1
|
Marolt Presen D, Goeschl V, Hanetseder D, Ogrin L, Stetco AL, Tansek A, Pozenel L, Bruszel B, Mitulovic G, Oesterreicher J, Zipperle J, Schaedl B, Holnthoner W, Grillari J, Redl H. Prolonged cultivation enhances the stimulatory activity of hiPSC mesenchymal progenitor-derived conditioned medium. Stem Cell Res Ther 2024; 15:434. [PMID: 39551765 PMCID: PMC11572509 DOI: 10.1186/s13287-024-03960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/25/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem cells represent a scalable source of youthful tissue progenitors and secretomes for regenerative therapies. The aim of our study was to investigate the potential of conditioned medium (CM) from hiPSC-mesenchymal progenitors (hiPSC-MPs) to stimulate osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (MSCs). We also investigated whether prolonged cultivation or osteogenic pre-differentiation of hiPSC-MPs could enhance the stimulatory activity of CM. METHODS MSCs were isolated from 13 donors (age 20-90 years). CM derived from hiPSC-MPs was added to the MSC cultures and the effects on proliferation and osteogenic differentiation were examined after 14 days and 6 weeks. The stimulatory activity of hiPSC-MP-CM was compared with the activity of MSC-derived CM and with the activity of CM prepared from hiPSC-MPs pre-cultured in growth or osteogenic medium for 14 days. Comparative proteomic analysis of CM was performed to gain insight into the molecular components responsible for the stimulatory activity. RESULTS Primary bone marrow-derived MSC exhibited variability, with a tendency towards lower proliferation and tri-lineage differentiation in older donors. hiPSC-MP-CM increased the proliferation and alkaline phosphatase activity of MSC from several adult/aged donors after 14 days of continuous supplementation under osteogenic conditions. However, CM supplementation failed to improve the mineralization of MSC pellets after 6 weeks under osteogenic conditions. hiPSC-MP-CM showed greater enhancement of proliferation and ALP activity than CM derived from bone marrow-derived MSCs. Moreover, 14-day cultivation but not osteogenic pre-differentiation of hiPSC-MPs strongly enhanced CM stimulatory activity. Quantitative proteomic analysis of d14-CM revealed a distinct profile of components that formed a highly interconnected associations network with two clusters, one functionally associated with binding and organization of actin/cytoskeletal components and the other with structural constituents of the extracellular matrix, collagen, and growth factor binding. Several hub proteins were identified that were reported to have functions in cell-extracellular matrix interaction, osteogenic differentiation and development. CONCLUSIONS Our data show that hiPSC-MP-CM enhances early osteogenic differentiation of human bone marrow-derived MSCs and that prolonged cultivation of hiPSC-MPs enhances CM-stimulatory activity. Proteomic analysis of the upregulated protein components provides the basis for further optimization of hiPSC-MP-CM for bone regenerative therapies.
Collapse
Affiliation(s)
- Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria.
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria.
| | - Vanessa Goeschl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Laura Ogrin
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Alexandra-Larissa Stetco
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Anja Tansek
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Laura Pozenel
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Bella Bruszel
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| | - Goran Mitulovic
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria
- Bruker Austria, Lemböckgasse 47b, Vienna, 1230, Austria
| | - Johannes Oesterreicher
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Johannes Zipperle
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
- University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna, 1090, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| |
Collapse
|
2
|
Clua‐Ferré L, Suau R, Vañó‐Segarra I, Ginés I, Serena C, Manyé J. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med 2024; 14:e70075. [PMID: 39488745 PMCID: PMC11531661 DOI: 10.1002/ctm2.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as key regulators of intercellular communication, orchestrating essential biological processes by delivering bioactive cargoes to target cells. Available evidence suggests that MSC-EVs can mimic the functions of their parental cells, exhibiting immunomodulatory, pro-regenerative, anti-apoptotic, and antifibrotic properties. Consequently, MSC-EVs represent a cell-free therapeutic option for patients with inflammatory bowel disease (IBD), overcoming the limitations associated with cell replacement therapy, including their non-immunogenic nature, lower risk of tumourigenicity, cargo specificity and ease of manipulation and storage. MAIN TOPICS COVERED This review aims to provide a comprehensive examination of the therapeutic efficacy of MSC-EVs in IBD, with a focus on their mechanisms of action and potential impact on treatment outcomes. We examine the advantages of MSC-EVs over traditional therapies, discuss methods for their isolation and characterisation, and present mechanistic insights into their therapeutic effects through transcriptomic, proteomic and lipidomic analyses of MSC-EV cargoes. We also discuss available preclinical studies demonstrating that MSC-EVs reduce inflammation, promote tissue repair and restore intestinal homeostasis in IBD models, and compare these findings with those of clinical trials. CONCLUSIONS Finally, we highlight the potential of MSC-EVs as a novel therapy for IBD and identify challenges and opportunities associated with their translation into clinical practice. HIGHLIGHTS The source of mesenchymal stem cells (MSCs) strongly influences the composition and function of MSC-derived extracellular vesicles (EVs), affecting their therapeutic potential. Adipose-derived MSC-EVs, known for their immunoregulatory properties and ease of isolation, show promise as a treatment for inflammatory bowel disease (IBD). MicroRNAs are consistently present in MSC-EVs across cell types and are involved in pathways that are dysregulated in IBD, making them potential therapeutic agents. For example, miR-let-7a is associated with inhibition of apoptosis, miR-100 supports cell survival, miR-125b helps suppress pro-inflammatory cytokines and miR-20 promotes anti-inflammatory M2 macrophage polarisation. Preclinical studies in IBD models have shown that MSC-EVs reduce intestinal inflammation by suppressing pro-inflammatory mediators (e.g., TNF-α, IL-1β, IL-6) and increasing anti-inflammatory factors (e.g., IL-4, IL-10). They also promote mucosal healing and strengthen the integrity of the gut barrier, suggesting their potential to address IBD pathology.
Collapse
Affiliation(s)
- Laura Clua‐Ferré
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Roger Suau
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Irene Vañó‐Segarra
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Iris Ginés
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Carolina Serena
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Josep Manyé
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
- Centro de Investigación Biomédica en RedMadridSpain
| |
Collapse
|
3
|
Ming J, Liao Y, Song W, Wang Z, Cui J, He L, Chen G, Xu K. Role of intracranial bone marrow mesenchymal stem cells in stroke recovery: A focus on post-stroke inflammation and mitochondrial transfer. Brain Res 2024; 1837:148964. [PMID: 38677450 DOI: 10.1016/j.brainres.2024.148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Stem cell therapy has become a hot research topic in the medical field in recent years, with enormous potential for treating a variety of diseases. In particular, bone marrow mesenchymal stem cells (BMSCs) have wide-ranging applications in the treatment of ischemic stroke, autoimmune diseases, tissue repair, and difficult-to-treat diseases. BMSCs can differentiate into multiple cell types and exhibit strong immunomodulatory properties. Although BMSCs can regulate the inflammatory response activated after stroke, the mechanism by which BMSCs regulate inflammation remains unclear and requires further study. Recently, stem cell therapy has emerged as a potentially effective approach for enhancing the recovery process following an ischemic stroke. For example, by regulating post-stroke inflammation and by transferring mitochondria to exert therapeutic effects. Therefore, this article reviews the therapeutic effects of intracranial BMSCs in regulating post-stroke inflammation and mitochondrial transfer in the treatment of stroke, providing a basis for further research.
Collapse
Affiliation(s)
- Jiang Ming
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yidong Liao
- Department of Cardio-Thoracic Surgery, The First Hospital of Guiyang, Guiyang 550002, Guizhou, China
| | - Wenxue Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zili Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Junshuan Cui
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Longcai He
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Hyperbaric Oxygen, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
4
|
Kristiansen S, Storm BS, Emblem ÅE, Grønli RH, Pettersen K, Hilmo J, Jarmund AH, Leth-Olsen M, Nyrnes SA, Nilsen BA, Nielsen EW, Mollnes TE. Femoral nailing associated with bone marrow emboli in pigs induced a specific increase in blood IL-6 and broad inflammatory responses in the heart and lungs. Front Immunol 2024; 15:1396800. [PMID: 39100680 PMCID: PMC11294081 DOI: 10.3389/fimmu.2024.1396800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Bone marrow embolization may complicate orthopedic surgery, potentially causing fat embolism syndrome. The inflammatory potential of bone marrow emboli is unclear. We aimed to investigate the inflammatory response to femoral intramedullary nailing, specifically the systemic inflammatory effects in plasma, and local tissue responses. Additionally, the plasma response was compared to that following intravenous injection of autologous bone marrow. Methods Twelve pigs underwent femoral nailing (previously shown to have fat emboli in lung and heart), four received intravenous bone marrow, and four served as sham controls. Blood samples were collected hourly and tissue samples postmortem. Additionally, we incubated bone marrow and blood, separately and in combination, from six pigs in vitro. Complement activation was detected by C3a and the terminal C5b-9 complement complex (TCC), and the cytokines TNF, IL-1β, IL-6 and IL-10 as well as the thrombin-antithrombin complexes (TAT) were all measured using enzyme-immunoassays. Results After nailing, plasma IL-6 rose 21-fold, compared to a 4-fold rise in sham (p=0.0004). No plasma differences in the rest of the inflammatory markers were noted across groups. However, nailing yielded 2-3-times higher C3a, TCC, TNF, IL-1β and IL-10 in lung tissue compared to sham (p<0.0001-0.03). Similarly, heart tissue exhibited 2-times higher TCC and IL-1β compared to sham (p<0.0001-0.03). Intravenous bone marrow yielded 8-times higher TAT than sham at 30 minutes (p<0.0001). In vitro, incubation of bone marrow for four hours resulted in 95-times higher IL-6 compared to whole blood (p=0.03). Discussion A selective increase in plasma IL-6 was observed following femoral nailing, whereas lung and heart tissues revealed a broad local inflammatory response not reflected systemically. In vitro experiments may imply bone marrow to be the primary IL-6 source.
Collapse
Affiliation(s)
- Steinar Kristiansen
- Department of Surgery, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Benjamin Stage Storm
- Department of Surgery, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | | | | | | | - Jonas Hilmo
- Department of Surgery, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Anders Hagen Jarmund
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin Leth-Olsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Siri Ann Nyrnes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bent Aksel Nilsen
- Department of Surgery, Nordland Hospital, Bodø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Erik Waage Nielsen
- Department of Surgery, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Department of Pain Medicine and Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Qin Z, Han Y, Du Y, Zhang Y, Bian Y, Wang R, Wang H, Guo F, Yuan H, Pan Y, Jin J, Zhou Q, Wang Y, Han F, Xu Y, Jiang J. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells promote alveolar bone regeneration by regulating macrophage polarization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1010-1026. [PMID: 38489007 DOI: 10.1007/s11427-023-2454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 03/17/2024]
Abstract
Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.
