1
|
Qi F, Li T, Deng Q, Fan A. The impact of aerobic and anaerobic exercise interventions on the management and outcomes of non-alcoholic fatty liver disease. Physiol Res 2024; 73:671-686. [PMID: 39530904 PMCID: PMC11629946 DOI: 10.33549/physiolres.935244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/25/2024] [Indexed: 12/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder that includes non-alcoholic hepatic steatosis without or with moderate inflammation and non-alcoholic steatohepatitis (NASH), characterized by necroinflammation and a more rapid progression of fibrosis. It is the primary pathological basis for hepatocellular carcinoma. With its prevalence escalating annually, NAFLD has emerged as a global health epidemic, presenting a significant hazard to public health worldwide. Existing studies have shown that physical activity and exercise training have a positive effect on NAFLD. However, the extent to which exercise improves NAFLD depends on the type, intensity, and duration. Therefore, the type of exercise that has the best effect on improving NAFLD remains to be explored. To date, the most valuable discussions involve aerobic and anaerobic exercise. Exercise intervenes in the pathological process of NAFLD by regulating physiological changes in cells through multiple signaling pathways. The review aims to summarize the signaling pathways affected by two different exercise types associated with the onset and progression of NAFLD. It provides a new basis for improving and managing NAFLD in clinical practice.
Collapse
Affiliation(s)
- F Qi
- Chongqing College of International Business and Economics, Southwest University, Chongqing, China, College of Physical Education, Southwest University, Chongqing, China.
| | | | | | | |
Collapse
|
2
|
Yoon EJ, Lee SR, Ortutu BF, Kim JO, Jaiswal V, Baek S, Yoon SI, Lee SK, Yoon JH, Lee HJ, Cho JA. Effect of Endurance Exercise Training on Gut Microbiota and ER Stress. Int J Mol Sci 2024; 25:10742. [PMID: 39409071 PMCID: PMC11476978 DOI: 10.3390/ijms251910742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Regular exercise as part of one's lifestyle is well-recognized for its beneficial effect on several diseases such as cardiovascular disease and obesity; however, many questions remain unanswered regarding the effects of exercise on the gut environment. This study aimed to investigate the impact of long-term endurance exercise on modulating inflammation and endoplasmic reticulum (ER) stress. Fifteen-week-old male Sprague-Dawley (SD) rats were subjected to six months of endurance treadmill training, while age-matched controls remained sedentary. Results showed that IL-6 mRNA levels in colon tissues were significantly higher in the exercise group compared to the sedentary group. Exercise activated a significant ER stress-induced survival pathway by increasing BiP and phosphorylation of eIF2α (p-eIF2α) expressions in the liver and colon, while decreasing CHOP in the liver. Gene expressions of MUC2, Occludin, and Claudin-2 were increased in the colon of the exercise group, indicating enhanced intestinal integrity. Furthermore, the data showed a positive correlation between microbiota α-diversity and BiP (r = 0.464~0.677, p < 0.05). Populations of Desulfovibrio C21 c20 were significantly greater in the exercise group than the sedentary group. Additionally, predicted functions of the gut microbial community in terms of enzymes and pathways supported the enhancement of fatty-acid-related processes by exercise. These findings suggest that prolonged endurance exercise can affect the colon environment, which is likely related to changes in inflammation, ER stress, mucin layers and tight junctions, associated with modifications in the gut microbiome.
Collapse
Affiliation(s)
- Eun Ji Yoon
- Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Republic of Korea; (E.J.Y.); (S.-I.Y.)
| | - So Rok Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| | - Beulah Favour Ortutu
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| | - Jong-Oh Kim
- Department of Sport Science, Hannam University, Daejeon 34430, Republic of Korea; (J.-O.K.); (J.H.Y.)
| | - Varun Jaiswal
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea;
| | - Sooyeon Baek
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| | - Su-In Yoon
- Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Republic of Korea; (E.J.Y.); (S.-I.Y.)
| | - Sang Ki Lee
- Department of Sport Science, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Jin Hwan Yoon
- Department of Sport Science, Hannam University, Daejeon 34430, Republic of Korea; (J.-O.K.); (J.H.Y.)
