1
|
Bourne N, Keith CA, Miller AL, Pyles RB, Milligan GN. Impact of CD4 + T lymphocytes on the cellular and molecular milieu of the vaginal mucosa following HSV-2 challenge of immune guinea pigs. Virology 2023; 588:109907. [PMID: 39492229 DOI: 10.1016/j.virol.2023.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
CD4+ and CD8+ tissue resident memory cells (TRM) express many shared anti-viral activities upon re-exposure to virus. CD4+ T cells were depleted from HSV-immune guinea pigs to identify CD4-dependent functions in the vaginal mucosa following HSV-2 challenge. The incidence of animals shedding HSV-2 fell rapidly after challenge in control animals but remained significantly higher through day four post infection in CD4-depleted animals. Genes encoding CD14, IFN-γ, CCL2, and CCL5 were up-regulated in the vaginal mucosa of both groups following challenge. However, significantly higher expression of CD107b, IL-15, and TLR9 but lower expression of CD20, IL-21, and CCL5 was detected in CD4-depleted- compared to control-treated animals. Further, antigen stimulation of CD4+ TRM increased the expression of IFN-γ, IL-2, IL-21, IL-17A, and CCL5. The impact of these gene expression patterns on the recruitment and maintenance of the cellular milieu of the vaginal mucosa upon virus challenge is discussed.
Collapse
Affiliation(s)
- Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA.
| | - Celeste A Keith
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Richard B Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Gregg N Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA.
| |
Collapse
|
2
|
Age-Related Changes in Female Murine Reproductive Mucosa with respect to γδ T Cell Presence. J Immunol Res 2023; 2023:3072573. [PMID: 36726490 PMCID: PMC9886474 DOI: 10.1155/2023/3072573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Many studies have demonstrated a general decline and dysregulation in immune functions with age. It is not clear, however, how the aging affects the immune surveillance of the female reproductive tract (FRT) by γδ T cells, a unique population of T lymphocytes that was shown to regulate homeostasis of epithelial barriers. First, we analyzed γδ T cell presence in FRT in young (2 months) and old (18 months) wild-type (WT) C57BL/6 mice. We did not detect any changes in γδ T cell number nor distribution in the vaginas between the age groups, while in uteri, there was a twofold increase in γδ T cell number in aged mice. To check if γδ T lymphocytes regulate a metabolic and immune status of aging vaginal tissue, we compared the expression of 84 aging-associated genes in young and old WT and γδ T-cell-deficient (Tcrd -/-) mice. We discovered that only the Ltf (lactotransferrin) gene was downregulated in old Tcrd -/- mice. In both mouse strains, we found similar age-dependent changes in cytokine production upon vaginal inflammation due to Toll-like receptor 9 (TLR9) stimulation with CpG. With age in the vaginas, IL-1α and IL-17A levels increased while IL-6, IL-10, MCP-1, and IFNγ levels were diminished in response to CpG. Similar trends were observed in uteri. Interestingly, under the inflammatory state, the lack of γδ T cells in young individuals enhanced MCP-1 production in the vagina and decreased MCP-1 level in the uterus in old females. Our gene expression data point to an antimicrobial role of γδ T lymphocytes. The profile of secreted inflammatory cytokines shifted during aging toward the proinflammatory type, and γδ T cells played a modest fine-tuning role in immunoregulation in aged FRT. We believe this work expands our understanding of γδ T cell functions and the inflammaging in the murine reproductive epithelia.
Collapse
|
3
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
4
|
Feng E, Balint E, Vahedi F, Ashkar AA. Immunoregulatory Functions of Interferons During Genital HSV-2 Infection. Front Immunol 2021; 12:724618. [PMID: 34484233 PMCID: PMC8416247 DOI: 10.3389/fimmu.2021.724618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/02/2021] [Indexed: 12/04/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) infection is one of the most prevalent sexually transmitted infections that disproportionately impacts women worldwide. Currently, there are no vaccines or curative treatments, resulting in life-long infection. The mucosal environment of the female reproductive tract (FRT) is home to a complex array of local immune defenses that must be carefully coordinated to protect against genital HSV-2 infection, while preventing excessive inflammation to prevent disease symptoms. Crucial to the defense against HSV-2 infection in the FRT are three classes of highly related and integrated cytokines, type I, II, and III interferons (IFN). These three classes of cytokines control HSV-2 infection and reduce tissue damage through a combination of directly inhibiting viral replication, as well as regulating the function of resident immune cells. In this review, we will examine how interferons are induced and their critical role in how they shape the local immune response to HSV-2 infection in the FRT.
Collapse
Affiliation(s)
| | | | | | - Ali A. Ashkar
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Increased Frequency of Virus Shedding by Herpes Simplex Virus 2-Infected Guinea Pigs in the Absence of CD4 + T Lymphocytes. J Virol 2019; 93:JVI.01721-18. [PMID: 30463981 DOI: 10.1128/jvi.01721-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
Reactivation of herpes simplex virus 2 (HSV-2) results in infection of epithelial cells at the neuro-epithelial junction and shedding of virus at the epithelial surface. Virus shedding can occur in either the presence or absence of clinical disease and is usually of short duration, although the shedding frequency varies among individuals. The basis for host control of virus shedding is not well understood, although adaptive immune mechanisms are thought to play a central role. To determine the importance of CD4+ T cells in control of HSV-2 shedding, this subset of immune cells was depleted from HSV-2-infected guinea pigs by injection of an anti-CD4 monoclonal antibody (MAb). Guinea pigs were treated with the depleting MAb after establishment of a latent infection, and vaginal swabs were taken daily to monitor shedding by quantitative PCR. The cumulative number of HSV-2 shedding days and the mean number of days virus was shed were significantly increased in CD4-depleted compared to control-treated animals. However, there was no difference in the incidence of recurrent disease between the two treatment groups. Serum antibody levels and the number of HSV-specific antibody-secreting cells in secondary lymphoid tissues were unaffected by depletion of CD4+ T cells; however, the frequency of functional HSV-specific, CD8+ gamma interferon-secreting cells was significantly decreased. Together, these results demonstrate an important role for CD4+ T lymphocytes in control of virus shedding that may be mediated in part by maintenance of HSV-specific CD8+ T cell populations. These results have important implications for development of therapeutic vaccines designed to control HSV-2 shedding.IMPORTANCE Sexual transmission of HSV-2 results from viral shedding following reactivation from latency. The immune cell populations and mechanisms that control HSV-2 shedding are not well understood. This study examined the role of CD4+ T cells in control of virus shedding using a guinea pig model of genital HSV-2 infection that recapitulates the shedding of virus experienced by humans. We found that the frequency of virus-shedding episodes, but not the incidence of clinical disease, was increased by depletion of CD4+ T cells. The HSV-specific antibody response was not diminished, but frequency of functional HSV-reactive CD8+ T cells was significantly diminished by CD4 depletion. These results confirm the role of cell-mediated immunity and highlight the importance of CD4+ T cells in controlling HSV shedding, suggesting that therapeutic vaccines designed to reduce transmission by controlling HSV shedding should include specific enhancement of HSV-specific CD4+ T cell responses.