Collapse
Affiliation(s)
- Ziyue Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yixuan Zhang
- Gusu school, Nanjing medical university, Suzhou, 215002, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qigang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing Jiangsu, 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jiandong Jiang
- Department of Virology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
6
|
Yetkin-Arik B, Jansen SA, Varderidou-Minasian S, Westendorp B, Skarp KP, Altelaar M, Lindemans CA, Lorenowicz MJ. Mesenchymal stromal/stem cells promote intestinal epithelium regeneration after chemotherapy-induced damage. Stem Cell Res Ther 2024; 15:125. [PMID: 38679715 PMCID: PMC11057078 DOI: 10.1186/s13287-024-03738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/20/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for leukemia and a range of non-malignant disorders. The success of the therapy is hampered by occurrence of acute graft-versus-host disease (aGvHD); an inflammatory response damaging recipient organs, with gut, liver, and skin being the most susceptible. Intestinal GvHD injury is often a life-threatening complication in patients unresponsive to steroid treatment. Allogeneic mesenchymal stromal/stem cell (MSC) infusions are a promising potential treatment for steroid-resistant aGvHD. Data from our institution and others demonstrate rescue of approximately 40-50% of aGvHD patients with MSCs in Phase I, II studies and minor side effects. Although promising, better understanding of MSC mode of action and patient response to MSC-based therapy is essential to improve this lifesaving treatment. METHODS Single cell human small intestine organoids were embedded in Matrigel, grown for 5 days and treated with busulfan for 48 h. Organoids damaged by treatment with busulfan or control organoids were co-cultured with 5000, 10,000, and 50,000 MSCs for 24 h, 48 h or 7 days and the analyses such as surface area determination, proliferation and apoptosis assessment, RNA sequencing and proteomics were performed. RESULTS Here, we developed a 3D co-culture model of human small intestinal organoids and MSCs, which allows to study the regenerative effects of MSCs on intestinal epithelium in a more physiologically relevant setting than existing in vitro systems. Using this model we mimicked chemotherapy-mediated damage of the intestinal epithelium. The treatment with busulfan, the chemotherapeutic commonly used as conditioning regiment before the HSCT, affected pathways regulating epithelial to mesenchymal transition, proliferation, and apoptosis in small intestinal organoids, as shown by transcriptomic and proteomic analysis. The co-culture of busulfan-treated intestinal organoids with MSCs reversed the effects of busulfan on the transcriptome and proteome of intestinal epithelium, which we also confirmed by functional evaluation of proliferation and apoptosis. CONCLUSIONS Collectively, we demonstrate that our in vitro co-culture system is a new valuable tool to facilitate the investigation of the molecular mechanisms behind the therapeutic effects of MSCs on damaged intestinal epithelium. This could benefit further optimization of the use of MSCs in HSCT patients.
Collapse
Affiliation(s)
- B Yetkin-Arik
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/E, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - S A Jansen
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
- Pediatric Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - S Varderidou-Minasian
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - B Westendorp
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division Cell Biology, Metabolism and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - K-P Skarp
- Biomedical Primate Research Center, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - M Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute For Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - C A Lindemans
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
- Pediatric Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M J Lorenowicz
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Biomedical Primate Research Center, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
7
|
Niu X, Xu X, Xu C, Cheuk YC, Rong R. Recent Advances of MSCs in Renal IRI: From Injury to Renal Fibrosis. Bioengineering (Basel) 2024; 11:432. [PMID: 38790298 PMCID: PMC11117619 DOI: 10.3390/bioengineering11050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Renal fibrosis is a pathological endpoint of maladaptation after ischemia-reperfusion injury (IRI), and despite many attempts, no good treatment has been achieved so far. At the core of renal fibrosis is the differentiation of various types of cells into myofibroblasts. MSCs were once thought to play a protective role after renal IRI. However, growing evidence suggests that MSCs have a two-sided nature. In spite of their protective role, in maladaptive situations, MSCs start to differentiate towards myofibroblasts, increasing the myofibroblast pool and promoting renal fibrosis. Following renal IRI, it has been observed that Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs) and Renal Resident Mesenchymal Stem Cells (RR-MSCs) play important roles. This review presents evidence supporting their involvement, discusses their potential mechanisms of action, and suggests several new targets for future research.
Collapse
Affiliation(s)
- Xinhao Niu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Xiaoqing Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Cuidi Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Yin Celeste Cheuk
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| |
Collapse
|
8
|
Ko E, Yoon T, Lee Y, Kim J, Park YB. ADSC secretome constrains NK cell activity by attenuating IL-2-mediated JAK-STAT and AKT signaling pathway via upregulation of CIS and DUSP4. Stem Cell Res Ther 2023; 14:329. [PMID: 37964351 PMCID: PMC10648656 DOI: 10.1186/s13287-023-03516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have immunomodulatory properties and therapeutic effects on autoimmune diseases through their secreted factors, referred to as the secretome. However, the specific key factors of the MSC secretome and their mechanisms of action in immune cells have not been fully determined. Most in vitro experiments are being performed using immune cells, but experiments using natural killer (NK) cells have been neglected, and a few studies using NK cells have shown discrepancies in results. NK cells are crucial elements of the immune system, and adjustment of their activity is essential for controlling various pathological conditions. The aim of this study was to elucidate the role of the adipose tissue-derived stem cell (ADSC) secretome on NK cell activity. METHODS To obtain the ADSC secretome, we cultured ADSCs in medium and concentrated the culture medium using tangential flow filtration (TFF) capsules. We assessed NK cell viability and proliferation using CCK-8 and CFSE assays, respectively. We analyzed the effects of the ADSC secretome on NK cell activity and pathway-related proteins using a combination of flow cytometry, ELISA, cytotoxicity assay, CD107a assay, western blotting, and quantitative real-time PCR. To identify the composition of the ADSC secretome, we performed LC-MS/MS profiling and bioinformatics analysis. To elucidate the molecular mechanisms involved, we used mRNA sequencing to profile the transcriptional expression of human blood NK cells. RESULTS The ADSC secretome was found to restrict IL-2-mediated effector function of NK cells while maintaining proliferative potency. This effect was achieved through the upregulation of the inhibitory receptor CD96, as well as downregulation of activating receptors and IL-2 receptor subunits IL-2Rα and IL-2Rγ. These changes were associated with attenuated JAK-STAT and AKT pathways in NK cells, which were achieved through the upregulation of cytokine-inducible SH2-containing protein (CIS, encoded by Cish) and dual specificity protein phosphatase 4 (DUSP4). Furthermore, proteomic analysis revealed twelve novel candidates associated with the immunomodulatory effects of MSCs. CONCLUSIONS Our findings reveal a detailed cellular outcome and regulatory mechanism of NK cell activity by the ADSC secretome and suggest a therapeutic tool for treating NK-mediated inflammatory and autoimmune diseases using the MSC secretome.
Collapse
Affiliation(s)
- Eunhee Ko
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Taejun Yoon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yoojin Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jongsun Kim
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Tai L, Saffery NS, Chin SP, Cheong SK. Secretome profile of TNF-α-induced human umbilical cord mesenchymal stem cells unveils biological processes relevant to skin wound healing. Regen Med 2023; 18:839-856. [PMID: 37671699 DOI: 10.2217/rme-2023-0085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.
Collapse
Affiliation(s)
- Lihui Tai
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Nik Syazana Saffery
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Sze Piaw Chin
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Soon Keng Cheong
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
- M. Kandiah Faculty of Medicine & Health Sciences (MK FMHS), Universiti Tunku Abdul Rahman Sungai Long City Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
10
|
Bouche Djatche WH, Zhu H, Ma W, Li Y, Li Z, Zhao H, Liu Z, Qiao H. Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases. Regen Med 2023; 18:795-807. [PMID: 37702008 DOI: 10.2217/rme-2023-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.
Collapse
Affiliation(s)
| | - Huimin Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenlei Ma
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziang Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Qiao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
11
|
Dedier M, Magne B, Nivet M, Banzet S, Trouillas M. Anti-inflammatory effect of interleukin-6 highly enriched in secretome of two clinically relevant sources of mesenchymal stromal cells. Front Cell Dev Biol 2023; 11:1244120. [PMID: 37745306 PMCID: PMC10512713 DOI: 10.3389/fcell.2023.1244120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Despite several advances in the field of regenerative medicine, clinical management of extensive skin wounds or burns remains a major therapeutic issue. During the past few years, Mesenchymal Stromal Cells (MSCs) have emerged as a novel therapeutic tool to promote tissue repair through their anti-inflammatory, pro-trophic and pro-remodeling effects. They exert their biological activity mainly via the secretion of soluble bioactive molecules such as cytokines, growth factors, proteins and microRNAs which can be encapsulated within extracellular vesicles (EV). The recent discovery of their high plasticity to external stimuli has fostered the development of new targeted therapies known as priming strategies, to enhance their potential. Our team recently showed that Interleukin-1β (IL-1β)-primed gingival MSCs promote wound healing and epidermal engraftment in vitro, and in vivo through their secreted products that contain extracellular vesicles. In the present work, we investigated whether two common sources of MSCs, gingiva and bone marrow, could respond similarly to IL-1β to favor pro-healing capabilities of their secretome. We showed that both primed-MSC sources, or their related secreted products, are able to reduce inflammation in LPS-challenged human monocytic THP-1 cell line. IL-1β priming enhanced MSC secretion of wound healing-related growth factors, cytokines and miRNAs in both sources. Among them, interleukin 6 was shown to be involved in the anti-inflammatory effect of MSC secreted products. Overall, these results underline the pro-healing properties of both MSC sources and their secretome upon IL-1β priming and their potential to improve the current medical treatment of severe wounds.
Collapse
Affiliation(s)
- Marianne Dedier
- French Armed-forces Biomedical Research Institute (IRBA), Clamart, France
- UMR-MD-U1197, Inserm, Villejuif, France
| | - Brice Magne
- French Armed-forces Biomedical Research Institute (IRBA), Clamart, France
- UMR-MD-U1197, Inserm, Villejuif, France
| | - Muriel Nivet
- French Armed-forces Biomedical Research Institute (IRBA), Clamart, France
- UMR-MD-U1197, Inserm, Villejuif, France
| | - Sébastien Banzet
- French Armed-forces Biomedical Research Institute (IRBA), Clamart, France
- UMR-MD-U1197, Inserm, Villejuif, France
| | - Marina Trouillas
- French Armed-forces Biomedical Research Institute (IRBA), Clamart, France
- UMR-MD-U1197, Inserm, Villejuif, France
| |
Collapse
|
12
|
Liu GQ, Liu ZX, Lin ZX, Chen P, Yan YC, Lin QR, Hu YJ, Jiang N, Yu B. Effects of Dopamine on stem cells and its potential roles in the treatment of inflammatory disorders: a narrative review. Stem Cell Res Ther 2023; 14:230. [PMID: 37649087 PMCID: PMC10469852 DOI: 10.1186/s13287-023-03454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Inflammation is the host's protective response against harmful external stimulation that helps tissue repair and remodeling. However, excessive inflammation seriously threatens the patient's life. Due to anti-inflammatory effects, corticosteroids, immunosuppressants, and monoclonal antibodies are used to treat various inflammatory diseases, but drug resistance, non-responsiveness, and severe side effect limit their development and application. Therefore, developing other alternative therapies has become essential in anti-inflammatory therapy. In recent years, the in-depth study of stem cells has made them a promising alternative drug for the treatment of inflammatory diseases, and the function of stem cells is regulated by a variety of signals, of which dopamine signaling is one of the main influencing factors. In this review, we review the effects of dopamine on various adult stem cells (neural stem cells, mesenchymal stromal cells, hematopoietic stem cells, and cancer stem cells) and their signaling pathways, as well as the application of some critical dopamine receptor agonists/antagonists. Besides, we also review the role of various adult stem cells in inflammatory diseases and discuss the potential anti-inflammation function of dopamine receptors, which provides a new therapeutic target for regenerative medicine in inflammatory diseases.
