1
|
Caddeo A, Romeo S. Precision medicine and nucleotide-based therapeutics to treat steatotic liver disease. Clin Mol Hepatol 2025; 31:S76-S93. [PMID: 39103998 PMCID: PMC11925435 DOI: 10.3350/cmh.2024.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/07/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex multifactorial disease and becoming the leading cause of liver-related morbidity and mortality. MASLD spans from isolated steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may progress to cirrhosis and hepatocellular carcinoma (HCC). Genetic, metabolic, and environmental factors strongly contribute to the heterogeneity of MASLD. Lifestyle intervention and weight loss represent a viable treatment for MASLD. Moreover, Resmetirom, a thyroid hormone beta receptor agonist, has recently been approved for MASLD treatment. However, most individuals treated did not respond to this therapeutic, suggesting the need for a more tailored approach to treat MASLD. Oligonucleotide-based therapies, namely small-interfering RNA (siRNA) and antisense oligonucleotide (ASO), have been recently developed to tackle MASLD by reducing the expression of genes influencing MASH progression, such as PNPLA3 and HSD17B13. Here, we review the latest progress made in the synthesis and development of oligonucleotide-based agents targeting genetic determinants of MASH.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Stefano Romeo
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medicine, Endocrinology (H7) Karolinska Institute and Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
2
|
Elfaki I, Mir R, Elnageeb ME, Hamadi A, Alharbi ZM, Bedaiwi RI, Javid J, Alrasheed T, Alatawi D, Alrohaf BM, Abunab MK, Muqri TA. Identification of Interactive Genetic Loci Linked to Insulin Resistance in Metabolic Syndrome-An Update. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:83. [PMID: 39859066 PMCID: PMC11767019 DOI: 10.3390/medicina61010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Metabolic syndrome is a metabolic disorder characterized by hypertension, dyslipidemia, impaired glucose tolerance, and abdominal obesity. Impaired insulin action or insulin resistance initiates metabolic syndrome. The prevalence of insulin resistance is increasing all over the world. Insulin resistance results in the defective metabolism of carbohydrates and lipids, in addition to low-grade chronic inflammation. Insulin resistance is associated with metabolic syndrome, which is a risk factor for a number of pathological conditions, such as Type 2 diabetes (T2D), cardiovascular disease (CVD), nonalcoholic fatty liver disease (NAFLD), and polycystic ovarian syndrome (PCOS). Genome-wide association studies have increased our understanding of many loci linked to these diseases and others. In this review, we discuss insulin resistance and its contribution to metabolic syndrome and these diseases. We also discuss the genetic loci associated with them. Genetic testing is invaluable in the identification and stratification of susceptible populations and/or individuals. After susceptible individuals and/or populations have been identified via genetic testing or screening, lifestyle modifications such as regular exercise, weight loss, a healthy diet, and smoking cessation can reduce or prevent metabolic syndrome and its associated pathologies.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair for Biomedical Research, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (A.H.); (Z.M.A.); (R.I.B.); (J.J.)
| | - Mohamed E. Elnageeb
- Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Abdullah Hamadi
- Prince Fahd Bin Sultan Research Chair for Biomedical Research, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (A.H.); (Z.M.A.); (R.I.B.); (J.J.)
| | - Zeyad M. Alharbi
- Prince Fahd Bin Sultan Research Chair for Biomedical Research, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (A.H.); (Z.M.A.); (R.I.B.); (J.J.)
| | - Ruqaiah I. Bedaiwi
- Prince Fahd Bin Sultan Research Chair for Biomedical Research, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (A.H.); (Z.M.A.); (R.I.B.); (J.J.)
| | - Jamsheed Javid
- Prince Fahd Bin Sultan Research Chair for Biomedical Research, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (A.H.); (Z.M.A.); (R.I.B.); (J.J.)
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Dalal Alatawi
- Haematology Laboratory, King Fahd Special Hospital, Ministry of Health, Tabuk 71491, Saudi Arabia;
| | | | | | - Turki Ahmed Muqri
- Asir Health Cluster, Tarj General Hospital, Bisha 67721, Saudi Arabia;
| |
Collapse
|
3
|
Sookoian S, Rotman Y, Valenti L. Genetics of Metabolic Dysfunction-associated Steatotic Liver Disease: The State of the Art Update. Clin Gastroenterol Hepatol 2024; 22:2177-2187.e3. [PMID: 39094912 PMCID: PMC11512675 DOI: 10.1016/j.cgh.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Recent advances in the genetics of metabolic dysfunction-associated steatotic liver disease (MASLD) are gradually revealing the mechanisms underlying the heterogeneity of the disease and have shown promising results in patient stratification. Genetic characterization of the disease has been rapidly developed using genome-wide association studies, exome-wide association studies, phenome-wide association studies, and whole exome sequencing. These advances have been powered by the increase in computational power, the development of new analytical algorithms, including some based on artificial intelligence, and the recruitment of large and well-phenotyped cohorts. This review presents an update on genetic studies that emphasize new biological insights from next-generation sequencing approaches. Additionally, we discuss innovative methods for discovering new genetic loci for MASLD, including rare variants. To comprehensively manage MASLD, it is important to stratify risks. Therefore, we present an update on phenome-wide association study associations, including extreme phenotypes. Additionally, we discuss whether polygenic risk scores and targeted sequencing are ready for clinical use. With particular focus on precision medicine, we introduce concepts such as the interplay between genetics and the environment in modulating genetic risk with lifestyle or standard therapies. A special chapter is dedicated to gene-based therapeutics. The limitations of approved pharmacological approaches are discussed, and the potential of gene-related mechanisms in therapeutic development is reviewed, including the decision to perform genetic testing in patients with MASLD.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Translational Health Research Center (CENITRES). Maimónides University. Buenos Aires, Argentina
- Faculty of Health Science. Maimónides University. Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luca Valenti
- Precision Medicine - Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Foster C, Gagnon CA, Ashraf AP. Altered lipid metabolism and the development of metabolic-associated fatty liver disease. Curr Opin Lipidol 2024; 35:200-207. [PMID: 38484227 DOI: 10.1097/mol.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW An increasing amount of research has underscored the significant role of lipoproteins in the pathogenesis of metabolic-associated fatty liver disease (MAFLD). This comprehensive review examines the intricate relationship between lipoprotein abnormalities and the development of MAFLD. RECENT FINDINGS Atherogenic dyslipidemia seen in insulin resistance states play a significant role in initiating and exacerbating hepatic lipid accumulation. There are also specific genetic factors ( PNPLA3 , TM6SF2 , MBOAT7 , HSD17B13 , GCKR- P446L) and transcription factors (SREBP-2, FXR, and LXR9) that increase susceptibility to both lipoprotein disorders and MAFLD. Most monogenic primary lipid disorders do not cause hepatic steatosis unless accompanied by metabolic stress. Hepatic steatosis occurs in the presence of secondary systemic metabolic stress in conjunction with predisposing environmental factors that lead to insulin resistance. Identifying specific aberrant lipoprotein metabolic factors promoting hepatic fat accumulation and subsequently exacerbating steatohepatitis will shed light on potential targets for therapeutic interventions. SUMMARY The clinical implications of interconnection between genetic factors and an insulin resistant environment that predisposes MAFLD is many fold. Potential therapeutic strategies in preventing or mitigating MAFLD progression include lifestyle modifications, pharmacological interventions, and emerging therapies targeting aberrant lipoprotein metabolism.
Collapse
Affiliation(s)
- Christy Foster
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham
| | - Charles A Gagnon
- University of Alabama at Birmingham Marnix E. Heersink School of Medicine, Birmingham, Alabama, USA
| | - Ambika P Ashraf
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham
| |
Collapse
|
5
|
Kousa A, Ahmed R, Alasmar P. Syrian child carrying multiple pathogenic variants in MBOAT7 and MT-TS1 genes: a case report on neurodevelopmental phenotypes and mitochondrial inheritance. Ann Med Surg (Lond) 2024; 86:3086-3089. [PMID: 38694353 PMCID: PMC11060275 DOI: 10.1097/ms9.0000000000001941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction The authors identify two patterns of inheritance in a Syrian child from consanguineous parents. The membrane-bound O-acyltranferase domain-containing7 (MBOAT7) gene encodes Lysophosphatidylinositol acyltranferase (LPIAT1), which is responsible for the neurodevelopment of the brain cortex. Patients with MBOAT7 variants exhibit pathogenic nervous manifestations such as global developmental delays affecting speech and motor function, intellectual disability (ID), poor coordination, and seizures, with or without MRI abnormalities. MT_TS1, the mitochondrial tRNASer(UCN) gene, is a hotspot for pathogenic mutations causing variable mitochondrial phenotypes, including hearing impairment (HI), ataxia and cognitive impairment. Clinical presentation The authors present a case of a 4-year-old child with motor and speech delay, truncal hypotonia, visual tic, poor coordination, autistic features and generalized seizures at 7 months of age. After normal results from lab tests and MRI imaging, along with the family's history of neurological disorders, genetic analysis was necessary to diagnose and assess the possibility of genetic counselling. Next-generation sequencing (NGS) showed two variable variants in the MBOAT7 and MT-TS1 genes. The first mutation is a homozygous variant of uncertain significance in the MBOAT7 gene, associated with the autosomal recessive Mental retardation type 57. The second variant is a heteroplasmic pathogenic variant in the MT-TS1 gene, indicative of mitochondrial disorders. Conclusion The presence of the MBOAT7 and MT-TS1 gene variants in the same child is noteworthy. The authors must keep genetic mutations of MBOAT7 and MT-TS1 gene in mind as a differential diagnosis for intellectual disability, seizures and autistic features in children, especially in consanguineous families.
