Chloroflexi, and the value of SUVA254 can directly influence the occurrence of PAEs in leachate. The positive and negative effects vary depending on the PAE content and molecular weight. DBP and DEHP have higher environmental risks in the aquatic system. These results are intended to provide a scientific basis for the evolutionary characterization of the microenvironment in complex environmental systems and the control of novel contaminants, such as PAEs.
Collapse
Affiliation(s)
- Yifan Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
10
|
El-Sabeh A, Mlesnita AM, Munteanu IT, Honceriu I, Kallabi F, Boiangiu RS, Mihasan M. Characterisation of the Paenarthrobacter nicotinovorans ATCC 49919 genome and identification of several strains harbouring a highly syntenic nic-genes cluster. BMC Genomics 2023; 24:536. [PMID: 37697273 PMCID: PMC10494377 DOI: 10.1186/s12864-023-09644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Paenarthrobacter nicotinovorans ATCC 49919 uses the pyridine-pathway to degrade nicotine and could provide a renewable source of precursors from nicotine-containing waste as well as a model for studying the molecular evolution of catabolic pathways and their spread by horizontal gene transfer via soil bacterial plasmids. RESULTS In the present study, the strain was sequenced using the Illumina NovaSeq 6000 and Oxford Nanopore Technology (ONT) MinION platforms. Following hybrid assembly with Unicycler, the complete genome sequence of the strain was obtained and used as reference for whole-genome-based phylogeny analyses. A total of 64 related genomes were analysed; five Arthrobacter strains showed both digital DNA-DNA hybridization and average nucleotide identity values over the species threshold when compared to P. nicotinovorans ATCC 49919. Five plasmids and two contigs belonging to Arthrobacter and Paenarthrobacter strains were shown to be virtually identical with the pAO1 plasmid of Paenarthrobacter nicotinovorans ATCC 49919. Moreover, a highly syntenic nic-genes cluster was identified on five plasmids, one contig and three chromosomes. The nic-genes cluster contains two major locally collinear blocks that appear to form a putative catabolic transposon. Although the origins of the nic-genes cluster and the putative transposon still elude us, we hypothesise here that the ATCC 49919 strain most probably evolved from Paenarthrobacter sp. YJN-D or a very closely related strain by acquiring the pAO1 megaplasmid and the nicotine degradation pathway. CONCLUSIONS The data presented here offers another snapshot into the evolution of plasmids harboured by Arthrobacter and Paenarthrobacter species and their role in the spread of metabolic traits by horizontal gene transfer among related soil bacteria.
Collapse
Affiliation(s)
- Amada El-Sabeh
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | | | | | - Iasmina Honceriu
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | - Fakhri Kallabi
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Marius Mihasan
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania.
| |
Collapse
|
11
|
Paul M, Pandey NK, Banerjee A, Shroti GK, Tomer P, Gazara RK, Thatoi H, Bhaskar T, Hazra S, Ghosh D. An insight into omics analysis and metabolic pathway engineering of lignin-degrading enzymes for enhanced lignin valorization. BIORESOURCE TECHNOLOGY 2023; 379:129045. [PMID: 37044152 DOI: 10.1016/j.biortech.2023.129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Lignin, a highly heterogeneous polymer of lignocellulosic biomass, is intricately associated with cellulose and hemicellulose, responsible for its strength and rigidity. Lignin decomposition is carried out through certain enzymes derived from microorganisms to promote the hydrolysis of lignin. Analyzing multi-omics data helps to emphasize the probable value of fungal-produced enzymes to degrade the lignocellulosic material, which provides them an advantage in their ecological niches. This review focuses on lignin biodegrading microorganisms and associated ligninolytic enzymes, including lignin peroxidase, manganese peroxidase, versatile peroxidase, laccase, and dye-decolorizing peroxidase. Further, enzymatic catalysis, lignin biodegradation mechanisms, vital factors responsible for lignin modification and degradation, and the design and selection of practical metabolic pathways are also discussed. Highlights were made on metabolic pathway engineering, different aspects of omics analyses, and its scope and applications to ligninase enzymes. Finally, the advantages and essential steps of successfully applying metabolic engineering and its path forward have been addressed.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha 757003, India
| | - Niteesh Kumar Pandey
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ayan Banerjee
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Gireesh Kumar Shroti
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Preeti Tomer
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Rajesh Kumar Gazara
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha 757003, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Saugata Hazra
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Debashish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
12
|
Imam A, Suman SK, Singh P, Vempatapu BP, Tripathi D, Ray A, Kanaujia PK. Proteomic response of Pseudomonas aeruginosa IIPIS-8 during rapid and efficient degradation of naphthalene. ENVIRONMENTAL RESEARCH 2023; 216:114511. [PMID: 36265600 DOI: 10.1016/j.envres.2022.114511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the ecosystem and are of significant concern due to their toxicity and mutagenicity. Bioremediation of PAHs is a popular and benign approach that ameliorates the environment. This study investigated the biodegradation and proteome response of Pseudomonas aeruginosa IIPIS-8 for two-ringed PAH: naphthalene (NAP) to understand proteome alteration during its bioremediation. Rapid biodegradation was observed up to 98 ± 1.26% and 84 ± 1.03%, respectively, for initial concentrations of 100 mg L-1 and 500 mg L-1 of NAP. Degradation followed first-order kinetics with rate constants of 0.12 h-1 and 0.06 h-1 and half-life (t1/2) of 5.7 h and 11.3 h, respectively. Additionally, the occurrence of key ring cleavage and linear chain intermediates, 2,3,4,5,6, -pentamethyl acetophenone, 1-octanol 2-butyl, and hexadecanoic acid supported complete NAP degradation. Proteomics study of IIPIS-8 throws light on the impact of protein expression, in which 415 proteins were quantified in sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) analysis, of which 97 were found to be significantly up-regulated and 75 were significantly down-regulated by ≥ 2-fold change (p values ≤ 0.05), during the NAP degradation. The study also listed the up-regulation of several enzymes, including oxido-reductases, hydrolases, and catalases, potentially involved in NAP degradation. Overall, differential protein expression, through proteomics study, demonstrated IIPIS-8's capability to efficiently assimilate NAP in their metabolic pathways even in a high concentration of NAP.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India.
| | - Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Bhanu Prasad Vempatapu
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Deependra Tripathi
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Becerril Mercado JE, García de Llasera MP, Méndez García M. Size Exclusion Chromatography Protein Profile of Selenastrum capricornutum Culture Extracts Degrading Benzo( a)Pyrene. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2159987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- José Eduardo Becerril Mercado
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
| | - Martha Patricia García de Llasera
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
| | - Manuel Méndez García
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
| |
Collapse
|
14
|
Wang M, Liu C, Zhang J, Xiao K, Pan T. Synergistic effects of a functional bacterial consortium on enhancing phenanthrene biodegradation and counteracting rare earth biotoxicity in liquid and slurry systems. Lett Appl Microbiol 2022; 75:1515-1525. [PMID: 36000244 DOI: 10.1111/lam.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
Abstract
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) by microorganisms in the environment is often inhibited by coexisting metal ions. The aim of this work is to study a bacterial consortium for enhancing phenanthrene biodegradation under the inhibition effect of the rare earth (RE) ions Ce3+ and Y3+ . This bacterial consortium was composed of two bacteria, namely, the RE-adsorbing Bacillus subtilis MSP117 and the phenanthrene-degrading Moraxella osloensis CFP312. Ce3+ and Y3+ at the concentration of 1.15 mmol L-1 inhibited CFP312 from degrading phenanthrene but not glucose. Using glucose as a co-substrate could promote the proliferation of CFP312 but decreased phenanthrene degradation. Adsorption experiments and electron microscopy imaging showed that CFP312 had no RE ions adsorption capacity for RE ions and that RE elements could not be observed on its cell surfaces. MSP117 could adsorb 0.14 and 0.12 mmol g-1 wet cells of Ce3+ and Y3+ in aqueous solution, respectively, thus demonstrating considerable adsorption capacity. The MSP117 cell surface immobilized part of the free RE ions and reduced their bioaccessibility, thereby alleviating their biotoxic effect on phenanthrene degradation by CFP312. In liquid and slurry systems, glucose, which was used as the co-substrate of the bacterial consortium, must be kept at a low level to avoid the catabolism repression of phenanthrene degradation by CFP312.