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea;
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| |
Collapse
|
3
|
Abdel-Halim NHM, Eid EA, Yehya YM, Taha M, Mosa AAH, Ammar O, Nasr ANA, Hussin E, Hussein AM. Effect of New Antidiabetics on Steatosis in Nerve Tissues and Nerve Conduction Velocity: Possible Role of Nerve Growth Factor (NGF)/Synaptophysin and Nrf2/HO-1 Pathways. Cureus 2024; 16:e65726. [PMID: 39211670 PMCID: PMC11358857 DOI: 10.7759/cureus.65726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES The current study aims to investigate the impact of the GLP1 analog (semaglutide) and SGLT2 inhibitor (dapagliflozin) on nerve functions, morphology, and the underlying mechanisms involving nerve growth factor (NGF)/synaptophysin and Nrf2/HO-1 pathways in obese rats. METHODS Forty male Sprague Dawley rats, aged six to eight weeks, were classified into five groups; normal group (high-fat diet {HFD} for 12 weeks, metformin group (HFD for 12 weeks + metformin in last four weeks), dapagliflozin group (HFD for 12 weeks +dapagliflozin in last four weeks, semaglutide group (HFD for 12 weeks + semaglutide in last four weeks). At the end of the experiment, the sciatic nerve was collected for nerve conduction study, oxidative stress marker (malondialdehyde, i.e., MDA), real-time polymerase chain reaction (PCR) study (for HO-1 and Nrf2), oil red O staining, electron microscopic examination and immunohistochemistry for NGF and synaptophysin. RESULTS The HFD group showed a significant rise in blood glucose, serum lipids, homeostatic model assessment (HOMA) index, lipid deposition in nerve tissues, and lipid peroxidation (MDA) in nerve tissues with significant attenuation in nerve conduction velocity (NCV), the expression of Nrf2 and HO-1 genes and significant attenuation in area stained with NGF and synaptophysin. On the other hand, pretreatment with either dapagliflozin or semaglutide led to considerable enhancement in the deteriorated serum and nerve tissue parameters and reversed the pathological changes. CONCLUSION New antidiabetic drugs like SGLT2 inhibitors (more powerful) and GLP1 analog might have neuroprotective beneficial effects besides controlling the glycemic state in obese rats. This effect may result from reduced oxidative stress and increased Nrf2 levels, HO-1, synaptophysin, and NGF in the nerve tissues of obese rats.
Collapse
Affiliation(s)
- Nehal H M Abdel-Halim
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Elsayed A Eid
- Department of Internal Medicine, Faculty of Medicine, Delta University for Science and Technology, Gamasa, EGY
| | - Yomna M Yehya
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Medhat Taha
- Department of Anatomy, Umm Al-Qura University, Al-Qunfudhah, SAU
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Ahmed A H Mosa
- Department of Neurology, Faculty of Medicine, Delta University for Science and Technology, Gamasa, EGY
| | - Omar Ammar
- Department of Basic Sciences, Delta University for Science and Technology, Gamasa, EGY
| | - Ahmed N A Nasr
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Emadeldeen Hussin
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| |
Collapse
|
4
|
Zhang J, Hu W, Zou Z, Li Y, Kang F, Li J, Dong S. The role of lipid metabolism in osteoporosis: Clinical implication and cellular mechanism. Genes Dis 2024; 11:101122. [PMID: 38523674 PMCID: PMC10958717 DOI: 10.1016/j.gendis.2023.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 03/26/2024] Open
Abstract
In recent years, researchers have become focused on the relationship between lipids and bone metabolism balance. Moreover, many diseases related to lipid metabolism disorders, such as nonalcoholic fatty liver disease, atherosclerosis, obesity, and menopause, are associated with osteoporotic phenotypes. It has been clinically observed in humans that these lipid metabolism disorders promote changes in osteoporosis-related indicators bone mineral density and bone mass. Furthermore, similar osteoporotic phenotype changes were observed in high-fat and high-cholesterol-induced animal models. Abnormal lipid metabolism (such as increased oxidized lipids and elevated plasma cholesterol) affects bone microenvironment homeostasis via cross-organ communication, promoting differentiation of mesenchymal stem cells to adipocytes, and inhibiting commitment towards osteoblasts. Moreover, disturbances in lipid metabolism affect the bone metabolism balance by promoting the secretion of cytokines such as receptor activator of nuclear factor-kappa B ligand by osteoblasts and stimulating the differentiation of osteoclasts. Conclusively, this review addresses the possible link between lipid metabolism disorders and osteoporosis and elucidates the potential modulatory mechanisms and signaling pathways by which lipid metabolism affects bone metabolism balance. We also summarize the possible approaches and prospects of intervening lipid metabolism for osteoporosis treatment.