Collapse
Affiliation(s)
- Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Zi-Xian Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ze-Xin Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Peng Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yu-Chi Yan
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Qing-Rong Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yan-Jun Hu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Suzdaltseva Y, Kiselev SL. Mesodermal Derivatives of Pluripotent Stem Cells Route to Scarless Healing. Int J Mol Sci 2023; 24:11945. [PMID: 37569321 PMCID: PMC10418846 DOI: 10.3390/ijms241511945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation during normal tissue regeneration in adults may result in noticeable cosmetic and functional defects and have a significant impact on the quality of life. In contrast, fetal tissues in the mid-gestation period are known to be capable of complete regeneration with the restitution of the initial architecture, organization, and functional activity. Successful treatments that are targeted to minimize scarring can be realized by understanding the cellular and molecular mechanisms of fetal wound regeneration. However, such experiments are limited by the inaccessibility of fetal material for comparable studies. For this reason, the molecular mechanisms of fetal regeneration remain unknown. Mesenchymal stromal cells (MSCs) are central to tissue repair because the molecules they secrete are involved in the regulation of inflammation, angiogenesis, and remodeling of the extracellular matrix. The mesodermal differentiation of human pluripotent stem cells (hPSCs) recapitulates the sequential steps of embryogenesis in vitro and provides the opportunity to generate the isogenic cell models of MSCs corresponding to different stages of human development. Further investigation of the functional activity of cells from stromal differon in a pro-inflammatory microenvironment will procure the molecular tools to better understand the fundamental mechanisms of fetal tissue regeneration. Herein, we review recent advances in the generation of clonal precursors of primitive mesoderm cells and MSCs from hPSCs and discuss critical factors that determine the functional activity of MSCs-like cells in a pro-inflammatory microenvironment in order to identify therapeutic targets for minimizing scarring.
Collapse
Affiliation(s)
- Yulia Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119333 Moscow, Russia;
| | | |
Collapse
|
14
|
Tilotta V, Vadalà G, Ambrosio L, Cicione C, Di Giacomo G, Russo F, Papalia R, Denaro V. Mesenchymal stem cell-derived secretome enhances nucleus pulposus cell metabolism and modulates extracellular matrix gene expression in vitro. Front Bioeng Biotechnol 2023; 11:1152207. [PMID: 37008028 PMCID: PMC10060656 DOI: 10.3389/fbioe.2023.1152207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Intradiscal mesenchymal stromal cell (MSC) therapies for intervertebral disc degeneration (IDD) have been gaining increasing interest due to their capacity to ameliorate intervertebral disc metabolism and relieve low back pain (LBP). Recently, novel investigations have demonstrated that most of MSC anabolic effects are exerted by secreted growth factors, cytokines, and extracellular vesicles, collectively defined as their secretome. In this study, we aimed to evaluate the effect of bone-marrow-MSCs (BM-MSCs) and adipose-derived stromal cells (ADSCs) secretomes on human nucleus pulposus cells (hNPCs) in vitro.Methods: BM-MSCs and ADSCs were characterized according to surface marker expression by flow cytometry and multilineage differentiation by Alizarin red, Red Oil O and Alcian blue staining. After isolation, hNPCs were treated with either BM-MSC secretome, ADSC secretome, interleukin (IL)-1β followed by BM-MSC secretome or IL-1β followed by ADSC secretome. Cell metabolic activity (MTT assay), cell viability (LIVE/DEAD assay), cell content, glycosaminoglycan production (1,9-dimethylmethylene blue assay), extracellular matrix and catabolic marker gene expression (qPCR) were assessed.Results: 20% BM-MSC and ADSC secretomes (diluted to normal media) showed to exert the highest effect towards cell metabolism and were then used in further experiments. Both BM-MSC and ADSC secretomes improved hNPC viability, increased cell content and enhanced glycosaminoglycan production in basal conditions as well as after IL-1β pretreatment. BM-MSC secretome significantly increased ACAN and SOX9 gene expression, while reducing the levels of IL6, MMP13 and ADAMTS5 both in basal conditions and after in vitro inflammation with IL-1β. Interestingly, under IL-1β stimulation, ADSC secretome showed a catabolic effect with decreased extracellular matrix markers and increased levels of pro-inflammatory mediators.Discussion: Collectively, our results provide new insights on the biological effect of MSC-derived secretomes on hNPCs, with intriguing implications on the development of cell-free approaches to treat IDD.
Collapse
Affiliation(s)
- Veronica Tilotta
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- *Correspondence: Gianluca Vadalà,
| | - Luca Ambrosio
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Claudia Cicione
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giuseppina Di Giacomo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabrizio Russo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Rocco Papalia
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
15
|
Shanbhag S, Kampleitner C, Al-Sharabi N, Mohamed-Ahmed S, Apaza Alccayhuaman KA, Heimel P, Tangl S, Beinlich A, Rana N, Sanz M, Kristoffersen EK, Mustafa K, Gruber R. Functionalizing Collagen Membranes with MSC-Conditioned Media Promotes Guided Bone Regeneration in Rat Calvarial Defects. Cells 2023; 12:cells12050767. [PMID: 36899904 PMCID: PMC10001262 DOI: 10.3390/cells12050767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Functionalizing biomaterials with conditioned media (CM) from mesenchymal stromal cells (MSC) is a promising strategy for enhancing the outcomes of guided bone regeneration (GBR). This study aimed to evaluate the bone regenerative potential of collagen membranes (MEM) functionalized with CM from human bone marrow MSC (MEM-CM) in critical size rat calvarial defects. MEM-CM prepared via soaking (CM-SOAK) or soaking followed by lyophilization (CM-LYO) were applied to critical size rat calvarial defects. Control treatments included native MEM, MEM with rat MSC (CEL) and no treatment. New bone formation was analyzed via micro-CT (2 and 4 weeks) and histology (4 weeks). Greater radiographic new bone formation occurred at 2 weeks in the CM-LYO group vs. all other groups. After 4 weeks, only the CM-LYO group was superior to the untreated control group, whereas the CM-SOAK, CEL and native MEM groups were similar. Histologically, the regenerated tissues showed a combination of regular new bone and hybrid new bone, which formed within the membrane compartment and was characterized by the incorporation of mineralized MEM fibers. Areas of new bone formation and MEM mineralization were greatest in the CM-LYO group. Proteomic analysis of lyophilized CM revealed the enrichment of several proteins and biological processes related to bone formation. In summary, lyophilized MEM-CM enhanced new bone formation in rat calvarial defects, thus representing a novel 'off-the-shelf' strategy for GBR.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (S.S.); (R.G.); Tel.: +47-55586059 (S.S.); +43-(0)69910718472 (R.G.)
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | | | - Patrick Heimel
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas Beinlich
- Department of Earth Science, Faculty of Mathematics and Natural Sciences, University of Bergen, 5009 Bergen, Norway
| | - Neha Rana
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Correspondence: (S.S.); (R.G.); Tel.: +47-55586059 (S.S.); +43-(0)69910718472 (R.G.)
| |
Collapse
|
16
|
Volkova MV, Shen N, Polyanskaya A, Qi X, Boyarintsev VV, Kovaleva EV, Trofimenko AV, Filkov GI, Mezentsev AV, Rybalkin SP, Durymanov MO. Tissue-Oxygen-Adaptation of Bone Marrow-Derived Mesenchymal Stromal Cells Enhances Their Immunomodulatory and Pro-Angiogenic Capacity, Resulting in Accelerated Healing of Chemical Burns. Int J Mol Sci 2023; 24:4102. [PMID: 36835513 PMCID: PMC9963537 DOI: 10.3390/ijms24044102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Transplantation of mesenchymal stromal cells (MSCs) provides a powerful tool for the management of multiple tissue injuries. However, poor survival of exogenous cells at the site of injury is a major complication that impairs MSC therapeutic efficacy. It has been found that tissue-oxygen adaptation or hypoxic pre-conditioning of MSCs could improve the healing process. Here, we investigated the effect of low oxygen tension on the regenerative potential of bone-marrow MSCs. It turned out that incubation of MSCs under a 5% oxygen atmosphere resulted in increased proliferative activity and enhanced expression of multiple cytokines and growth factors. Conditioned growth medium from low-oxygen-adapted MSCs modulated the pro-inflammatory activity of LPS-activated macrophages and stimulated tube formation by endotheliocytes to a much higher extent than conditioned medium from MSCs cultured in a 21% oxygen atmosphere. Moreover, we examined the regenerative potential of tissue-oxygen-adapted and normoxic MSCs in an alkali-burn injury model on mice. It has been revealed that tissue-oxygen adaptation of MSCs accelerated wound re-epithelialization and improved the tissue histology of the healed wounds in comparison with normoxic MSC-treated and non-treated wounds. Overall, this study suggests that MSC adaptation to 'physiological hypoxia' could be a promising approach for facilitating skin injuries, including chemical burns.
Collapse
Affiliation(s)
- Marina V. Volkova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Ningfei Shen
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Anna Polyanskaya
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Xiaoli Qi
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Valery V. Boyarintsev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Elena V. Kovaleva
- Department of Pathomorphology and Reproductive Toxicology, Research Center of Toxicology and Hygienic Regulation of Biopreparations, NRC Institute of Immunology FMBA of Russia, Ul. Lenina 102A, Serpukhov 142253, Russia
| | - Alexander V. Trofimenko
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Gleb I. Filkov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Alexandre V. Mezentsev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Sergey P. Rybalkin
- Department of Pathomorphology and Reproductive Toxicology, Research Center of Toxicology and Hygienic Regulation of Biopreparations, NRC Institute of Immunology FMBA of Russia, Ul. Lenina 102A, Serpukhov 142253, Russia
| | - Mikhail O. Durymanov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| |
Collapse
|
17
|
Conditioned Medium - Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management? Stem Cell Rev Rep 2023:10.1007/s12015-023-10517-1. [PMID: 36790694 PMCID: PMC10366316 DOI: 10.1007/s12015-023-10517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The approaches currently used in osteoarthritis (OA) are mainly short-term solutions with unsatisfactory outcomes. Cell-based therapies are still controversial (in terms of the sources of cells and the results) and require strict culture protocol, quality control, and may have side-effects. A distinct population of stromal cells has an interesting secretome composition that is underrated and commonly ends up as biological waste. Their unique properties could be used to improve the existing techniques due to protective and anti-ageing properties. SCOPE OF REVIEW In this review, we seek to outline the advantages of the use of conditioned media (CM) and exosomes, which render them superior to other cell-based methods, and to summarise current information on the composition of CM and their effect on chondrocytes. MAJOR CONCLUSIONS CM are obtainable from a variety of mesenchymal stromal cell (MSC) sources, such as adipose tissue, bone marrow and umbilical cord, which is significant to their composition. The components present in CMs include proteins, cytokines, growth factors, chemokines, lipids and ncRNA with a variety of functions. In most in vitro and in vivo studies CM from MSCs had a beneficial effect in enhance processes associated with chondrocyte OA pathomechanism. GENERAL SIGNIFICANCE This review summarises the information available in the literature on the function of components most commonly detected in MSC-conditioned media, as well as the effect of CM on OA chondrocytes in in vitro culture. It also highlights the need to standardise protocols for obtaining CM, and to conduct clinical trials to transfer the effects obtained in vitro to human subjects.