Collapse
Affiliation(s)
| | | | - Pr.Diana Alasmar
- Department of Pediatrics, Faculty of Medicine, Damascus University, Damascus, Syria
| |
Collapse
|
6
|
Li H, Qi Z, Xie L, Hao C, Li W. The first Chinese intellectual developmental disorder, autosomal recessive 57 patient with two novel MBOAT7 variants. Mol Genet Genomic Med 2024; 12:e2391. [PMID: 38407511 PMCID: PMC10844841 DOI: 10.1002/mgg3.2391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Intellectual disability (ID) is a con neurodevelopmental disorder in children. The genetic etiology of ID is complex, but more subtypes are defined due to the broad application of next-generation sequencing. METHODS Whole-exome sequencing (WES) and Sanger sequencing was applied in a family with ID. RESULTS We report a Chinese 7.5-year-old boy, born to non-consanguineous parents. He showed severe intellectual disability, seizures and autistic features. Two previously unreported variants in MBOAT7, c.669C>G (p.(Tyr223*)) and c.1095C>G (p.(Ser365Arg)) were identified by trio-WES. His mother is a heterozygous carrier of the c.1095C>G variant. The c.669C>G variant is a de novo variant which was undetected in his parents. By construction of the full-length cDNA of the patient's MBOAT7, we verified that these two variants were trans-compound heterozygous variants, which support the genetic etiology of this patient. CONCLUSION This patient is the first Chinese case of intellectual developmental disorder (IDD), autosomal recessive 57 (OMIM:617188) with two unreported MBOAT7 variants.
Collapse
Affiliation(s)
- Huimin Li
- Department of Genetics and Reproductive MedicineShunyi Maternal and Children's Hospital of Beijing Children's HospitalBeijingChina
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Rare Disease Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in ChildrenBeijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Rare Disease Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in ChildrenBeijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Limin Xie
- Department of Genetics and Reproductive MedicineShunyi Maternal and Children's Hospital of Beijing Children's HospitalBeijingChina
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Rare Disease Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in ChildrenBeijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Rare Disease Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in ChildrenBeijing Children's Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Caddeo A, Spagnuolo R, Maurotti S. MBOAT7 in liver and extrahepatic diseases. Liver Int 2023; 43:2351-2364. [PMID: 37605540 DOI: 10.1111/liv.15706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
MBOAT7 is a protein anchored to endomembranes by several transmembrane domains. It has a catalytic dyad involved in remodelling of phosphatidylinositol with polyunsaturated fatty acids. Genetic variants in the MBOAT7 gene have been associated with the entire spectrum of non-alcoholic fatty liver (NAFLD), recently redefined as metabolic dysfunction-associated fatty liver disease (MAFLD) and, lately, steatotic liver disease (SLD), and to an increasing number of extrahepatic conditions. In this review, we will (a) elucidate the molecular mechanisms by which MBOAT7 loss-of-function predisposes to MAFLD and neurodevelopmental disorders and (b) discuss the growing number of genetic studies linking MBOAT7 to hepatic and extrahepatic diseases. MBOAT7 complete loss of function causes severe changes in brain development resulting in several neurological manifestations. Lower MBOAT7 hepatic expression at both the mRNA and protein levels, due to missense nucleotide polymorphisms (SNPs) in the locus containing the MBOAT7 gene, affects specifically metabolic and viral diseases in the liver from simple steatosis to hepatocellular carcinoma, and potentially COVID-19 disease. This body of evidence shows that phosphatidylinositol remodelling is a key factor for human health.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Rocco Spagnuolo
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
8
|
Lindén D, Romeo S. Therapeutic opportunities for the treatment of NASH with genetically validated targets. J Hepatol 2023; 79:1056-1064. [PMID: 37207913 DOI: 10.1016/j.jhep.2023.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
The identification of genetic variants associated with fatty liver disease (FLD) from genome-wide association studies started in 2008 when single nucleotide polymorphisms in PNPLA3, the gene encoding patatin-like phospholipase domain-containing 3, were found to be associated with altered hepatic fat content. Since then, several genetic variants associated with protection from, or an increased risk of, FLD have been identified. The identification of these variants has provided insight into the metabolic pathways that cause FLD and enabled the identification of potential therapeutic targets. In this mini-review, we will examine the therapeutic opportunities derived from genetically validated targets in FLD, including oligonucleotide-based therapies targeting PNPLA3 and HSD17B13 that are currently being evaluated in clinical trials for the treatment of NASH (non-alcoholic steatohepatitis).
Collapse
Affiliation(s)
- Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
9
|
Phadnis VV, Snider J, Varadharajan V, Ramachandiran I, Deik AA, Lai ZW, Kunchok T, Eaton EN, Sebastiany C, Lyakisheva A, Vaccaro KD, Allen J, Yao Z, Wong V, Geng B, Weiskopf K, Clish CB, Brown JM, Stagljar I, Weinberg RA, Henry WS. MMD collaborates with ACSL4 and MBOAT7 to promote polyunsaturated phosphatidylinositol remodeling and susceptibility to ferroptosis. Cell Rep 2023; 42:113023. [PMID: 37691145 PMCID: PMC10591818 DOI: 10.1016/j.celrep.2023.113023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Ferroptosis is a form of regulated cell death with roles in degenerative diseases and cancer. Excessive iron-catalyzed peroxidation of membrane phospholipids, especially those containing the polyunsaturated fatty acid arachidonic acid (AA), is central in driving ferroptosis. Here, we reveal that an understudied Golgi-resident scaffold protein, MMD, promotes susceptibility to ferroptosis in ovarian and renal carcinoma cells in an ACSL4- and MBOAT7-dependent manner. Mechanistically, MMD physically interacts with both ACSL4 and MBOAT7, two enzymes that catalyze sequential steps to incorporate AA in phosphatidylinositol (PI) lipids. Thus, MMD increases the flux of AA into PI, resulting in heightened cellular levels of AA-PI and other AA-containing phospholipid species. This molecular mechanism points to a pro-ferroptotic role for MBOAT7 and AA-PI, with potential therapeutic implications, and reveals that MMD is an important regulator of cellular lipid metabolism.
Collapse
Affiliation(s)
- Vaishnavi V Phadnis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Amy A Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zon Weng Lai
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Elinor Ng Eaton
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Anna Lyakisheva
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kyle D Vaccaro
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Juliet Allen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Betty Geng
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kipp Weiskopf
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Mediterranean Institute for Life Sciences, 21000 Split, Croatia
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA.
| | - Whitney S Henry
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
10
|
Pierce MR, Hougland JL. A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases. Front Physiol 2023; 14:1167873. [PMID: 37250116 PMCID: PMC10213974 DOI: 10.3389/fphys.2023.1167873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes.
Collapse
Affiliation(s)
- Mariah R. Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
11
|
Sohal A, Chaudhry H, Kowdley KV. Genetic Markers Predisposing to Nonalcoholic Steatohepatitis. Clin Liver Dis 2023; 27:333-352. [PMID: 37024211 DOI: 10.1016/j.cld.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The growing prevalence of nonalcoholic fatty liver disease (NAFLD) has sparked interest in understanding genetics and epigenetics associated with the development and progression of the disease. A better understanding of the genetic factors related to progression will be beneficial in the risk stratification of patients. These genetic markers can also serve as potential therapeutic targets in the future. In this review, we focus on the genetic markers associated with the progression and severity of NAFLD.
Collapse
Affiliation(s)
- Aalam Sohal
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA
| | - Hunza Chaudhry
- Department of Internal Medicine, UCSF Fresno, 155 North Fresno Street, Fresno, CA 93722, USA
| | - Kris V Kowdley
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA; Elson S. Floyd College of Medicine, Washington State University, WA, USA.
| |
Collapse
|
12
|
Sharpe MC, Pyles KD, Hallcox T, Kamm DR, Piechowski M, Fisk B, Albert CJ, Carpenter DH, Ulmasov B, Ford DA, Neuschwander-Tetri BA, McCommis KS. Enhancing Hepatic MBOAT7 Expression in Mice With Nonalcoholic Steatohepatitis. GASTRO HEP ADVANCES 2023; 2:558-572. [PMID: 37293574 PMCID: PMC10249591 DOI: 10.1016/j.gastha.2023.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Polymorphisms near the membrane bound O-acyltransferase domain containing 7 (MBOAT7) genes are associated with worsened nonalcoholic fatty liver (NASH), and nonalcoholic fatty liver disease (NAFLD)/NASH may decrease MBOAT7 expression independent of these polymorphisms. We hypothesized that enhancing MBOAT7 function would improve NASH. METHODS Genomic and lipidomic databases were mined for MBOAT7 expression and hepatic phosphatidylinositol (PI) abundance in human NAFLD/NASH. Male C57BL6/J mice were fed either choline-deficient high-fat diet or Gubra Amylin NASH diet and subsequently infected with adeno-associated virus expressing MBOAT7 or control virus. NASH histological scoring and lipidomic analyses were performed to assess MBOAT7 activity, hepatic PI, and lysophosphatidylinositol (LPI) abundance. RESULTS Human NAFLD/NASH decreases MBOAT7 expression and hepatic abundance of arachidonate-containing PI. Murine NASH models display subtle changes in MBOAT7 expression, but significantly decreased activity. After MBOAT7 overexpression, liver weights, triglycerides, and plasma alanine and aspartate transaminase were modestly improved by MBOAT7 overexpression, but NASH histology was not improved. Despite confirmation of increased activity with MBOAT7 overexpression, content of the main arachidonoylated PI species was not rescued by MBOAT7 although the abundance of many PI species was increased. Free arachidonic acid was elevated but the MBOAT7 substrate arachidonoyl-CoA was decreased in NASH livers compared to low-fat controls, likely due to the decreased expression of long-chain acyl-CoA synthetases. CONCLUSION Results suggest decreased MBOAT7 activity plays a role in NASH, but MBOAT7 overexpression fails to measurably improve NASH pathology potentially due to the insufficient abundance of its arachidonoyl-CoA substrate.