Collapse
Affiliation(s)
- Jing Zhang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhi Zou
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuheng Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jianmei Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
5
|
Baek KW, Won JH, Xiang YY, Woo DK, Park Y, Kim JS. Exercise intensity impacts the improvement of metabolic dysfunction-associated steatotic liver disease via variations of monoacylglycerol O-acyltransferase 1 expression. Clin Res Hepatol Gastroenterol 2024; 48:102263. [PMID: 38061546 DOI: 10.1016/j.clinre.2023.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The involvement of monoacylglycerol O-acyltransferase 1 (MOGAT1) in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) has been recognized. While exercise is recommended for the improvement of obesity and MASLD, the impact of exercise intensity remains unclear. This study aimed to examine the influence of exercise intensity on MOGAT1 expression in high-fat diet (HFD)-induced obese mice with MASLD. METHOD Male C57BL/6 mice aged 6 weeks were subjected to either a regular or HFD with 60 % fat content for 8 weeks. The mice were categorized into 5 groups based on their diet and exercise intensity: normal diet group (ND), HFD group, low-intensity exercise with HFD group (HFD+LIE), moderate-intensity exercise with HFD group (HFD+MIE), and high-intensity exercise (HIE) with HFD group (HFD+HIE). The duration of running was adjusted to ensure uniform exercise load across groups (total distance = 900 m): HFD+LIE at 12 m/min for 75 min, HFD+MIE at 15 m/min for 60 min, and HFD+HIE at 18 m/min for 50 min. RESULTS Lipid droplet size and MASLD activity score were significantly lower in the HFD+HIE group compared to other exercise-intensity groups (p < 0.05). Among the 3 intensity exercise groups, the lowest MOGAT1 protein expression was found in the HFD+HIE group (p < 0.05). CONCLUSION This study reveals that high-intensity exercise has the potential to mitigate MASLD development, partly attributed to the downregulation of MOGAT1 expression.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea; Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong-Hwa Won
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Ying-Ying Xiang
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Dong Kyun Woo
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea; College of Pharmacy, Gyeongsang National University, Jinju, 52828, Korea
| | - Yoonjung Park
- Department of Health and Human Performance, University of Houston, Houston, 77204, USA
| | - Ji-Seok Kim
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea; Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea; Department of Health and Human Performance, University of Houston, Houston, 77204, USA.
