1
|
Kohler V, Kohler A, Berglund LL, Hao X, Gersing S, Imhof A, Nyström T, Höög JL, Ott M, Andréasson C, Büttner S. Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nat Commun 2024; 15:315. [PMID: 38182580 PMCID: PMC10770042 DOI: 10.1038/s41467-023-44538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Andreas Kohler
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
2
|
Xu X, Zhang L, Yang T, Qiu Z, Bai L, Luo Y. Targeting caseinolytic protease P and its AAA1 chaperone for tuberculosis treatment. Drug Discov Today 2023; 28:103508. [PMID: 36706830 DOI: 10.1016/j.drudis.2023.103508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Caseinolytic protease P with its AAA1 chaperone, known as Mycobacterium tuberculosis (Mtb)ClpP1P2 proteolytic machinery, maintains protein homeostasis in Mtb cells and is essential for bacterial survival. It is regarded as an important biological target with the potential to address the increasingly serious issue of multidrug-resistant (MDR) TB. Over the past 10 years, many MtbClpP1P2-targeted modulators have been identified and characterized, some of which have shown potent anti-TB activity. In this review, we describe current understanding of the substrates, structure and function of MtbClpP1P2, classify the modulators of this important protein machine into several categories based on their binding subunits or pockets, and discuss their binding details; Such information provides insights for use in candidate drug research and development of TB treatments by targeting MtbClpP1P2 proteolytic machinery.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lang Bai
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Rizo AN, Lin J, Gates SN, Tse E, Bart SM, Castellano LM, DiMaio F, Shorter J, Southworth DR. Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase. Nat Commun 2019; 10:2393. [PMID: 31160557 PMCID: PMC6546751 DOI: 10.1038/s41467-019-10150-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/24/2019] [Indexed: 01/04/2023] Open
Abstract
Bacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. Here we report cryo-EM structures of a hyperactive ClpB variant bound to the model substrate, casein in the presence of slowly hydrolysable ATPγS, which reveal the translocation mechanism. Distinct substrate-gripping interactions are identified for NBD1 and NBD2 pore loops. A trimer of N-terminal domains define a channel entrance that binds the polypeptide substrate adjacent to the topmost NBD1 contact. NBD conformations at the seam interface reveal how ATP hydrolysis-driven substrate disengagement and re-binding are precisely tuned to drive a directional, stepwise translocation cycle.
Collapse
Affiliation(s)
- Alexandrea N Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephanie N Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Stephen M Bart
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
4
|
Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat Commun 2017. [PMID: 28621333 PMCID: PMC5481754 DOI: 10.1038/ncomms15853] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is an intracellular pathogen that causes the fatal zoonotic disease tularaemia. Critical for its pathogenesis is the ability of the phagocytosed bacteria to escape into the cell cytosol. For this, the bacteria use a non-canonical type VI secretion system (T6SS) encoded on the Francisella pathogenicity island (FPI). Here we show that in F. novicida T6SS assembly initiates at the bacterial poles both in vitro and within infected macrophages. T6SS dynamics and function depends on the general purpose ClpB unfoldase, which specifically colocalizes with contracted sheaths and is required for their disassembly. T6SS assembly depends on iglF, iglG, iglI and iglJ, whereas pdpC, pdpD, pdpE and anmK are dispensable. Importantly, strains lacking pdpC and pdpD are unable to escape from phagosome, activate AIM2 inflammasome or cause disease in mice. This suggests that PdpC and PdpD are T6SS effectors involved in phagosome rupture. The pathogenicity of Francisella species largely depends on their escape from phagosomes in macrophages, mediated by a type VI secretion system (T6SS). Here, the authors show dynamics of T6SS assembly and disassembly and identify the genes essential for phagosome escape and pathogenicity in mice.
Collapse
|
5
|
Cui X, Wei Y, Xie XL, Chen LN, Zhang SH. Mitochondrial and peroxisomal Lon proteases play opposing roles in reproduction and growth but co-function in the normal development, stress resistance and longevity of Thermomyces lanuginosus. Fungal Genet Biol 2017; 103:42-54. [DOI: 10.1016/j.fgb.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 01/08/2023]
|
6
|
Bahat A, Perlberg S, Melamed-Book N, Isaac S, Eden A, Lauria I, Langer T, Orly J. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR). Mol Cell Endocrinol 2015; 408:62-72. [PMID: 25724481 DOI: 10.1016/j.mce.2015.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases.
Collapse
Affiliation(s)
- Assaf Bahat
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shira Perlberg
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Naomi Melamed-Book
- Bio-Imaging Unit at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sara Isaac
- Department of Cell & Developmental Biology at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Amir Eden
- Department of Cell & Developmental Biology at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ines Lauria
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Thomas Langer
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Joseph Orly
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
7
|
Park SS, Kwon HY, Tran TDH, Choi MH, Jung SH, Lee S, Briles DE, Rhee DK. ClpL is a chaperone without auxiliary factors. FEBS J 2015; 282:1352-67. [PMID: 25662392 DOI: 10.1111/febs.13228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 12/13/2022]
Abstract
Caseinolytic protease L (ClpL) is a member of the heat shock protein (Hsp) 100 family, which is found mostly in Gram-positive bacteria. Here, ClpL, a major HSP in Streptococcus pneumoniae (pneumococcus), was biochemically characterized in vitro. Recombinant ClpL shows nucleotide hydrolase, refolding, holdase and disaggregation activity using either Mg(2+) or Mn(2+) and does not require the DnaK system for chaperone activity. ClpL exhibits two features distinct from other HSP100 family proteins: (a) Mn(2+) enhances hydrolase activity, as well as chaperone activity; and (b) NTPase activity. ClpL forms a hexamer in the presence of ADP, ATP and ATP-γ-S. Mutational analysis using double-mutant proteins mutated at the two Walker A motifs (K127A/T128A and K458A/T459A) revealed that both nucleotide-binding domains are involved in chaperone activity, ATP hydrolase activity and hexamerization. Overall, pneumococcal ClpL is a unique Mn(2+) -dependent Hsp100 family member that has chaperone activity without other co-chaperones.