Collapse
|
18
|
Provenzano F, Nyberg S, Giunti D, Torazza C, Parodi B, Bonifacino T, Usai C, Kerlero de Rosbo N, Milanese M, Uccelli A, Shaw PJ, Ferraiuolo L, Bonanno G. Micro-RNAs Shuttled by Extracellular Vesicles Secreted from Mesenchymal Stem Cells Dampen Astrocyte Pathological Activation and Support Neuroprotection in In-Vitro Models of ALS. Cells 2022; 11:cells11233923. [PMID: 36497181 PMCID: PMC9741322 DOI: 10.3390/cells11233923] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with no effective cure. Astrocytes display a toxic phenotype in ALS and contribute to motoneuron (MN) degeneration. Modulating astrocytes' neurotoxicity can reduce MN death. Our previous studies showed the beneficial effect of mesenchymal stem cell (MSC) administration in SOD1G93A ALS mice, but the mechanisms are still unclear. We postulated that the effects could be mediated by extracellular vesicles (EVs) secreted by MSCs. We investigated, by immunohistochemical, molecular, and in vitro functional analyses, the activity of MSC-derived EVs on the pathological phenotype and neurotoxicity of astrocytes isolated from the spinal cord of symptomatic SOD1G93A mice and human astrocytes (iAstrocytes) differentiated from inducible neural progenitor cells (iNPCs) of ALS patients. In vitro EV exposure rescued mouse and human ALS astrocytes' neurotoxicity towards MNs. EVs significantly dampened the pathological phenotype and neuroinflammation in SOD1G93A astrocytes. In iAstrocytes, exposure to EVs increased the antioxidant factor Nrf2 and reduced reactive oxygen species. We previously found nine miRNAs upregulated in MSC-derived EVs. Here, the transfection of SOD1G93A astrocytes with single miRNA mimics reduced astrocytes' activation and the expression of neuroinflammatory factors. Moreover, miR-466q and miR-467f mimics downregulate Mapk11, while miR-466m-5p and miR-466i-3p mimics promote the nuclear translocation of Nrf2. In iAstrocytes, transfection with miR-29b-3p mimic upregulated NQO1 antioxidant activity and reduced neurotoxicity towards MNs. MSC-derived EVs modulate astrocytes' reactive phenotype and neurotoxicity through anti-inflammatory and antioxidant-shuttled miRNAs, thus representing a therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Sophie Nyberg
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Debora Giunti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 316132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Benedetta Parodi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 316132 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genoa, Italy
| | - Nicole Kerlero de Rosbo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- TomaLab, Institute of Nanotechnology, National Research Council (CNR), Piazzale Aldo Moro 5, 0018 Rome, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- Correspondence: (M.M.); (L.F.); Tel.: +39-01-0335-2046 (M.M.); +44-(0)114-222-2257 (L.F.)
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 316132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
- Correspondence: (M.M.); (L.F.); Tel.: +39-01-0335-2046 (M.M.); +44-(0)114-222-2257 (L.F.)
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
19
|
Functional Heterogeneity of Bone Marrow Mesenchymal Stem Cell Subpopulations in Physiology and Pathology. Int J Mol Sci 2022; 23:ijms231911928. [PMID: 36233230 PMCID: PMC9570000 DOI: 10.3390/ijms231911928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are multi-potent cell populations and are capable of maintaining bone and body homeostasis. The stemness and potential therapeutic effect of BMSCs have been explored extensively in recent years. However, diverse cell surface antigens and complex gene expression of BMSCs have indicated that BMSCs represent heterogeneous populations, and the natural characteristics of BMSCs make it difficult to identify the specific subpopulations in pathological processes which are often obscured by bulk analysis of the total BMSCs. Meanwhile, the therapeutic effect of total BMSCs is often less effective partly due to their heterogeneity. Therefore, understanding the functional heterogeneity of the BMSC subpopulations under different physiological and pathological conditions could have major ramifications for global health. Here, we summarize the recent progress of functional heterogeneity of BMSC subpopulations in physiology and pathology. Targeting tissue-resident single BMSC subpopulation offers a potentially innovative therapeutic strategy and improves BMSC effectiveness in clinical application.
Collapse
|
20
|
Li Q, Qi G, Lutter D, Beard W, Souza CRS, Highland MA, Wu W, Li P, Zhang Y, Atala A, Sun X. Injectable Peptide Hydrogel Encapsulation of Mesenchymal Stem Cells Improved Viability, Stemness, Anti-Inflammatory Effects, and Early Stage Wound Healing. Biomolecules 2022; 12:1317. [PMID: 36139156 PMCID: PMC9496061 DOI: 10.3390/biom12091317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Human-adipose-derived mesenchymal stem cells (hADMSCs) are adult stem cells and are relatively easy to access compared to other sources of mesenchymal stem cells (MSCs). They have shown immunomodulation properties as well as effects in improving tissue regeneration. To better stimulate and preserve the therapeutic properties of hADMSCs, biomaterials for cell delivery have been studied extensively. To date, hyaluronic acid (HA)-based materials have been most widely adopted by researchers around the world. PGmatrix is a new peptide-based hydrogel that has shown superior functional properties in 3D cell cultures. Here, we reported the in vitro and in vivo functional effects of PGmatrix on hADMSCs in comparison with HA and HA-based Hystem hydrogels. Our results showed that PGmatrix was far superior in maintaining hADMSC viability during prolonged incubation and stimulated expression of SSEA4 (stage-specific embryonic antigen-4) in hADMSCs. hADMSCs encapsulated in PGmatrix secreted more immune-responsive proteins than those in HA or Hystem, though similar VEGF-A and TGFβ1 release levels were observed in all three hydrogels. In vivo studies revealed that hADMSCs encapsulated with PGmatrix showed improved skin wound healing in diabetic-induced mice at an early stage, suggesting possible anti-inflammatory effects, though similar re-epithelialization and collagen density were observed among PGmatrix and HA or Hystem hydrogels by day 21.
Collapse
Affiliation(s)
- Quan Li
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Dylan Lutter
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Warren Beard
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Margaret A. Highland
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Wu
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Ping Li
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Yuanyuan Zhang
- Wake Forest Institute Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27151, USA
| | - Anthony Atala
- Wake Forest Institute Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27151, USA
| | - Xiuzhi Sun
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
21
|
Shirbaghaee Z, Hassani M, Heidari Keshel S, Soleimani M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res Ther 2022; 13:462. [PMID: 36068595 PMCID: PMC9449296 DOI: 10.1186/s13287-022-03148-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Critical limb ischemia (CLI), the terminal stage of peripheral arterial disease (PAD), is characterized by an extremely high risk of amputation and vascular issues, resulting in severe morbidity and mortality. In patients with severe limb ischemia with no alternative therapy options, such as endovascular angioplasty or bypass surgery, therapeutic angiogenesis utilizing cell-based therapies is vital for increasing blood flow to ischemic regions. Mesenchymal stem cells (MSCs) are currently considered one of the most encouraging cells as a regenerative alternative for the surgical treatment of CLI, including restoring tissue function and repairing ischemic tissue via immunomodulation and angiogenesis. The regenerative treatments for limb ischemia based on MSC therapy are still considered experimental. Despite recent advances in preclinical and clinical research studies, it is not recommended for regular clinical use. In this study, we review the immunomodulatory features of MSC besides the current understanding of different sources of MSC in the angiogenic treatment of CLI subjects and their potential applications as therapeutic agents. Specifically, this paper concentrates on the most current clinical application issues, and several recommendations are provided to improve the efficacy of cell therapy for CLI patients.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
22
|
Li J, Wang Q, An Y, Chen X, Xing Y, Deng Q, Li Z, Wang S, Dai X, Liang N, Hou Y, Yang H, Shang Z. Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mesenchymal Stem/Stromal Cells Derived from Human Placenta. Front Cell Dev Biol 2022; 10:836887. [PMID: 35450295 PMCID: PMC9017713 DOI: 10.3389/fcell.2022.836887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells derived from placenta (PMSCs) are an attractive source for regenerative medicine because of their multidifferentiation potential and immunomodulatory capabilities. However, the cellular and molecular heterogeneity of PMSCs has not been fully characterized. Here, we applied single-cell RNA sequencing (scRNA-seq) and assay for transposase-accessible chromatin sequencing (scATAC-seq) techniques to cultured PMSCs from human full-term placenta. Based on the inferred characteristics of cell clusters, we identify several distinct subsets of PMSCs with specific characteristics, including immunomodulatory-potential and highly proliferative cell states. Furthermore, integrative analysis of gene expression and chromatin accessibility showed a clearer chromatin accessibility signature than those at the transcriptional level on immunomodulatory-related genes. Cell cycle gene-related heterogeneity can be more easily distinguished at the transcriptional than the chromatin accessibility level in PMSCs. We further reveal putative subset-specific cis-regulatory elements regulating the expression of immunomodulatory- and proliferation-related genes in the immunomodulatory-potential and proliferative subpopulations, respectively. Moreover, we infer a novel transcription factor PRDM1, which might play a crucial role in maintaining immunomodulatory capability by activating PRDM1-regulon loop. Collectively, our study first provides a comprehensive and integrative view of the transcriptomic and epigenomic features of PMSCs, which paves the way for a deeper understanding of cellular heterogeneity and offers fundamental biological insight of PMSC subset-based cell therapy.