| |
Collapse
|
6
|
Uddin N, Acter T, Rashid MH, Chowdhury AI, Jahan EA. Coping with the COVID-19 pandemic by strengthening immunity as a nonpharmaceutical intervention: A major public health challenge. Health Sci Rep 2023; 6:e1562. [PMID: 37720166 PMCID: PMC10500053 DOI: 10.1002/hsr2.1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Background and Aims The global Coronavirus-2 outbreak has emerged as a significant threat to majority of individuals around the world. The most effective solution for addressing this viral outbreak is through vaccination. Simultaneously, the virus's mutation capabilities pose a potential risk to the effectiveness of both vaccines and, in certain instances, newly developed drugs. Conversely, the human body's immune system exhibits a robust ability to combat viral outbreaks with substantial confidence, as evidenced by the ratio of fatalities to affected individuals worldwide. Hence, an alternative strategy to mitigate this pandemic could involve enhancing the immune system's resilience. Methods The research objective of the review is to acquire a comprehensive understanding of the role of inflammation and immunity in COVID-19. The pertinent literature concerning immune system functions, the impact of inflammation against viruses like SARS-CoV-2, and the connection between nutritional interventions, inflammation, and immunity was systematically explored. Results Enhancing immune function involves mitigating the impact of key factors that negatively influence the immune response. Strengthening the immune system against emerging diseases can be achieved through nonpharmaceutical measures such as maintaining a balanced nutrition, engaging in regular exercise, ensuring adequate sleep, and managing stress. Conclusion This review aims to convey the significance of and provide recommendations for immune-strengthening strategies amidst the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Nizam Uddin
- Department of Nutrition and Food Engineering, Faculty of Allied Health ScienceDaffodil International UniversityDhakaBangladesh
| | - Thamina Acter
- Department of Mathematical and Physical SciencesEast West UniversityDhakaBangladesh
| | - Md. Harun‐Ar Rashid
- Department of Nutrition and Food Engineering, Faculty of Allied Health ScienceDaffodil International UniversityDhakaBangladesh
| | - Akibul Islam Chowdhury
- Department of Nutrition and Food Engineering, Faculty of Allied Health ScienceDaffodil International UniversityDhakaBangladesh
| | - Effat Ara Jahan
- Department of Nutrition and Food Engineering, Faculty of Allied Health ScienceDaffodil International UniversityDhakaBangladesh
| |
Collapse
|
7
|
Barrón-Cabrera E, Soria-Rodríguez R, Amador-Lara F, Martínez-López E. Physical Activity Protocols in Non-Alcoholic Fatty Liver Disease Management: A Systematic Review of Randomized Clinical Trials and Animal Models. Healthcare (Basel) 2023; 11:1992. [PMID: 37510432 PMCID: PMC10379178 DOI: 10.3390/healthcare11141992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with other metabolic disease and cardiovascular disease. Regular exercise reduces hepatic fat content and could be the first-line treatment in the management of NAFLD. This review aims to summarize the current evidence of the beneficial effects of exercise training and identify the molecular pathways involved in the response to exercise to define their role in the resolution of NAFLD both in animal and human studies. According to the inclusion criteria, 43 animal studies and 14 RCTs were included in this systematic review. Several exercise modalities were demonstrated to have a positive effect on liver function. Physical activity showed a strong association with improvement in inflammation, and reduction in steatohepatitis and fibrosis in experimental models. Furthermore, both aerobic and resistance exercise in human studies were demonstrated to reduce liver fat, and to improve insulin resistance and blood lipids, regardless of weight loss, although aerobic exercises may be more effective. Resistance exercise is more feasible for patients with NAFLD with poor cardiorespiratory fitness. More effort and awareness should be dedicated to encouraging NAFLD patients to adopt an active lifestyle and benefit from it its effects in order to reduce this growing public health problem.