Collapse
|
6
|
Sartori G, Jardim NS, Marcondes Sari MH, Dobrachinski F, Pesarico AP, Rodrigues LC, Cargnelutti J, Flores EF, Prigol M, Nogueira CW. Antiviral Action of Diphenyl Diselenide on Herpes Simplex Virus 2 Infection in Female BALB/c Mice. J Cell Biochem 2015; 117:1638-48. [PMID: 26639776 DOI: 10.1002/jcb.25457] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/04/2015] [Indexed: 01/13/2023]
Abstract
Diphenyl diselenide, (PhSe)2 , is an organoselenium compound with pharmacological actions mostly related to antioxidant and anti-inflammatory properties. The study investigated its antiviral and virucidal actions against herpes simplex virus 2 (HSV-2) infection in vitro and in a vaginal infection model in mice. The plaque reduction assay indicated that (PhSe)2 showed virucidal and antiviral actions reducing infectivity in 70.8% and 47%, respectively. The antiviral action of (PhSe)2 against HSV-2 vaginal infection was performed by infecting mice (10(5) PFU/ml(-1) ) at day 6. The treatment with (PhSe)2 (5 mg/kg/day, intragastric [i.g.]) followed 5 days before and for more 5 days after infection. The extravaginal lesion score was evaluated from days 6 to 10. At day 11, animals were killed, and histological evaluation, determination of viral load, and TNF-α and IFN-γ levels were performed in supernatants of homogenized vaginal tissue. The levels of reactive species (RS), protein carbonyl, non-protein thiols (NPSH), nitrate/nitrite (NOx), and malondialdehyde (MDA), and the activities of myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined. (PhSe)2 reduced the histological damage, extravaginal lesion scores, the viral load of vaginal tissue, and the activity of MPO, but increased the levels of TNF-α, IFN-γ. (PhSe)2 attenuated the increase of RS, MDA, NOx levels and the activity of GR caused by infection. (PhSe)2 also attenuated the reduction of NPSH content and the inhibition of CAT, SOD, and GPx activities. The antiviral action of (PhSe)2 against HSV-2 infection was related to its immunomodulatory, antioxidant, and anti-inflammatory properties. J. Cell. Biochem. 117: 1638-1648, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gláubia Sartori
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil.,Don C. Gnocchi Foundation, ONLUS, Piazza Morandi 3, Milan, 20100, Italy
| | - Natália Silva Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Fernando Dobrachinski
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Ana Paula Pesarico
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Luiz Carlos Rodrigues
- Laboratório de Biologia Molecular e Cultivo de Células, Centro Universitário Franciscano, Conjunto I, UNIFRA, Santa Maria, CEP 97010-032, Rio Grande do Sul, Brazil
| | - Juliana Cargnelutti
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva e Departamento de Microbiologia e Parasitologia, Centro de Ciências Rurais, Universidade Federal de Santa Maria, UFSM, Av. Roraima, No. 1000, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Eduardo F Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva e Departamento de Microbiologia e Parasitologia, Centro de Ciências Rurais, Universidade Federal de Santa Maria, UFSM, Av. Roraima, No. 1000, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Marina Prigol
- Universidade Federal do Pampa, Campus Itaqui, Itaqui, CEP 97650-000, Rio Grande do Sul, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Iijima N, Iwasaki A. Tissue instruction for migration and retention of TRM cells. Trends Immunol 2015; 36:556-64. [PMID: 26282885 PMCID: PMC4567393 DOI: 10.1016/j.it.2015.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 01/21/2023]
Abstract
During infection, a subset of effector T cells seeds the lymphoid and non-lymphoid tissues and gives rise to tissue-resident memory T cells (TRM). Recent findings have provided insight into the molecular and cellular mechanisms underlying tissue instruction of TRM cell homing, as well as the programs involved in their retention and maintenance. We review these findings here, highlighting both common features and distinctions between CD4 TRM and CD8 TRM cells. In this context we examine the role of memory lymphocyte clusters (MLCs), and propose that the MLCs serve as an immediate response center consisting of TRM cells on standby, capable of detecting incoming pathogens and mounting robust local immune responses to contain and limit the spread of infectious agents.