Collapse
Affiliation(s)
- Martin C. Sharpe
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kelly D. Pyles
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Taylor Hallcox
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Dakota R. Kamm
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Michaela Piechowski
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Bryan Fisk
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Carolyn J. Albert
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | | | - Barbara Ulmasov
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - David A. Ford
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Brent A. Neuschwander-Tetri
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kyle S. McCommis
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
13
|
Whole-Exome Sequencing of Pakistani Consanguineous Families Identified Pathogenic Variants in Genes of Intellectual Disability. Genes (Basel) 2022; 14:genes14010048. [PMID: 36672789 PMCID: PMC9858807 DOI: 10.3390/genes14010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Intellectual disability (ID) is a condition of significant limitation of cognitive functioning and adaptive behavior, with 50% of etiology attributed to genetic predisposition. We recruited two consanguineous Pakistani families manifesting severe ID and developmental delay. The probands were subjected to whole exome sequencing (WES) and variants were further prioritized based on population frequency, predicted pathogenicity and functional relevance. The WES data analysis identified homozygous pathogenic variants in genes MBOAT7 and TRAPPC9. The pathogenicity of the variants was supported by co-segregation analysis and in silico tool. The findings of this study expand mutation spectrum and provide additional evidence to the role of MBOAT7 and TRAPPC9 in causation of ID.
Collapse
|
14
|
Prieto Ortíz JE, Sánchez Luque CB, Ortega Quiróz RJ. Hígado graso (parte 1): aspectos generales, epidemiología, fisiopatología e historia natural. REVISTA COLOMBIANA DE GASTROENTEROLOGÍA 2022; 37:420-433. [DOI: 10.22516/25007440.952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
El hígado graso no alcohólico (NAFLD) se define por la presencia de grasa o esteatosis en los hepatocitos y abarca un espectro que va desde la esteatosis simple, pasa por la esteatohepatitis no alcohólica (NASH) con inflamación y fibrosis, y finaliza en la cirrosis. Se considera una prevalencia mundial global cercana al 25% en la población general y se diagnóstica entre los 40 y 50 años, con variaciones respecto al sexo predominante y con diferencias étnicas (la población hispana es la más afectada). El hígado graso está asociado al síndrome metabólico (SM), y la obesidad se considera el principal factor de riesgo con su presencia y con su progresión.
El hígado graso es un trastorno complejo y muy heterogéneo en su fisiopatología, que resulta de la interacción de múltiples elementos: factores genéticos, epigenéticos, ambientales, culturales, entre otros. Todo ello en conjunto lleva a incremento paulatino de grasa hepática, resistencia a la insulina y alteraciones hormonales y de la microbiota intestinal, lo que genera un daño hepatocelular a través de la formación de radicales libres de oxígeno y activación de la fibrogénesis hepática.
La historia natural del hígado graso es dinámica: los pacientes con esteatosis simple tienen bajo riesgo de progresión a cirrosis, mientras que en los pacientes con NASH este riesgo se aumenta; sin embargo, el proceso puede ser reversible y algunas personas tendrán una mejoría espontánea. La fibrosis parece ser el determinante de la mortalidad global y de los desenlaces asociados a la enfermedad hepática; se considera que en todos los pacientes la fibrosis empeora una etapa cada 14 años y en NASH empeora en una etapa cada 7 años. Estudios previos concluyen que aproximadamente 20% de los casos de esteatosis simple progresan a NASH y que, de ellos, aproximadamente el 20% progresan a cirrosis, con presencia de hepatocarcinoma (HCC) en el 5% a 10% de ellos.
Collapse
|
15
|
Alharthi J, Bayoumi A, Thabet K, Pan Z, Gloss BS, Latchoumanin O, Lundberg M, Twine NA, McLeod D, Alenizi S, Adams LA, Weltman M, Berg T, Liddle C, George J, Eslam M. A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nat Commun 2022; 13:7430. [PMID: 36473860 PMCID: PMC9726889 DOI: 10.1038/s41467-022-35158-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The breakdown of toll-like receptor (TLR) tolerance results in tissue damage, and hyperactivation of the TLRs and subsequent inflammatory consequences have been implicated as risk factors for more severe forms of disease and poor outcomes from various diseases including COVID-19 and metabolic (dysfunction) associated fatty liver disease (MAFLD). Here we provide evidence that membrane bound O-acyltransferase domain containing 7 (MBOAT7) is a negative regulator of TLR signalling. MBOAT7 deficiency in macrophages as observed in patients with MAFLD and in COVID-19, alters membrane phospholipid composition. We demonstrate that this is associated with a redistribution of arachidonic acid toward proinflammatory eicosanoids, induction of endoplasmic reticulum stress, mitochondrial dysfunction, and remodelling of the accessible inflammatory-related chromatin landscape culminating in macrophage inflammatory responses to TLRs. Activation of MBOAT7 reverses these effects. These outcomes are further modulated by the MBOAT7 rs8736 (T) MAFLD risk variant. Our findings suggest that MBOAT7 can potentially be explored as a therapeutic target for diseases associated with dysregulation of the TLR signalling cascade.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Khaled Thabet
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 6111, Egypt
| | - Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mischa Lundberg
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- The University of Queensland Faculty of Medicine, Brisbane, QLD, Australia
| | - Natalie A Twine
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | - Duncan McLeod
- Department of Anatomical Pathology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Sydney, NSW, Australia
| | - Shafi Alenizi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Leon A Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Martin Weltman
- Department of Gastroenterology and Hepatology, Nepean Hospital, Sydney, NSW, Australia
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Pansa CC, Molica LR, Moraes KCM. Non-alcoholic fatty liver disease establishment and progression: genetics and epigenetics as relevant modulators of the pathology. Scand J Gastroenterol 2022; 58:521-533. [PMID: 36426638 DOI: 10.1080/00365521.2022.2148835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) results from metabolic dysfunctions that affect more than one-third of the world population. Over the last decades, scientific investigations have clarified many details on the pathology establishment and development; however, effective therapeutics approaches are still evasive. In addition, studies demonstrated that NAFLD establishment and progression are related to several etiologies. Recently, genetics and epigenetics backgrounds have emerged as relevant elements to the pathology onset, and, hence, deserve deep investigation to clarify molecular details on NAFLD signaling, which may be correlated with population behavior. Thus, to minimize the global problem, public health and public policies should take advantage of studies on NAFLD over the next following decades. METHODS In this context, we have performed a selective literature review focusing on biochemistry of lipid metabolism, genetics, epigenetics, and the ethnicity as strong elements that drive NAFLD establishment. RESULTS Considering the etiological agents that acts on NAFLD development and progression, the genetics and the epigenetics emerged as relevant factors. Genetics acts as a powerful element in the establishment and progression of the NAFLD. Over the last decades, details concerning genes and their polymorphisms, as well as epigenetics, have been considered relevant elements in the systems biology of diseases, and their effects on NAFLD should be considered in-depth, as well as the ethnicity, clarifying whether people are susceptible to liver diseases. Moreover, the endemicity and social problems of hepatic disfunction are far to be solved, which require a combined effort of various sectors of society. CONCLUSION Hence, the elements presented and discussed in this short review demonstrated their relevance to the physiological control of NAFLD, opening perspectives for research to develop new strategy to treat fatty liver diseases.
Collapse
Affiliation(s)
- Camila Cristiane Pansa
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Letícia Ramos Molica
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Karen C M Moraes
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| |
Collapse
|
17
|
Zhu X, Xia M, Gao X. Update on genetics and epigenetics in metabolic associated fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221132138. [PMID: 36325500 PMCID: PMC9619279 DOI: 10.1177/20420188221132138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most frequent chronic liver disease worldwide. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested to replace the nomenclature of NAFLD. For individuals with metabolic dysfunction, multiple NAFLD-related factors also contribute to the development and progression of MAFLD including genetics and epigenetics. The application of genome-wide association study (GWAS) and exome-wide association study (EWAS) uncovers single-nucleotide polymorphisms (SNPs) in MAFLD. In addition to the classic SNPs in PNPLA3, TM6SF2, and GCKR, some new SNPs have been found recently to contribute to the pathogenesis of liver steatosis. Epigenetic factors involving DNA methylation, histone modifications, non-coding RNAs regulations, and RNA methylation also play a critical role in MAFLD. DNA methylation is the most reported epigenetic modification. Developing a non-invasion biomarker to distinguish metabolic steatohepatitis (MASH) or liver fibrosis is ongoing. In this review, we summarized and discussed the latest progress in genetic and epigenetic factors of NAFLD/MAFLD, in order to provide potential clues for MAFLD treatment.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Varadharajan V, Massey WJ, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7)-driven phosphatidylinositol remodeling in advanced liver disease. J Lipid Res 2022; 63:100234. [PMID: 35636492 PMCID: PMC9240865 DOI: 10.1016/j.jlr.2022.100234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Advanced liver diseases account for approximately 2 million deaths annually worldwide. Roughly, half of liver disease-associated deaths arise from complications of cirrhosis and the other half driven by viral hepatitis and hepatocellular carcinoma. Unfortunately, the development of therapeutic strategies to treat subjects with advanced liver disease has been hampered by a lack of mechanistic understanding of liver disease progression and a lack of human-relevant animal models. An important advance has been made within the past several years, as several genome-wide association studies have discovered that an SNP near the gene encoding membrane-bound O-acyltransferase 7 (MBOAT7) is associated with severe liver diseases. This common MBOAT7 variant (rs641738, C>T), which reduces MBOAT7 expression, confers increased susceptibility to nonalcoholic fatty liver disease, alcohol-associated liver disease, and liver fibrosis in patients chronically infected with viral hepatitis. Recent studies in mice also show that Mboat7 loss of function can promote hepatic steatosis, inflammation, and fibrosis, causally linking this phosphatidylinositol remodeling enzyme to liver health in both rodents and humans. Herein, we review recent insights into the mechanisms by which MBOAT7-driven phosphatidylinositol remodeling influences liver disease progression and discuss how rapid progress in this area could inform drug discovery moving forward.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
19
|
Lee J, Shamim A, Park J, Jang JH, Kim JH, Kwon JY, Kim JW, Kim KK, Lee J. Functional and Structural Changes in the Membrane-Bound O-Acyltransferase Family Member 7 (MBOAT7) Protein: The Pathomechanism of a Novel MBOAT7 Variant in Patients With Intellectual Disability. Front Neurol 2022; 13:836954. [PMID: 35509994 PMCID: PMC9058081 DOI: 10.3389/fneur.2022.836954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
The membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) gene is associated with intellectual disability, early onset seizures, and autism spectrum disorders. This study aimed to determine the pathogenetic mechanism of the MBOAT7 missense variant via molecular modeling. Three patients from a consanguineous family were found to have a homozygous c.757G>A (p.Glu253Lys) variant of MBOAT7. The patients showed prominent dysfunction in gait, swallowing, vocalization, and fine motor function and had intellectual disabilities. Brain magnetic resonance imaging showed signal changes in the bilateral globus pallidi and cerebellar dentate nucleus, which differed with age. In the molecular model of human MBOAT7, Glu253 in the wild-type protein is located close to the backbone carbonyl oxygens in the loop near the helix, suggesting that the ionic interaction could contribute to the conformational stability of the funnel. Molecular modeling showed that Lys253 in the mutant protein was expected to alter the surface charge distribution, thereby potentially affecting substrate specificity. Changes in conformational stability and substrate specificity through varied ionic interactions are the suggested pathophysiological mechanisms of the MBOAT7 variant found in patients with intellectual disabilities.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Amen Shamim
- Department of Computer Science, University of Agriculture, Faisalabad, Pakistan
- Department of Precision Medicine, Graduate School of Basic Medical Sciences, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jongho Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ji Hye Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeong-Yi Kwon
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Sciences, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Speliotes EK, George J. Metabolic and genetic contributions to NAFLD: Really distinct and homogeneous? J Hepatol 2022; 76:498-500. [PMID: 34979132 DOI: 10.1016/j.jhep.2021.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Elizabeth K Speliotes
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW 2145, Australia.