Collapse
Affiliation(s)
- Meini Wang
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Congyang Liu
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Jiameng Zhang
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Kun Xiao
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Tao Pan
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
15
|
Hassan S, Sabreena, Khurshid Z, Bhat SA, Kumar V, Ameen F, Ganai BA. Marine Bacteria and Omic Approaches: A Novel and Potential Repository for Bioremediation Assessment. J Appl Microbiol 2022; 133:2299-2313. [PMID: 35818751 DOI: 10.1111/jam.15711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Marine environments accommodating diverse assortments of life constitute a great pool of differentiated natural resources. The cumulative need to remedy unpropitious effects of anthropogenic activities on estuaries, and coastal marine ecosystems has propelled the development of effective bioremediation strategies. Marine bacteria producing biosurfactants are promising agents for bio-remediating oil pollution in marine environments, making them prospective candidates for enhancing oil recovery. Molecular omics technologies are considered an emerging field of research in ecological and diversity assessment owing to their utility in environmental surveillance and bioremediation of polluted sites. A thorough literature review was undertaken to understand the applicability of different omic techniques employed for bioremediation assessment using marine bacteria. This review further establishes that for bioremediation of environmental pollutants (i.e., heavy metals, hydrocarbons, xenobiotic and numerous recalcitrant compounds), organisms isolated from marine environments can be better utilized for their removal. The literature survey shows that omics approaches can provide exemplary knowledge about microbial communities and their role in the bioremediation of environmental pollutants. This review centres on applications of marine bacteria in enhanced bioremediation, utilizing the omics approaches that can be a vital biological contrivance in environmental monitoring to tackle environmental degradation. The paper aims to identify the gaps in investigations involving marine bacteria to help researchers, ecologists, and decision-makers to develop a holistic understanding regarding their utility in bioremediation assessment.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, India
| | | | | | - Vineet Kumar
- Department of Botany, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh-495009, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
16
|
Medić A, Hüttmann N, Lješević M, Risha Y, Berezovski MV, Minić Z, Karadžić I. A study of the flexibility of the carbon catabolic pathways of extremophilic P. aeruginosa san ai exposed to benzoate versus glucose as sole carbon sources by multi omics analytical platform. Microbiol Res 2022; 259:126998. [PMID: 35276454 DOI: 10.1016/j.micres.2022.126998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
Abstract
Polyextremophilic, hydrocarbonoclastic Pseudomonas aeruginosa san ai can survive under extreme environmental challenges in the presence of a variety of pollutants such as organic solvents and hydrocarbons, particularly aromatics, heavy metals, and high pH. To date, the metabolic plasticity of the extremophilic P. aeruginosa, has not been sufficiently studied in regard to the effect of changing carbon sources. Therefore, the present study explores the carbon metabolic pathways of polyextremophilic P. aeruginosa san ai grown on sodium benzoate versus glucose and its potential for aromatic degradation. P. aeruginosa san ai removed/metabolised nearly 430 mg/L of benzoate for 48 h, demonstrating a high capacity for aromatic degradation. Comparative functional proteomics, targeted metabolomics and genomics analytical approaches were employed to study the carbon metabolism of the P. aeruginosa san ai. Functional proteomic study of selected enzymes participating in the β-ketoadipate and the Entner-Doudoroff pathways revealed a metabolic reconfiguration induced by benzoate compared to glucose. Metabolome analysis implied the existence of both catechol and protocatechuate branches of the β-ketoadipate pathway. Enzymatic study of benzoate grown cultures confirmed the activity of the ortho- catechol branch of the β-ketoadipate pathway. Even high concentrations of benzoate did not show increased stress protein synthesis, testifying to its extremophilic nature capable of surviving in harsh conditions. This ability of Pseudomonas aeruginosa san ai to efficiently degrade benzoate can provide a wide range of use of this strain in environmental and agricultural application.
Collapse
Affiliation(s)
- Ana Medić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia
| | - Nico Hüttmann
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Marija Lješević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Yousef Risha
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Maxim V Berezovski
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Zoran Minić
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Ivanka Karadžić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia.
| |
Collapse
|
17
|
Zhang L, Wang M, Cui H, Qiao J, Guo D, Wang B, Li X, Huang H. How humic acid and Tween80 improve the phenanthrene biodegradation efficiency: Insight from cellular characteristics and quantitative proteomics. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126685. [PMID: 34332485 DOI: 10.1016/j.jhazmat.2021.126685] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic and recalcitrant pollutants, with an urgent need for bioremediation. Systematic biodegradation studies show that surfactant-mediated bioremediation is still poorly understood. Here, we investigated a comprehensive cellular response pattern of the PAH degrading strain B. subtilis ZL09-26 to (non-)green surfactants at the cellular and proteomic levels. Eight characteristic cellular factor investigations and detailed quantitative proteomics analyses were performed to understand the highly enhanced phenanthrene (PHE) degradation efficiency (2.8- to 3-fold improvement) of ZL09-26 by humic acid (HA) or Tween80. The commonly upregulated pathway and proteins (Arginine generation, LacI-family transcriptional regulator, and Lactate dehydrogenase) and various metabolic pathways (such as phenanthrene degradation upstream pathway and central carbon metabolism) jointly govern the change of cellular behaviors and improvement of PHE transport, emulsification, and degradation in a network manner. The obtained molecular knowledge empowers engineers to expand the application of surfactants in the biodegradation of PAHs and other pollutants.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China; College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Minghui Wang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany; DWI-Leibniz Institut für Inateraktive Materialien, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Jie Qiao
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Dongsheng Guo
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Biao Wang
- Petroleum Engineering Technology Research Institute of Jiangsu Oilfield Company, SINOPEC, Yangzhou 225009, People's Republic of China; Research Center of Oil and Gas Microbial Engineering of Jiangsu, Yangzhou 225009, People's Republic of China
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - He Huang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
18
|
Cao H, Zhang X, Wang S, Liu J, Han D, Zhao B, Wang H. Insights Into Mechanism of the Naphthalene-Enhanced Biodegradation of Phenanthrene by Pseudomonas sp. SL-6 Based on Omics Analysis. Front Microbiol 2021; 12:761216. [PMID: 34867892 PMCID: PMC8635735 DOI: 10.3389/fmicb.2021.761216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022] Open
Abstract
The existence of polycyclic aromatic hydrocarbons (PAHs) in contaminated environment is multifarious. At present, studies of metabolic regulation focus on the degradation process of single PAH. The global metabolic regulatory mechanisms of microorganisms facing coexisting PAHs are poorly understood, which is the major bottleneck for efficient bioremediation of PAHs pollution. Naphthalene (NAP) significantly enhanced the biodegradation of phenanthrene (PHE) by Pseudomonas sp. SL-6. To explore the underlying mechanism, isobaric tags for relative and absolute quantification (iTRAQ) labeled quantitative proteomics was used to characterize the differentially expressed proteins of SL-6 cultured with PHE or NAP + PHE as carbon source. Through joint analysis of proteome and genome, unique proteins were identified and quantified. The up-regulated proteins mainly concentrated in PAH catabolism, Transporters and Electron transfer carriers. In the process, the regulator NahR, activated by salicylate (intermediate of NAP-biodegradation), up-regulates degradation enzymes (NahABCDE and SalABCDEFGH), which enhances the biodegradation of PHE and accumulation of toxic intermediate–1-hydroxy-2-naphthoic acid (1H2Na); 1H2Na stimulates the expression of ABC transporter, which maintains intracellular physiological activity by excreting 1H2Na; the up-regulation of cytochrome C promotes the above process running smoothly. Salicylate works as a trigger that stimulates cell to respond globally. The conjecture was verified at transcriptional and metabolic levels. These new insights contribute to improving the overall understanding of PAHs-biodegradation processes under complex natural conditions, and promoting the application of microbial remediation technology for PAHs pollution.