Collapse
Affiliation(s)
- Elisa Barrón-Cabrera
- Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan 80010, Mexico
| | - Raúl Soria-Rodríguez
- Program in Physical Activity and Lifestyle, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Fernando Amador-Lara
- Department of Medical Clinics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular and Genomic Biology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| |
Collapse
|
8
|
Li F, Wang D, Ba X, Liu Z, Zhang M. The comparative effects of exercise type on motor function of patients with Parkinson's disease: A three-arm randomized trial. Front Hum Neurosci 2022; 16:1033289. [PMID: 36530197 PMCID: PMC9751317 DOI: 10.3389/fnhum.2022.1033289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Yang-ge dancing is a culturally specific exercise in which people are required to perform motor skills in coordination with rhythmic music. As an integrated exercise with both physical (decelerating the progression of aged-related motor function degeneration) and mental benefits, it has gained great popularity in China, especially among middle-aged and older adults. It remains largely unknown whether Yang-ge dancing (YG) can effectively improve main symptoms of Parkinson's disease (PD), while conventional exercise rehabilitation program has been recommended in the hospital setting. To this end, this study aimed to investigate the comparative effects of exercise therapy on motor function of PD patients. MATERIALS AND METHODS A sample of 51 PD patients were randomly assigned to Yang-ge dancing, conventional exercise, or conventional exercise with music. Participants in each group performed 60 min per session, five sessions per week of interventions for 4 weeks. All the participants were assessed using the Unified Parkinson's Disease Rating Scale-motor examination, Berg balance test, timed up and go test, and Purdue pegboard test. Motor performances were examined before and after intervention. RESULTS All the three groups were benefited from exercise. Compared to conventional exercise, the Yang-ge dancing and conventional exercise with music had additional positive effects in mobility with reference to baseline.In addition, compared to the two conventional exercise groups (either with/without music), the Yang-ge dancing further enhanced manual dexterity. CONCLUSION Exercise with rhythmic auditory stimulation optimized mobility in PD, while YG dance specifically contributed to improvement in manual dexterity. CLINICAL TRIAL REGISTERATION [https://clinicaltrials.gov/], identifier [ChiCTR2200061252].
Collapse
Affiliation(s)
- Fang Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dongyu Wang
- Department of Neurology, The Center Hospital of Jinzhou, Jinzhou, China
| | - Xiaohong Ba
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhan Liu
- Department of Physical Education and Health Education, Springfield College, Springfield, MA, United States
| | - Meiqi Zhang
- Department of Physical Education and Health Education, Springfield College, Springfield, MA, United States
- Learning-Based Recovery Center, Yale University, New Haven, CT, United States
| |
Collapse
|
9
|
Al-thepyani M, Algarni S, Gashlan H, Elzubier M, Baz L. Evaluation of the Anti-Obesity Effect of Zeaxanthin and Exercise in HFD-Induced Obese Rats. Nutrients 2022; 14:nu14234944. [PMID: 36500974 PMCID: PMC9737220 DOI: 10.3390/nu14234944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity is a worldwide epidemic associated with many health problems. One of the new trends in health care is the emphasis on regular exercise and a healthy diet. Zeaxanthin (Zea) is a carotenoid with many beneficial effects on human health. The aim of this study was to investigate whether the combination of Zea and exercise had therapeutic effects on obesity induced by an HFD in rats. Sixty male Wistar rats were randomly divided into five groups of twelve: rats fed a standard diet; rats fed a high-fat diet (HFD); rats fed an HFD with Zea; rats fed an HFD with Exc; and rats fed an HFD with both Zea and Exc. To induce obesity, rats were fed an HFD for twelve weeks. Then, Zea and exercise were introduced with the HFD for five weeks. The results showed that the HFD significantly increased visceral adipose tissue, oxidative stress, and inflammation biomarkers and reduced insulin, high-density lipoprotein, and antioxidant parameters. Treatments with Zea, Exc, and Zea plus Exc reduced body weight gain, triacylglycerol, glucose, total cholesterol, and nitric oxide levels and significantly increased catalase and insulin compared with the HFD group. This study demonstrated that Zea administration and Exc performance appeared to effectively alleviate the metabolic alterations induced by an HFD. Furthermore, Zea and Exc together had a better effect than either intervention alone.