| |
Collapse
|
21
|
Lands B. Lipid nutrition: "In silico" studies and undeveloped experiments. Prog Lipid Res 2021; 85:101142. [PMID: 34818526 DOI: 10.1016/j.plipres.2021.101142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
This review examines lipids and lipid-binding sites on proteins in relation to cardiovascular disease. Lipid nutrition involves food energy from ingested fatty acids plus fatty acids formed from excess ingested carbohydrate and protein. Non-esterified fatty acids (NEFA) and lipoproteins have many detailed attributes not evident in their names. Recognizing attributes of lipid-protein interactions decreases unexpected outcomes. Details of double bond position and configuration interacting with protein binding sites have unexpected consequences in acyltransferase and cell replication events. Highly unsaturated fatty acids (HUFA) have n-3 and n-6 motifs with documented differences in intensity of destabilizing positive feedback loops amplifying pathophysiology. However, actions of NEFA have been neglected relative to cholesterol, which is co-produced from excess food. Native low-density lipoproteins (LDL) bind to a high-affinity cell surface receptor which poorly recognizes biologically modified LDLs. NEFA increase negative charge of LDL and decrease its processing by "normal" receptors while increasing processing by "scavenger" receptors. A positive feedback loop in the recruitment of monocytes and macrophages amplifies chronic inflammatory pathophysiology. Computer tools combine multiple components in lipid nutrition and predict balance of energy and n-3:n-6 HUFA. The tools help design and execute precise clinical nutrition monitoring that either supports or disproves expectations.
Collapse
Affiliation(s)
- Bill Lands
- Fellow ASN, AAAS, SFRBM, ISSFAL, College Park, MD, USA.
| |
Collapse
|
22
|
Juanola O, Martínez-López S, Francés R, Gómez-Hurtado I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105227. [PMID: 34069012 PMCID: PMC8155932 DOI: 10.3390/ijerph18105227] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of chronic liver disease in the Western world, probably due to the growing prevalence of obesity, metabolic diseases, and exposure to some environmental agents. In certain patients, simple hepatic steatosis can progress to non-alcoholic steatohepatitis (NASH), which can sometimes lead to liver cirrhosis and its complications including hepatocellular carcinoma. Understanding the mechanisms that cause the progression of NAFLD to NASH is crucial to be able to control the advancement of the disease. The main hypothesis considers that it is due to multiple factors that act together on genetically predisposed subjects to suffer from NAFLD including insulin resistance, nutritional factors, gut microbiota, and genetic and epigenetic factors. In this article, we will discuss the epidemiology of NAFLD, and we overview several topics that influence the development of the disease from simple steatosis to liver cirrhosis and its possible complications.
Collapse
Affiliation(s)
- Oriol Juanola
- Gastroenterology and Hepatology, Translational Research Laboratory, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Sebastián Martínez-López
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Rubén Francés
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Isabel Gómez-Hurtado
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
23
|
Zusi C, Morandi A, Maguolo A, Corradi M, Costantini S, Mosca A, Crudele A, Mantovani A, Alisi A, Miraglia Del Giudice E, Targher G, Maffeis C. Association between MBOAT7 rs641738 polymorphism and non-alcoholic fatty liver in overweight or obese children. Nutr Metab Cardiovasc Dis 2021; 31:1548-1555. [PMID: 33810963 DOI: 10.1016/j.numecd.2021.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM The association between non-alcoholic fatty liver (NAFL) and the variant rs641738 within the membrane bound O-acyltransferase domain-containing 7 (MBOAT7) gene is currently uncertain, especially in the paediatric population. We examined whether there is an association between this genetic variant and NAFL in a large multicentre, hospital-based cohort of Italian overweight/obese children. METHODS AND RESULTS We studied 1760 overweight or obese children [mean age (SD): 11.1(2.9) years, z-body mass index (zBMI) 3.2(0.9)], who underwent ultrasonography for the diagnosis of NAFL. A subgroup of these children (n = 182) also underwent liver biopsy. Genotyping of the MBOAT7 rs641738 polymorphism was performed by TaqMan-Based RT-PCR system in each subject. Overall, 1131 (64.3%) children had ultrasound-detected NAFL; 528 (30%) had rs641738 CC genotype, 849 (48.2%) had rs641738 CT genotype, and 383 (21.8%) had rs641738 TT genotype, respectively. In the whole cohort, the interaction of MBOAT7 genotypes with zBMI was not associated with NAFL after adjustment for age, sex, serum triglycerides, serum alanine aminotransferase levels and patatin-like phospholipase domain-containing protein-3 (PNPLA3) genotype (adjusted-odds ratio 1.02 [95% CI 0.98-1.06]). Similarly, no association was found between MBOAT7 genotypes and NAFL after stratification by obesity status. MBOAT7 genotypes were not associated with the presence of non-alcoholic steatohepatitis or the stage of liver fibrosis in a subgroup of 182 children with biopsy-proven NAFLD. CONCLUSIONS The results of this study did not show any significant contribution of MBOAT7 rs641738 polymorphism to the risk of having either NAFL on ultrasonography or NASH on histology in a large hospital-based cohort of Italian overweight/obese children.
Collapse
Affiliation(s)
- C Zusi
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - A Morandi
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - A Maguolo
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - M Corradi
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - S Costantini
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - A Mosca
- Hepatology, Gastroenterology and Nutrition Unit, "Bambino Gesù"Children's Hospital and IRCCS, Rome, Italy
| | - A Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, "Bambino Gesù" Children's Hospital and IRCCS, Rome, Italy
| | - A Mantovani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - A Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, "Bambino Gesù" Children's Hospital and IRCCS, Rome, Italy
| | - E Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - G Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - C Maffeis
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy.
| |
Collapse
|
24
|
Thangapandi VR, Knittelfelder O, Brosch M, Patsenker E, Vvedenskaya O, Buch S, Hinz S, Hendricks A, Nati M, Herrmann A, Rekhade DR, Berg T, Matz-Soja M, Huse K, Klipp E, Pauling JK, Wodke JA, Miranda Ackerman J, Bonin MV, Aigner E, Datz C, von Schönfels W, Nehring S, Zeissig S, Röcken C, Dahl A, Chavakis T, Stickel F, Shevchenko A, Schafmayer C, Hampe J, Subramanian P. Loss of hepatic Mboat7 leads to liver fibrosis. Gut 2021; 70:940-950. [PMID: 32591434 PMCID: PMC8040158 DOI: 10.1136/gutjnl-2020-320853] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD. DESIGN Mice with hepatocyte-specific deletion of MBOAT7 (Mboat7Δhep) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies. RESULTS Allelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7Δhep mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (p<0.05), hydroxyproline content (p<0.05) and transcriptomics, while the inflammatory cell populations and inflammatory mediators were minimally affected. In a human biopsied NAFLD cohort, MBOAT7 rs641738C>T was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7Δhep mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7Δhep livers and human rs641738TT carriers were similar. CONCLUSION Mboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD.