Collapse
Affiliation(s)
- Hao Cao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinyu Zhang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuangyan Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiading Liu
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongfei Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baisuo Zhao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haisheng Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Tsagogiannis E, Vandera E, Primikyri A, Asimakoula S, Tzakos AG, Gerothanassis IP, Koukkou AI. Characterization of Protocatechuate 4,5-Dioxygenase from Pseudarthrobacter phenanthrenivorans Sphe3 and In Situ Reaction Monitoring in the NMR Tube. Int J Mol Sci 2021; 22:9647. [PMID: 34502555 PMCID: PMC8431788 DOI: 10.3390/ijms22179647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis-Menten kinetics with Km and Vmax values of 21 ± 1.6 μM and 44.8 ± 4.0 U × mg-1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.
Collapse
Affiliation(s)
- Epameinondas Tsagogiannis
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Elpiniki Vandera
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Alexandra Primikyri
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Stamatia Asimakoula
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Andreas G. Tzakos
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Ioannis P. Gerothanassis
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| |
Collapse
|
20
|
Chen X, Wang W, Hu H, Tang H, Liu Y, Xu P, Lin K, Cui C. Insights from comparative proteomic analysis into degradation of phenanthrene and salt tolerance by the halophilic Martelella strain AD-3. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1499-1510. [PMID: 33244677 DOI: 10.1007/s10646-020-02310-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
A halophilic PAHs-degrading strain, Martelella AD-3, was previously isolated from highly saline petroleum-contaminated soil. In this study, label-free proteomics were performed to identify differentially expressed proteins (DEPs) under Group P (phenanthrene +5% salinity) and Group G (glycerol +1% salinity), which would help to reveal the mechanism of phenanthrene degradation and salt tolerance. A total of 307 up-regulated DEPs were found in Group P, including 17 phenanthrene degradation proteins. Among these phenanthrene-degrading proteins, the ferredoxin of aromatic ring-hydroxylating dioxygenase (RHD) was up-regulated by 110-fold and gentisate 1,2-dioxygenases (GDOs) were only expressed in Group P. Besides, we also found nine high salt stress response proteins, including ectoine synthase and transport protein of compatible (osmoprotectant) solutes, were differentially up-regulated. These results indicate that strain AD-3 mainly relied on RHD and dihydrodiol dehydrogenase to degrade phenanthrene, and accumulated compatible solutes for resistance to salt stress. This study provides strong theoretical guidance for understanding the degradation of phenanthrene by strain AD-3 in high salt environments.
Collapse
Affiliation(s)
- Xin Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
21
|
Mukherjee AK, Chanda A, Mukherjee I, Kumar P. Characterization of lipopeptide biosurfactant produced by a carbazole-degrading bacterium Roseomonas cervicalis: The role of biosurfactant in carbazole solubilisation. J Appl Microbiol 2021; 132:1062-1078. [PMID: 34415661 DOI: 10.1111/jam.15258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
AIM Characterization of biosurfactant produced by a carbazole-degrading bacterium Roseomonas cervicalis and proteomic analysis of intracellular proteins of bacterium while growing on glucose and carbazole medium. METHODS AND RESULTS The bacterium R. cervicalis was isolated from a soil sample contaminated with crude petroleum oil. PCR amplification ascertained the existence of some hydrocarbon-degrading catabolic genes (alkB and PAH-RHDα, C12O, and C23O) in the bacterial genome. GC-MS and RP-HPLC analyses demonstrated 62% and 60% carbazole degradation, respectively, by R. cervicalis 144 h post-incubation at 37℃ and pH 6.5. Due to the paucity of protein databases, expressions of only 29 and 14 intracellular proteins were explicitly recognized and quantitated by mass spectrometry analysis when R. cervicalis was grown in carbazole and glucose medium, respectively. FTIR, NMR and HR-MS/MS analyses demonstrated the lipopeptide nature of the purified biosurfactant produced by R. cervicalis. The biosurfactant is also presumed to assist in the solubilization of carbazole. CONCLUSION The isolated R. cervicalis strain is a potential candidate for the bioremediation of carbazole in petroleum-oil-contaminated sites. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of the promising R. cervicalis strain proficient in carbazole biodegradation.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.,Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim, Boragaon, Guwahati, Assam, India
| | - Abhishek Chanda
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Indrajit Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Pawan Kumar
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
22
|
Ren M, Wang J. A few dominant bacteria and their genomic basis in mediating distinct ecosystem functions. Environ Microbiol 2021; 23:4478-4488. [PMID: 34121309 DOI: 10.1111/1462-2920.15641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022]
Abstract
Species attributes such as abundance and traits are important determinant components for ecosystem functions (EFs), while their influences on distinct functions remain understudied. Here, we linked 753 treehole bacterial communities to two distinct types of EFs, including the three broad functions of respiration, metabolic activity and cell yield and the four narrow functions related to specific organic matter degradation. Towards high occurrence of phylotypes or traits, the dependency of broad EFs on species abundance or traits increased, whereas the dependency of narrow functions decreased. Among the immense number of bacterial phylotypes, the relative abundance of only 5.05% of phylotypes (that is, 542 phylotypes), but accounting for 68.60% of total abundance, were significantly related to both distinct EFs ranging from 2 to 7 functions, the level of which was used to quantify species functional generality. Such 'low species number, high relative abundance and strong functional generality' features for these 542 phylotypes could be further potentially linked to their enriched functional genes involved in cellular processes including nutrient acquisition, environmental adaptation and cell growth. Our study highlights the key role of a handful of microbial species in determining and anticipating distinct EFs by explicitly considering their abundance and trait attributes.
Collapse
Affiliation(s)
- Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Mihăşan M, Boiangiu RŞ, Guzun D, Babii C, Aslebagh R, Channaveerappa D, Dupree E, Darie CC. Time-Dependent Analysis of Paenarthrobacter nicotinovorans pAO1 Nicotine-Related Proteome. ACS OMEGA 2021; 6:14242-14251. [PMID: 34124447 PMCID: PMC8190789 DOI: 10.1021/acsomega.1c01020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
Paenarthrobacter nicotinovorans is a soil Gram-positive nicotine-degrading microorganism (NDM) that harbors a 165 kb pAO1 catabolic megaplasmid. The nicotine catabolic genes on pAO1 have been sequenced, but not all the details on the regulation and interplay of this pathway with the general metabolism of the cell are available. To address this issue at the protein level, a time-based shotgun proteomics study was performed. P. nicotinovorans was grown in the presence or absence of nicotine, and the cells were harvested at three different time intervals: 7, 10, and 24 h after inoculation. The cells were lysed, separated on SDS-PAGE, and digested by in-gel digestion using trypsin, and the resulting peptide mixture was analyzed using nanoliquid chromatography tandem mass spectrometry. We found an extensive number of proteins that are both plasmidal- and chromosomal-encoded and that work together in the energetic metabolism via the Krebs cycle and nicotine pathway. These data provide insight into the adaptation of the bacterial cells to the nicotine metabolic intermediates and could serve as a basis for future attempts to genetically engineer the pAO1-encoded catabolic pathway for increased bioremediation efficiency or for the production of valuable chemicals. The mass-spectrometry-based proteomics data have been deposited to the PRIDE partner repository with the data set identifier PXD012577.