Collapse
Affiliation(s)
- Norifumi Iijima
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Abstract
Recent studies implicating the fallopian tube as the site of putative precursors of ovarian serous carcinoma, and the hypothesis that injury, inflammation, and repair of the ovarian surface epithelium at the time of ovulation, may be contributing factors to ovarian carcinogenesis, prompted us to undertake a comprehensive analysis of the immune cells in the normal fallopian tube. Accordingly, the aim of this study was to provide a baseline for future studies exploring the relationship of inflammation with the early events of ovarian carcinogenesis by characterizing the immune cell repertoire in 13 normal human fallopian tubes, combining digital microscopy of immunostained slides and flow cytometry of fresh single-cell suspensions, with a panel of markers that identify the most important adaptive and innate immune cells. We found that CD45(+) leukocytes are regularly observed in the fallopian tube and are mainly composed of CD163(+) macrophages, CD11c dendritic cells, and CD8(+) T cells. In addition, there are minor populations of CD56(+) NK cells, CD4(+) T cells, CD20(+) B cells, TCRγδ(+) T cells, and, among dendritic cells, CD207(Langerin)(+) Langerhans cells. The cellular mapping that we performed indicates that the local immune system in the human fallopian tube is composed of a mixture of innate and adaptive immune cells, many of which are recognized as playing a role in cancer immune surveillance. This local immune system could provide a first line of defense against early precancerous lesions and could potentially be exploited for immune-based therapies.
Collapse
|
9
|
|
10
|
Krzyzowska M, Orłowski P, Bąska P, Bodera P, Zdanowski R, Stankiewicz W. Role of Fas/FasL signaling in regulation of anti-viral response during HSV-2 vaginal infection in mice. Immunobiology 2014; 219:932-43. [PMID: 25129477 DOI: 10.1016/j.imbio.2014.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/29/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
Abstract
Fas receptor-Fas ligand (FasL) signaling is involved in apoptosis of virus-infected cells but increasing evidence accumulates on Fas receptor as a mediator of apoptosis-independent processes such as induction of activating and pro-inflammatory signals. In this study, we examined the role of Fas/FasL pathway in regulation of anti-viral response to genital HSV-2 infection using a murine model of HSV-2 infection applied to C57BL6/J, B6. MRL-Faslpr/J and B6Smn.C3-Faslgld/J mice. HSV-2 infection of Fas- and FasL-deficient mice led to decreased migration of IFN-γ expressing NK cells and CD4+ T cells, but not of γδ T cells, into the vaginal tissue. The vaginal tissues of HSV-2 infected Fas- and FasL-deficient mice showed increased production of IL-10, followed by low expression of the early CD69 activation marker on CD4+ and CD8+ T cells and increased numbers of regulatory T cells (Tregs). Experiments in co-cultures of CD4+ T cells and bone marrow derived dendritic cells showed that lack of bilateral Fas-FasL signaling led to expansion of Tregs and increased production of IL-10 and TGF-β1. Our results demonstrate that Fas/FasL can regulate development of tolerogenic dendritic cells and expansion of Tregs early during HSV-2 infection, which further influences effective anti-viral response.
Collapse
Affiliation(s)
- Malgorzata Krzyzowska
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland; Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Piotr Orłowski
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Piotr Bąska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Pawel Bodera
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | | | |
Collapse
|
11
|
Kim JO, Cha HR, Kim ED, Kweon MN. Pathological effect of IL-17A-producing TCRγδ+ T cells in mouse genital mucosa against HSV-2 infection. Immunol Lett 2012; 147:34-40. [DOI: 10.1016/j.imlet.2012.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/24/2012] [Accepted: 05/31/2012] [Indexed: 11/28/2022]
|
12
|
The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections. Adv Virol 2011; 2011:679271. [PMID: 22312349 PMCID: PMC3265311 DOI: 10.1155/2011/679271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/02/2011] [Indexed: 12/18/2022] Open
Abstract
In 1999, two independent groups identified plasmacytoid dendritic cells (PDC) as major type I interferon- (IFN-) producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a "spider web", in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.
Collapse
|
13
|
Loss of the type I interferon pathway increases vulnerability of mice to genital herpes simplex virus 2 infection. J Virol 2010; 85:1625-33. [PMID: 21147921 DOI: 10.1128/jvi.01715-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mouse model of genital herpes relies on medoxyprogesterone treatment of female mice to render the vaginal lumen susceptible to inoculation with herpes simplex virus 2 (HSV-2). In the present study, we report that mice deficient in the A1 chain of the type I interferon receptor (CD118(-/-)) are susceptible to HSV-2 in the absence of medroxyprogesterone preconditioning. In the absence of hormone pretreatment, 2,000 PFU of a clinical isolate of HSV-2 was sufficient to establish a productive infection in the vagina of 75% ± 17% and in the spinal cord of 71% ± 14% of CD118(-/-) mice, whereas the same dose of HSV-2 replicated to detectable levels in only 13% ± 13% of vaginal samples and 0% of spinal cord samples from wild-type mice, as determined at day 5 postinfection. The susceptibility to HSV-2 infection in the CD118(-/-) mice was associated with a significant reduction in the infiltration of HSV-specific cytotoxic T lymphocytes into the vaginal tissue, the local production of gamma interferon (IFN-γ), and the expression of T cell-recruiting chemokines CCL5, CXCL9, and CXCL10. Collectively, the results underscore the significant contribution of type I IFNs in resistance to genital HSV-2 infection.
Collapse
|
14
|
Salek-Ardakani S, Croft M. Tumor necrosis factor receptor/tumor necrosis factor family members in antiviral CD8 T-cell immunity. J Interferon Cytokine Res 2010; 30:205-18. [PMID: 20377415 DOI: 10.1089/jir.2010.0026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD8 memory T cells can play a critical role in protection against repeated exposure to infectious agents such as viruses, yet can also contribute to the immunopathology associated with these pathogens. Understanding the mechanisms that control effective memory responses has important ramifications for vaccine design and in the management of adverse immune reactions. Recent studies have implicated several members of the tumor necrosis factor receptor (TNFR) family as key stimulatory and inhibitory molecules involved in the regulation of CD8 T cells. In this review, we discuss their control of the generation, persistence, and reactivation of CD8 T cells during virus infection.