Collapse
Affiliation(s)
- Veera Raghavan Thangapandi
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Oskar Knittelfelder
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Mario Brosch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Eleonora Patsenker
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Olga Vvedenskaya
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Sebastian Hinz
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Alexander Hendricks
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| | - Alexander Herrmann
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Devavrat Ravindra Rekhade
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Oncology, Gastroenterology, Hepatology Pulmonology, and Infectious Diseases, University Hospital Leipzig, Leipzig, Sachsen, Germany
| | - Madlen Matz-Soja
- Division of Hepatology, Department of Oncology, Gastroenterology, Hepatology Pulmonology, and Infectious Diseases, University Hospital Leipzig, Leipzig, Sachsen, Germany
- Rudolf Schönheimer- Institute of Biochemistry, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Klaus Huse
- Leibniz Institute for Age Research Fritz-Lipmann Institute, Jena, Thüringen, Germany
| | - Edda Klipp
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josch K Pauling
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Bayern, Germany
| | - Judith Ah Wodke
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Malte von Bonin
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- German Cancer Consortium, Heidelberg, Baden-Württemberg, Germany
| | - Elmar Aigner
- Department of Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private University of Salzburg, Obendorf, Austria
| | - Witigo von Schönfels
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Sophie Nehring
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Andreas Dahl
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplantation Surgery, University of Rostock, Rostock, Mecklenburg-Vorpommern, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| |
Collapse
|
25
|
Bianco C, Casirati E, Malvestiti F, Valenti L. Genetic predisposition similarities between NASH and ASH: Identification of new therapeutic targets. JHEP Rep 2021; 3:100284. [PMID: 34027340 PMCID: PMC8122117 DOI: 10.1016/j.jhepr.2021.100284] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver disease can be triggered by a combination of excess alcohol, dysmetabolism and other environmental cues, which can lead to steatohepatitis and can evolve to acute/chronic liver failure and hepatocellular carcinoma, especially in the presence of shared inherited determinants. The recent identification of the genetic causes of steatohepatitis is revealing new avenues for more effective risk stratification. Discovery of the mechanisms underpinning the detrimental effect of causal mutations has led to some breakthroughs in the comprehension of the pathophysiology of steatohepatitis. Thanks to this approach, hepatocellular fat accumulation, altered lipid droplet remodelling and lipotoxicity have now taken centre stage, while the role of adiposity and gut-liver axis alterations have been independently validated. This process could ignite a virtuous research cycle that, starting from human genomics, through omics approaches, molecular genetics and disease models, may lead to the development of new therapeutics targeted to patients at higher risk. Herein, we also review how this knowledge has been applied to: a) the study of the main PNPLA3 I148M risk variant, up to the stage of the first in-human therapeutic trials; b) highlight a role of MBOAT7 downregulation and lysophosphatidyl-inositol in steatohepatitis; c) identify IL-32 as a candidate mediator linking lipotoxicity to inflammation and liver disease. Although this precision medicine drug discovery pipeline is mainly being applied to non-alcoholic steatohepatitis, there is hope that successful products could be repurposed to treat alcohol-related liver disease as well.
Collapse
Key Words
- AA, arachidonic acid
- ASH, alcoholic steatohepatitis
- DAG, diacylglycerol
- DNL, de novo lipogenesis
- ER, endoplasmic reticulum
- FFAs, free fatty acids
- FGF19, fibroblast growth factor 19
- FLD, fatty liver disease
- FXR, farnesoid X receptor
- GCKR, glucokinase regulator
- GPR55, G protein-coupled receptor 55
- HCC, hepatocellular carcinoma
- HFE, homeostatic iron regulator
- HSC, hepatic stellate cells
- HSD17B13, hydroxysteroid 17-beta dehydrogenase 13
- IL-, interleukin-
- IL32
- LDs, lipid droplets
- LPI, lysophosphatidyl-inositol
- MARC1, mitochondrial amidoxime reducing component 1
- MBOAT7
- MBOAT7, membrane bound O-acyltransferase domain-containing 7
- NASH, non-alcoholic steatohepatitis
- PNPLA3
- PNPLA3, patatin like phospholipase domain containing 3
- PPAR, peroxisome proliferator-activated receptor
- PRS, polygenic risk score
- PUFAs, polyunsaturated fatty acids
- SREBP, sterol response element binding protein
- TAG, triacylglycerol
- TNF-α, tumour necrosis factor-α
- alcoholic liver disease
- cirrhosis
- fatty liver disease
- genetics
- interleukin-32
- non-alcoholic fatty liver disease
- precision medicine
- steatohepatitis
- therapy
Collapse
Affiliation(s)
- Cristiana Bianco
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Tavaglione F, Kono N, Romeo S. Understanding the underlying molecular pathways by which Mboat7/Lpiat1 depletion induces hepatic steatosis. J Lipid Res 2021; 62:100047. [PMID: 33582144 PMCID: PMC7985689 DOI: 10.1016/j.jlr.2021.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Federica Tavaglione
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Medicine and Hepatology Unit, Department of Internal Medicine and Geriatrics, Campus Bio-Medico University, Rome, Italy
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Science, Magna Graecia University, Catanzaro, Italy; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
27
|
Xia M, Chandrasekaran P, Rong S, Fu X, Mitsche MA. Hepatic deletion of Mboat7 (LPIAT1) causes activation of SREBP-1c and fatty liver. J Lipid Res 2021; 62:100031. [PMID: 32859645 PMCID: PMC8022244 DOI: 10.1194/jlr.ra120000856] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic variants that increase the risk of fatty liver disease and cirrhosis have recently been identified in the proximity of membrane-bound O-acyltransferase domain-containing 7 (MBOAT7). To elucidate the link between these variants and fatty liver disease, we characterized Mboat7 liver-specific KO mice (Mboat7 LSKO). Chow-fed Mboat7 LSKO mice developed fatty livers and associated liver injury. Lipidomic analysis of liver using MS revealed a pronounced reduction in 20-carbon PUFA content in phosphatidylinositols (PIs) but not in other phospholipids. The change in fatty acid composition of PIs in these mice was associated with a marked increase in de novo lipogenesis because of activation of SREBP-1c, a transcription factor that coordinates the activation of genes encoding enzymes in the fatty acid biosynthesis pathway. Hepatic removal of both SREBP cleavage-activating protein (Scap) and Mboat7 normalized hepatic triglycerides relative to Scap-only hepatic KO, showing that increased SREBP-1c processing is required for Mboat7-induced steatosis. This study reveals a clear relationship between PI fatty acid composition and regulation of hepatic fat synthesis and delineates the mechanism by which mutations in MBOAT7 cause hepatic steatosis.
Collapse
Affiliation(s)
- Mingfeng Xia
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Preethi Chandrasekaran
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shunxing Rong
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew A Mitsche
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Caddeo A, Hedfalk K, Romeo S, Pingitore P. LPIAT1/MBOAT7 contains a catalytic dyad transferring polyunsaturated fatty acids to lysophosphatidylinositol. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158891. [PMID: 33513444 DOI: 10.1016/j.bbalip.2021.158891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 11/17/2022]
Abstract
Human membrane bound O-acyltransferase domain-containing 7 (MBOAT7), also known as lysophosphatidylinositol acyltransferase 1 (LPIAT1), is an enzyme involved in the acyl-chain remodeling of phospholipids via the Lands' cycle. The MBOAT7 rs641738 variant has been associated with the entire spectrum of fatty liver disease (FLD) and neurodevelopmental disorders, but the exact enzymatic activity and the catalytic site of the protein are still unestablished. Human wild type MBOAT7 and three MBOAT7 mutants missing in the putative catalytic residues (N321A, H356A, N321A + H356A) were produced into Pichia pastoris, and purified using Ni-affinity chromatography. The enzymatic activity of MBOAT7 wild type and mutants was assessed measuring the incorporation of radiolabeled fatty acids into lipid acceptors. MBOAT7 preferentially transferred 20:4 and 20:5 polyunsaturated fatty acids (PUFAs) to lysophosphatidylinositol (LPI). On the contrary, MBOAT7 showed weak enzymatic activity for transferring saturated and unsaturated fatty acids, regardless the lipid substrate. Missense mutations in the putative catalytic residues (N321A, H356A, N321A + H356A) result in a loss of O-acyltransferase activity. Thus, MBOAT7 catalyzes the transfer of PUFAs to lipid acceptors. MBOAT7 shows the highest affinity for LPI, and missense mutations at the MBOAT7 putative catalytic dyad inhibit the O-acyltransferase activity of the protein. Our findings support the hypothesis that the association between the MBOAT7 rs641738 variant and the increased risk of NAFLD is mediated by changes in the hepatic phosphatidylinositol acyl-chain remodeling. Taken together, the increased knowledge of the enzymatic activity of MBOAT7 gives insights into the understanding on the basis of FLD.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden
| | - Kristina Hedfalk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy.
| | - Piero Pingitore
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden.
| |
Collapse
|
29
|
Ramanan SP, Mohamed MWF, Aung SS, Sange I, Hamid P. Treatment of Fatty Liver Disease: The Present and the Future. Cureus 2021; 13:e12713. [PMID: 33614318 PMCID: PMC7883529 DOI: 10.7759/cureus.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) progressing to non-alcoholic steatohepatitis (NASH), cirrhosis, end-stage liver disease (ESRD), and hepatocellular carcinoma (HCC) is emerging as a global epidemic. Obesity, diabetes, and metabolic syndrome are some of the leading risk factors for NAFLD. The most prevalent treatment to stop the progression is aimed at dietary modification and lifestyle changes. Bariatric surgery is indicated for patients with morbid obesity with NAFLD. The progression of NAFLD to NASH and HCC can be arrested at various stages of pathogenesis by the already prevalent drugs and the emerging newer molecular and genetic targets. This review article analyzed various preclinical animal trials and clinical trials and has summarized various groups of drugs that can be life-altering in patients diagnosed with NAFLD. This study also discusses the obstacles in taking these clinical trials to bedside treatment.