Collapse
Affiliation(s)
- Marius Mihăşan
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Răzvan Ştefan Boiangiu
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
| | - Doina Guzun
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
| | - Cornelia Babii
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
| | - Roshanak Aslebagh
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Devika Channaveerappa
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Emmalyn Dupree
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Costel C. Darie
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| |
Collapse
|
24
|
Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front Bioeng Biotechnol 2021; 9:632059. [PMID: 33644024 PMCID: PMC7902726 DOI: 10.3389/fbioe.2021.632059] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Global environmental contamination with a complex mixture of xenobiotics has become a major environmental issue worldwide. Many xenobiotic compounds severely impact the environment due to their high toxicity, prolonged persistence, and limited biodegradability. Microbial-assisted degradation of xenobiotic compounds is considered to be the most effective and beneficial approach. Microorganisms have remarkable catabolic potential, with genes, enzymes, and degradation pathways implicated in the process of biodegradation. A number of microbes, including Alcaligenes, Cellulosimicrobium, Microbacterium, Micrococcus, Methanospirillum, Aeromonas, Sphingobium, Flavobacterium, Rhodococcus, Aspergillus, Penecillium, Trichoderma, Streptomyces, Rhodotorula, Candida, and Aureobasidium, have been isolated and characterized, and have shown exceptional biodegradation potential for a variety of xenobiotic contaminants from soil/water environments. Microorganisms potentially utilize xenobiotic contaminants as carbon or nitrogen sources to sustain their growth and metabolic activities. Diverse microbial populations survive in harsh contaminated environments, exhibiting a significant biodegradation potential to degrade and transform pollutants. However, the study of such microbial populations requires a more advanced and multifaceted approach. Currently, multiple advanced approaches, including metagenomics, proteomics, transcriptomics, and metabolomics, are successfully employed for the characterization of pollutant-degrading microorganisms, their metabolic machinery, novel proteins, and catabolic genes involved in the degradation process. These technologies are highly sophisticated, and efficient for obtaining information about the genetic diversity and community structures of microorganisms. Advanced molecular technologies used for the characterization of complex microbial communities give an in-depth understanding of their structural and functional aspects, and help to resolve issues related to the biodegradation potential of microorganisms. This review article discusses the biodegradation potential of microorganisms and provides insights into recent advances and omics approaches employed for the specific characterization of xenobiotic-degrading microorganisms from contaminated environments.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
25
|
Liu T, Li J, Qiu L, Zhang F, Linhardt RJ, Zhong W. Combined genomic and transcriptomic analysis of the dibutyl phthalate metabolic pathway in
Arthrobacter
sp. ZJUTW. Biotechnol Bioeng 2020; 117:3712-3726. [DOI: 10.1002/bit.27524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Tengfei Liu
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou China
| | - Jun Li
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou China
| | - Lequan Qiu
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy New York
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy New York
| | - Weihong Zhong
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou China
| |
Collapse
|
26
|
Shon JC, Noh YJ, Kwon YS, Kim JH, Wu Z, Seo JS. The impact of phenanthrene on membrane phospholipids and its biodegradation by Sphingopyxis soli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110254. [PMID: 32007746 DOI: 10.1016/j.ecoenv.2020.110254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
The direct interactions of bacterial membranes and polycyclic aromatic hydrocarbons (PAHs) strongly influence the biological processes, such as metabolic activity and uptake of substrates due to changes in membrane lipids. However, the elucidation of adaptation mechanisms as well as membrane phospholipid alterations in the presence of phenanthrene (PHE) from α-proteobacteria has not been fully explored. This study was conducted to define the degradation efficiency of PHE by Sphingopyxis soli strain KIT-001 in a newly isolated from Jeonju river sediments and to characterize lipid profiles in the presence of PHE in comparison to cells grown on glucose using quantitative lipidomic analysis. This strain was able to respectively utilize 1-hydroxy-2-naphthoic acid and salicylic acid as sole carbon source and approximately 90% of PHE (50 mg/L) was rapidly degraded via naphthalene route within 1 day incubation. In the cells grown on PHE, strain KIT-001 appeared to dynamically change profiles of metabolite and lipid in comparison to cells grown on glucose. The levels of primary metabolites, phosphatidylethanolamines (PE), and phosphatidic acids (PA) were significantly decreased, whereas the levels of phosphatidylcholines (PC) and phosphatidylglycerols (PG) were significantly increased. The adaptation mechanism of Sphingopyxis sp. regarded mainly the accumulation of bilayer forming lipids and anionic lipids to adapt more quickly under restricted nutrition and toxicity condition. Hence, these findings are conceivable that strain KIT-001 has a good adaptive ability and biodegradation for PHE through the alteration of phospholipids, and will be helpful for applications for effective bioremediation of PAHs-contaminated sites.
Collapse
Affiliation(s)
- Jong Cheol Shon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Young Ji Noh
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Young Sang Kwon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Zhexue Wu
- Mass Spectrometry Convergence Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
| |
Collapse
|
27
|
Omics Approaches to Pesticide Biodegradation. Curr Microbiol 2020; 77:545-563. [DOI: 10.1007/s00284-020-01916-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
|
28
|
Jiang B, Xing Y, Li G, Zhang N, Lian L, Sun G, Zhang D. iTRAQ-Based Comparative Proteomic Analysis of Acinetobacter baylyi ADP1 Under DNA Damage in Relation to Different Carbon Sources. Front Microbiol 2020; 10:2906. [PMID: 31993023 PMCID: PMC6971185 DOI: 10.3389/fmicb.2019.02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
DNA damage response allows microorganisms to repair or bypass DNA damage and maintain the genome integrity. It has attracted increasing attention but the underlying influential factors affecting DNA damage response are still unclear. In this work, isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was used to investigate the influence of carbon sources on the translational response of Acinetobacter baylyi ADP1 to DNA damage. After cultivating in a nutrient-rich medium (LB) and defined media supplemented with four different carbon sources (acetate, citrate, pyruvate, and succinate), a total of 2807 proteins were identified. Among them, 84 proteins involved in stress response were significantly altered, indicating the strong influence of carbon source on the response of A. baylyi ADP1 to DNA damage and other stresses. As the first study on the comparative global proteomic changes in A. baylyi ADP1 under DNA damage across nutritional environments, our findings revealed that DNA damage response in A. baylyi ADP1 at the translational level is significantly altered by carbon source, providing an insight into the complex protein interactions across carbon sources and offering theoretical clues for further study to elucidate their general regulatory mechanism to adapt to different nutrient environments.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Nana Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Luning Lian
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Guangdong Sun
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Medić A, Stojanović K, Izrael-Živković L, Beškoski V, Lončarević B, Kazazić S, Karadžić I. A comprehensive study of conditions of the biodegradation of a plastic additive 2,6-di- tert-butylphenol and proteomic changes in the degrader Pseudomonas aeruginosa san ai. RSC Adv 2019; 9:23696-23710. [PMID: 35530597 PMCID: PMC9069449 DOI: 10.1039/c9ra04298a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/16/2019] [Indexed: 11/21/2022] Open
Abstract
The Pseudomonas aeruginosa san ai strain was investigated for its capability to degrade the 2,6-di-tert-butylphenol (2,6-DTBP) plastic additive, a hazardous and toxic substance for aquatic life. This investigation was performed under different parameter values: 2,6-DTBP concentration, inoculum size, pH, and temperature. The GC-MS study showed that P. aeruginosa efficiently degraded 2,6-DTBP in the pH range of 5-8 at higher temperatures. Under exposure to 2,6-DTBP concentrations of 2, 10, and 100 mg L-1, the strain degraded by 100, 100, and 85%, respectively, for 7 days. Crude enzyme preparation from the biomass of P. aeruginosa san ai showed higher efficiency in 2,6-DTBP removal than that shown by whole microbial cells. Gene encoding for the enzymes involved in the degradation of aromatic compounds in P. aeruginosa san ai was identified. To complement the genomic data, a comparative proteomic study of P. aeruginosa san ai grown on 2,6-DTBP or sunflower oil was conducted by means of nanoLC-MS/MS. The presence of aromatic substances resulted in the upregulation of aromatic ring cleavage enzymes, whose activity was confirmed by enzymatic tests; therefore, it could be concluded that 2,6-DTBP might be degraded by ortho-ring cleavage. A comparative proteomics study of P. aeruginosa san ai indicated that the core molecular responses to aromatic substances can be summarized as the upregulation of proteins responsible for amino acid metabolism with emphasized glutamate metabolism and energy production with upregulated enzymes of glyoxylate bypass. P. aeruginosa san ai has a high capacity to efficiently degrade aromatic compounds, and therefore its whole cells or enzymes could be used in the treatment of contaminated areas.