Collapse
Affiliation(s)
- Shahram Salek-Ardakani
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.
| | | |
Collapse
|
15
|
Tang VA, Rosenthal KL. Intravaginal infection with herpes simplex virus type-2 (HSV-2) generates a functional effector memory T cell population that persists in the murine genital tract. J Reprod Immunol 2010; 87:39-44. [PMID: 20688399 DOI: 10.1016/j.jri.2010.06.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/06/2010] [Accepted: 06/19/2010] [Indexed: 01/07/2023]
Abstract
Although the female genital tract is the main portal of entry for sexually transmitted infections in women, we still have limited understanding of the generation, maintenance and characteristics of memory T cells in the local tissue. Here, we utilized a mouse model of intravaginal HSV-2 infection and tetramers against the immunodominant HSV glycoprotein B epitope recognized by CD8+ T cells to examine the generation, maintenance and characteristics of anti-HSV memory T cells in the genital tract following acute infection. Our results show that the highest percentage of HSVgB-specific CD8+ T cells was found in the genital tract compared to the spleen or iliac lymphnode. Indeed, although the actual number of CD8+ T cells contracted following viral clearance, approximately one quarter of the CD8+ population that remained in the genital tissue was HSVgB-specific. Memory gB-tetramer+CD8 T cells in the genital tract were positive for CD127 and KLRG1 and negative for CD62L and CCR7, thus confirming that HSV-specific CD8 cells were effector memory T cells that lack the capacity for homing to lymphoid tissues. Functionally, both memory CD8+ and CD4+ HSV-specific populations in the genital tract produced IFNγ when stimulated in vitro and CD4+ cells also produced TNFα. Genital HSVgB-specific memory T cells expressed tissue-homing integrins CD103 (αE integrin) and CD49a (VLA-1 or α1 integrin). Our findings suggest that HSV-specific memory T cells are retained in the genital tract, poised to act as an early line of defense against future virus encounter.
Collapse
Affiliation(s)
- Vera A Tang
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Pathology & Molecular Medicine, McMaster University, MDCL 4019, 1200 Main St. West, Hamilton, Ontario, Canada
| | | |
Collapse
|
16
|
Johnson AJ, Nelson MH, Bird MD, Chu CF, Milligan GN. Herpes simplex virus (HSV)-specific T cells activated in the absence of IFN-gamma express alternative effector functions but are not protective against genital HSV-2 infection. J Reprod Immunol 2009; 84:8-15. [PMID: 19942296 DOI: 10.1016/j.jri.2009.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/03/2009] [Accepted: 09/16/2009] [Indexed: 12/23/2022]
Abstract
Interferon gamma (IFNgamma) is important for immune resistance to herpes simplex virus (HSV) infection. To examine the influence of IFNgamma on the development of HSV-specific immune responses and test for IFNgamma-independent adaptive immune mechanisms of protection, IFNgamma-deficient mice (IFNgamma(-/-)) were immunized with thymidine kinase-deficient HSV-2 (HSV-2 333tk(-)). HSV-specific cellular and humoral responses were elicited in immunized IFNgamma(-/-) mice resulting in increased resistance relative to non-immune C57BL/6J (B6) mice following challenge with fully virulent HSV-2. CD8(+) T cells from IFNgamma(-/-) mice displayed cytotoxic activity and secreted TNFalpha. HSV-specific CD4(+) T cells from immunized IFNgamma(-/-) mice secreted IL-4, TNFalpha, and IL-17, but unlike T cells from HSV-immune B6 mice, could not clear virus from genital tissue following adoptive transfer. HSV-immune IFNgamma(-/-) mice produced predominantly IgG(1) HSV-specific antibodies while immune B6 mice produced predominantly IgG(2c) antibodies. Transfer of equivalent amounts of HSV-specific antibodies from either strain to naïve mice imparted equivalent early resistance against infection of the genital epithelia. However, protection against neurological symptoms mediated by immune B6 antibodies was superior late in infection. Taken together, these results demonstrate that the limited resistance of HSV-immune IFNgamma(-/-) mice to HSV-2 infection resulted from the action of HSV-specific Ab rather than IFNgamma-independent effector functions of T cells. Further, protection against neurological manifestations of HSV-2 infection was superior in mice receiving Ab from immune B6 mice suggesting that Ab-mediated protective mechanisms involving IFNgamma-induced IgG subclasses were more effective once virus had spread to neural tissues.
Collapse
Affiliation(s)
- Alison J Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
17
|
Innate and adaptive immune responses to herpes simplex virus. Viruses 2009; 1:979-1002. [PMID: 21994578 PMCID: PMC3185534 DOI: 10.3390/v1030979] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 12/19/2022] Open
Abstract
Immune responses against HSV-1 and HSV-2 are complex and involve a delicate interplay between innate signaling pathways and adaptive immune responses. The innate response to HSV involves the induction of type I IFN, whose role in protection against disease is well characterized in vitro and in vivo. Cell types such as NK cells and pDCs contribute to innate anti-HSV responses in vivo. Finally, the adaptive response includes both humoral and cellular components that play important roles in antiviral control and latency. This review summarizes the innate and adaptive effectors that contribute to susceptibility, immune control and pathogenesis of HSV, and highlights the delicate interplay between these two important arms of immunity.
Collapse
|
18
|
Protective role of Fas-FasL signaling in lethal infection with herpes simplex virus type 2 in mice. J Virol 2009; 83:11777-83. [PMID: 19740996 DOI: 10.1128/jvi.01006-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) induces acute local infection followed by latent infection in the nervous system and often leads to the development of lethal encephalitis in immunocompromised hosts. The mechanisms of immune protection against lethal HSV-2 infection, however, have not been clarified. In this study, we examined the roles of Fas-Fas ligand (FasL) signaling in lethal infection with HSV-2 by using mice with mutated Fas (lpr) or FasL (gld) in C57BL/6 background. Both lpr and gld mice exhibited higher mortality than wild-type (WT) C57BL/6 mice after infection with virulent HSV-2 strain 186 and showed significantly increased viral titers in the spinal cord compared with WT mice 9 days after infection, just before the mice started to die. There were no differences in the numbers of CD4+ and CD8+ T cells infiltrated in the spinal cord or in the levels of HSV-2-specific gamma interferon produced by those cells in a comparison of lpr and WT mice 9 days after infection. Adoptive transfer studies demonstrated that CD4+ T cells from WT mice protected gld mice from lethal infection by HSV-2. Furthermore, CD4+ T cells infiltrated in the spinal cord of HSV-2-infected WT mice expressed functional FasL that induced apoptosis of Fas-expressing target cells in vitro. These results suggest that FasL-mediated cytotoxic activity of CD4+ T cells plays an important role in host defense against lethal infection with HSV-2.