Collapse
Affiliation(s)
- Mona Al-thepyani
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Salha Algarni
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Hana Gashlan
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Elzubier
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
10
|
Li Y, Cen CQ, Liu B, Zhou L, Huang XM, Liu GY. Overexpression of circ PTK2 suppresses the progression of nonalcoholic fatty liver disease via the miR-200c/SIK2/PI3K/Akt axis. Kaohsiung J Med Sci 2022; 38:869-878. [PMID: 35791807 DOI: 10.1002/kjm2.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/01/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
Excessive hepatic lipid accumulation is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A previous study showed that the circular RNA (circRNA) PTK2 was significantly downregulated in NAFLD mice. However, the detailed function of circ PTK2 in NAFLD remains unclear. A high-fat diet (HFD) was used to establish a mouse model of NAFLD, and free fatty acid (FFA) treatment was used to establish an in vitro model of NAFLD. Oil red O staining was used to evaluate lipid accumulation. The pathological changes in mice were observed by HE staining. Western blotting and RT-qPCR were applied to assess protein and mRNA levels, respectively. A dual luciferase reporter assay and RIP were used to explore the relationship among circ PTK2, miR-200c and SIK2. Circ PTK2 and SIK2 were downregulated and miR-200c was upregulated in NAFLD. Upregulation of circ PTK2 reversed lipid accumulation in FFA-treated HepG2 cells. Moreover, circ PTK2 bound to miR-200c, and SIK2 was identified as the direct target of miR-200c. Moreover, the miR-200c inhibitor-induced decrease in lipid accumulation was reversed by SIK2 knockdown. Furthermore, the impact of circ PTK2 overexpression on PI3K/Akt signaling was partially reversed by SIK2 silencing. Circ PTK2 overexpression alleviates NAFLD development via the miR-200c/SIK2/PI3K/Akt axis. Thus, our work might provide new methods for NAFLD treatment.
Collapse
Affiliation(s)
- Yong Li
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao-Qun Cen
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Liu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang-Miao Huang
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Geng-Yan Liu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Aliakbari M, Saghebjoo M, Sarir H, Hedayati M. Hydroalcoholic extract of dill and aerobic training prevents high-fat diet-induced metabolic risk factors by improving miR-33 and miR-223 expression in rat liver. J Food Biochem 2022; 46:e14195. [PMID: 35460089 DOI: 10.1111/jfbc.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Abstract
Exercise training and medicinal herb supplementation may improve microRNAs (miRNAs) expression associated with obesity. This study aimed to assess the effects of 10 weeks of aerobic training (AT) and dill extract (DE) on miR-33 and miR-223 expression of liver in high-fat diet (HFD)-induced obese rats. Forty male Wistar rats were fed a defined high-fat (n = 32) and standard (n = 8, nonobese control [NC]) diet. After obesity induction, obese rats were randomly allocated to four groups: AT, DE, AT + DE, and obese control (OC). Rats were euthanized and plasma and liver tissue samples were collected after the intervention. The liver expression of miR-33 was lower in the AT, DE, AT + DE, and NC groups compared with the OC group. Also, the liver miR-223 expression was higher in the AT, DE, AT + DE, and NC groups compared with the OC group. Moreover, the liver expression of miR-223 in the AT + DE group was higher compared with the AT and DE groups. The AT, DE, AT + DE, and NC groups had lower liver TC compared with the OC group. Also, the plasma level of apolipoprotein B (Apo B) was significantly lower, and liver HDL-C was significantly higher in the AT + DE and NC groups compared with the OC group. These findings show that long-term AT combined with the intake of DE may improve the plasma levels of Apo B, and TC and HDL-C levels in the liver, which is probably due to AT and DE positive effects on miR-33 and miR-223 in the liver of obese rats. PRACTICAL APPLICATIONS: Aerobic training reduces overweight and obesity health problems, however, the duration and intensity of the exercise training distinguish between individuals. We used an integrated approach combining pharmacological and non-pharmacological as a medical strategy to prevent HFD-induced metabolic injury in obese rats. The present results discovered that a combination of AT + DE intervention improves the miR-33 and miR-223 in the liver of obese rats.