Collapse
Affiliation(s)
- Ana Medić
- Department of Chemistry, Faculty of Medicine, University of Belgrade Višegradska 26 11000 Belgrade Serbia +381113607067
| | - Ksenija Stojanović
- Faculty of Chemistry, University of Belgrade Studentski trg 12-16 11000 Belgrade Serbia
| | - Lidija Izrael-Živković
- Department of Chemistry, Faculty of Medicine, University of Belgrade Višegradska 26 11000 Belgrade Serbia +381113607067
| | - Vladimir Beškoski
- Faculty of Chemistry, University of Belgrade Studentski trg 12-16 11000 Belgrade Serbia
| | - Branka Lončarević
- Institute of Chemistry, Technology and Metallurgy, Department of Chemistry Njegoševa 12 11000 Belgrade Serbia
| | - Saša Kazazić
- Ruđer Bošković Institute Bijenička cesta 54 Zagreb Croatia
| | - Ivanka Karadžić
- Department of Chemistry, Faculty of Medicine, University of Belgrade Višegradska 26 11000 Belgrade Serbia +381113607067
| |
Collapse
|
30
|
Bourguignon N, Irazusta V, Isaac P, Estévez C, Maizel D, Ferrero MA. Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:19-28. [PMID: 30878660 DOI: 10.1016/j.ecoenv.2019.02.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
In the present study the polycyclic aromatic hydrocarbon removal and metabolic adaptation of Amycolatopsis tucumanensis DSM 45259 were investigated. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed differential synthesis of proteins which were identified by MALDI-TOF. To elucidate the phenanthrene metabolic pathway in A. tucumanensis DSM45259, two-dimensional electrophoresis and detection of phenanthrene degradation intermediates by GS-MS were performed. The presence of aromatic substrates resulted in changes in the abundance of proteins involved in the metabolism of aromatic compounds, oxidative stress response, energy production and protein synthesis. The obtained results allowed us to clarify the phenanthrene catabolic pathway, by confirming the roles of several proteins involved in the degradation process and comprehensive adaptation. This may clear the way for more efficient engineering of bacteria in the direction of more effective bioremediation applications.
Collapse
Affiliation(s)
- Natalia Bourguignon
- Universidad Tecnológica Nacional (UTN), Facultad Regional de Haédo, París 532, 1706 Haedo, Buenos Aires, Argentina.
| | - Verónica Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), CONICET-UNSa, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Paula Isaac
- Centro de Investigaciones y Transferencia de Villa María (CIT Villa María), CONICET-Instituto de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Cristina Estévez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), Tucumán, Argentina
| | - Daniela Maizel
- Instituto de Astronomía y Física del Espacio, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Buenos Aires, Intendente Güiraldes 2160, C1428EGA CABA, Argentina
| | - Marcela A Ferrero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), Tucumán, Argentina
| |
Collapse
|
31
|
Agnolucci M, Avio L, Pepe A, Turrini A, Cristani C, Bonini P, Cirino V, Colosimo F, Ruzzi M, Giovannetti M. Bacteria Associated With a Commercial Mycorrhizal Inoculum: Community Composition and Multifunctional Activity as Assessed by Illumina Sequencing and Culture-Dependent Tools. FRONTIERS IN PLANT SCIENCE 2019; 9:1956. [PMID: 30693008 PMCID: PMC6339933 DOI: 10.3389/fpls.2018.01956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/17/2018] [Indexed: 05/15/2023]
Abstract
The implementation of sustainable agriculture encompasses practices enhancing the activity of beneficial soil microorganisms, able to modulate biogeochemical soil cycles and to affect soil fertility. Among them, arbuscular mycorrhizal fungi (AMF) establish symbioses with the roots of most food crops and play a key role in nutrient uptake and plant protection from biotic and abiotic stresses. Such beneficial services, encompassing improved crop performances, and soil resources availability, are the outcome of the synergistic action of AMF and the vast communities of mycorrhizospheric bacteria living strictly associated with their mycelium and spores, most of which showing plant growth promoting (PGP) activities, such as the ability to solubilize phosphate and produce siderophores and indole acetic acid (IAA). One of the strategies devised to exploit AMF benefits is represented by the inoculation of selected isolates, either as single species or in a mixture. Here, for the first time, the microbiota associated with a commercial AMF inoculum was identified and characterized, using a polyphasic approach, i.e., a combination of culture-dependent analyses and metagenomic sequencing. Overall, 276 bacterial genera were identified by Illumina high-throughput sequencing, belonging to 165 families, 107 orders, and 23 phyla, mostly represented by Proteobacteria and Bacteroidetes. The commercial inoculum harbored a rich culturable heterotrophic bacterial community, whose populations ranged from 2.5 to 6.1 × 106 CFU/mL. The isolation of functional groups allowed the selection of 36 bacterial strains showing PGP activities. Among them, 14 strains showed strong IAA and/or siderophores production and were affiliated with Actinomycetales (Microbacterium trichotecenolyticum, Streptomyces deccanensis/scabiei), Bacillales (Bacillus litoralis, Bacillus megaterium), Enterobacteriales (Enterobacter), Rhizobiales (Rhizobium radiobacter). This work demonstrates for the first time that an AMF inoculum, obtained following industrial production processes, is home of a large and diverse community of bacteria with important functional PGP traits, possibly acting in synergy with AMF and providing additional services and benefits. Such bacteria, available in pure culture, could be utilized, individually and/or in multispecies consortia with AMF, as biofertilizers and bioenhancers in sustainable agroecosystems, aimed at minimizing the use of chemical fertilizers and pesticides, promoting primary production, and maintaining soil health and fertility.
Collapse
Affiliation(s)
- Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | | | - Veronica Cirino
- ATENS - Agrotecnologias Naturales SL, La Riera de Gaia, Tarragona, Spain
| | - Fabrizio Colosimo
- ATENS - Agrotecnologias Naturales SL, La Riera de Gaia, Tarragona, Spain
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Mihăşan M, Babii C, Aslebagh R, Channaveerappa D, Dupree EJ, Darie CC. Exploration of Nicotine Metabolism in Paenarthrobacter nicotinovorans pAO1 by Microbial Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:515-529. [DOI: 10.1007/978-3-030-15950-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Fanesi A, Zegeye A, Mustin C, Cébron A. Soil Particles and Phenanthrene Interact in Defining the Metabolic Profile of Pseudomonas putida G7: A Vibrational Spectroscopy Approach. Front Microbiol 2018; 9:2999. [PMID: 30564224 PMCID: PMC6288191 DOI: 10.3389/fmicb.2018.02999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 01/21/2023] Open
Abstract
In soil, organic matter and mineral particles (soil particles; SPs) strongly influence the bio-available fraction of organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), and the metabolic activity of bacteria. However, the effect of SPs as well as comparative approaches to discriminate the metabolic responses to PAHs from those to simple carbon sources are seldom considered in mineralization experiments, limiting our knowledge concerning the dynamics of contaminants in soil. In this study, the metabolic profile of a model PAH-degrading bacterium, Pseudomonas putida G7, grown in the absence and presence of different SPs (i.e., sand, clays and humic acids), using either phenanthrene or glucose as the sole carbon and energy source, was characterized using vibrational spectroscopy (i.e., FT-Raman and FT-IR spectroscopy) and multivariate classification analysis (i.e., PLS-DA). The different type of SPs specifically altered the metabolic profile of P. putida, especially in combination with phenanthrene. In comparison to the cells grown in the absence of SPs, sand induced no remarkable change in the metabolic profile of the cells, whereas clays and humic acids affected it the most, as revealed by the higher discriminative accuracy (R2, RMSEP and sensitivity) of the PLS-DA for those conditions. With respect to the carbon-source (phenanthrene vs. glucose), no effect on the metabolic profile was evident in the absence of SPs or in the presence of sand. On the other hand, with clays and humic acids, more pronounced spectral clusters between cells grown on glucose or on phenanthrene were evident, suggesting that these SPs modify the way cells access and metabolize PAHs. The macromolecular changes regarded mainly protein secondary structures (a shift from α-helices to β-sheets), amino acid levels, nucleic acid conformation and cell wall carbohydrates. Our results provide new interesting evidences that SPs specifically interact with PAHs in defining bacteria metabolic profiles and further emphasize the importance of studying the interaction of bacteria with their surrounding matrix to deeply understand PAHs degradation in soils.