Collapse
Affiliation(s)
- Sang-Sang Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sousa R. Structural mechanisms of chaperone mediated protein disaggregation. Front Mol Biosci 2014; 1:12. [PMID: 25988153 PMCID: PMC4428496 DOI: 10.3389/fmolb.2014.00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/27/2014] [Indexed: 11/13/2022] Open
Abstract
The ClpB/Hsp104 and Hsp70 classes of molecular chaperones use ATP hydrolysis to dissociate protein aggregates and complexes, and to move proteins through membranes. ClpB/Hsp104 are members of the AAA+ family of proteins which form ring-shaped hexamers. Loops lining the pore in the ring engage substrate proteins as extended polypeptides. Interdomain rotations and conformational changes in these loops coupled to ATP hydrolysis unfold and pull proteins through the pore. This provides a mechanism that progressively disrupts local secondary and tertiary structure in substrates, allowing these chaperones to dissociate stable aggregates such as β-sheet rich prions or coiled coil SNARE complexes. While the ClpB/Hsp104 mechanism appears to embody a true power-stroke in which an ATP powered conformational change in one protein is directly coupled to movement or structural change in another, the mechanism of force generation by Hsp70s is distinct and less well understood. Both active power-stroke and purely passive mechanisms in which Hsp70 captures spontaneous fluctuations in a substrate have been proposed, while a third proposed mechanism-entropic pulling-may be able to generate forces larger than seen in ATP-driven molecular motors without the conformational coupling required for a power-stroke. The disaggregase activity of these chaperones is required for thermotolerance, but unrestrained protein complex/aggregate dissociation is potentially detrimental. Disaggregating chaperones are strongly auto-repressed, and are regulated by co-chaperones which recruit them to protein substrates and activate the disaggregases via mechanisms involving either sequential transfer of substrate from one chaperone to another and/or simultaneous interaction of substrate with multiple chaperones. By effectively subjecting substrates to multiple levels of selection by multiple chaperones, this may insure that these potent disaggregases are only activated in the appropriate context.
Collapse
Affiliation(s)
- Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
9
|
Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates. Proc Natl Acad Sci U S A 2014; 111:E3853-9. [PMID: 25187555 DOI: 10.1073/pnas.1414933111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ClpS adaptor collaborates with the AAA+ ClpAP protease to recognize and degrade N-degron substrates. ClpS binds the substrate N-degron and assembles into a high-affinity ClpS-substrate-ClpA complex, but how the N-degron is transferred from ClpS to the axial pore of the AAA+ ClpA unfoldase to initiate degradation is not known. Here we demonstrate that the unstructured N-terminal extension (NTE) of ClpS enters the ClpA processing pore in the active ternary complex. We establish that ClpS promotes delivery only in cis, as demonstrated by mixing ClpS variants with distinct substrate specificity and either active or inactive NTE truncations. Importantly, we find that ClpA engagement of the ClpS NTE is crucial for ClpS-mediated substrate delivery by using ClpS variants carrying "blocking" elements that prevent the NTE from entering the pore. These results support models in which enzymatic activity of ClpA actively remodels ClpS to promote substrate transfer, and highlight how ATPase/motor activities of AAA+ proteases can be critical for substrate selection as well as protein degradation.
Collapse
|
10
|
Vasudevan D, Rao SPS, Noble CG. Structural basis of mycobacterial inhibition by cyclomarin A. J Biol Chem 2013; 288:30883-91. [PMID: 24022489 DOI: 10.1074/jbc.m113.493767] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cyclomarin A (CymA) was identified as a mycobactericidal compound targeting ClpC1. However, the target was identified based on pulldown experiments and in vitro binding data, without direct functional evidence in mycobacteria. Here we show that CymA specifically binds to the N-terminal domain of ClpC1. In addition we have determined the co-crystal structure of CymA bound to the N-terminal domain of ClpC1 to high resolution. Based on the structure of the complex several mutations were engineered into ClpC1, which showed reduced CymA binding in vitro. The ClpC1 mutants were overexpressed in mycobacteria and two showed resistance to CymA, providing the first direct evidence that ClpC1 is the target of CymA. Phe(80) is important in vitro and in cells for the ClpC1-CymA interaction and this explains why other bacteria are resistant to CymA. A model for how CymA binding to the N-terminal domain of ClpC1 leads to uncontrolled proteolysis by the associated ClpP protease machinery is discussed.
Collapse
Affiliation(s)
- Dileep Vasudevan
- From the Novartis Institute for Tropical Diseases, 05-01 Chromos, Singapore 138670
| | | | | |
Collapse
|
11
|
Clarke AK. The chloroplast ATP-dependent Clp protease in vascular plants - new dimensions and future challenges. PHYSIOLOGIA PLANTARUM 2012; 145:235-44. [PMID: 22085372 DOI: 10.1111/j.1399-3054.2011.01541.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ATP-dependent Clp protease is by far the most intricate protease in chloroplasts of vascular plants. Structurally, it is particularly complex with a proteolytic core complex containing 11 distinct subunits along with three potential chaperone partners. The Clp protease is also essential for chloroplast development and overall plant viability. Over the past decade, many of the important characteristics of this crucial protease have been revealed in the model plant species Arabidopsis thaliana. Despite this, challenges still remain in fully resolving certain key features, in particular, how the assembly of this multisubunit protease is regulated, the full range of native protein substrates and how they are targeted for degradation and how this complicated enzyme might have developed from simpler bacterial forms. This article focuses upon the recent advances in revealing the details underlying these important features. It also take the opportunity to speculate upon many of these findings in the hope of stimulating further investigation.