Collapse
Affiliation(s)
- Jinlu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Quanlei Wang
- BGI-Shenzhen, Shenzhen, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China
| | | | | | - Yanan Xing
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Zelong Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Shengpeng Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Xi Dai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Zhouchun Shang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- BGI College, Northwest University, Xi’an, China
- *Correspondence: Zhouchun Shang,
| |
Collapse
|
23
|
Wang D, Fu Y, Fan J, Wang Y, Li C, Xu Y, Chen H, Hu Y, Cao H, Zhao RC, He W, Zhang J. Identification of alpha-enolase as a potential immunogenic molecule during allogeneic transplantation of human adipose-derived mesenchymal stromal cells. Cytotherapy 2022; 24:393-404. [PMID: 34863626 DOI: 10.1016/j.jcyt.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AIMS Given their low immunogenicity, immunoregulatory effects and multiple differentiation capacity, mesenchymal stromal cells (MSCs) have the potential to be used for "off-the-shelf" cell therapy to treat various diseases. However, the allorejection of MSCs indicates that they are not fully immune-privileged. In this study, the authors investigated the immunogenicity of human adipose-derived MSCs (Ad-MSCs) and identified potential immunogenic molecules. METHODS To evaluate the immunogenicity of human Ad-MSCs in vivo, cells were transplanted into humanized mice (hu-mice), then T-cell infiltration and clearance of human Ad-MSCs were observed by immunofluorescence and bioluminescence imaging. One-way mixed lymphocyte reaction and flow cytometry were performed to evaluate the immunogenicity of human Ad-MSCs in vitro. High-throughput T-cell receptor (TCR) repertoire sequencing and mass spectrometry were applied to identified potential immunogenic molecules. RESULTS The authors observed that allogeneic Ad-MSCs recruited human T cells and caused faster clearance in hu-mice than non-humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The proliferation and activation of T cells were significantly enhanced during in vitro co-culture with human Ad-MSCs. In addition, the level of HLA-II expression on human Ad-MSCs was dramatically increased after co-culture with human peripheral blood mononuclear cells (PBMCs). High-throughput sequencing was applied to analyze the TCR repertoire of the Ad-MSC-recruited T cells to identify dominant TCR CDR3 sequences. Using synthesized TCR CDR3 peptides, the authors identified several potential immunogenic candidates, including alpha-enolase (ENO1). The ENO1 expression level of Ad-MSCs significantly increased after co-culture with PBMCs, whereas ENO1 inhibitor (ENOblock) treatment decreased the expression level of ENO1 and Ad-MSC-induced proliferation of T cells. CONCLUSIONS The authors' findings improve the understanding of the immunogenicity of human Ad-MSCs and provide a theoretical basis for the safe clinical application of allogeneic MSC therapy.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Junfen Fan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Yue Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Xu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China.
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China.
| |
Collapse
|
24
|
New Perspectives to Improve Mesenchymal Stem Cell Therapies for Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23052669. [PMID: 35269830 PMCID: PMC8910533 DOI: 10.3390/ijms23052669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. Many factors may contribute to the susceptibility of patients to this condition, making DILI a global medical problem that has an impact on public health and the pharmaceutical industry. The use of mesenchymal stem cells (MSCs) has been at the forefront of regenerative medicine therapies for many years, including MSCs for the treatment of liver diseases. However, there is currently a huge gap between these experimental approaches and their application in clinical practice. In this concise review, we focus on the pathophysiology of DILI and highlight new experimental approaches conceived to improve cell-based therapy by the in vitro preconditioning of MSCs and/or the use of cell-free products as treatment for this liver condition. Finally, we discuss the advantages of new approaches, but also the current challenges that must be addressed in order to develop safer and more effective procedures that will allow cell-based therapies to reach clinical practice, enhancing the quality of life and prolonging the survival time of patients with DILI.
Collapse
|
25
|
González-González A, García-Sánchez D, Alfonso-Fernández A, Haider KH, Rodríguez-Rey JC, Pérez-Campo FM. Regenerative Medicine Applied to the Treatment of Musculoskeletal Pathologies. HANDBOOK OF STEM CELL THERAPY 2022:1123-1158. [DOI: 10.1007/978-981-19-2655-6_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Tejeda-Mora H, Leon LG, Demmers J, Baan CC, Reinders MEJ, Bleck B, Lombardo E, Merino A, Hoogduijn MJ. Proteomic Analysis of Mesenchymal Stromal Cell-Derived Extracellular Vesicles and Reconstructed Membrane Particles. Int J Mol Sci 2021; 22:ijms222312935. [PMID: 34884740 PMCID: PMC8657583 DOI: 10.3390/ijms222312935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EV) derived from mesenchymal stromal cells (MSC) are a potential therapy for immunological and degenerative diseases. However, large-scale production of EV free from contamination by soluble proteins is a major challenge. The generation of particles from isolated membranes of MSC, membrane particles (MP), may be an alternative to EV. In the present study we generated MP from the membranes of lysed MSC after removal of the nuclei. The yield of MP per MSC was 1 × 105 times higher than EV derived from the same number of MSC. To compare the proteome of MP and EV, proteomic analysis of MP and EV was performed. MP contained over 20 times more proteins than EV. The proteins present in MP evidenced a multi-organelle origin of MP. The projected function of the proteins in EV and MP was very different. Whilst proteins in EV mainly play a role in extracellular matrix organization, proteins in MP were interconnected in diverse molecular pathways, including protein synthesis and degradation pathways and demonstrated enzymatic activity. Treatment of MSC with IFNγ led to a profound effect on the protein make up of EV and MP, demonstrating the possibility to modify the phenotype of EV and MP through modification of parent MSC. These results demonstrate that MP are an attractive alternative to EV for the development of potential therapies. Functional studies will have to demonstrate therapeutic efficacy of MP in preclinical disease models.
Collapse
Affiliation(s)
- Hector Tejeda-Mora
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (H.T.-M.); (C.C.B.); (M.E.J.R.); (A.M.)
| | - Leticia G. Leon
- The Netherlands Cancer Institute, Department of Pathology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
| | - Jeroen Demmers
- Proteomics Center, Erasmus MC, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Carla C. Baan
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (H.T.-M.); (C.C.B.); (M.E.J.R.); (A.M.)
| | - Marlies E. J. Reinders
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (H.T.-M.); (C.C.B.); (M.E.J.R.); (A.M.)
| | - Bertram Bleck
- Takeda, Gastrointestinal Drug Discovery Unit, Cambridge, MA 02139, USA;
| | - Eleuterio Lombardo
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, 28046 Madrid, Spain;
| | - Ana Merino
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (H.T.-M.); (C.C.B.); (M.E.J.R.); (A.M.)
| | - Martin J. Hoogduijn
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (H.T.-M.); (C.C.B.); (M.E.J.R.); (A.M.)
- Correspondence:
| |
Collapse
|
27
|
Zhu D, Gao J, Tang C, Xu Z, Sun T. Single-Cell RNA Sequencing of Bone Marrow Mesenchymal Stem Cells from the Elderly People. Int J Stem Cells 2021; 15:173-182. [PMID: 34711696 PMCID: PMC9148839 DOI: 10.15283/ijsc21042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Bone marrow mesenchymal stem cells (BMSCs) show considerable promise in regenerative medicine. Many studies demonstrated that BMSCs cultured in vitro were highly heterogeneous and composed of diverse cell subpopulations, which may be the basis of their multiple biological characteristics. However, the exact cell subpopulations that make up BMSCs are still unknown. Methods and Results In this study, we used single-cell RNA sequencing (scRNA-Seq) to divide 6,514 BMSCs into three clusters. The number and corresponding proportion of cells in clusters 1 to 3 were 3,766 (57.81%), 1,720 (26.40%), and 1,028 (15.78%). The gene expression profile and function of the cells in the same cluster were similar. The vast majority of cells expressed the markers defining BMSCs by flow cytometry and gene expression analysis. Each cluster had at least 20 differentially expressed genes (DEGs). We conducted Gene Ontology enrichment analysis on the top 20 DEGs of each cluster and found that the three clusters had different functions, which were related to self-renewal, multilineage differentiation and cytokine secretion, respectively. In addition, the function of the top 20 DEGs of each cluster was checked by the National Center for Biotechnology Information gene database to further verify our hypothesis. Conclusions This study indicated that scRNA-Seq can be used to divide BMSCs into different subpopulations, demonstrating the heterogeneity of BMSCs.
Collapse
Affiliation(s)
- Dezhou Zhu
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Gao
- Department of Orthopaedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengxuan Tang
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Xu
- Department of Outpatient, The First Retired Cadre Sanitarium of Beijing Garrison in Fengtai District, Beijing, China.,School of Clinical Medicine, The Second Military Medical University, Shanghai, China
| | - Tiansheng Sun
- Department of Orthopaedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Mesenchymal Stem Cell-Based Therapy for Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222111592. [PMID: 34769021 PMCID: PMC8584240 DOI: 10.3390/ijms222111592] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have great potential to differentiate into various types of cells, including but not limited to, adipocytes, chondrocytes and osteoblasts. In addition to their progenitor characteristics, MSCs hold unique immunomodulatory properties that provide new opportunities in the treatment of autoimmune diseases, and can serve as a promising tool in stem cell-based therapy. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder that deteriorates quality and function of the synovium membrane, resulting in chronic inflammation, pain and progressive cartilage and bone destruction. The mechanism of RA pathogenesis is associated with dysregulation of innate and adaptive immunity. Current conventional treatments by steroid drugs, antirheumatic drugs and biological agents are being applied in clinical practice. However, long-term use of these drugs causes side effects, and some RA patients may acquire resistance to these drugs. In this regard, recently investigated MSC-based therapy is considered as a promising approach in RA treatment. In this study, we review conventional and modern treatment approaches, such as MSC-based therapy through the understanding of the link between MSCs and the innate and adaptive immune systems. Moreover, we discuss recent achievements in preclinical and clinical studies as well as various strategies for the enhancement of MSC immunoregulatory properties.
Collapse
|
29
|
Lafuente-Gracia L, Borgiani E, Nasello G, Geris L. Towards in silico Models of the Inflammatory Response in Bone Fracture Healing. Front Bioeng Biotechnol 2021; 9:703725. [PMID: 34660547 PMCID: PMC8514728 DOI: 10.3389/fbioe.2021.703725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
In silico modeling is a powerful strategy to investigate the biological events occurring at tissue, cellular and subcellular level during bone fracture healing. However, most current models do not consider the impact of the inflammatory response on the later stages of bone repair. Indeed, as initiator of the healing process, this early phase can alter the regenerative outcome: if the inflammatory response is too strongly down- or upregulated, the fracture can result in a non-union. This review covers the fundamental information on fracture healing, in silico modeling and experimental validation. It starts with a description of the biology of fracture healing, paying particular attention to the inflammatory phase and its cellular and subcellular components. We then discuss the current state-of-the-art regarding in silico models of the immune response in different tissues as well as the bone regeneration process at the later stages of fracture healing. Combining the aforementioned biological and computational state-of-the-art, continuous, discrete and hybrid modeling technologies are discussed in light of their suitability to capture adequately the multiscale course of the inflammatory phase and its overall role in the healing outcome. Both in the establishment of models as in their validation step, experimental data is required. Hence, this review provides an overview of the different in vitro and in vivo set-ups that can be used to quantify cell- and tissue-scale properties and provide necessary input for model credibility assessment. In conclusion, this review aims to provide hands-on guidance for scientists interested in building in silico models as an additional tool to investigate the critical role of the inflammatory phase in bone regeneration.