Collapse
Affiliation(s)
- Mahdi Aliakbari
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Marziyeh Saghebjoo
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Guan Y, Yan Z. Molecular Mechanisms of Exercise and Healthspan. Cells 2022; 11:872. [PMID: 35269492 PMCID: PMC8909156 DOI: 10.3390/cells11050872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Healthspan is the period of our life without major debilitating diseases. In the modern world where unhealthy lifestyle choices and chronic diseases taper the healthspan, which lead to an enormous economic burden, finding ways to promote healthspan becomes a pressing goal of the scientific community. Exercise, one of humanity's most ancient and effective lifestyle interventions, appears to be at the center of the solution since it can both treat and prevent the occurrence of many chronic diseases. Here, we will review the current evidence and opinions about regular exercise promoting healthspan through enhancing the functionality of our organ systems and preventing diseases.
Collapse
Affiliation(s)
- Yuntian Guan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Zhen Yan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Molecular Physiology and Biological Biophysics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
13
|
LncRNA HOTAIR regulates the lipid accumulation in non-alcoholic fatty liver disease via miR-130b-3p/ROCK1 axis. Cell Signal 2021; 90:110190. [PMID: 34774989 DOI: 10.1016/j.cellsig.2021.110190] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Excessive hepatic lipid accumulation can lead to the occurrence of non-alcoholic fatty liver disease. Previous study showed that upregulation of lncRNA HOTAIR significantly increased total cholesterol and triglyceride. However, the function of HOTAIR in lipid accumulation during the progression NAFLD remains unclear. METHODS High fat diet was used to mimic NAFLD in vivo, and free fatty acid was used to establish in vitro model of NAFLD. Oil red O staining was applied to test the lipid accumulation. The pathological changes in mice were observed by H&E staining. Western blot and qRT-PCR were applied to assess protein and mRNA levels, respectively. RIP assay was used to explore the relationship among HOTAIR, miR-130b-3p and ROCK1. RESULTS The level of HOTAIR was upregulated in NAFLD. Downregulation of HOTAIR reversed lipid accumulation in FFA-treated HepG2 cells and primary hepatocytes. Meanwhile, HOTAIR bound with miR-130b-3p, and ROCK1 was identified to be the direct target of miR-130b-3p. Moreover, miR-130b-3p mimics-caused lipid accumulation decrease was reversed by pcDNA3.1-ROCK1. Furthermore, the effect of miR-130b-3p mimics on p-AMPK2α and ROCK1 level was partially reversed by ROCK1 overexpression. CONCLUSION Knockdown of HOTAIR significantly inhibited the progression of NAFLD through mediation of miR-130b-3p/ROCK1 axis. Our study might shed new lights on exploring new methods against NAFLD.