Collapse
Affiliation(s)
- Adrian K Clarke
- Department of Plant and Environmental Sciences, Gothenburg University, 40530 Gothenburg, Sweden.
| |
Collapse
|
12
|
Raju RM, Unnikrishnan M, Rubin DHF, Krishnamoorthy V, Kandror O, Akopian TN, Goldberg AL, Rubin EJ. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog 2012; 8:e1002511. [PMID: 22359499 PMCID: PMC3280978 DOI: 10.1371/journal.ppat.1002511] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 12/14/2011] [Indexed: 11/24/2022] Open
Abstract
In most bacteria, Clp protease is a conserved, non-essential serine protease that regulates the response to various stresses. Mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis, unlike most well studied prokaryotes, encode two ClpP homologs, ClpP1 and ClpP2, in a single operon. Here we demonstrate that the two proteins form a mixed complex (ClpP1P2) in mycobacteria. Using two different approaches, promoter replacement, and a novel system of inducible protein degradation, leading to inducible expression of clpP1 and clpP2, we demonstrate that both genes are essential for growth and that a marked depletion of either one results in rapid bacterial death. ClpP1P2 protease appears important in degrading missense and prematurely terminated peptides, as partial depletion of ClpP2 reduced growth specifically in the presence of antibiotics that increase errors in translation. We further show that the ClpP1P2 protease is required for the degradation of proteins tagged with the SsrA motif, a tag co-translationally added to incomplete protein products. Using active site mutants of ClpP1 and ClpP2, we show that the activity of each subunit is required for proteolysis, for normal growth of Mtb in vitro and during infection of mice. These observations suggest that the Clp protease plays an unusual and essential role in Mtb and may serve as an ideal target for antimycobacterial therapy. Due to the significant and rapid rise in multidrug resistant Mycobacterium tuberculosis (Mtb), there is an urgent need to validate novel drug targets for the treatment of tuberculosis. Here, we show that Clp protease is an ideal potential target. Mtb encodes two ClpP genes, ClpP1 and ClpP2, which associate together to form a single proteolytic complex, referred to as ClpP1P2. Both proteins are required for growth in vitro and in a mouse model of infection. Depletion of either protein results in rapid death of the bacteria. Interestingly, this is rare among bacteria, most of which have only one ClpP gene that is dispensable for normal growth. We also show that Clp protease plays an important quality control role by clearing abnormally produced proteins. As known antimycobacterial therapeutics increase errors in protein synthesis, inhibitors of ClpP1P2 protease in Mtb may prove synergistic with already existing agents.
Collapse
Affiliation(s)
- Ravikiran M. Raju
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Meera Unnikrishnan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Daniel H. F. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Vidhya Krishnamoorthy
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Olga Kandror
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tatos N. Akopian
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alfred L. Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Ugarte N, Petropoulos I, Friguet B. Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 2010; 13:539-49. [PMID: 19958171 DOI: 10.1089/ars.2009.2998] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteins are main targets for oxidative damage that occurs during aging and in oxidative stress situations. Since the mitochondria is a major source of reactive oxygen species, mitochondrial proteins are especially exposed to oxidative modification, and elimination of oxidized proteins is crucial for maintaining the integrity of this organelle. Hence, enzymatic reversal of protein oxidation and protein degradation is critical for protein homeostasis while protein maintenance failure has been implicated in the age-related accumulation of oxidized proteins. Within the mitochondrial matrix, the ATP-stimulated mitochondrial Lon protease is believed to play an important role in the degradation of oxidized protein, and age-associated impairment of Lon-like protease activity has been suggested to contribute to oxidized protein buildup in the mitochondria. Oxidized protein repair is limited to certain oxidation products of the sulfur-containing amino acids cysteine and methionine. Oxidized protein repair systems, thioredoxin/thioredoxin reductase or glutaredoxin/glutathione/glutathione reductase that catalytically reduce disulfide bridges or sulfenic acids, and methionine sulfoxide reductase that reverses methionine sulfoxide back to methionine within proteins, are present in the mitochondrial matrix. Thus, the role of the mitochondrial Lon protease and the oxidized protein repair system methionine sulfoxide reductase is further addressed in the context of oxidative stress and aging.
Collapse
Affiliation(s)
- Nicolas Ugarte
- Laboratoire de Biologie Cellulaire du Vieillissement, Université Pierre et Marie Paris, France
| | | | | |
Collapse
|
14
|
Jaru-Ampornpan P, Shen K, Lam VQ, Ali M, Doniach S, Jia TZ, Shan SO. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit. Nat Struct Mol Biol 2010; 17:696-702. [PMID: 20424608 PMCID: PMC2917185 DOI: 10.1038/nsmb.1836] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/20/2010] [Indexed: 02/06/2023]
Abstract
Membrane proteins impose enormous challenges to cellular protein homeostasis during their post-translational targeting, and they require chaperones to keep them soluble and translocation competent. Here we show that a novel targeting factor in the chloroplast signal recognition particle (cpSRP), cpSRP43, is a highly specific molecular chaperone that efficiently reverses the aggregation of its substrate proteins. In contrast to 'ATPases associated with various cellular activities' (AAA(+)) chaperones, cpSRP43 uses specific binding interactions with its substrate to mediate its 'disaggregase' activity. This disaggregase capability can allow targeting machineries to more effectively capture their protein substrates and emphasizes a close connection between protein folding and trafficking processes. Moreover, cpSRP43 provides the first example to our knowledge of an ATP-independent disaggregase and shows that efficient reversal of protein aggregation can be attained by specific binding interactions between a chaperone and its substrate.
Collapse
Affiliation(s)
- Peera Jaru-Ampornpan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Effantin G, Maurizi MR, Steven AC. Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase. J Biol Chem 2010; 285:14834-40. [PMID: 20236930 PMCID: PMC2863180 DOI: 10.1074/jbc.m109.090498] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/06/2010] [Indexed: 11/06/2022] Open
Abstract
ClpP is a serine protease whose active sites are sequestered in a cavity enclosed between two heptameric rings of subunits. The ability of ClpP to process folded protein substrates depends on its being partnered by an AAA+ ATPase/unfoldase, ClpA or ClpX. In active complexes, substrates are unfolded and fed along an axial channel to the degradation chamber inside ClpP. We have used cryoelectron microscopy at approximately 11-A resolution to investigate the three-dimensional structure of ClpP complexed with either one or two end-mounted ClpA hexamers. In the absence of ClpA, the apical region of ClpP is sealed; however, it opens on ClpA binding, creating an access channel. This region is occupied by the N-terminal loops (residues 1-17) of ClpP, which tend to be poorly visible in crystal structures, indicative of conformational variability. Nevertheless, we were able to model the closed-to-open transition that accompanies ClpA binding in terms of movements of these loops; in particular, "up" conformations of the loops correlate with the open state. The main part of ClpP, the barrel formed by 14 copies of residues 18-193, is essentially unchanged by the interaction with ClpA. Using difference mapping, we localized the binding site for ClpA to a peripheral pocket between adjacent ClpP subunits. Based on these observations, we propose that access to the ClpP degradation chamber is controlled allosterically by hinged movements of its N-terminal loops, which the symmetry-mismatched binding of ClpA suffices to induce.