Collapse
Affiliation(s)
- Andrea Fanesi
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| | - Asfaw Zegeye
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| | - Christian Mustin
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| | - Aurélie Cébron
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| |
Collapse
|
34
|
Proteomics based analysis of the nicotine catabolism in Paenarthrobacter nicotinovorans pAO1. Sci Rep 2018; 8:16239. [PMID: 30390017 PMCID: PMC6214936 DOI: 10.1038/s41598-018-34687-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Paenarthrobacter nicotinovorans is a nicotine-degrading microorganism that shows a promising biotechnological potential for the production of compounds with industrial and pharmaceutical importance. Its ability to use nicotine was linked to the presence of the catabolic megaplasmid pAO1. Although extensive work has been performed on the molecular biology of nicotine degradation in this bacterium, only half of the genes putatively involved have been experimentally linked to nicotine. In the current approach, we used nanoLC-MS/MS to identify a total of 801 proteins grouped in 511 non-redundant protein clusters when P. nicotinovorans was grown on citrate, nicotine and nicotine and citrate as the only carbon sources. The differences in protein abundance showed that deamination is preferred when citrate is present. Several putative genes from the pAO1 megaplasmid have been shown to have a nicotine-dependent expression, including a hypothetical polyketide cyclase. We hypothesize that the enzyme would hydrolyze the N1-C6 bond from the pyridine ring with the formation of α-keto- glutaramate. Two chromosomally-encoded proteins, a malate dehydrogenase, and a D-3-phosphoglycerate dehydrogenase were shown to be strongly up-regulated when nicotine was the sole carbon source and could be related to the production the α-keto-glutarate. The data have been deposited to the ProteomeXchange with identifier PXD008756.
Collapse
|
35
|
Papadopoulou ES, Perruchon C, Vasileiadis S, Rousidou C, Tanou G, Samiotaki M, Molassiotis A, Karpouzas DG. Metabolic and Evolutionary Insights in the Transformation of Diphenylamine by a Pseudomonas putida Strain Unravelled by Genomic, Proteomic, and Transcription Analysis. Front Microbiol 2018; 9:676. [PMID: 29681895 PMCID: PMC5897751 DOI: 10.3389/fmicb.2018.00676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/22/2018] [Indexed: 11/19/2022] Open
Abstract
Diphenylamine (DPA) is a common soil and water contaminant. A Pseudomonas putida strain, recently isolated from a wastewater disposal site, was efficient in degrading DPA. Thorough knowledge of the metabolic capacity, genetic stability and physiology of bacteria during biodegradation of pollutants is essential for their future industrial exploitation. We employed genomic, proteomic, transcription analyses and plasmid curing to (i) identify the genetic network of P. putida driving the microbial transformation of DPA and explore its evolution and origin and (ii) investigate the physiological response of bacterial cells during degradation of DPA. Genomic analysis identified (i) two operons encoding a biphenyl (bph) and an aniline (tdn) dioxygenase, both flanked by transposases and (ii) two operons and several scattered genes encoding the ortho-cleavage of catechol. Proteomics identified 11 putative catabolic proteins, all but BphA1 up-regulated in DPA- and aniline-growing cells, and showed that the bacterium mobilized cellular mechanisms to cope with oxidative stress, probably induced by DPA and its derivatives. Transcription analysis verified the role of the selected genes/operons in the metabolic pathway: DPA was initially transformed to aniline and catechol by a biphenyl dioxygenase (DPA-dioxygenase); aniline was then transformed to catechol which was further metabolized via the ortho-cleavage pathway. Plasmid curing of P. putida resulted in loss of the DPA and aniline dioxygenase genes and the corresponding degradation capacities. Overall our findings provide novel insights into the evolution of the DPA degradation pathway and suggests that the degradation capacity of P. putida was acquired through recruitment of the bph and tdn operons via horizontal gene transfer.
Collapse
Affiliation(s)
- Evangelia S Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Chiara Perruchon
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Constantina Rousidou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Georgia Tanou
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | | | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
36
|
Moraes EC, Alvarez TM, Persinoti GF, Tomazetto G, Brenelli LB, Paixão DAA, Ematsu GC, Aricetti JA, Caldana C, Dixon N, Bugg TDH, Squina FM. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:75. [PMID: 29588660 PMCID: PMC5863372 DOI: 10.1186/s13068-018-1073-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/09/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce biocatalysts derived from a large number of microorganisms, including those considered unculturable, which operate synergistically to perform a variety of bioconversion processes. Thus, metagenomic approaches are a powerful tool to reveal novel optimized metabolic pathways for lignin conversion and valorization. RESULTS The lignin-degrading consortium (LigMet) was obtained from a sugarcane plantation soil sample. The LigMet taxonomical analyses (based on 16S rRNA) indicated prevalence of Proteobacteria, Actinobacteria and Firmicutes members, including the Alcaligenaceae and Micrococcaceae families, which were enriched in the LigMet compared to sugarcane soil. Analysis of global DNA sequencing revealed around 240,000 gene models, and 65 draft bacterial genomes were predicted. Along with depicting several peroxidases, dye-decolorizing peroxidases, laccases, carbohydrate esterases, and lignocellulosic auxiliary (redox) activities, the major pathways related to aromatic degradation were identified, including benzoate (or methylbenzoate) degradation to catechol (or methylcatechol), catechol ortho-cleavage, catechol meta-cleavage, and phthalate degradation. A novel Paenarthrobacter strain harboring eight gene clusters related to aromatic degradation was isolated from LigMet and was able to grow on lignin as major carbon source. Furthermore, a recombinant pathway for vanillin production was designed based on novel gene sequences coding for a feruloyl-CoA synthetase and an enoyl-CoA hydratase/aldolase retrieved from the metagenomic data set. CONCLUSION The enrichment protocol described in the present study was successful for a microbial consortium establishment towards the lignin and aromatic metabolism, providing pathways and enzyme sets for synthetic biology engineering approaches. This work represents a pioneering study on lignin conversion and valorization strategies based on metagenomics, revealing several novel lignin conversion enzymes, aromatic-degrading bacterial genomes, and a novel bacterial strain of potential biotechnological interest. The validation of a biosynthetic route for vanillin synthesis confirmed the applicability of the targeted metagenome discovery approach for lignin valorization strategies.