Collapse
|
19
|
Zhang X, Chentoufi AA, Dasgupta G, Nesburn AB, Wu M, Zhu X, Carpenter D, Wechsler SL, You S, BenMohamed L. A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8+ T cells and protects against herpes simplex virus type 2 challenge. Mucosal Immunol 2009; 2:129-143. [PMID: 19129756 PMCID: PMC4509510 DOI: 10.1038/mi.2008.81] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The next generation of needle-free mucosal vaccines is being rationally designed according to rules that govern the way in which the epitopes are recognized by and stimulate the genital mucosal immune system. We hypothesized that synthetic peptide epitopes extended with an agonist of Toll-like receptor 2 (TLR-2), that are abundantly expressed by dendritic and epithelial cells of the vaginal mucosa, would lead to induction of protective immunity against genital herpes. To test this hypothesis, we intravaginally (IVAG) immunized wild-type B6, TLR-2 (TLR2(-/-)) or myeloid differentiation factor 88 deficient (MyD88(-/-)) mice with a herpes simplex virus type 2 (HSV-2) CD8+ T-cell peptide epitope extended by a palmitic acid moiety (a TLR-2 agonist). IVAG delivery of the lipopeptide generated HSV-2-specific memory CD8+ cytotoxic T cells both locally in the genital tract draining lymph nodes and systemically in the spleen. Moreover, lipopeptide-immunized TLR2(-/-) and MyD88(-/-) mice developed significantly less HSV-specific CD8+ T-cell response, earlier death, faster disease progression, and higher vaginal HSV-2 titers compared to lipopeptide-immunized wild-type B6 mice. IVAG immunization with self-adjuvanting lipid-tailed peptides appears to be a novel mucosal vaccine approach, which has attractive practical and immunological features.
Collapse
Affiliation(s)
- X Zhang
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - AA Chentoufi
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - G Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - AB Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - M Wu
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - X Zhu
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - D Carpenter
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - SL Wechsler
- Laboratory of Virology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA,Department of Microbiology and Molecular Genetics, University of California Irvine, School of Medicine, Irvine, CA, USA,The Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - S You
- INSERM U580, University Paris Descartes, Paris, France
| | - L BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA,Center for Immunology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
20
|
Iijima N, Linehan MM, Zamora M, Butkus D, Dunn R, Kehry MR, Laufer TM, Iwasaki A. Dendritic cells and B cells maximize mucosal Th1 memory response to herpes simplex virus. ACTA ACUST UNITED AC 2008; 205:3041-52. [PMID: 19047439 PMCID: PMC2605233 DOI: 10.1084/jem.20082039] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the importance of cytotoxic T lymphocytes and neutralizing antibodies for antiviral defense is well known, the antiviral mechanism of Th1 remains unclear. We show that Th1 cells mediate noncytolytic antiviral protection independent of direct lysis through local secretion of IFN-gamma after herpes simplex virus (HSV) 2 infection. IFN-gamma acted on stromal cells, but not on hematopoietic cells, to prevent further viral replication and spread throughout the vaginal mucosa. Importantly, unlike other known Th1 defense mechanisms, this effector function did not require recognition of virally infected cells via MHC class II. Instead, recall Th1 response was elicited by MHC class II(+) antigen-presenting cells at the site of infection. Dendritic cells (DCs) were not required and only partially sufficient to induce a recall response from memory Th1 cells. Importantly, DCs and B cells together contributed to restimulating memory CD4 T cells to secrete IFN-gamma. In the absence of both DCs and B cells, immunized mice rapidly succumbed to HSV-2 infection and death. Thus, these results revealed a distinct mechanism by which memory Th1 cells mediate noncytolytic IFN-gamma-dependent antiviral protection after recognition of processed viral antigens by local DCs and B cells.
Collapse
Affiliation(s)
- Norifumi Iijima
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Effector CD4+ T-cell involvement in clearance of infectious herpes simplex virus type 1 from sensory ganglia and spinal cords. J Virol 2008; 82:9678-88. [PMID: 18667492 DOI: 10.1128/jvi.01159-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In primary infection, CD8(+) T cells are important for clearance of infectious herpes simplex virus (HSV) from sensory ganglia. In this study, evidence of CD4(+) T-cell-mediated clearance of infectious HSV type 1 (HSV-1) from neural tissues was also detected. In immunocompetent mice, HSV-specific CD4(+) T cells were present in sensory ganglia and spinal cords coincident with HSV-1 clearance from these sites and remained detectable at least 8 months postinfection. Neural CD4(+) T cells isolated at the peak of neural infection secreted gamma interferon, tumor necrosis factor alpha, interleukin-2 (IL-2), or IL-4 after stimulation with HSV antigen. HSV-1 titers in neural tissues were greatly reduced over time in CD8(+) T-cell-deficient and CD8(+) T-cell-depleted mice, suggesting that CD4(+) T cells could mediate clearance of HSV-1 from neural tissue. To examine possible mechanisms by which CD4(+) T cells resolved neural infection, CD8(+) T cells were depleted from perforin-deficient or FasL-defective mice. Clearance of infectious virus from neural tissues was not significantly different in perforin-deficient or FasL-defective mice compared to wild-type mice. Further, in spinal cords and brains after vaginal HSV-1 challenge of chimeric mice expressing both perforin and Fas or neither perforin nor Fas, virus titers were significantly lower than in control mice. Thus, perforin and Fas were not required for clearance of infectious virus from neural tissues. These results suggest that HSV-specific CD4(+) T cells are one component of a long-term immune cell presence in neural tissues following genital HSV-1 infection and play a role in clearance of infectious HSV-1 at neural sites, possibly via a nonlytic mechanism.