Collapse
Affiliation(s)
- Laura Lafuente-Gracia
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Edoardo Borgiani
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, GIGA in silico Medicine, University of Liège, Liège, Belgium
| | - Gabriele Nasello
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, GIGA in silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021; 233:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil
| | - Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gabriela Muller Reche Bogéa
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
31
|
Almeida A, Lira R, Oliveira M, Martins M, Azevedo Y, Silva K, Carvalho S, Cortez E, Stumbo AC, Carvalho L, Thole A. Bone marrow-derived mesenchymal stem cells transplantation ameliorates renal injury through anti-fibrotic and anti-inflammatory effects in chronic experimental renovascular disease. Biomed J 2021; 45:629-641. [PMID: 34333108 PMCID: PMC9486239 DOI: 10.1016/j.bj.2021.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/11/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Progressive renal fibrosis is an underlying pathological process of chronic kidney disease (CKD) evolution. This study aimed to evaluate the roles of bone-marrow-derived mesenchymal stem cells (MSC) in the remodeling of fibrotic kidney parenchyma in the two kidneys-one clip (2K1C) CKD animal model. Methods Wistar rats were allocated into three groups: Sham, 2K1C, and 2K1C þ MSC. MSCs (106) were transplanted into the renal subcapsular region two weeks after clipping the left renal artery. Six weeks after clipping, left kidney samples were analyzed using histological and western blotting techniques. ANOVA tests were performed and differences between groups were considered statistically significant if p < 0.05. Results Clipped kidneys of 2K1C rats displayed renal fibrosis, with excessive collagen deposition, glomerulosclerosis and renal basement membrane disruption. Clipped kidneys of 2K1C þ MSC rats showed preserved Bowman's capsule and tubular basement membranes, medullary tubules morphological reconstitution and reduced collagen deposits. Expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were elevated, whereas tissue inhibitor of MMPs (TIMP)-1 and TIMP-2 levels were decreased in clipped kidneys of 2K1C rats. MSCs transplantation restored these expression levels. Moreover, MSCs suppressed macrophages and myofibroblasts accumulation, as well as TNF-a expression in clipped kidneys of 2K1C animals. MSCs transplantation significantly increased IL-10 expression. Conclusions Transplanted MSCs orchestrate anti-fibrotic and anti-inflammatory events, which reverse renal fibrosis and promote renal morphological restoration. This study supports the notion that only one MSCs delivery into the renal subcapsular region represents a possible therapeutic strategy against renal fibrosis for CKD treatment.
Collapse
Affiliation(s)
- Aline Almeida
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil.
| | - Rafaelle Lira
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Mariana Oliveira
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Marcela Martins
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Yanca Azevedo
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Karina Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Simone Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Erika Cortez
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Lais Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Alessandra Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| |
Collapse
|
32
|
Kirwin T, Gomes A, Amin R, Sufi A, Goswami S, Wang B. Mechanisms underlying the therapeutic potential of mesenchymal stem cells in atherosclerosis. Regen Med 2021; 16:669-682. [PMID: 34189963 DOI: 10.2217/rme-2021-0024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory condition resulting in the formation of fibrofatty plaques within the intimal layer of arterial walls. The identification of resident stem cells in the vascular wall has led to significant investigation into their contributions to health and disease, as well as their therapeutic potential. Of these, mesenchymal stem cells (MSCs) are the most widely studied in human clinical trials, which have demonstrated a modulatory role in vascular physiology and disease. This review highlights the most recent knowledge surrounding the cell biology of MSCs, including their origin, identification markers and differentiation potential. The limitations concerning the implementation of MSC therapy are considered and novel solutions to overcome these are proposed.
Collapse
Affiliation(s)
- Thomas Kirwin
- Department of Medicine, Imperial College London, SW7 2BU, UK.,College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ana Gomes
- Department of Medicine, Imperial College London, SW7 2BU, UK
| | - Ravi Amin
- Department of Medicine, Imperial College London, SW7 2BU, UK
| | - Annam Sufi
- Department of Medicine, Imperial College London, SW7 2BU, UK.,GKT School of Medical Education, King's College London, London, SE1 1UL, UK
| | - Sahil Goswami
- Department of Medicine, Imperial College London, SW7 2BU, UK.,Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, E1 2AD, UK
| | - Brian Wang
- Department of Medicine, Imperial College London, SW7 2BU, UK
| |
Collapse
|
33
|
Proteomic Analysis Reveals Commonly Secreted Proteins of Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Synovial Membrane to Show Potential for Cartilage Regeneration in Knee Osteoarthritis. Stem Cells Int 2021; 2021:6694299. [PMID: 34306096 PMCID: PMC8264516 DOI: 10.1155/2021/6694299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Paracrine factors secreted by mesenchymal stem cells (MSCs) reportedly modulate inflammation and reparative processes in damaged tissues and have been explored for knee osteoarthritis (OA) therapy. Although various studies have reported the effects of paracrine factors in knee OA, it is not yet clear which paracrine factors directly affect the regeneration of damaged cartilage and which are secreted under various knee OA conditions. In this study, we cultured MSCs derived from three types of tissues and treated each type with IL-1β and TNF-α or not to obtain conditioned medium. Each conditioned medium was used to analyse the paracrine factors related to cartilage regeneration using liquid chromatography-tandem mass spectrometry. Bone marrow-, adipose tissue-, and synovial membrane-MSCs (all-MSCs) exhibited expression of 93 proteins under normal conditions and 105 proteins under inflammatory conditions. It was confirmed that the types of secreted proteins differed depending on the environmental conditions, and the proteins were validated using ELISA. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis using a list of proteins secreted by all-MSCs under each condition confirmed that the secreted proteins were closely related to cartilage repair under inflammatory conditions. Protein-protein interaction networks were confirmed to change depending on environmental differences and were found to enhance the secretion of paracrine factors related to cartilage regeneration under inflammatory conditions. In conclusion, our results demonstrated that compared with knee OA conditions, the differential expression proteins may contribute to the regeneration of damaged cartilage. In addition, the detailed information on commonly secreted proteins by all-MSCs provides a comprehensive basis for understanding the potential of paracrine factors to influence tissue repair and regeneration in knee OA.
Collapse
|
34
|
Extracellular vesicles isolated from mesenchymal stromal cells primed with neurotrophic factors and signaling modifiers as potential therapeutics for neurodegenerative diseases. Curr Res Transl Med 2021; 69:103286. [DOI: 10.1016/j.retram.2021.103286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
|
35
|
Tolomeo AM, Castagliuolo I, Piccoli M, Grassi M, Magarotto F, De Lazzari G, Malvicini R, Caicci F, Franzin C, Scarpa M, Macchi V, De Caro R, Angriman I, Viola A, Porzionato A, Pozzobon M, Muraca M. Extracellular Vesicles Secreted by Mesenchymal Stromal Cells Exert Opposite Effects to Their Cells of Origin in Murine Sodium Dextran Sulfate-Induced Colitis. Front Immunol 2021; 12:627605. [PMID: 33927713 PMCID: PMC8076641 DOI: 10.3389/fimmu.2021.627605] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Several reports have described a beneficial effect of Mesenchymal Stromal Cells (MSCs) and of their secreted extracellular vesicles (EVs) in mice with experimental colitis. However, the effects of the two treatments have not been thoroughly compared in this model. Here, we compared the effects of MSCs and of MSC-EV administration in mice with colitis induced by dextran sulfate sodium (DSS). Since cytokine conditioning was reported to enhance the immune modulatory activity of MSCs, the cells were kept either under standard culture conditions (naïve, nMSCs) or primed with a cocktail of pro-inflammatory cytokines, including IL1β, IL6 and TNFα (induced, iMSCs). In our experimental conditions, nMSCs and iMSCs administration resulted in both clinical and histological worsening and was associated with pro-inflammatory polarization of intestinal macrophages. However, mice treated with iEVs showed clinico-pathological improvement, decreased intestinal fibrosis and angiogenesis and a striking increase in intestinal expression of Mucin 5ac, suggesting improved epithelial function. Moreover, treatment with iEVs resulted in the polarization of intestinal macrophages towards and anti-inflammatory phenotype and in an increased Treg/Teff ratio at the level of the intestinal lymph node. Collectively, these data confirm that MSCs can behave either as anti- or as pro-inflammatory agents depending on the host environment. In contrast, EVs showed a beneficial effect, suggesting a more predictable behavior, a safer therapeutic profile and a higher therapeutic efficacy with respect to their cells of origin.
Collapse
Affiliation(s)
- Anna Maria Tolomeo
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | | | - Martina Piccoli
- Laboratory of Tissue Engineering, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Michele Grassi
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| | - Fabio Magarotto
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Stem Cells and Regenerative Medicine, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Giada De Lazzari
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | - Ricardo Malvicini
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Instituto de medicina traslacional, trasplante y bioingenieria (IMeTTyB-CONICET), Buenos Aires, Argentina
| | | | - Chiara Franzin
- Laboratory of Tissue Engineering, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV–IRCCS, Padua, Italy
| | - Veronica Macchi
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Raffaele De Caro
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Imerio Angriman
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Andrea Porzionato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Stem Cells and Regenerative Medicine, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Maurizio Muraca
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| |
Collapse
|
36
|
Najafi-Ghalehlou N, Roudkenar MH, Langerodi HZ, Roushandeh AM. Taming of Covid-19: potential and emerging application of mesenchymal stem cells. Cytotechnology 2021; 73:253-298. [PMID: 33776206 PMCID: PMC7982879 DOI: 10.1007/s10616-021-00461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has turned out to cause a pandemic, with a sky scraping mortality. The virus is thought to cause tissue injury by affecting the renin-angiotensin system. Also, the role of the over-activated immune system is noteworthy, leading to severe tissue injury via the cytokine storms. Thus it would be feasible to modulate the immune system response in order to attenuate the disease severity, as well as treating the patients. Today different medicines are being administered to the patients, but regardless of the efficacy of these treatments, adverse effects are pretty probable. Meanwhile, mesenchymal stem cells (MSCs) prove to be an effective candidate for treating the patients suffering from COVID-19 pneumonia, owing to their immunomodulatory and tissue-regenerative potentials. So far, several experiments have been conducted; transplanting MSCs and results are satisfying with no adverse effects being reported. This paper aims to review the recent findings regarding the novel coronavirus and the conducted experiments to treat patients suffering from COVID-19 pneumonia utilizing MSCs.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Habib Zayeni Langerodi
- Guilan Rheumatology Research Center (GRRC), Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Anatomical Sciences Department, Medicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
37
|
Davis C, Savitz SI, Satani N. Mesenchymal Stem Cell Derived Extracellular Vesicles for Repairing the Neurovascular Unit after Ischemic Stroke. Cells 2021; 10:cells10040767. [PMID: 33807314 PMCID: PMC8065444 DOI: 10.3390/cells10040767] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.