Collapse
Affiliation(s)
- Eduardo C. Moraes
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Thabata M. Alvarez
- Master Program in Industrial Biotechnology, Universidade Positivo (UP), Curitiba, Brazil
| | - Gabriela F. Persinoti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Geizecler Tomazetto
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Livia B. Brenelli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Douglas A. A. Paixão
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Gabriela C. Ematsu
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Juliana A. Aricetti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Neil Dixon
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | | | - Fabio M. Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| |
Collapse
|
37
|
|
38
|
Mukherjee AK, Bhagowati P, Biswa BB, Chanda A, Kalita B. A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. J Proteomics 2017; 167:25-35. [PMID: 28774858 DOI: 10.1016/j.jprot.2017.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/29/2017] [Accepted: 07/29/2017] [Indexed: 12/19/2022]
Abstract
Pseudomonas aeruginosa strain ASP-53, isolated from a petroleum oil-contaminated soil sample, was found to be an efficient degrader of pyrene. PCR amplification of selected hydrocarbon catabolic genes (alkB gene, which encodes for monooxygenase, and the C12O, C23O, and PAH-RHDα genes encoding for the dioxygenase enzyme) from the genomic DNA of P. aeruginosa strain ASP-53 suggested its hydrocarbon degradation potential. The GC-MS analysis demonstrated 30.1% pyrene degradation by P. aeruginosa strain ASP-53 after 144h of incubation at pH6.5, 37°C. Expressions of 115 and 196 intracellular proteins were unambiguously identified and quantitated by shotgun proteomics analysis when the isolate was grown in medium containing pyrene and glucose, respectively. The pyrene-induced uniquely expressed and up-regulated proteins in P. aeruginosa strain ASP-53 in addition to substrate (pyrene) metabolism are also likely to be associated with different cellular functions for example-related to protein folding (molecular chaperone), stress response, metabolism of carbohydrate, proteins and amino acids, and fatty acids; transport of metabolites, energy generation such as ATP synthesis, electron transport and nitrate assimilation, and other oxidation-reduction reactions. Proteomic analyses identified some important enzymes involved in pyrene degradation by P. aeruginosa ASP-53 which shows that this bacterium follows the salicylate pathway of pyrene degradation. SIGNIFICANCE This study is the first report on proteomic analysis of pyrene biodegradation pathway by Pseudomonas aeruginosa, isolated from a petroleum-oil contaminated soil sample. The pathway displays partial similarity with deduced pyrene degradation mechanisms of Mycobacterium vanbaalenii PYR-1. The GC-MS analysis as well as PCR amplification of hydrocarbon catabolic genes substantiated the potency of the bacterium under study to effectively degrade high molecular weight, toxic PAH such as pyrene for its filed scale bioremediation experiments. The proteomics approach (LC-MS/MS analysis) identified the differentially regulated intracellular proteins of the isolate P. aeruginosa ASP-53 when grown in pyrene medium. This study identified some important pyrene biodegradation enzymes in Pseudomonas aeruginosa ASP-53 and highlights that the bacterium follows salicylate pathway for pyrene degradation.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- ONGC-Center for Petroleum Biotechnology & Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| | - Pabitra Bhagowati
- ONGC-Center for Petroleum Biotechnology & Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Bhim Bahadur Biswa
- ONGC-Center for Petroleum Biotechnology & Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Abhishek Chanda
- ONGC-Center for Petroleum Biotechnology & Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Bhargab Kalita
- ONGC-Center for Petroleum Biotechnology & Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
39
|
Perruchon C, Vasileiadis S, Rousidou C, Papadopoulou ES, Tanou G, Samiotaki M, Garagounis C, Molassiotis A, Papadopoulou KK, Karpouzas DG. Metabolic pathway and cell adaptation mechanisms revealed through genomic, proteomic and transcription analysis of a Sphingomonas haloaromaticamans strain degrading ortho-phenylphenol. Sci Rep 2017; 7:6449. [PMID: 28743883 PMCID: PMC5527002 DOI: 10.1038/s41598-017-06727-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Ortho-phenylphenol (OPP) is a fungicide contained in agro-industrial effluents produced by fruit-packaging plants. Within the frame of developing bio-strategies to detoxify these effluents, an OPP-degrading Sphingomonas haloaromaticamans strain was isolated. Proteins/genes with a putative catabolic role and bacterium adaptation mechanisms during OPP degradation were identified via genomic and proteomic analysis. Transcription analysis of all putative catabolic genes established their role in the metabolism of OPP. The formation of key transformation products was verified by chromatographic analysis. Genomic analysis identified two orthologous operons encoding the ortho-cleavage of benzoic acid (BA) (ben/cat). The second ben/cat operon was located in a 92-kb scaffold along with (i) an operon (opp) comprising genes for the transformation of OPP to BA and 2-hydroxypenta-2,4-dienoate (and genes for its transformation) and (ii) an incomplete biphenyl catabolic operon (bph). Proteomics identified 13 up-regulated catabolic proteins when S. haloaromaticamans was growing on OPP and/or BA. Transcription analysis verified the key role of the catabolic operons located in the 92-kb scaffold, and flanked by transposases, on the transformation of OPP by S. haloaromaticamans. A flavin-dependent monoxygenase (OppA1), one of the most up-regulated proteins in the OPP-growing cells, was isolated via heterologous expression and its catabolic activity was verified in vitro.
Collapse
Affiliation(s)
- Chiara Perruchon
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Sotirios Vasileiadis
- University of South Australia, Future Industries Institute, Mawson Lakes, Australia
| | - Constantina Rousidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Evangelia S Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Georgia Tanou
- Aristotle University of Thessaloniki, School of Agriculture, Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Constantinos Garagounis
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | | | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
40
|
Zdarta A, Tracz J, Luczak M, Guzik U, Kaczorek E. Hydrocarbon-induced changes in proteins and fatty acids profiles of Raoultella ornithinolytica M03. J Proteomics 2017; 164:43-51. [DOI: 10.1016/j.jprot.2017.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/25/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023]
|
41
|
Biodegradation of BTEX Aromatics by a Haloduric Microbial Consortium Enriched from a Sediment of Bohai Sea, China. Appl Biochem Biotechnol 2017; 183:893-905. [DOI: 10.1007/s12010-017-2471-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
42
|
Liu S, Guo C, Dang Z, Liang X. Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:256-264. [PMID: 27984820 DOI: 10.1016/j.ecoenv.2016.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/04/2016] [Accepted: 12/09/2016] [Indexed: 05/22/2023]
Abstract
Previous study concerning the effects of surfactants on phenanthrene biodegradation focused on observing the changes of cell characteristics of Sphingomonas sp. GY2B. However, the impact of surfactants on the expression of bacterial proteins, controlling phenanthrene transport and catabolism, remains obscure. To overcome the knowledge gap, comparative proteomic approaches were used to investigate protein expressions of Sphingomonas sp. GY2B during phenanthrene biodegradation in the presence and absence of a nonionic surfactant, Tween80. A total of 23 up-regulated and 19 down-regulated proteins were detected upon Tween80 treatment. Tween80 could regulate ion transport (e.g. H+) in cell membrane to provide driving force (ATP) for the transmembrane transport of phenanthrene thus increasing its uptake and biodegradation by GY2B. Moreover, Tween80 probably increased GY2B vitality and growth by inducing the expression of peptidylprolyl isomerase to stabilize cell membrane, increasing the abundances of proteins involved in intracellular metabolic pathways (e.g. TCA cycle), as well as decreasing the abundances of translation/transcription-related proteins and cysteine desulfurase, thereby facilitating phenanthrene biodegradation. This study may facilitate a better understanding of the mechanisms that regulate surfactants-enhanced biodegradation of PAHs at the proteomic level.