Collapse
Affiliation(s)
- Sruthi Priyavadhana Ramanan
- Medicine/Surgery, Saveetha Medical College, Chennai, IND.,Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohamed Wael F Mohamed
- Neurological Surgery, Royal London Hospital, London, GBR.,Neurosciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Su Sandi Aung
- Medicine and Surgery, University of Medicine 1, Yangon, MMR.,Neurosciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ibrahim Sange
- Medicine, KJ Somaiya Medical College, Mumbai, IND.,Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
30
|
Choudhary NS, Duseja A. Genetic and epigenetic disease modifiers: non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Transl Gastroenterol Hepatol 2021; 6:2. [PMID: 33409397 DOI: 10.21037/tgh.2019.09.06] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Inter-individual and inter-ethnic differences and difference in the severity and progression of liver disease among patients with non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) suggests the involvement of genetic and epigenetic factors in their pathogenesis. This article reviews the genetic and epigenetic modifiers in patients with NAFLD and ALD. Evidence regarding the genetic and epigenetic disease modifiers of NAFLD and ALD was reviewed by searching the available literature. Both genome wide association studies (GWAS) and candidate gene studies pertaining to the pathogenesis in both diseases were included. Clinical implications of the available information are also discussed. Several studies have shown association of both NAFLD and ALD with I148M PNPLA3 variant. In addition to the higher prevalence of hepatic steatosis, the I148M PNPLA3 variant is also associated with severity of liver disease and risk of hepatocellular carcinoma (HCC). TM6SF2 is the other genetic variant shown to be significantly associated with hepatic steatosis and cirrhosis in patients with NAFLD and ALD. The Membrane bound O-acyltransferase domain-containing 7 (MBOAT7) genetic variant is also associated with both NAFLD and ALD. In addition to these mutations, several variants related to the genes involved in glucose metabolism, insulin resistance, lipid metabolism, oxidative stress, inflammatory pathways, fibrosis have also been shown to be the disease modifiers in patients with NAFLD and ALD. Epigenetics involving several micro RNAs and DNA methylation could also modify the disease course in NAFLD and ALD. In conclusion the available literature suggests that genetics and epigenetics are involved in the pathogenesis of NAFLD and ALD which may affect the disease prevalence, severity and response to treatment in these patients.
Collapse
Affiliation(s)
- Narendra Singh Choudhary
- Institute of Liver Transplantation and Regenerative Medicine, Medanta, The Medicity, Gurgaon, Delhi (NCR), India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
31
|
Tanaka Y, Shimanaka Y, Caddeo A, Kubo T, Mao Y, Kubota T, Kubota N, Yamauchi T, Mancina RM, Baselli G, Luukkonen P, Pihlajamäki J, Yki-Järvinen H, Valenti L, Arai H, Romeo S, Kono N. LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover. Gut 2021; 70:180-193. [PMID: 32253259 PMCID: PMC7788230 DOI: 10.1136/gutjnl-2020-320646] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is a common prelude to cirrhosis and hepatocellular carcinoma. The genetic rs641738 C>T variant in the lysophosphatidylinositol acyltransferase 1 (LPIAT1)/membrane bound O-acyltransferase domain-containing 7, which incorporates arachidonic acid into phosphatidylinositol (PI), is associated with the entire spectrum of NAFLD. In this study, we investigated the mechanism underlying this association in mice and cultured human hepatocytes. DESIGN We generated the hepatocyte-specific Lpiat1 knockout mice to investigate the function of Lpiat1 in vivo. We also depleted LPIAT1 in cultured human hepatic cells using CRISPR-Cas9 systems or siRNA. The effect of LPIAT1-depletion on liver fibrosis was examined in mice fed high fat diet and in liver spheroids. Lipid species were measured using liquid chromatography-electrospray ionisation mass spectrometry. Lipid metabolism was analysed using radiolabeled glycerol or fatty acids. RESULTS The hepatocyte-specific Lpiat1 knockout mice developed hepatic steatosis spontaneously, and hepatic fibrosis on high fat diet feeding. Depletion of LPIAT1 in cultured hepatic cells and in spheroids caused triglyceride accumulation and collagen deposition. The increase in hepatocyte fat content was due to a higher triglyceride synthesis fueled by a non-canonical pathway. Indeed, reduction in the PI acyl chain remodelling caused a high PI turnover, by stimulating at the same time PI synthesis and breakdown. The degradation of PI was mediated by a phospholipase C, which produces diacylglycerol, a precursor of triglyceride. CONCLUSION We found a novel pathway fueling triglyceride synthesis in hepatocytes, by a direct metabolic flow of PI into triglycerides. Our findings provide an insight into the pathogenesis and therapeutics of NAFLD.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Shimanaka
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Andrea Caddeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Takuya Kubo
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yanli Mao
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Kubota
- Division of Diabetes and Metabolism, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rosellina Margherita Mancina
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy,Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Panu Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland,Minerva Foundation Institute for Medical Research, Helsinki, Finland,Department of Internal Medicine, Yale University, New Haven, CT, USA, Yale University, New Haven, Connecticut, USA
| | - Jussi Pihlajamäki
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy,Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan,Present address: Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden .,Clinical Nutrition Unit, Department of Medical and Surgical Science, Magna Graecia University, Catanzaro, Italy.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Heidari E, Caddeo A, Zarabadi K, Masoudi M, Tavasoli AR, Romeo S, Garshasbi M. Identification of novel loss of function variants in MBOAT7 resulting in intellectual disability. Genomics 2020; 112:4072-4077. [DOI: 10.1016/j.ygeno.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/10/2020] [Accepted: 07/02/2020] [Indexed: 01/28/2023]
|
33
|
Tavaglione F, Targher G, Valenti L, Romeo S. Human and molecular genetics shed lights on fatty liver disease and diabetes conundrum. Endocrinol Diabetes Metab 2020; 3:e00179. [PMID: 33102799 PMCID: PMC7576307 DOI: 10.1002/edm2.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
The causal role of abdominal overweight/obesity, insulin resistance and type 2 diabetes (T2D) on the risk of fatty liver disease (FLD) has robustly been proven. A consensus of experts has recently proposed the novel definition of 'metabolic dysfunction-associated fatty liver disease, MAFLD' instead of 'nonalcoholic fatty liver disease, NAFLD', emphasizing the central role of dysmetabolism in the disease pathogenesis. Conversely, a direct and independent contribution of FLD per se on risk of developing T2D is still a controversial topic. When dealing with FLD as a potential risk factor for T2D, it is straightforward to think of hepatic insulin resistance as the most relevant underlying mechanism. Emerging evidence supports genetic determinants of FLD (eg PNPLA3, TM6SF2, MBOAT7, GCKR, HSD17B13) as determinants of insulin resistance and T2D. However, recent studies highlighted that the key molecular mechanism of dysmetabolism is not fat accumulation per se but the degree of hepatic fibrosis (excess liver fat content-lipotoxicity), leading to reduced insulin clearance, insulin resistance and T2D. A consequence of these findings is that drugs that will ameliorate liver fat accumulation and fibrosis in principle may also exert a beneficial effect on insulin resistance and risk of T2D in individuals with FLD. Finally, initial findings show that these genetic factors might be directly implicated in modulating pancreatic beta-cell function, although future studies are needed to fully understand this relationship.
Collapse
Affiliation(s)
- Federica Tavaglione
- Clinical Medicine and Hepatology UnitDepartment of Internal Medicine and GeriatricsCampus Bio‐Medico UniversityRomeItaly
- Department of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and MetabolismDepartment of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaVeronaItaly
| | - Luca Valenti
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanoItaly
- Translational MedicineDepartment of Transfusion Medicine and HematologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanoItaly
| | - Stefano Romeo
- Department of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Nutrition UnitDepartment of Medical and Surgical ScienceMagna Graecia UniversityCatanzaroItaly
- Department of CardiologySahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
34
|
Farnè M, Tedesco GM, Bedetti C, Mencarelli A, Rogaia D, Colavito D, Di Cara G, Stangoni G, Troiani S, Ferlini A, Prontera P. A patient with novel MBOAT7 variant: The cerebellar atrophy is progressive and displays a peculiar neurometabolic profile. Am J Med Genet A 2020; 182:2377-2383. [PMID: 32744787 DOI: 10.1002/ajmg.a.61773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022]
Abstract
Mutations in the MBOAT7 gene have been described in 43 patients, belonging to 18 families, showing nonspecific clinical features (intellectual disability [ID], seizures, microcephaly or macrocephaly, and mild to moderate cerebellar atrophy) that make the clinical diagnosis difficult. Here we report the first Italian patient, a 22.5-year-old female, one of the oldest reported, born to apparently consanguineous parents. She shows severe ID, macrocephaly, seizures, aggressive outbursts, hyperphagia. We also documented progressive atrophy of the cerebellar vermis, that appeared not before the age of 7. The whole-exome sequencing of the trio identified a novel homozygous variant c.1057_1058delGCinsCA (p.Ala353His) in the MBOAT7 gene. The variant is considered to be likely pathogenic, since it is absent from population database and it lies in a highly conserved amino acid residue. This disorder has a neurometabolic pathogenesis, implicating a phospholipid remodeling abnormalities. A brain hydrogen-magnetic resonance spectroscopy (H-MRS) examination in our patient disclosed a peculiar neurometabolic profile in the cerebellar hemispheric region. This new finding could address the clinical suspicion of MBOAT7-related disorder, among the wide range of genetic conditions associated with ID and cerebellar atrophy. Moreover, the documented progression of cerebellar atrophy and the worsening of the disease only after some years open to the possibility of a therapeutic window after birth.