Collapse
Affiliation(s)
| | - Michael R. Maurizi
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
16
|
Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 2010; 12:503-35. [PMID: 19650712 PMCID: PMC2861545 DOI: 10.1089/ars.2009.2598] [Citation(s) in RCA: 363] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 07/22/2009] [Accepted: 08/02/2009] [Indexed: 12/19/2022]
Abstract
It is now generally accepted that aging and eventual death of multicellular organisms is to a large extent related to macromolecular damage by mitochondrially produced reactive oxygen species, mostly affecting long-lived postmitotic cells, such as neurons and cardiac myocytes. These cells are rarely or not at all replaced during life and can be as old as the whole organism. The inherent inability of autophagy and other cellular-degradation mechanisms to remove damaged structures completely results in the progressive accumulation of garbage, including cytosolic protein aggregates, defective mitochondria, and lipofuscin, an intralysosomal indigestible material. In this review, we stress the importance of crosstalk between mitochondria and lysosomes in aging. The slow accumulation of lipofuscin within lysosomes seems to depress autophagy, resulting in reduced turnover of effective mitochondria. The latter not only are functionally deficient but also produce increased amounts of reactive oxygen species, prompting lipofuscinogenesis. Moreover, defective and enlarged mitochondria are poorly autophagocytosed and constitute a growing population of badly functioning organelles that do not fuse and exchange their contents with normal mitochondria. The progress of these changes seems to result in enhanced oxidative stress, decreased ATP production, and collapse of the cellular catabolic machinery, which eventually is incompatible with survival.
Collapse
Affiliation(s)
- Alexei Terman
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Koodathingal P, Jaffe NE, Kraut DA, Prakash S, Fishbain S, Herman C, Matouschek A. ATP-dependent proteases differ substantially in their ability to unfold globular proteins. J Biol Chem 2009; 284:18674-84. [PMID: 19383601 DOI: 10.1074/jbc.m900783200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-dependent proteases control the concentrations of hundreds of regulatory proteins and remove damaged or misfolded proteins from cells. They select their substrates primarily by recognizing sequence motifs or covalent modifications. Once a substrate is bound to the protease, it has to be unfolded and translocated into the proteolytic chamber to be degraded. Some proteases appear to be promiscuous, degrading substrates with poorly defined targeting signals, which suggests that selectivity may be controlled at additional levels. Here we compare the abilities of representatives from all classes of ATP-dependent proteases to unfold a model substrate protein and find that the unfolding abilities range over more than 2 orders of magnitude. We propose that these differences in unfolding abilities contribute to the fates of substrate proteins and may act as a further layer of selectivity during protein destruction.
Collapse
Affiliation(s)
- Prakash Koodathingal
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Gangwar D, Kalita MK, Gupta D, Chauhan VS, Mohmmed A. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation. Malar J 2009; 8:69. [PMID: 19374766 PMCID: PMC2674469 DOI: 10.1186/1475-2875-8-69] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/18/2009] [Indexed: 11/21/2022] Open
Abstract
Background The P-loop NTPases constitute one of the largest groups of globular protein domains that play highly diverse functional roles in most of the organisms. Even with the availability of nearly 300 different Hidden Markov Models representing the P-loop NTPase superfamily, not many P-loop NTPases are known in Plasmodium falciparum. A number of characteristic attributes of the genome have resulted into the lack of knowledge about this functionally diverse, but important class of proteins. Method In the study, protein sequences with characteristic motifs of NTPase domain (Walker A and Walker B) are computationally extracted from the P. falciparum database. A detailed secondary structure analysis, functional classification, phylogenetic and orthology studies of the NTPase domain of repertoire of 97 P. falciparum P-loop NTPases is carried out. Results Based upon distinct sequence features and secondary structure profile of the P-loop domain of obtained sequences, a cladistic classification is also conceded: nucleotide kinases and GTPases, ABC and SMC family, SF1/2 helicases, AAA+ and AAA protein families. Attempts are made to identify any ortholog(s) for each of these proteins in other Plasmodium sp. as well as its vertebrate host, Homo sapiens. A number of P. falciparum P-loop NTPases that have no homologue in the host, as well as those annotated as hypothetical proteins and lack any characteristic functional domain are identified. Conclusion The study suggests a strong correlation between sequence and secondary structure profile of P-loop domains and functional roles of these proteins and thus provides an opportunity to speculate the role of many hypothetical proteins. The study provides a methodical framework for the characterization of biologically diverse NTPases in the P. falciparum genome. The efforts made in the analysis are first of its kind; and the results augment to explore the functional role of many of these proteins from the parasite that could provide leads to identify novel drug targets against malaria.
Collapse
Affiliation(s)
- Deepti Gangwar
- Malaria Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| | | | | | | | | |
Collapse
|
19
|
Kojetin DJ, McLaughlin PD, Thompson RJ, Dubnau D, Prepiak P, Rance M, Cavanagh J. Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions. J Mol Biol 2009; 387:639-52. [PMID: 19361434 DOI: 10.1016/j.jmb.2009.01.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
The AAA(+) (ATPases associated with a variety of cellular activities) superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility and conformational exchange on the microsecond-to-millisecond timescale. The electrostatic surface of N-ClpCR differs substantially from the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC.