Collapse
|
22
|
Thapa M, Carr DJJ. Chemokines and Chemokine Receptors Critical to Host Resistance following Genital Herpes Simplex Virus Type 2 (HSV-2) Infection. ACTA ACUST UNITED AC 2008; 1:33-41. [PMID: 19043604 DOI: 10.2174/1874226200801010033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HSV-2 is a highly successful human pathogen with a remarkable ability to elude immune detection or counter the innate and adaptive immune response through the production of viral-encoded proteins. In response to infection, resident cells secrete soluble factors including chemokines that mobilize and guide leukocytes including T and NK cells, neutrophils, and monocytes to sites of infection. While there is built-in redundancy within the system, chemokines signal through specific membrane-bound receptors that act as antennae detailing a chemical pathway that will provide a means to locate and eliminate the viral insult. Within the central nervous system (CNS), the temporal and spatial expression of chemokines relative to leukocyte mobilization in response to HSV-2 infection has not been elucidated. This paper will review some of the chemokine/chemokine receptor candidates that appear critical to the host in viral resistance and clearance from the CNS and peripheral tissue using murine models of genital HSV-2 infection.
Collapse
Affiliation(s)
- M Thapa
- Department of Microbiology, Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma-73104, USA
| | | |
Collapse
|
23
|
Morrison LA. Replication-defective virus vaccine-induced protection of mice from genital herpes simplex virus 2 requires CD4 T cells. Virology 2008; 376:205-10. [PMID: 18410949 DOI: 10.1016/j.virol.2008.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 02/26/2008] [Accepted: 03/08/2008] [Indexed: 12/01/2022]
Abstract
Replication-defective herpes simplex virus 2 (HSV-2), used as an immunization strategy, protects against HSV-2 challenge in animal models. The roles of replication-defective virus-induced T cell subsets in control of HSV-2 infection have not been established. Mice lacking B cells (microMT) were immunized, depleted of CD4 or CD8 T cells, and then challenged intravaginally with HSV-2 to elucidate T cell subset contributions in the absence of virus-specific antibody. Immunized, CD4-depleted microMT mice developed severe infection of the genital tract and nervous system. In contrast, depletion of CD8 T cells from microMT mice did not attenuate protection. Immunized wild-type mice depleted of CD4 T cells also developed more severe HSV-2 infection than mice from which CD8 T cells were depleted. Thus, immunization with replication-defective virus induces T cell responses that effectively control HSV-2 infection in the absence of HSV-immune antibody, and CD4 T cells play the predominant role in this protective effect.
Collapse
Affiliation(s)
- Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
24
|
Gill N, Davies EJ, Ashkar AA. The role of toll-like receptor ligands/agonists in protection against genital HSV-2 infection. Am J Reprod Immunol 2008; 59:35-43. [PMID: 18154594 DOI: 10.1111/j.1600-0897.2007.00558.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Control of virus replication initially depends on rapid activation of the innate immune responses. Toll-like receptor (TLR) ligands are potent inducers of innate immunity against viral infections, including herpes simplex virus (HSV). HSV-2 is currently one of the most common sexually transmitted infections in developed nations and is becoming more prevalent in adolescents. HSV-2 infects the genital mucosa and is associated with an increased risk of obtaining other sexually transmitted infections such as HIV. There is currently no vaccine available against HSV-2. In the last several years, there has been an interest in utilizing Toll-like receptor (TLR) ligands to initiate innate immune responses in order to provide an early line of defence against viral replication. This review highlights recent studies investigating the effect of various TLR ligands on genital HSV-2 infection. A considerable body of information has been published on the effect of local delivery of TLR ligands on HSV-2 replication in genital mucosa. We have outlined ligands that have a potential to provide protection against HSV-2 infection. In addition, we have presented possible mechanisms by which the local delivery of TLR ligands provides innate protection against genital HSV-2.
Collapse
Affiliation(s)
- Navkiran Gill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
25
|
Thapa M, Welner RS, Pelayo R, Carr DJJ. CXCL9 and CXCL10 expression are critical for control of genital herpes simplex virus type 2 infection through mobilization of HSV-specific CTL and NK cells to the nervous system. THE JOURNAL OF IMMUNOLOGY 2008; 180:1098-106. [PMID: 18178850 DOI: 10.4049/jimmunol.180.2.1098] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CXCL9 and CXCL10 mediate the recruitment of T lymphocytes and NK cells known to be important in viral surveillance. The relevance of CXCL10 in comparison to CXCL9 in response to genital HSV-2 infection was determined using mice deficient in CXCL9 (CXCL9-/-) and deficient in CXCL10 (CXCL10-/-) along with wild-type (WT) C57BL/6 mice. An increased sensitivity to infection was found in CXCL10-/- mice in comparison to CXCL9-/- or WT mice as determined by detection of HSV-2 in the CNS at day 3 postinfection. However, by day 7 postinfection both CXCL9-/- and CXCL10-/- mice possessed significantly higher viral titers in the CNS in comparison to WT mice consistent with mortality (18-35%) of these mice within the first 7 days after infection. Even though CXCL9-/- and CXCL10-/- mice expressed elevated levels of CCL2, CCL3, CCL5, and CXCL1 in the spinal cord in comparison to WT mice, there was a reduction in NK cell and virus-specific CD8+ T cell mobilization to this tissue, suggesting CXCL9 and CXCL10 are critical for recruitment of these effector cells to the spinal cord following genital HSV-2 infection. Moreover, leukocytes from the spinal cord but not from draining lymph nodes or spleens of infected CXCL9-/- or CXCL10-/- mice displayed reduced CTL activity in comparison to effector cells from WT mice. Thus, the absence of CXCL9 or CXCL10 expression significantly alters the ability of the host to control genital HSV-2 infection through the mobilization of effector cells to sites of infection.