Collapse
Affiliation(s)
- Marianna Farnè
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy.,Medical Genetics Unit, Department of Medical Sciences, Ferrara University Hospital, Italy
| | - Giovanna M Tedesco
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy.,Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, Padova, Italy.,Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases (B.I.R.D.), Costozza di Longare, Vicenza, Italy
| | | | - Amedea Mencarelli
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Daniela Rogaia
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | | | - Giuseppe Di Cara
- Pediatric Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Gabriela Stangoni
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Stefania Troiani
- Division of Neonatology and Neonatal Intensive Care Unit, Santa Maria della Misericordia Hospital of Perugia, Perugia, Italy
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, Ferrara University Hospital, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| |
Collapse
|
35
|
Meroni M, Longo M, Fracanzani AL, Dongiovanni P. MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD. EBioMedicine 2020; 57:102866. [PMID: 32629394 PMCID: PMC7339032 DOI: 10.1016/j.ebiom.2020.102866] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, which include steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, that is a critical risk factor for hepatocellular carcinoma (HCC) development. Its pathogenesis is intertwined with obesity and type 2 diabetes (T2D). However, the predisposition to develop MAFLD is severely influenced by environmental and inherited cues. The rs641738 variant close to MBOAT7 gene has been identified by a genome-wide association screening in heavy drinkers. Although this variant has been associated with the entire spectrum of MAFLD, these results have not been completely replicated and the debate is still opened. Thus, functional studies that unravel the biological mechanisms underlying the genetic association with fatty liver are required. This review aims to summarize the clinical and experimental findings regarding the rs641738 variation and MBOAT7 function, with the purpose to shed light to its role as novel player in MAFLD pathophysiology.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Anna L Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy.
| |
Collapse
|
36
|
Carlsson B, Lindén D, Brolén G, Liljeblad M, Bjursell M, Romeo S, Loomba R. Review article: the emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2020; 51:1305-1320. [PMID: 32383295 PMCID: PMC7318322 DOI: 10.1111/apt.15738] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) characterised by liver fat accumulation, inflammation and progressive fibrosis. Emerging data indicate that genetic susceptibility increases risks of NAFLD, NASH and NASH-related cirrhosis. AIMS To review NASH genetics and discuss the potential for precision medicine approaches to treatment. METHOD PubMed search and inclusion of relevant literature. RESULTS Single-nucleotide polymorphisms in PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13 are clearly associated with NASH development or progression. These genetic variants are common and have moderate-to-large effect sizes for development of NAFLD, NASH and hepatocellular carcinoma (HCC). The genes play roles in lipid remodelling in lipid droplets, hepatic very low-density lipoprotein (VLDL) secretion and de novo lipogenesis. The PNPLA3 I148M variant (rs738409) has large effects, with approximately twofold increased odds of NAFLD and threefold increased odds of NASH and HCC per allele. Obesity interacts with PNPLA3 I148M to elevate liver fat content and increase rates of NASH. Although the isoleucine-to-methionine substitution at amino acid position 148 of the PNPLA3 enzyme inactivates its lipid remodelling activity, the effect of PNPLA3 I148M results from trans-repression of another lipase (ATGL/PNPLA2) by sequestration of a shared cofactor (CGI-58/ABHD5), leading to decreased hepatic lipolysis and VLDL secretion. In homozygous Pnpla3 I148M knock-in rodent models of NAFLD, targeted PNPLA3 mRNA knockdown reduces hepatic steatosis, inflammation and fibrosis. CONCLUSION The emerging genetic and molecular understanding of NASH paves the way for novel interventions, including precision medicines that can modulate the activity of specific genes associated with NASH.
Collapse
Affiliation(s)
- Björn Carlsson
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Daniel Lindén
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden,Division of EndocrinologyDepartment of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Gabriella Brolén
- Precision MedicineCardiovascular, Renal and MetabolismR&DAstraZenecaGothenburgSweden
| | - Mathias Liljeblad
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Mikael Bjursell
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Stefano Romeo
- Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden,Clinical Nutrition UnitDepartment of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly,Cardiology DepartmentSahlgrenska University HospitalGothenburgSweden
| | - Rohit Loomba
- NAFLD Research CenterDivision of GastroenterologyUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
37
|
Raja AM, Ciociola E, Ahmad IN, Dar FS, Naqvi SMS, Moaeen-ud-Din M, Raja GK, Romeo S, Mancina RM. Genetic Susceptibility to Chronic Liver Disease in Individuals from Pakistan. Int J Mol Sci 2020; 21:ijms21103558. [PMID: 32443539 PMCID: PMC7278956 DOI: 10.3390/ijms21103558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease, with viral or non-viral etiology, is endemic in many countries and is a growing burden in Asia. Among the Asian countries, Pakistan has the highest prevalence of chronic liver disease. Despite this, the genetic susceptibility to chronic liver disease in this country has not been investigated. We performed a comprehensive analysis of the most robustly associated common genetic variants influencing chronic liver disease in a cohort of individuals from Pakistan. A total of 587 subjects with chronic liver disease and 68 healthy control individuals were genotyped for the HSD17B13 rs7261356, MBOAT7 rs641738, GCKR rs1260326, PNPLA3 rs738409, TM6SF2 rs58542926 and PPP1R3B rs4841132 variants. The variants distribution between case and control group and their association with chronic liver disease were tested by chi-square and binary logistic analysis, respectively. We report for the first time that HSD17B13 variant results in a 50% reduced risk for chronic liver disease; while MBOAT7; GCKR and PNPLA3 variants increase this risk by more than 35% in Pakistani individuals. Our genetic analysis extends the protective role of the HSD17B13 variant against chronic liver disease and disease risk conferred by the MBOAT7; GCKR and PNPLA3 variants in the Pakistani population.
Collapse
Affiliation(s)
- Asad Mehmood Raja
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
| | - Imran Nazir Ahmad
- Department of Pathology and Laboratory Medicine, Shifa International Hospitals Ltd., Islamabad 44790, Pakistan;
| | - Faisal Saud Dar
- Liver Transplantation, Hepatobiliary and Pancreatic Services Unit, Shifa International Hospitals Ltd., Islamabad 44790, Pakistan;
| | - Syed Muhammad Saqlan Naqvi
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Muhammad Moaeen-ud-Din
- Department of Animal Breeding and Genetics/National Center for Livestock Breeding, Genetics & Genomics, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Ghazala Kaukab Raja
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
- Department of Cardiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
- Correspondence: (S.R.); (R.M.M.); Tel.: +46-(0)313-426-735 (S.R.); +46-(0)31342186 (R.M.M.)
| | - Rosellina Margherita Mancina
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
- Correspondence: (S.R.); (R.M.M.); Tel.: +46-(0)313-426-735 (S.R.); +46-(0)31342186 (R.M.M.)
| |
Collapse
|
38
|
Krawczyk M, Liebe R, Lammert F. Toward Genetic Prediction of Nonalcoholic Fatty Liver Disease Trajectories: PNPLA3 and Beyond. Gastroenterology 2020; 158:1865-1880.e1. [PMID: 32068025 DOI: 10.1053/j.gastro.2020.01.053] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is on the verge of becoming the leading cause of liver disease. NAFLD develops at the interface between environmental factors and inherited predisposition. Genome-wide association studies, followed by exome-wide analyses, led to identification of genetic risk variants (eg, PNPLA3, TM6SF2, and SERPINA1) and key pathways involved in fatty liver disease pathobiology. Functional studies improved our understanding of these genetic factors and the molecular mechanisms underlying the trajectories from fat accumulation to fibrosis, cirrhosis, and cancer over time. Here, we summarize key NAFLD risk genes and illustrate their interactions in a 3-dimensional "risk space." Although NAFLD genomics sometimes appears to be "lost in translation," we envision clinical utility in trial design, outcome prediction, and NAFLD surveillance.
Collapse
Affiliation(s)
- Marcin Krawczyk
- Department of Medicine II (Gastroenterology and Endocrinology), Saarland University Medical Center, Saarland University, Homburg; Laboratory of Metabolic Liver Diseases, Center for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Roman Liebe
- Department of Medicine II (Gastroenterology and Endocrinology), Saarland University Medical Center, Saarland University, Homburg; Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Frank Lammert
- Department of Medicine II (Gastroenterology and Endocrinology), Saarland University Medical Center, Saarland University, Homburg.
| |
Collapse
|
39
|
Jeon S, Carr R. Alcohol effects on hepatic lipid metabolism. J Lipid Res 2020; 61:470-479. [PMID: 32029510 DOI: 10.1194/jlr.r119000547] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease with significant morbidity and mortality worldwide. ALD begins with simple hepatic steatosis and progresses to alcoholic steatohepatitis, fibrosis, and cirrhosis. The severity of hepatic steatosis is highly associated with the development of later stages of ALD. This review explores the disturbances of alcohol-induced hepatic lipid metabolism through altered hepatic lipid uptake, de novo lipid synthesis, fatty acid oxidation, hepatic lipid export, and lipid droplet formation and catabolism. In addition, we review emerging data on the contributions of genetics and bioactive lipid metabolism in alcohol-induced hepatic lipid accumulation.
Collapse
Affiliation(s)
- Sookyoung Jeon
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Rotonya Carr
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
40
|
Romeo S, Sanyal A, Valenti L. Leveraging Human Genetics to Identify Potential New Treatments for Fatty Liver Disease. Cell Metab 2020; 31:35-45. [PMID: 31914377 DOI: 10.1016/j.cmet.2019.12.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023]
Abstract
Fatty liver disease (FLD), including its more severe pathologies, namely steatohepatitis, hepatocarcinoma, and cirrhosis, is the most common cause of chronic liver disease worldwide and is projected to become the leading cause of hepatocellular carcinoma and end-stage liver disease. FLD is heterogeneous with multiple etiologies and diverse histological phenotypes, so therapies will ultimately need to be individualized for relevant targets. Inherited factors contribute to FLD, and most of the genetic variation influencing liver disease development and progression is derived from genes involved in lipid biology, including PNPLA3, TM6SF2, GCKR, MBOAT7, and HSD17B13. From this point of view, we focus in this perspective on how human molecular genetics of FLD have highlighted defects in hepatic lipid handling as a major common mechanism of its pathology and how this insight could be leveraged to treat and prevent its more serious complications.