Collapse
Affiliation(s)
- Douglas J Kojetin
- Department of Molecular Genetics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Rotanova TV, Melnikov EE. The ATP-dependent proteases and proteolytic complexes involved into intracellular protein degradation. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2008. [DOI: 10.1134/s1990750808030049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Friguet B, Bulteau AL, Petropoulos I. Mitochondrial protein quality control: Implications in ageing. Biotechnol J 2008; 3:757-64. [DOI: 10.1002/biot.200800041] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem Soc Trans 2008; 36:120-5. [PMID: 18208398 DOI: 10.1042/bst0360120] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A protein quality control system, consisting of molecular chaperones and proteases, controls the folding status of proteins and mediates the refolding or degradation of misfolded proteins. Ring-forming AAA+ (ATPase associated with various cellular activities) proteins play crucial roles in both processes by co-operating with either peptidases or chaperone systems. Peptidase-associated AAA+ proteins bind substrates and thread them through their axial channel into the attached proteolytic chambers for degradation. In contrast, the AAA+ protein ClpB evolved independently from an interacting peptidase and co-operates with a cognate Hsp70 (heat-shock protein 70) chaperone system to solubilize and refold aggregated proteins. The activity of this bi-chaperone system is crucial for the survival of bacteria, yeast and plants during severe stress conditions. Hsp70 acts at initial stages of the disaggregation process, enabling ClpB to extract single unfolded polypeptides from the aggregate via a threading activity. Although both classes of AAA+ proteins share a common threading activity, it is apparent that their divergent evolution translates into specific mechanisms, reflecting adaptations to their respective functions. The ClpB-specific M-domain (middle domain) represents such an extra feature that verifies ClpB as the central disaggregase in vivo. M-domains act as regulatory devices to control both ClpB ATPase activity and the Hsp70-dependent binding of aggregated proteins to the ClpB pore, thereby coupling the Hsp70 chaperone activity with the ClpB threading motor to ensure efficient protein disaggregation.
Collapse
|
23
|
Hou JY, Sauer RT, Baker TA. Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP. Nat Struct Mol Biol 2008; 15:288-94. [PMID: 18297088 DOI: 10.1038/nsmb.1392] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 01/22/2008] [Indexed: 11/09/2022]
Abstract
Adaptor proteins modify substrate recognition by AAA+ ATPases. We examined how the adaptor ClpS regulates substrate choice by the Escherichia coli protease ClpAP. Binding of six ClpS molecules to a ClpA hexamer enhanced N-end-rule substrate degradation and inhibited ssrA-tagged protein proteolysis. Substoichiometric ClpS binding allowed intermediate degradation of both substrate types, revealing that adaptor stoichiometry influences substrate choice. ClpS controls substrate selection using distinct mechanisms. The N-terminal segment is essential for delivering N-end-rule substrates but dispensable for ssrA-protein inhibition. We tested existing models for ClpS action and found that ClpS does not block recognition of ssrA-tagged substrates by steric occlusion and that adaptor-mediated tethering of N-end-rule substrates to ClpAP was insufficient to explain facilitated delivery. We propose that ClpS functions, at least in part, as an allosteric effector of ClpAP, broadening our understanding of how AAA+ adaptors control substrate selection.
Collapse
Affiliation(s)
- Jennifer Y Hou
- Department of Biology, 68-523, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
24
|
Kojetin DJ, McLaughlin PD, Thompson RJ, Venters RA, Rance M, Cavanagh J. NMR assignment of the N-terminal repeat domain of Bacillus subtilis ClpC. BIOMOLECULAR NMR ASSIGNMENTS 2007; 1:163-5. [PMID: 19636855 DOI: 10.1007/s12104-007-9046-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/20/2007] [Indexed: 05/28/2023]
Abstract
The HSP100/AAA+ superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. We present here the backbone and side-chain assignments of the N-terminal repeat domain (residues 1-145) of ClpC from Bacillus subtilis.
Collapse
Affiliation(s)
- Douglas J Kojetin
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH, 45267, USA
| | | | | | | | | | | |
Collapse
|
25
|
Larsson JT, Rogstam A, von Wachenfeldt C. YjbH is a novel negative effector of the disulphide stress regulator, Spx, in Bacillus subtilis. Mol Microbiol 2007; 66:669-84. [PMID: 17908206 DOI: 10.1111/j.1365-2958.2007.05949.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the soil bacterium Bacillus subtilis Spx is a key regulator that controls expression, positively or negatively, of several genes in response to certain oxidative stresses that lead to the formation of unwanted disulphide bonds. Here we characterized the yjbH gene and show that it encodes a novel effector of Spx. The yjbH gene is part of the yjbIH operon that encodes a truncated haemoglobin (YjbI) and a predicted 34 kDa cytosolic protein of unknown function (YjbH). Deletion of yjbIH or yjbH has pleiotropic effects and affects growth, sporulation and competence development. Cells lacking yjbIH display a reduced sensitivity to the thiol oxidant diamide and show an apparent down- or upregulation of several transcripts that belong to the Spx regulon. Twenty-two suppressor mutations that bypass the defects conferred by yjbH were isolated. These mutations were identified as six deletions, three nonsense and 11 missense substitutions in the spx gene. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that mutations in yjbIH or yjbH do not affect the level of spx transcription. The combined data from the present work show that strains lacking yjbIH or yjbH overproduce Spx under unperturbed growth. The elevated Spx concentration cannot be attributed to an increased spx expression but is likely to result from control at the post-transcriptional level. YjbH is proposed to affect the cellular concentration of Spx by modulating proteolysis via the ClpXP protease.