Collapse
Affiliation(s)
- Manoj Thapa
- Department of Microbiology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | | | |
Collapse
|
26
|
Thapa M, Kuziel WA, Carr DJJ. Susceptibility of CCR5-deficient mice to genital herpes simplex virus type 2 is linked to NK cell mobilization. J Virol 2007; 81:3704-13. [PMID: 17267483 PMCID: PMC1866094 DOI: 10.1128/jvi.02626-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 01/23/2007] [Indexed: 11/20/2022] Open
Abstract
Following genital herpes simplex virus type 2 (HSV-2) exposure, NK cells and T cells are mobilized to sites of infection to control viral replication and spread. The present investigation sought to determine the role of the chemokine receptor CCR5 in this process. Mice deficient in CCR5 (CCR5-/-) displayed a significant reduction in cumulative survival following infection in comparison to wild-type, HSV-2-infected controls. Associated with decreased resistance to viral infection, CCR5-/- mice yielded significantly more virus and expressed higher levels of tumor necrosis factor alpha, CXCL1, CCL2, CCL3, and CCL5 in the vagina, spinal cord, and/or brain stem than did wild-type mice. Whereas there was no difference in absolute number of leukocytes (CD45high), CD4 T cells, or CD8 T cells residing in the draining lymph nodes, spleen, spinal cord, or brain stem comparing HSV-2-infected wild-type to CCR5-/- mice prior to or after infection, there were significantly more NK cells (NK1.1+ CD3-) residing in the brain stem and spleen of infected wild-type mice. Functionally, NK activity from cells isolated from the brain stem of HSV-2-infected wild-type mice was greater than that from HSV-2-infected CCR5-/- mice. In addition, antibody-mediated depletion of NK cells resulted in an increase in HSV-2 levels in the vaginal, spinal cord, and brain stem tissue of wild-type but not CCR5-/- mice. Collectively, the absence of CCR5 expression significantly impacts the ability of the host to control genital HSV-2 infection, inflammation, and spread associated with a specific reduction in NK cell expansion, infiltration, and activity in the nervous system.
Collapse
Affiliation(s)
- Manoj Thapa
- Department of Microbiology, DMEI #415, The University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
27
|
Duerst RJ, Morrison LA. Herpes simplex virus type 2-mediated disease is reduced in mice lacking RNase L. Virology 2006; 360:322-8. [PMID: 17157346 PMCID: PMC1876699 DOI: 10.1016/j.virol.2006.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/02/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
RNase L helps mediate the antiviral state induced by type I interferons (IFNalphabeta). Although herpes simplex virus (HSV) encodes inhibitors of the IFNalphabeta-induced antiviral response, the IFNalphabeta system serves the body as a first line of defense against HSV. We investigated whether RNase L limits HSV-2 replication and virulence. RNaseL(-/-) and wild-type C57BL/6 mice were infected intravaginally with HSV-2 strain 333. Although initial replication in the genital epithelium was similar, mice lacking RNase L developed less severe genital and neurologic disease than wild-type mice, survived longer, and contained lower viral titers in the nervous system. CD4(+) T cell infiltration into the genital tract and spinal cord of RNase L(-/-) mice was reduced, suggesting that a restricted inflammatory response may account for reduction in disease. Thus, RNase L does not play a significant role in control of HSV-2 infection in vivo; instead, RNase L may regulate aspects of the inflammatory response that contribute to disease.
Collapse
Affiliation(s)
- Rebecca J Duerst
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA.
| | | |
Collapse
|
28
|
Komori HK, Meehan TF, Havran WL. Epithelial and mucosal gamma delta T cells. Curr Opin Immunol 2006; 18:534-8. [PMID: 16837181 DOI: 10.1016/j.coi.2006.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 06/28/2006] [Indexed: 01/03/2023]
Abstract
Although they constitute a small part of the circulating lymphocyte population, gammadelta T cells are found in high abundance on mucosal and epithelial surfaces. These gammadelta T cells are activated in response to stress to the surrounding tissue and perform a number of functions depending upon the location and type of stress that has occurred. Roles elucidated recently for gammadelta T cells include modulation of epithelial homeostasis through insulin-like growth factor-1 and keratinocyte growth factor, lysis of cytomegalovirus-infected cells, and recruitment of inflammatory cells to sites of tissue damage. Recent advances have provided an understanding of the development of mucosal and skin gammadelta T cells and their roles in restoring and maintaining tissue integrity.
Collapse
Affiliation(s)
- H Kiyomi Komori
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
29
|
Braun RP, Payne LG, Dong L. Characterization of the IFN-gamma T-cell responses to immediate early antigens in humans with genital herpes. Virol J 2006; 3:54. [PMID: 16822314 PMCID: PMC1534022 DOI: 10.1186/1743-422x-3-54] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 07/05/2006] [Indexed: 11/10/2022] Open
Abstract
Background The IFN-γ ELISPOT assay has been used to examine the T-cell repertoire for many disease states in humans but, as yet, not genital herpes. Using overlapping synthetic peptide libraries, an IFN-γ ELISPOT assay was established that could measure CD4 and CD8 T-cell responses to HSV-2 antigens in patients with genital herpes. Results In unexpanded T-cells isolated from peripheral blood, CD4 responses were readily measured against four immediate early antigens (ICP0, ICP4, ICP22 and ICP27), VP22 and gD. The CD4 responses were characterized by a low number of positive cells which produced large ELISPOTs. CD4 responses had a broad specificity and within individual patients several of the test antigens were recognized. In contrast, CD8 responses were found only in approximately 50% of patients and were typically specific to a single antigen. When disease status and immune responses were compared, an enhanced CD4 response to ICP4 in patients with a low recurrence rate was found. The ICP4 response was striking in three HSV-1 single positive genital herpes patients. Conclusion The survey of T-cell responses is an important step to understand the host cellular immune response in individuals with genital herpes. The assay described here has the capability of measuring CD4 and CD8 T-cell responses that may be used to correlate disease status with specific immune responses. In an evaluation of 18 subjects a trend of positive responses to an immediate early protein, ICP4, was found in individuals that had a low rate of disease recurrence.