Collapse
Affiliation(s)
- Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda, Pad Marangoni, Milan, Italy.
| |
Collapse
|
41
|
Sun L, Khan A, Zhang H, Han S, Habulieti X, Wang R, Zhang X. Phenotypic Characterization of Intellectual Disability Caused by MBOAT7 Mutation in Two Consanguineous Pakistani Families. Front Pediatr 2020; 8:585053. [PMID: 33335874 PMCID: PMC7736038 DOI: 10.3389/fped.2020.585053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022] Open
Abstract
A homozygous in-frame deletion (c. 758_778del; p. Glu253_Ala259del) in membrane-bound O-acyltransferase family member 7 (MBOAT7), also known as lysophosphatidylinositol acyltransferase (LPIAT1), was previously reported to be the genetic cause of intellectual disability (ID) in consanguineous families from Pakistan. Here, we identified two additional Pakistani consanguineous families with severe ID individuals sharing the same homozygous variant. Thus, we provide further evidence to support this MBOAT7 mutation as a potential founder variant. To understand the genotype-phenotype relationships of the in-frame deletion in the MBOAT7 gene, we located the variant in the fifth transmembrane domain of the protein and determined that it causes steric hindrance to the formation of an α-helix and hydrogen bond, possibly influencing its effectiveness as a functional transmembrane protein. Moreover, extensive neuropsychological observations, clinical interviews and genetic analysis were performed on 6 patients from the 2 families. We characterized the phenotype of the patients and noted the serious outcome of severe paraplegia. Thus, optimal management for symptom alleviation and appropriate screening in these patients are crucial.
Collapse
Affiliation(s)
- Liwei Sun
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Amjad Khan
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Han Zhang
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Shirui Han
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaerbati Habulieti
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Rongrong Wang
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Zhang
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Lin YC, Wu CC, Ni YH. New Perspectives on Genetic Prediction for Pediatric Metabolic Associated Fatty Liver Disease. Front Pediatr 2020; 8:603654. [PMID: 33363067 PMCID: PMC7755886 DOI: 10.3389/fped.2020.603654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic or recently re-defined metabolic associated fatty liver disease (MAFLD), a spectrum of progressive hepatic disease, has become a public health issue in obese children and adolescents. MAFLD is a complex metabolic disease strongly associated with obesity and insulin resistance. It is not known why not every obese subject will develop MAFLD. Different ethnic/racial groups display differences in MAFLD prevalence, indicating genetic factor plays a role. In the past two decades, sequence variations in genetic loci, including PNPLA3, TM6SF2, GCKR, MBOAT7, HSD17B13, etc. have been shown to confer susceptibility to MAFLD in children and adults. This review article provides an updated viewpoint of genetic predictors related to pediatric MAFLD. We discuss whether these susceptible genes can be clinically used for risk stratification and personalized care. Understanding human genetics and molecular mechanisms can give important information not only for prediction of risk but also on how to design drugs. In view of current epidemic of MAFLD worldwide, it is necessary to identify which children with MAFLD progress rapidly and need earlier intervention. In the future, a comprehensive analysis of individualized genetic and environmental factors may help assess the risk of children with MAFLD and personalize their treatment.
Collapse
Affiliation(s)
- Yu-Cheng Lin
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Healthcare Administration, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Chi-Chien Wu
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Hsuan Ni
- Departments of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
43
|
Khan S, Rawlins LE, Harlalka GV, Umair M, Ullah A, Shahzad S, Javed M, Baple EL, Crosby AH, Ahmad W, Gul A. Homozygous variants in the HEXB and MBOAT7 genes underlie neurological diseases in consanguineous families. BMC MEDICAL GENETICS 2019; 20:199. [PMID: 31852446 PMCID: PMC6921424 DOI: 10.1186/s12881-019-0907-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neurological disorders are a common cause of morbidity and mortality within Pakistani populations. It is one of the most important challenges in healthcare, with significant life-long socio-economic burden. METHODS We investigated the cause of disease in three Pakistani families in individuals with unexplained autosomal recessive neurological conditions, using both genome-wide SNP mapping and whole exome sequencing (WES) of affected individuals. RESULTS We identified a homozygous splice site variant (NM_000521:c.445 + 1G > T) in the hexosaminidase B (HEXB) gene confirming a diagnosis of Sandhoff disease (SD; type II GM2-gangliosidosis), an autosomal recessive lysosomal storage disorder caused by deficiency of hexosaminidases in a single family. In two further unrelated families, we identified a homozygous frameshift variant (NM_024298.3:c.758_778del; p.Glu253_Ala259del) in membrane-bound O-acyltransferase family member 7 (MBOAT7) as the likely cause of disease. MBOAT7 gene variants have recently been identified as a cause of intellectual disability (ID), seizures and autistic features. CONCLUSIONS We identified two metabolic disorders of lipid biosynthesis within three Pakistani families presenting with undiagnosed neurodevelopmental conditions. These findings enabled an accurate neurological disease diagnosis to be provided for these families, facilitating disease management and genetic counselling within this population. This study consolidates variation within MBOAT7 as a cause of neurodevelopmental disorder, broadens knowledge of the clinical outcomes associated with MBOAT7-related disorder, and confirms the likely presence of a regionally prevalent founder variant (c.758_778del; p.Glu253_Ala259del) in Pakistan.
Collapse
Affiliation(s)
- Shazia Khan
- Department of Biological Sciences, International Islamic University Islamabad, H-10, Islamabad, 44000, Pakistan.,Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Lettie E Rawlins
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.,Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Gladstone Road, Exeter, EX1 2ED, UK
| | - Gaurav V Harlalka
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.,Rajarshi Shahu College of Pharmacy, Malvihir Buldana, Maharashtra, Buldana, 443001, India
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), P.O. Box 3660, Riyadh, 11481, Kingdom of Saudi Arabia
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Shaheen Shahzad
- Department of Biological Sciences, International Islamic University Islamabad, H-10, Islamabad, 44000, Pakistan
| | - Muhammad Javed
- National Institute for Genomics & Advanced Biotechnology, NARC, Islamabad, 45500, Pakistan
| | - Emma L Baple
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.,Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Gladstone Road, Exeter, EX1 2ED, UK
| | - Andrew H Crosby
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asma Gul
- Department of Biological Sciences, International Islamic University Islamabad, H-10, Islamabad, 44000, Pakistan.
| |
Collapse
|
44
|
Dong XC. PNPLA3-A Potential Therapeutic Target for Personalized Treatment of Chronic Liver Disease. Front Med (Lausanne) 2019; 6:304. [PMID: 31921875 PMCID: PMC6927947 DOI: 10.3389/fmed.2019.00304] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023] Open
Abstract
Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipid droplet-associated protein that has been shown to have hydrolase activity toward triglycerides and retinyl esters. The first evidence of PNPLA3 being associated with fatty liver disease was revealed by a genome-wide association study (GWAS) of Hispanic, African American, and European American individuals in the Dallas Heart Study back in 2008. Since then, numerous GWAS reports have shown that PNPLA3 rs738409[G] (148M) variant is associated with hepatic triglyceride accumulation (steatosis), inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma regardless of etiologies including alcohol- or obesity-related and others. The frequency of PNPLA3(148M) variant ranges from 17% in African Americans, 23% in European Americans, to 49% in Hispanics in the Dallas Heart Study. Due to high prevalence of obesity and alcohol consumption in modern societies, the PNPLA3(148M) gene variant and environment interaction poses a serious concern for public health, especially chronic liver diseases including alcohol-related liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Therefore, PNPLA3(148M) variant is a potential therapeutic target for chronic liver disease in the rs738409 allele carriers. Currently, there is no approved drug specifically targeting the PNPLA3(148M) variant yet. With additional mechanistic studies, novel therapeutic strategies are expected to be developed for the treatment of the PNPLA3(148M) variant-associated chronic liver diseases in the near future.
Collapse
Affiliation(s)
- Xiaocheng Charlie Dong
- Center for Diabetes and Metabolic Diseases, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
45
|
Stols-Gonçalves D, Hovingh GK, Nieuwdorp M, Holleboom AG. NAFLD and Atherosclerosis: Two Sides of the Same Dysmetabolic Coin? Trends Endocrinol Metab 2019; 30:891-902. [PMID: 31630897 DOI: 10.1016/j.tem.2019.08.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is strongly increasing and may put patients at increased risk for atherosclerotic cardiovascular disease (asCVD). Both disease phenotypes often co-occur, in the case of obesity, insulin resistance, diabetes mellitus type 2, and the metabolic syndrome. We explore the pathogenesis of NAFLD, the epidemiology of asCVD in NAFLD patients, shared drivers of both phenotypes, and factors caused by NAFLD that contribute to asCVD. Genetic studies support that NAFLD may drive asCVD through mixed hyperlipidemia. Next, we discuss the prospects of lifestyle improvement and pharmacological treatment of NAFLD for asCVD risk reduction. Finally, we point out that earlier identification of patients with NAFLD should be pursued by increasing awareness of the association of these two phenotypes and collaboration between the involved physicians.
Collapse
Affiliation(s)
- Daniela Stols-Gonçalves
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Blunsom NJ, Cockcroft S. Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158471. [PMID: 31173893 DOI: 10.1016/j.bbalip.2019.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022]
Abstract
Phosphatidylinositol (PI) is a minor phospholipid with a characteristic fatty acid profile; it is highly enriched in stearic acid at the sn-1 position and arachidonic acid at the sn-2 position. PI is phosphorylated into seven specific derivatives, and individual species are involved in a vast array of cellular functions including signalling, membrane traffic, ion channel regulation and actin dynamics. De novo PI synthesis takes place at the endoplasmic reticulum where phosphatidic acid (PA) is converted to PI in two enzymatic steps. PA is also produced at the plasma membrane during phospholipase C signalling, where hydrolysis of phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) leads to the production of diacylglycerol which is rapidly phosphorylated to PA. This PA is transferred to the ER to be also recycled back to PI. For the synthesis of PI, CDP-diacylglycerol synthase (CDS) converts PA to the intermediate, CDP-DG, which is then used by PI synthase to make PI. The de novo synthesised PI undergoes remodelling to acquire its characteristic fatty acid profile, which is altered in p53-mutated cancer cells. In mammals, there are two CDS enzymes at the ER, CDS1 and CDS2. In this review, we summarise the de novo synthesis of PI at the ER and the enzymes involved in its subsequent remodelling to acquire its characteristic acyl chains. We discuss how CDS, the rate limiting enzymes in PI synthesis are regulated by different mechanisms. During phospholipase C signalling, the CDS1 enzyme is specifically upregulated by cFos via protein kinase C.
Collapse
Affiliation(s)
- Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|