Collapse
|
38
|
Lou S, Duan Y, Nie H, Cui X, Du J, Yao Y. Mesenchymal stem cells: Biological characteristics and application in disease therapy. Biochimie 2021; 185:9-21. [PMID: 33711361 DOI: 10.1016/j.biochi.2021.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells. In addition to the capacity for self-renewal and multipotential differentiation, MSCs also have the following characteristics. MSCs can exert immunomodulatory functions through interaction with innate or adaptive immune cells, MSCs with poor immunogenicity can be used for allogeneic transplantation, and MSCs can "home" to inflammation and tumour sites. Based on these biological properties, MSCs demonstrate broad clinical application prospects in the treatment of tissue injury, autoimmune diseases, transplantation, cancer and other inflammation-related diseases. In this review we describe the biological characteristics of MSCs and discuss the research advances of MSCs in regenerative medicine, immunomodulation, oncology, and COVID-19, to fully understand the range of diseases in which MSC therapy may be beneficial.
Collapse
Affiliation(s)
- Songyue Lou
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China.
| | - Huizong Nie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xujie Cui
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jialing Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
39
|
Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci 2021; 22:ijms22052335. [PMID: 33652743 PMCID: PMC7956816 DOI: 10.3390/ijms22052335] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Critical limb ischemia (CLI) constitutes the most severe form of peripheral arterial disease (PAD), it is characterized by progressive blockade of arterial vessels, commonly correlated to atherosclerosis. Currently, revascularization strategies (bypass grafting, angioplasty) remain the first option for CLI patients, although less than 45% of them are eligible for surgical intervention mainly due to associated comorbidities. Moreover, patients usually require amputation in the short-term. Angiogenic cell therapy has arisen as a promising alternative for these "no-option" patients, with many studies demonstrating the potential of stem cells to enhance revascularization by promoting vessel formation and blood flow recovery in ischemic tissues. Herein, we provide an overview of studies focused on the use of angiogenic cell therapies in CLI in the last years, from approaches testing different cell types in animal/pre-clinical models of CLI, to the clinical trials currently under evaluation. Furthermore, recent alternatives related to stem cell therapies such as the use of secretomes, exosomes, or even microRNA, will be also described.
Collapse
|
40
|
Battafarano G, Rossi M, De Martino V, Marampon F, Borro L, Secinaro A, Del Fattore A. Strategies for Bone Regeneration: From Graft to Tissue Engineering. Int J Mol Sci 2021; 22:ijms22031128. [PMID: 33498786 PMCID: PMC7865467 DOI: 10.3390/ijms22031128] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is a regenerative organ characterized by self-renewal ability. Indeed, it is a very dynamic tissue subjected to continuous remodeling in order to preserve its structure and function. However, in clinical practice, impaired bone healing can be observed in patients and medical intervention is needed to regenerate the tissue via the use of natural bone grafts or synthetic bone grafts. The main elements required for tissue engineering include cells, growth factors and a scaffold material to support them. Three different materials (metals, ceramics, and polymers) can be used to create a scaffold suitable for bone regeneration. Several cell types have been investigated in combination with biomaterials. In this review, we describe the options available for bone regeneration, focusing on tissue engineering strategies based on the use of different biomaterials combined with cells and growth factors.
Collapse
Affiliation(s)
- Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
| | - Viviana De Martino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Francesco Marampon
- Department of Radiotherapy, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Luca Borro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.B.); (A.S.)
| | - Aurelio Secinaro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.B.); (A.S.)
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
- Correspondence: ; Tel.: +39-066-859-3740
| |
Collapse
|
41
|
Sun C, Zhang K, Yue J, Meng S, Zhang X. Deconstructing transcriptional variations and their effects on immunomodulatory function among human mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:53. [PMID: 33422149 PMCID: PMC7796611 DOI: 10.1186/s13287-020-02121-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stromal cell (MSC)-based therapies are being actively investigated in various inflammatory disorders. However, functional variability among MSCs cultured in vitro will lead to distinct therapeutic efficacies. Until now, the mechanisms behind immunomodulatory functional variability in MSCs are still unclear. Methods We systemically investigated transcriptomic variations among MSC samples derived from multiple tissues to reveal their effects on immunomodulatory functions of MSCs. We then analyzed transcriptomic changes of MSCs licensed with INFγ to identify potential molecular mechanisms that result in distinct MSC samples with different immunomodulatory potency. Results MSCs were clustered into distinct groups showing different functional enrichment according to transcriptomic patterns. Differential expression analysis indicated that different groups of MSCs deploy common regulation networks in response to inflammatory stimulation, while expression variation of genes in the networks could lead to different immunosuppressive capability. These different responsive genes also showed high expression variability among unlicensed MSC samples. Finally, a gene panel was derived from these different responsive genes and was able to regroup unlicensed MSCs with different immunosuppressive potencies. Conclusion This study revealed genes with expression variation that contribute to immunomodulatory functional variability of MSCs and provided us a strategy to identify candidate markers for functional variability assessment of MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02121-8.
Collapse
Affiliation(s)
- Changbin Sun
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Kehua Zhang
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jianhui Yue
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shufang Meng
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xi Zhang
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.
| |
Collapse
|
42
|
Gorgun C, Ceresa D, Lesage R, Villa F, Reverberi D, Balbi C, Santamaria S, Cortese K, Malatesta P, Geris L, Quarto R, Tasso R. Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs). Biomaterials 2020; 269:120633. [PMID: 33453634 DOI: 10.1016/j.biomaterials.2020.120633] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are characterized by a regulatory phenotype and respond promptly to the environmental signals modulating their secretory activity. An appropriate preconditioning may induce MSCs to release secretomes with an enhanced regenerative potential. However, it fails to take into account that secretomes are composed by both soluble factors and extracellular vesicles (EVs), whose functions could be altered differently by the preconditioning approach. Here we demonstrate that the MSC secretome is strongly modulated by the simultaneous stimulation with hypoxia and pro-inflammatory cytokines, used to mimic the harsh environment present at the site of injury. We observed that the environmental variations strongly influenced the angiogenic potential of the different secretome fractions. Upon inflammation, the pro-angiogenic capacity of the soluble component of the MSC secretome was strongly inhibited, regardless of the oxygen level, while the EV-encapsulated component was not significantly affected by the inflammatory stimuli. These effects were accompanied by the modulation of the secreted proteins. On one hand, inflammation-activated MSCs release proteins mainly involved in the interaction with innate immune cells and in tissue remodeling/repair; on the other hand, when MSCs are not exposed to an inflamed environment, they respond to the different oxygen levels modulating the expression of proteins involved in the angiogenic process. The cargo content (in terms of miRNAs) of the corresponding EV fractions was less sensitive to the influence of the external stimuli. Our findings suggest that the therapeutic efficacy of MSC-based therapies could be enhanced by selecting the appropriate preconditioning approach and carefully discriminating its effects on the different secretome components.
Collapse
Affiliation(s)
- Cansu Gorgun
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy; U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Davide Ceresa
- U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Raphaelle Lesage
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Federico Villa
- U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniele Reverberi
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900, Lugano, Switzerland
| | - Sara Santamaria
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Katia Cortese
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Paolo Malatesta
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy; U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium; Biomechanics Research Unit, GIGA in Silico Medicine, University of Liège, Liège, Belgium
| | - Rodolfo Quarto
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy; U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Tasso
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy; U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
43
|
Daneshmandi L, Shah S, Jafari T, Bhattacharjee M, Momah D, Saveh-Shemshaki N, Lo KWH, Laurencin CT. Emergence of the Stem Cell Secretome in Regenerative Engineering. Trends Biotechnol 2020; 38:1373-1384. [PMID: 32622558 PMCID: PMC7666064 DOI: 10.1016/j.tibtech.2020.04.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
The secretome is defined as the set of molecules and biological factors that are secreted by cells into the extracellular space. In the past decade, secretome-based therapies have emerged as a promising approach to overcome the limitations associated with cell-based therapies for tissue and organ regeneration. Considering the growing number of recent publications related to secretome-based therapies, this review takes a step-by-step engineering approach to evaluate the role of the stem cell secretome in regenerative engineering. We discuss the functional benefits of the secretome, the techniques used to engineer the secretome and tailor its therapeutic effects, and the delivery systems and strategies that have been developed to use the secretome for tissue regeneration.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Shiv Shah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Tahereh Jafari
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Maumita Bhattacharjee
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Deandra Momah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
| | - Nikoo Saveh-Shemshaki
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Kevin W-H Lo
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Institute of Materials Science, University of Connecticut, Storrs, CT 06269
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Institute of Materials Science, University of Connecticut, Storrs, CT 06269; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Medicine, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
44
|
Angioni R, Calì B, Vigneswara V, Crescenzi M, Merino A, Sánchez-Rodríguez R, Liboni C, Hoogduijn MJ, Newsome PN, Muraca M, Russo FP, Viola A. Administration of Human MSC-Derived Extracellular Vesicles for the Treatment of Primary Sclerosing Cholangitis: Preclinical Data in MDR2 Knockout Mice. Int J Mol Sci 2020; 21:8874. [PMID: 33238629 PMCID: PMC7700340 DOI: 10.3390/ijms21228874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Primary Sclerosing Cholangitis (PSC) is a progressive liver disease for which there is no effective medical therapy. PSC belongs to the family of immune-mediated biliary disorders and it is characterized by persistent biliary inflammation and fibrosis. Here, we explored the possibility of using extracellular vesicles (EVs) derived from human, bone marrow mesenchymal stromal cells (MSCs) to target liver inflammation and reduce fibrosis in a mouse model of PSC. Five-week-old male FVB.129P2-Abcb4tm1Bor mice were intraperitoneally injected with either 100 µL of EVs (± 9.1 × 109 particles/mL) or PBS, once a week, for three consecutive weeks. One week after the last injection, mice were sacrificed and liver and blood collected for flow cytometry analysis and transaminase quantification. In FVB.129P2-Abcb4tm1Bor mice, EV administration resulted in reduced serum levels of alkaline phosphatase (ALP), bile acid (BA), and alanine aminotransferase (ALT), as well as in decreased liver fibrosis. Mechanistically, we observed that EVs reduce liver accumulation of both granulocytes and T cells and dampen VCAM-1 expression. Further analysis revealed that the therapeutic effect of EVs is accompanied by the inhibition of NFkB activation in proximity of the portal triad. Our pre-clinical experiments suggest that EVs isolated from MSCs may represent an effective therapeutic strategy to treat patients suffering from PSC.