Collapse
Affiliation(s)
- Jonas T Larsson
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | | | | |
Collapse
|
26
|
Towards the control of intracellular protein turnover: mitochondrial Lon protease inhibitors versus proteasome inhibitors. Biochimie 2007; 90:260-9. [PMID: 18021745 DOI: 10.1016/j.biochi.2007.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 10/19/2007] [Indexed: 01/21/2023]
Abstract
Cellular protein homeostasis results from the combination of protein biogenesis processes and protein quality control mechanisms, which contribute to the functional state of cells under normal and stress conditions. Proteolysis constitutes the final step by which short-lived, misfolded and damaged intracellular proteins are eliminated. Protein turnover and oxidatively modified protein degradation are mainly achieved by the proteasome in the cytosol and nucleus of eukaryotic cells while several ATP-dependent proteases including the matrix protease Lon take part in the mitochondrial protein degradation. Moreover, Lon protease seems to play a major role in the elimination of oxidatively modified proteins in the mitochondrial matrix. Specific inhibitors are commonly used to assess cellular functions of proteolytic systems as well as to identify their protein substrates. Here, we present and discuss known proteasome and Lon protease inhibitors. To date, very few inhibitors of Lon have been described and no specific inhibitors of this protease are available. The current knowledge on both catalytic mechanisms and inhibitors of these two proteases is first described and attempts to define specific non-peptidic inhibitors of the human Lon protease are presented.
Collapse
|
27
|
Graef M, Seewald G, Langer T. Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space. Mol Cell Biol 2007; 27:2476-85. [PMID: 17261594 PMCID: PMC1899909 DOI: 10.1128/mcb.01721-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The energy-dependent proteolysis of cellular proteins is mediated by conserved proteolytic AAA(+) complexes. Two such machines, the m- and i-AAA proteases, are present in the mitochondrial inner membrane. They exert chaperone-like properties and specifically degrade nonnative membrane proteins. However, molecular mechanisms of substrate engagement by AAA proteases remained elusive. Here, we define initial steps of substrate recognition and identify two distinct substrate binding sites in the i-AAA protease subunit Yme1. Misfolded polypeptides are recognized by conserved helices in proteolytic and AAA domains. Structural modeling reveals a lattice-like arrangement of these helices at the surface of hexameric AAA protease ring complexes. While helices within the AAA domain apparently play a general role for substrate binding, the requirement for binding to surface-exposed helices within the proteolytic domain is determined by the folding and membrane association of substrates. Moreover, an assembly factor of cytochrome c oxidase, Cox20, serves as a substrate-specific cofactor during proteolysis and modulates the initial interaction of nonassembled Cox2 with the protease. Our findings therefore reveal the existence of alternative substrate recognition pathways within AAA proteases and shed new light on molecular mechanisms ensuring the specificity of proteolysis by energy-dependent proteases.
Collapse
Affiliation(s)
- Martin Graef
- Institut für Genetik, Universität zu Köln, Zülpicher Strasse 47, 50674 Köln, Germany
| | | | | |
Collapse
|
28
|
Park EY, Lee BG, Hong SB, Kim HW, Jeon H, Song HK. Structural basis of SspB-tail recognition by the zinc binding domain of ClpX. J Mol Biol 2007; 367:514-26. [PMID: 17258768 DOI: 10.1016/j.jmb.2007.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/02/2007] [Indexed: 11/30/2022]
Abstract
The degradation of ssrA(AANDENYALAA)-tagged proteins in the bacterial cytosol is carried out by the ClpXP protease and is markedly stimulated by the SspB adaptor protein. It has previously been reported that the amino-terminal zinc-binding domain of ClpX (ZBD) is involved in complex formation with the SspB-tail (XB: ClpX-binding motif). In an effort to better understand the recognition of SspB by ClpX and the mechanism of delivery of ssrA-tagged substrates to ClpXP, we have determined the structures of ZBD alone at 1.5, 2.0, and 2.5 A resolution in each different crystal form and also in complex with XB peptide at 1.6 A resolution. The XB peptide forms an antiparallel beta-sheet with two beta-strands of ZBD, and the structure shows a 1:1 stoichiometric complex between ZBD and XB, suggesting that there are two independent SspB-tail-binding sites in ZBD. The high-resolution ZBD:XB complex structure, in combination with biochemical analyses, can account for key determinants in the recognition of the SspB-tail by ClpX and sheds light on the mechanism of delivery of target proteins to the prokaryotic degradation machine.
Collapse
Affiliation(s)
- Eun Young Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
29
|
García-Fruitós E, Arís A, Villaverde A. Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol 2006; 73:289-94. [PMID: 17085715 PMCID: PMC1797118 DOI: 10.1128/aem.01952-06] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial inclusion bodies, while showing intriguing amyloid-like features, such as a beta-sheet-based intermolecular organization, binding to amyloid-tropic dyes, and origin in a sequence-selective deposition process, hold an important amount of native-like secondary structure and significant amounts of functional polypeptides. The aggregation mechanics supporting the occurrence of both misfolded and properly folded protein is controversial. Single polypeptide chains might contain both misfolded stretches driving aggregation and properly folded protein domains that, if embracing the active site, would account for the biological activities displayed by inclusion bodies. Alternatively, soluble, functional polypeptides could be surface adsorbed by interactions weaker than those driving the formation of the intermolecular beta-sheet architecture. To explore whether the fraction of properly folded active protein is a natural component or rather a mere contaminant of these aggregates, we have explored their localization by image analysis of inclusion bodies formed by green fluorescent protein. Since the fluorescence distribution is not homogeneous and the core of inclusion bodies is particularly rich in active protein forms, such protein species cannot be passively trapped components and their occurrence might be linked to the reconstruction dynamics steadily endured in vivo by such bacterial aggregates. Intriguingly, even functional protein species in inclusion bodies are not excluded from the interface with the solvent, probably because of the porous structure of these particular protein aggregates.