Collapse
Affiliation(s)
- Ralph P Braun
- Wyeth Vaccine Research, 401 North Middletown Rd. Pearl River NY, 109654, USA
- PowderJect Vaccines Incorporated, 8551 Research Way Boulevard, Middleton, Wisconsin 53562, USA
| | - Lendon G Payne
- Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- PowderJect Vaccines Incorporated, 8551 Research Way Boulevard, Middleton, Wisconsin 53562, USA
| | - Lichun Dong
- University of Washington, Dept. of Medicine, 300 9th Ave, Seattle, WA 98104, USA
- PowderJect Vaccines Incorporated, 8551 Research Way Boulevard, Middleton, Wisconsin 53562, USA
| |
Collapse
|
30
|
Dobbs ME, Strasser JE, Chu CF, Chalk C, Milligan GN. Clearance of herpes simplex virus type 2 by CD8+ T cells requires gamma interferon and either perforin- or Fas-mediated cytolytic mechanisms. J Virol 2006; 79:14546-54. [PMID: 16282454 PMCID: PMC1287581 DOI: 10.1128/jvi.79.23.14546-14554.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The T-cell-mediated resolution of herpes simplex virus type 2 (HSV-2) genital infections is not fully understood. In these studies, the mechanisms by which CD8+ T cells clear virus from the genital epithelium were examined. Ovalbumin (OVA)-specific CD8+ T cells from OT-I transgenic mice cleared a thymidine kinase-deficient, ovalbumin-expressing HSV-2 virus (HSV-2 tk- OVA) from the genital epithelium of recipient mice, and clearance was abrogated by in vivo neutralization of gamma interferon (IFN-gamma). Further, CD8+ OT-I T cells deficient in IFN-gamma were unable to clear HSV-2 tk- OVA from the vaginal epithelium. The requirement for cytolytic mechanisms in HSV-2 tk- OVA clearance was tested in radiation chimeras by adoptive transfer of wild-type or perforin-deficient OT-I T cells to irradiated Fas-defective or wild-type recipients. Although a dramatic decrease in viral load was observed early after challenge with HSV-2 tk- OVA, full resolution of the infection was not achieved in recipients lacking both perforin- and Fas-mediated cytolytic pathways. These results suggest that IFN-gamma was responsible for an early rapid decrease in HSV-2 virus titer. However, either perforin- or Fas-mediated cytolytic mechanisms were required to achieve complete clearance of HSV-2 from the genital epithelium.
Collapse
Affiliation(s)
- Melanie E Dobbs
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
31
|
Gupta S, Janani R, Bin Q, Luciw P, Greer C, Perri S, Legg H, Donnelly J, Barnett S, O'Hagan D, Polo JM, Vajdy M. Characterization of human immunodeficiency virus Gag-specific gamma interferon-expressing cells following protective mucosal immunization with alphavirus replicon particles. J Virol 2005; 79:7135-45. [PMID: 15890953 PMCID: PMC1112144 DOI: 10.1128/jvi.79.11.7135-7145.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A safe, replication-defective viral vector that can induce mucosal and systemic immune responses and confer protection against many infectious pathogens, such as human immunodeficiency virus type 1 (HIV-1), may be an ideal vaccine platform. Accordingly, we have generated and tested alphavirus replicon particles encoding HIV-1 Gag from Sindbis virus (SIN-Gag) and Venezuelan equine encephalitis virus (VEE-Gag), as well as chimeras between the two (VEE/SIN-Gag). Following intramuscular (i.m.), intranasal (i.n.), or intravaginal (IVAG) immunization with VEE/SIN-Gag and an IVAG challenge with vaccinia virus encoding HIV Gag (VV-Gag), a larger number of Gag-specific CD8+ intracellular gamma interferon-expressing cells (iIFNEC) were detected in iliac lymph nodes (ILN), which drain the vaginal/uterine mucosa (VUM), than were observed after immunizations with SIN-Gag. Moreover, a single i.n. or IVAG immunization with VEE/SIN-Gag induced a larger number of cells expressing HIV Gag in ILN, and immunizations with VEE/SIN-Gag through any route induced better protective responses than immunizations with SIN-Gag. In VUM, a larger percentage of iIFNEC expressed alpha4beta7 or alpha(Ebeta)7 integrin than expressed CD62L integrin. However, in spleens (SP), a larger percentage of iIFNEC expressed alpha4beta7 or CD62L than expressed alpha(Ebeta)7. Moreover, a larger percentage of iIFNEC expressed the chemokine receptor CCR5 in VUM and ILN than in SP. These results demonstrate a better induction of cellular and protective responses following immunizations with VEE/SIN-Gag than that following immunizations with SIN-Gag and also indicate a differential expression of homing and chemokine receptors on iIFNEC in mucosal effector and inductive sites versus systemic lymphoid tissues.
Collapse
Affiliation(s)
- Soumi Gupta
- Department of Pathology and Center for Comparative Medicine, University of California, Davis, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Andrew EM, Carding SR. Murine γδ T cells in infections: beneficial or deleterious? Microbes Infect 2005; 7:529-36. [PMID: 15777712 DOI: 10.1016/j.micinf.2004.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 12/14/2004] [Indexed: 11/19/2022]
Abstract
Although the importance of gammadelta T cells in pathogen-induced immune responses is becoming increasingly apparent, it is not clear that their involvement is always of benefit to the host. Here we review evidence for the protective and damaging roles of gammadelta T cells in infection and discuss how these disparate findings might be resolved by considering the nature and properties of the pathogen, the sites of infection and conditions under which gammadelta T cell responses are initiated, and the involvement of different subsets of gammadelta T cells.
Collapse
Affiliation(s)
- Elizabeth M Andrew
- School of Biochemistry and Microbiology, The University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|