Collapse
Affiliation(s)
- Roberta Angioni
- Department of Biomedical Sciences, University of Padova and Fondazione Istituto di Ricerca Pediatrica—Città della Speranza, 35127 Padova, Italy; (R.A.); (B.C.); (R.S.-R.); (C.L.)
| | - Bianca Calì
- Department of Biomedical Sciences, University of Padova and Fondazione Istituto di Ricerca Pediatrica—Città della Speranza, 35127 Padova, Italy; (R.A.); (B.C.); (R.S.-R.); (C.L.)
| | - Vasanthy Vigneswara
- National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham; Centre for Liver and GI Research, Institute of Immunology and Immunotherapy, University of Birmingham; Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK; (V.V.); (P.N.N.)
| | - Marika Crescenzi
- Department of Surgery, Oncology and Gastroenterology—DiSCOG, Gastroenterology and Multivisceral Transplant Unit, 35128 Padova, Italy; (M.C.); (F.P.R.)
| | - Ana Merino
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (A.M.); (M.J.H.)
| | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padova and Fondazione Istituto di Ricerca Pediatrica—Città della Speranza, 35127 Padova, Italy; (R.A.); (B.C.); (R.S.-R.); (C.L.)
| | - Cristina Liboni
- Department of Biomedical Sciences, University of Padova and Fondazione Istituto di Ricerca Pediatrica—Città della Speranza, 35127 Padova, Italy; (R.A.); (B.C.); (R.S.-R.); (C.L.)
| | - Martin J. Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (A.M.); (M.J.H.)
| | - Philip Noel Newsome
- National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham; Centre for Liver and GI Research, Institute of Immunology and Immunotherapy, University of Birmingham; Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK; (V.V.); (P.N.N.)
| | - Maurizio Muraca
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, and Stem Cell and Regenerative Medicine Laboratory, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology—DiSCOG, Gastroenterology and Multivisceral Transplant Unit, 35128 Padova, Italy; (M.C.); (F.P.R.)
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova and Fondazione Istituto di Ricerca Pediatrica—Città della Speranza, 35127 Padova, Italy; (R.A.); (B.C.); (R.S.-R.); (C.L.)
| |
Collapse
|
45
|
Liu J, Liu Q, Chen X. The Immunomodulatory Effects of Mesenchymal Stem Cells on Regulatory B Cells. Front Immunol 2020; 11:1843. [PMID: 32922398 PMCID: PMC7456948 DOI: 10.3389/fimmu.2020.01843] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) has been investigated in many preclinical and clinical studies. This potential is dominantly based on the immunosuppressive properties of MSCs. Although the therapeutic profiles of MSC transplantation are still not fully characterized, accumulating evidence has revealed that B cells change after MSC infusion, in particular inducing regulatory B cells (Bregs). The immunosuppressive effects of Bregs have been demonstrated, and these cells are being evaluated as new targets for the treatment of inflammatory diseases. MSCs are capable of educating B cells and inducing regulatory B cell production via cell-to-cell contact, soluble factors, and extracellular vesicles (EVs). These cells thus have the potential to complement each other's immunomodulatory functions, and a combined approach may enable synergistic effects for the treatment of immunological diseases. However, compared with investigations regarding other immune cells, investigations into how MSCs specifically regulate Bregs have been superficial and insufficient. In this review, we discuss the current findings related to the immunomodulatory effects of MSCs on regulatory B cells and provide optimal strategies for applications in immune-related disease treatments.
Collapse
Affiliation(s)
- Jialing Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Chen
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Maffioli E, Galli A, Nonnis S, Marku A, Negri A, Piazzoni C, Milani P, Lenardi C, Perego C, Tedeschi G. Proteomic Analysis Reveals a Mitochondrial Remodeling of βTC3 Cells in Response to Nanotopography. Front Cell Dev Biol 2020; 8:508. [PMID: 32850772 PMCID: PMC7405422 DOI: 10.3389/fcell.2020.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, using cluster-assembled zirconia substrates with tailored roughness produced by supersonic cluster beam deposition, we demonstrated that β cells can sense nanoscale features of the substrate and can translate these stimuli into a mechanotransductive pathway capable of preserveing β-cell differentiation and function in vitro in long-term cultures of human islets. Using the same proteomic approach, we now focused on the mitochondrial fraction of βTC3 cells grown on the same zirconia substrates and characterized the morphological and proteomic modifications induced by the nanostructure. The results suggest that, in βTC3 cells, mitochondria are perturbed by the nanotopography and activate a program involving metabolism modification and modulation of their interplay with other organelles. Data were confirmed in INS1E, a different β-cell model. The change induced by the nanostructure can be pro-survival and prime mitochondria for a metabolic switch to match the new cell needs.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine, University of Milano, Milan, Italy.,Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy
| | - Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine, University of Milano, Milan, Italy.,Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy
| | - Algerta Marku
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Armando Negri
- Department of Veterinary Medicine, University of Milano, Milan, Italy
| | - Claudio Piazzoni
- Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy.,Department of Physics, University of Milano, Milan, Italy
| | - Paolo Milani
- Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy.,Department of Physics, University of Milano, Milan, Italy
| | - Cristina Lenardi
- Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy.,Department of Physics, University of Milano, Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine, University of Milano, Milan, Italy.,Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy
| |
Collapse
|
47
|
Secretome Analysis of Mesenchymal Stem Cell Factors Fostering Oligodendroglial Differentiation of Neural Stem Cells In Vivo. Int J Mol Sci 2020; 21:ijms21124350. [PMID: 32570968 PMCID: PMC7352621 DOI: 10.3390/ijms21124350] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.
Collapse
|
48
|
Lin Y, Zhu W, Chen X. The involving progress of MSCs based therapy in atherosclerosis. Stem Cell Res Ther 2020; 11:216. [PMID: 32503682 PMCID: PMC7275513 DOI: 10.1186/s13287-020-01728-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive vascular inflammation characterized by lipid deposition and plaque formation, for which vascular cell dysfunction and impaired immune responses are involved. Up to now, lipid-lowering drugs remain the main therapy for treating atherosclerosis; however, the surgical or interventional therapy is often applied, and yet, morbidity and mortality of such cardiovascular disease remain high worldwide. Over the past decades, an anti-inflammatory approach has become an important therapeutic target for dealing with atherosclerosis, as altered immune responses have been regarded as an essential player in the pathological process of vascular abnormality induced by hyperlipidemia. Interestingly, mesenchymal stem cells, one type of stem cells with the capabilities of self-renewal and multi-potential, have demonstrated their unique immunomodulatory function in the various pathological process, especially in atherosclerosis. While some controversies remain regarding their therapeutic efficacy and working mechanisms, our present review aims to summarize the current research progress on stem cell-based therapy, focusing on its immunomodulatory effects on the pathogenesis of atherosclerosis and how endothelial cells, smooth muscle cells, and other immune cells are regulated by MSC-based therapy.
Collapse
Affiliation(s)
- Ying Lin
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.,Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
49
|
Bundgaard L, Stensballe A, Elbæk KJ, Berg LC. Mass spectrometric analysis of the in vitro secretome from equine bone marrow-derived mesenchymal stromal cells to assess the effect of chondrogenic differentiation on response to interleukin-1β treatment. Stem Cell Res Ther 2020; 11:187. [PMID: 32434555 PMCID: PMC7238576 DOI: 10.1186/s13287-020-01706-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Similar to humans, the horse is a long-lived, athletic species. The use of mesenchymal stromal cells (MSCs) is a relatively new frontier, but has been used with promising results in treating joint diseases, e.g., osteoarthritis. It is believed that MSCs exert their main therapeutic effects through secreted trophic biomolecules. Therefore, it has been increasingly important to characterize the MSC secretome. It has been shown that the effect of the MSCs is strongly influenced by the environment in the host compartment, and it is a crucial issue when considering MSC therapy. The aim of this study was to investigate differences in the in vitro secreted protein profile between naïve and chondrogenic differentiating bone marrow-derived (BM)-MSCs when exposed to an inflammatory environment. Methods Equine BM-MSCs were divided into a naïve group and a chondrogenic group. Cells were treated with normal expansion media or chondrogenic media. Cells were treated with IL-1β for a period of 5 days (stimulation), followed by 5 days without IL-1β (recovery). Media were collected after 48 h and 10 days. The secretomes were digested and analyzed by nanoLC-MS/MS to unravel the orchestration of proteins. Results The inflammatory proteins IL6, CXCL1, CXCL6, CCL7, SEMA7A, SAA, and haptoglobin were identified in the secretome after 48 h from all cells stimulated with IL-1β. CXCL8, OSM, TGF-β1, the angiogenic proteins VCAM1, ICAM1, VEGFA, and VEGFC, the proteases MMP1 and MMP3, and the protease inhibitor TIMP3 were among the proteins only identified in the secretome after 48 h from cells cultured in normal expansion media. After 10-day incubation, the proteins CXCL1, CXCL6, and CCL7 were still identified in the secretome from BM-MSCs stimulated with IL-1β, but the essential inducer of inflammation, IL6, was only identified in the secretome from cells cultured in normal expansion media. Conclusion The findings in this study indicate that naïve BM-MSCs have a more extensive inflammatory response at 48 h to stimulation with IL-1β compared to BM-MSCs undergoing chondrogenic differentiation. This extensive inflammatory response decreased after 5 days without IL-1β (day 10), but a difference in composition of the secretome between naïve and chondrogenic BM-MSCs was still evident.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark
| | - Kirstine Juul Elbæk
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark
| |
Collapse
|
50
|
Al-Hakami A, Alqhatani SQ, Shaik S, Jalfan SM, Dhammam MSA, Asiri W, Alkahtani AM, Devaraj A, Chandramoorthy HC. Cytokine physiognomies of MSCs from varied sources confirm the regenerative commitment post-coculture with activated neutrophils. J Cell Physiol 2020; 235:8691-8701. [PMID: 32385929 DOI: 10.1002/jcp.29713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
The interaction of mesenchymal stromal cells (MSCs) with paracrine signals and immunological cells, and their responses and regenerative commitment thereafter, is understudied. In the current investigation, we compared MSCs from the umbilical cord blood (UCB), dental pulp (DP), and liposuction material (LS) on their ability to respond to activated neutrophils. Cytokine profiling (interleukin-1α [IL-1α], IL-2, IL-4, IL-6, IL-8, tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], transforming growth factor-β [TGF-β]), cellular proliferation and osteogenic differentiation patterns were assessed. The results showed largely comparable cytokine profiles with higher TNF-α and IFN-γ levels in LSMSCs owing to their mature cellular phenotype. The viability and proliferation between LS/DP/UCB MSCs were comparable in the coculture group, while direct activation of MSCs with lipopolysaccharide (LPS) showed comparable proliferation with significant cell death in UCB MSCs and slightly higher cell death in the other two types of MSC. Furthermore, when MSCs post-neutrophil exposure were induced for osteogenic differentiation, though all the MSCs devoid of the sources differentiated, we observed rapid and significant turnover of DPMSCs positive of osteogenic markers rather than LS and UCB MSCs. We further observed a significant turnover of IL-1α and TGF-β at mRNA and cytokine levels, indicating the commitment of MSCs to differentiate through interacting with immunological cells or bacterial products like neutrophils or LPS, respectively. Taken together, these results suggest that MSCs have more or less similar cytokine responses devoid of their anatomical niche. They readily switch over from the cytokine responsive cell phenotype at the immunological microenvironment to differentiate and regenerate tissue in response to cellular signals.
Collapse
Affiliation(s)
- Ahmed Al-Hakami
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saad Qaddah Alqhatani
- Department of Surgery, Plastic Surgery Division, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sharaz Shaik
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Saaed Mohammed Jalfan
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Wejdan Asiri
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdullah Misfer Alkahtani
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Anantharam Devaraj
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|