Collapse
Affiliation(s)
- Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|
30
|
Szyk A, Maurizi MR. Crystal structure at 1.9Å of E. coli ClpP with a peptide covalently bound at the active site. J Struct Biol 2006; 156:165-74. [PMID: 16682229 DOI: 10.1016/j.jsb.2006.03.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 03/02/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
ClpP, the proteolytic component of the ATP-dependent ClpAP and ClpXP chaperone/protease complexes, has 14 identical subunits organized in two stacked heptameric rings. The active sites are in an interior aqueous chamber accessible through axial channels. We have determined a 1.9 A crystal structure of Escherichia coli ClpP with benzyloxycarbonyl-leucyltyrosine chloromethyl ketone (Z-LY-CMK) bound at each active site. The complex mimics a tetrahedral intermediate during peptide cleavage, with the inhibitor covalently linked to the active site residues, Ser97 and His122. Binding is further stabilized by six hydrogen bonds between backbone atoms of the peptide and ClpP as well as by hydrophobic binding of the phenolic ring of tyrosine in the S1 pocket. The peptide portion of Z-LY-CMK displaces three water molecules in the native enzyme resulting in little change in the conformation of the peptide binding groove. The heptameric rings of ClpP-CMK are slightly more compact than in native ClpP, but overall structural changes were minimal (rmsd approximately 0.5 A). The side chain of Ser97 is rotated approximately 90 degrees in forming the covalent adduct with Z-LY-CMK, indicating that rearrangement of the active site residues to a active configuration occurs upon substrate binding. The N-terminal peptide of ClpP-CMK is stabilized in a beta-hairpin conformation with the proximal N-terminal residues lining the axial channel and the loop extending beyond the apical surface of the heptameric ring. The lack of major substrate-induced conformational changes suggests that changes in ClpP structure needed to facilitate substrate entry or product release must be limited to rigid body motions affecting subunit packing or contacts between ClpP rings.
Collapse
Affiliation(s)
- Agnieszka Szyk
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
31
|
Besche H, Navon A, Zwickl P. The Membrane-Bound Lon Protease from Thermoplasma Displays Unfolding Activity. Isr J Chem 2006. [DOI: 10.1560/0env-nq8b-2wg6-nh8r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Ruvolo MV, Mach KE, Burkholder WF. Proteolysis of the replication checkpoint protein Sda is necessary for the efficient initiation of sporulation after transient replication stress in Bacillus subtilis. Mol Microbiol 2006; 60:1490-508. [PMID: 16796683 DOI: 10.1111/j.1365-2958.2006.05167.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cells of Bacillus subtilis actively co-ordinate the initiation of sporulation with DNA replication and repair. Conditions that perturb replication initiation or replication elongation induce expression of a small protein, Sda, that specifically inhibits the histidine kinases required to initiate spore development. Previously, the role of Sda has been studied during chronic blocks to DNA replication. Here we show that induction of Sda is required to delay the initiation of sporulation when replication elongation is transiently blocked or after UV irradiation. During the recovery phase, cells efficiently sporulated, but this required the proteolysis of Sda. The rapid proteolysis of Sda required the ClpXP protease and the uncharged C-terminal sequence of Sda. Replacing the last two residues of Sda, both serines, with aspartic acids markedly stabilized Sda. Strains expressing sdaDD from the endogenous sda locus were unable to efficiently initiate sporulation after transient replication stress. We conclude that the Sda replication checkpoint is required to delay the initiation of sporulation when DNA replication is transiently perturbed, and that the intrinsic instability of Sda contributes to shutting off the pathway. The Sda checkpoint thus co-ordinates early events of spore development, including the polar cell division, with successful completion of chromosome replication.
Collapse
Affiliation(s)
- Michael V Ruvolo
- Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
33
|
Abstract
Complex cellular events commonly depend on the activity of molecular "machines" that efficiently couple enzymatic and regulatory functions within a multiprotein assembly. An essential and expanding subset of these assemblies comprises proteins of the ATPases associated with diverse cellular activities (AAA+) family. The defining feature of AAA+ proteins is a structurally conserved ATP-binding module that oligomerizes into active arrays. ATP binding and hydrolysis events at the interface of neighboring subunits drive conformational changes within the AAA+ assembly that direct translocation or remodeling of target substrates. In this review, we describe the critical features of the AAA+ domain, summarize our current knowledge of how this versatile element is incorporated into larger assemblies, and discuss specific adaptations of the AAA+ fold that allow complex molecular manipulations to be carried out for a highly diverse set of macromolecular targets.
Collapse
Affiliation(s)
- Jan P Erzberger
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
34
|
Bulteau AL, Szweda LI, Friguet B. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol 2006; 41:653-7. [PMID: 16677792 DOI: 10.1016/j.exger.2006.03.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/15/2006] [Accepted: 03/17/2006] [Indexed: 12/31/2022]
Abstract
Mitochondria are a major source of intracellular reactive oxygen species (ROS), the production of which increases with age. These organelles are also targets of oxidative damage. The deleterious effects of ROS may be responsible for impairment of mitochondrial function observed during various pathophysiological states associated with oxidative stress and aging. An important factor for protein maintenance in the presence of oxidative stress is enzymatic reversal of oxidative modifications and/or protein degradation. Failure of these protein maintenance systems is likely a critical component of the aging process. Mitochondrial matrix proteins are sensitive to oxidative inactivation and oxidized proteins are known to accumulate during aging. The ATP-stimulated mitochondrial Lon protease is a highly conserved protease found in prokaryotes and the mitochondrial compartment of eukaryotes and is believed to play an important role in the degradation of oxidized mitochondrial matrix proteins. Age-dependent declines in the activity and regulation of this proteolytic system may underlie accumulation of oxidatively modified and dysfunctional protein and loss in mitochondrial viability.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Université Denis Diderot-Paris 7, Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, EA 3106/IFR 117, case courrier 7128, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
35
|
Laser H, Conforti L, Morreale G, Mack TGM, Heyer M, Haley JE, Wishart TM, Beirowski B, Walker SA, Haase G, Celik A, Adalbert R, Wagner D, Grumme D, Ribchester RR, Plomann M, Coleman MP. The slow Wallerian degeneration protein, WldS, binds directly to VCP/p97 and partially redistributes it within the nucleus. Mol Biol Cell 2006; 17:1075-84. [PMID: 16371511 PMCID: PMC1382299 DOI: 10.1091/mbc.e05-04-0375] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 11/28/2005] [Accepted: 12/02/2005] [Indexed: 11/11/2022] Open
Abstract
Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded. In wild-type Ube4b, N70 is part of a sequence essential for ubiquitination activity but its role is not understood. We report direct binding of N70 to valosin-containing protein (VCP; p97/Cdc48), a protein with diverse cellular roles including a pivotal role in the ubiquitin proteasome system. Interaction with Wld(S) targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. Wld(S) lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD(+) synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more C-terminal binding site in invertebrate orthologues. We conclude that N-terminal sequences of Wld(S) protein influence the intranuclear location of both ubiquitin proteasome and NAD(+) synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP.