Collapse
Affiliation(s)
- Shasha Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Xujun Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
43
|
Kundu D, Hazra C, Chaudhari A. Biodegradation of 2,6-dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: Identification and toxicological analysis of metabolites and proteomic insights. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Bordoloi NK, Bhagowati P, Chaudhuri MK, Mukherjee AK. Proteomics and Metabolomics Analyses to Elucidate the Desulfurization Pathway of Chelatococcus sp. PLoS One 2016; 11:e0153547. [PMID: 27100386 PMCID: PMC4839641 DOI: 10.1371/journal.pone.0153547] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Desulfurization of dibenzothiophene (DBT) and alkylated DBT derivatives present in transport fuel through specific cleavage of carbon-sulfur (C-S) bonds by a newly isolated bacterium Chelatococcus sp. is reported for the first time. Gas chromatography-mass spectrometry (GC-MS) analysis of the products of DBT degradation by Chelatococcus sp. showed the transient formation of 2-hydroxybiphenyl (2-HBP) which was subsequently converted to 2-methoxybiphenyl (2-MBP) by methylation at the hydroxyl group of 2-HBP. The relative ratio of 2-HBP and 2-MBP formed after 96 h of bacterial growth was determined at 4:1 suggesting partial conversion of 2-HBP or rapid degradation of 2-MBP. Nevertheless, the enzyme involved in this conversion process remains to be identified. This production of 2-MBP rather than 2-HBP from DBT desulfurization has a significant metabolic advantage for enhancing the growth and sulfur utilization from DBT by Chelatococcus sp. and it also reduces the environmental pollution by 2-HBP. Furthermore, desulfurization of DBT derivatives such as 4-M-DBT and 4, 6-DM-DBT by Chelatococcus sp. resulted in formation of 2-hydroxy-3-methyl-biphenyl and 2-hydroxy -3, 3/- dimethyl-biphenyl, respectively as end product. The GC and X-ray fluorescence studies revealed that Chelatococcus sp. after 24 h of treatment at 37°C reduced the total sulfur content of diesel fuel by 12% by per gram resting cells, without compromising the quality of fuel. The LC-MS/MS analysis of tryptic digested intracellular proteins of Chelatococcus sp. when grown in DBT demonstrated the biosynthesis of 4S pathway desulfurizing enzymes viz. monoxygenases (DszC, DszA), desulfinase (DszB), and an NADH-dependent flavin reductase (DszD). Besides, several other intracellular proteins of Chelatococcus sp. having diverse biological functions were also identified by LC-MS/MS analysis. Many of these enzymes are directly involved with desulfurization process whereas the other enzymes/proteins support growth of bacteria at an expense of DBT. These combined results suggest that Chelatococcus sp. prefers sulfur-specific extended 4S pathway for deep-desulphurization which may have an advantage for its intended future application as a promising biodesulfurizing agent.
Collapse
Affiliation(s)
- Naba K. Bordoloi
- ONGC-Center for Petroleum Biotechnology, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Pabitra Bhagowati
- ONGC-Center for Petroleum Biotechnology, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Mihir K. Chaudhuri
- ONGC-Center for Petroleum Biotechnology, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Ashis K. Mukherjee
- ONGC-Center for Petroleum Biotechnology, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| |
Collapse
|
45
|
Thomas F, Cébron A. Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil. Front Microbiol 2016; 7:92. [PMID: 26903971 PMCID: PMC4742875 DOI: 10.3389/fmicb.2016.00092] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Over the last decades, understanding of the effects of plants on soil microbiomes has greatly advanced. However, knowledge on the assembly of rhizospheric communities in aged-contaminated industrial soils is still limited, especially with regard to transcriptionally active microbiomes and their link to the quality or quantity of carbon sources. We compared the short-term (2-10 days) dynamics of bacterial communities and potential PAH-degrading bacteria in bare or ryegrass-planted aged-contaminated soil spiked with phenanthrene, put in relation with dissolved organic carbon (DOC) sources and polycyclic aromatic hydrocarbon (PAH) pollution. Both resident and active bacterial communities (analyzed from DNA and RNA, respectively) showed higher species richness and smaller dispersion between replicates in planted soils. Root development strongly favored the activity of Pseudomonadales within the first 2 days, and of members of Actinobacteria, Caulobacterales, Rhizobiales, and Xanthomonadales within 6-10 days. Plants slowed down the dissipation of phenanthrene, while root exudation provided a cocktail of labile substrates that might preferentially fuel microbial growth. Although the abundance of PAH-degrading genes increased in planted soil, their transcription level stayed similar to bare soil. In addition, network analysis revealed that plants induced an early shift in the identity of potential phenanthrene degraders, which might influence PAH dissipation on the long-term.
Collapse
Affiliation(s)
- François Thomas
- CNRS, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France; Université de Lorraine, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France
| | - Aurélie Cébron
- CNRS, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France; Université de Lorraine, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France
| |
Collapse
|
46
|
Linking Microbial Community and Catabolic Gene Structures during the Adaptation of Three Contaminated Soils under Continuous Long-Term Pollutant Stress. Appl Environ Microbiol 2016; 82:2227-2237. [PMID: 26850298 DOI: 10.1128/aem.03482-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/29/2016] [Indexed: 11/20/2022] Open
Abstract
Three types of contaminated soil from three geographically different areas were subjected to a constant supply of benzene or benzene/toluene/ethylbenzene/xylenes (BTEX) for a period of 3 months. Different from the soil from Brazil (BRA) and Switzerland (SUI), the Czech Republic (CZE) soil which was previously subjected to intensive in situ bioremediation displayed only negligible changes in community structure. BRA and SUI soil samples showed a clear succession of phylotypes. A rapid response to benzene stress was observed, whereas the response to BTEX pollution was significantly slower. After extended incubation, actinobacterial phylotypes increased in relative abundance, indicating their superior fitness to pollution stress. Commonalities but also differences in the phylotypes were observed. Catabolic gene surveys confirmed the enrichment of actinobacteria by identifying the increase of actinobacterial genes involved in the degradation of pollutants. Proteobacterial phylotypes increased in relative abundance in SUI microcosms after short-term stress with benzene, and catabolic gene surveys indicated enriched metabolic routes. Interestingly, CZE soil, despite staying constant in community structure, showed a change in the catabolic gene structure. This indicates that a highly adapted community, which had to adjust its gene pool to meet novel challenges, has been enriched.
Collapse
|
47
|
Draft Genome Sequence of Arthrobacter sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01517-15. [PMID: 26701084 PMCID: PMC4691658 DOI: 10.1128/genomea.01517-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations.
Collapse
|
48
|
Battini F, Cristani C, Giovannetti M, Agnolucci M. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Res 2015; 183:68-79. [PMID: 26805620 DOI: 10.1016/j.micres.2015.11.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 11/29/2015] [Indexed: 10/22/2022]
Abstract
Arbuscular Mycorrhizal Fungi (AMF) live in symbiosis with most crop plants and represent essential elements of soil fertility and plant nutrition and productivity, facilitating soil mineral nutrient uptake and protecting plants from biotic and abiotic stresses. These beneficial services may be mediated by the dense and active spore-associated bacterial communities, which sustain diverse functions, such as the promotion of mycorrhizal activity, biological control of soilborne diseases, nitrogen fixation, and the supply of nutrients and growth factors. In this work, we utilised culture-dependent methods to isolate and functionally characterize the microbiota strictly associated to Rhizophagus intraradices spores, and molecularly identified the strains with best potential plant growth promoting (PGP) activities by 16S rDNA sequence analysis. We isolated in pure culture 374 bacterial strains belonging to different functional groups-actinobacteria, spore-forming, chitinolytic and N2-fixing bacteria-and screened 122 strains for their potential PGP activities. The most common PGP trait was represented by P solubilization from phytate (69.7%), followed by siderophore production (65.6%), mineral P solubilization (49.2%) and IAA production (42.6%). About 76% of actinobacteria and 65% of chitinolytic bacteria displayed multiple PGP activities. Nineteen strains with best potential PGP activities, assigned to Sinorhizobium meliloti, Streptomyces spp., Arthrobacter phenanthrenivorans, Nocardiodes albus, Bacillus sp. pumilus group, Fictibacillus barbaricus and Lysinibacillus fusiformis, showed the ability to produce IAA and siderophores and to solubilize P from mineral phosphate and phytate, representing suitable candidates as biocontrol agents, biofertilisers and bioenhancers, in the perspective of targeted management of beneficial symbionts and their associated bacteria in sustainable food production systems.
Collapse
Affiliation(s)
- Fabio Battini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Caterina Cristani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
49
|
|
50
|
Genome Sequence of Arthrobacter sp. YC-RL1, an Aromatic Compound-Degrading Bacterium. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00749-15. [PMID: 26159532 PMCID: PMC4498118 DOI: 10.1128/genomea.00749-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the 4.04-Mb draft genome sequence of Arthrobacter sp. YC-RL1, an aromatic compound-degrading bacterium. YC-RL1 could degrade a wide range of aromatic compounds, including naphthaline, 1,2,3,4-tetrachlorobenzene, fluorene, 4-nitrophenol, bisphenol A, biphenyl, and p-xylene. The genome sequence of YC-RL1 will promote the investigation of the biodegradation of aromatic compounds.
Collapse
|