Collapse
Affiliation(s)
- Heike Laser
- Institute for Genetics and Center for Molecular Medicine, University of Cologne, D-50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
von Janowsky B, Major T, Knapp K, Voos W. The disaggregation activity of the mitochondrial ClpB homolog Hsp78 maintains Hsp70 function during heat stress. J Mol Biol 2006; 357:793-807. [PMID: 16460754 DOI: 10.1016/j.jmb.2006.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/22/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
Molecular chaperones are important components of mitochondrial protein biogenesis and are required to maintain the organellar function under normal and stress conditions. We addressed the functional role of the Hsp100/ClpB homolog Hsp78 during aggregation reactions and its functional cooperation with the main mitochondrial Hsp70, Ssc1, in mitochondria of the yeast Saccharomyces cerevisiae. By establishing an aggregation/disaggregation assay in intact mitochondria we demonstrated that Hsp78 is indispensable for the resolubilization of protein aggregates generated by heat stress under in vivo conditions. The ATP-dependent disaggregation activity of Hsp78 was capable of reversing the preprotein import defect of a destabilized mutant form of Ssc1. This role in disaggregation of Ssc1 is unique for Hsp78, since the recently identified, Hsp70-specific chaperone Zim17 had no effect on the resolubilization reaction. We observed only a minor effect of the second mitochondrial Hsp100 family member Mcx1 on protein disaggregation. A "holding" activity of the mitochondrial Hsp70 system was a prerequisite for a successful resolubilization of aggregated proteins. We conclude that the protective role of Hsp78 in thermotolerance is mainly based on maintaining the molecular chaperone Ssc1 in a soluble and functional state.
Collapse
Affiliation(s)
- Birgit von Janowsky
- Institut für Biochemie und Molekularbiologie, Hermann-Herder-Str. 7, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
37
|
Rotanova TV, Melnikov EE, Khalatova AG, Makhovskaya OV, Botos I, Wlodawer A, Gustchina A. Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains. ACTA ACUST UNITED AC 2005; 271:4865-71. [PMID: 15606774 DOI: 10.1111/j.1432-1033.2004.04452.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ATP-dependent Lon proteases belong to the superfamily of AAA+ proteins. Until recently, the identity of the residues involved in their proteolytic active sites was not elucidated. However, the putative catalytic Ser-Lys dyad was recently suggested through sequence comparison of more than 100 Lon proteases from various sources. The presence of the catalytic dyad was experimentally confirmed by site-directed mutagenesis of the Escherichia coli Lon protease and by determination of the crystal structure of its proteolytic domain. Furthermore, this extensive sequence analysis allowed the definition of two subfamilies of Lon proteases, LonA and LonB, based on the consensus sequences in the active sites of their proteolytic domains. These differences strictly associate with the specific characteristics of their AAA+ modules, as well as with the presence or absence of an N-terminal domain.
Collapse
Affiliation(s)
- Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Prince T, Shao J, Matts RL, Hartson SD. Evidence for chaperone heterocomplexes containing both Hsp90 and VCP. Biochem Biophys Res Commun 2005; 331:1331-7. [PMID: 15883021 DOI: 10.1016/j.bbrc.2005.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Indexed: 12/27/2022]
Abstract
With assistance from co-chaperone partner proteins, Hsp90 plays an essential positive role in supporting the structure and function of numerous client proteins in vivo. Hsp90's co-chaperone partnerships are believed to regulate and/or target its function. Here we describe associations between Hsp90 chaperone machinery and another chaperone, the 97-kDa valosin-containing protein VCP. Coimmunoadsorption assays indicate that VCP occurs in one or more native heterocomplexes containing Hsp90 and the Hsp90 partner proteins Cdc37, FKBP52, and p23. Functional characterizations indicate that VCP is not an Hsp90 substrate, but rather demonstrate the biochemical hallmarks of an Hsp90 co-chaperone. Potential roles for a collaboration between for Hsp90 and VCP are discussed.
Collapse
Affiliation(s)
- Thomas Prince
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078-3035, USA
| | | | | | | |
Collapse
|
39
|
Haslbeck M, Miess A, Stromer T, Walter S, Buchner J. Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 2005; 280:23861-8. [PMID: 15843375 DOI: 10.1074/jbc.m502697200] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In all organisms studied, elevated temperatures induce the expression of a variety of stress proteins, among them small Hsps (sHsp). sHsps are chaperones that prevent the unspecific aggregation of proteins by forming stable complexes with unfolded polypeptides. Reactivation of captured proteins requires the assistance of other ATP-dependent chaperones. How sHsps and ATP-dependent chaperones work together is poorly understood. Here, we analyzed the interplay of chaperones present in the cytosol of Saccharomyces cerevisiae. Specifically, we characterized the influence of Hsp104 and Ssa1 on the disassembly of Hsp26 x substrate complexes in vitro and in vivo. We show that recovery of proteins from aggregates in the cell requires the chaperones to work together with defined but overlapping functions. During reactivation, proteins are transferred from a stable complex with Hsp26 to Hsp104 and Hsp70. The need for ATP-dependent chaperones depends on the type of sHsp x substrate complex. Although Ssa1 is able to release substrate proteins from soluble Hsp26 x substrate complexes, Hsp104 is essential to dissociate substrate proteins from aggregates with incorporated sHsps. Our results are consistent with a model of several interrelated defense lines against protein aggregation.
Collapse
Affiliation(s)
- Martin Haslbeck
- Department Chemie, Technische Universität München, D-85747 Garching, Germany
| | | | | | | | | |
Collapse
|