Collapse
|
14
|
Lu X, Wang Z, Yang L, Yang C, Song M. Risk Factors of Atrial Arrhythmia in Patients With Liver Cirrhosis: A Retrospective Study. Front Cardiovasc Med 2021; 8:704073. [PMID: 34291096 PMCID: PMC8286998 DOI: 10.3389/fcvm.2021.704073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Liver cirrhosis is known to be associated with atrial arrhythmia. However, the risk factors for atrial arrhythmia in patients with liver cirrhosis remain unclear. This retrospective study aimed to investigate the risk factors for atrial arrhythmia in patients with liver cirrhosis. Methods: In the present study, we collected data from 135 patients with liver cirrhosis who were admitted to the Department of Gastroenterology at Shanghai Tongji Hospital. We examined the clinical information recorded, with the aim of identifying the risk factors for atrial arrhythmia in patients with liver cirrhosis. Multiple logistic regression analysis was used to screen for significant factors differentiating liver cirrhosis patients with atrial arrhythmia from those without atrial arrhythmia. Results: The data showed that there were seven significantly different factors that distinguished the group with atrial arrhythmia from the group without atrial arrhythmia. The seven factors were age, white blood cell count (WBC), albumin (ALB), serum Na+, B-type natriuretic peptide (BNP), ascites, and Child-Pugh score. The results of multivariate logistic regression analysis suggested that age (β = 0.094, OR = 1.098, 95% CI 1.039-1.161, P = 0.001) and ascites (β =1.354, OR = 3.874, 95% CI 1.202-12.483, P = 0.023) were significantly associated with atrial arrhythmia. Conclusion: In the present study, age and ascites were confirmed to be risk factors associated with atrial arrhythmia in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Xiya Lu
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhijing Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liu Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiyi Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Stott NL, Marino JS. High Fat Rodent Models of Type 2 Diabetes: From Rodent to Human. Nutrients 2020; 12:nu12123650. [PMID: 33261000 PMCID: PMC7761287 DOI: 10.3390/nu12123650] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Poor dietary habits contribute to increased incidences of obesity and related co-morbidities, such as type 2 diabetes (T2D). The biological, genetic, and pathological implications of T2D, are commonly investigated using animal models induced by a dietary intervention. In spite of significant research contributions, animal models have limitations regarding the translation to human pathology, which leads to questioning their clinical relevance. Important considerations include diet-specific effects on whole organism energy balance and glucose and insulin homeostasis, as well as tissue-specific changes in insulin and glucose tolerance. This review will examine the T2D-like phenotype in rodents resulting from common diet-induced models and their relevance to the human disease state. Emphasis will be placed on the disparity in percentages and type of dietary fat, the duration of intervention, and whole organism and tissue-specific changes in rodents. An evaluation of these models will help to identify a diet-induced rodent model with the greatest clinical relevance to the human T2D pathology. We propose that a 45% high-fat diet composed of approximately one-third saturated fats and two-thirds unsaturated fats may provide a diet composition that aligns closely to average Western diet macronutrient composition, and induces metabolic alterations mirrored by clinical populations.
Collapse
|
16
|
Zou Y, Qi Z. Understanding the Role of Exercise in Nonalcoholic Fatty Liver Disease: ERS-Linked Molecular Pathways. Mediators Inflamm 2020; 2020:6412916. [PMID: 32774148 PMCID: PMC7397409 DOI: 10.1155/2020/6412916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is globally prevalent and characterized by abnormal lipid accumulation in the liver, frequently accompanied by insulin resistance (IR), enhanced hepatic inflammation, and apoptosis. Recent studies showed that endoplasmic reticulum stress (ERS) at the subcellular level underlies these featured pathologies in the development of NAFLD. As an effective treatment, exercise significantly reduces hepatic lipid accumulation and thus alleviates NAFLD. Confusingly, these benefits of exercise are associated with increased or decreased ERS in the liver. Further, the interaction between diet, medication, exercise types, and intensity in ERS regulation is more confusing, though most studies have confirmed the benefits of exercise. In this review, we focus on understanding the role of exercise-modulated ERS in NAFLD and ERS-linked molecular pathways. Moderate ERS is an essential signaling for hepatic lipid homeostasis. Higher ERS may lead to increased inflammation and apoptosis in the liver, while lower ERS may lead to the accumulation of misfolded proteins. Therefore, exercise acts like an igniter or extinguisher to keep ERS at an appropriate level by turning it up or down, which depends on diet, medications, exercise intensity, etc. Exercise not only enhances hepatic tolerance to ERS but also prevents the malignant development of steatosis due to excessive ERS.
Collapse
Affiliation(s)
- Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
17
|
Kim TW, Baek KW, Yu HS, Ko IG, Hwang L, Park JJ. High-intensity exercise improves cognitive function and hippocampal brain-derived neurotrophic factor expression in obese mice maintained on high-fat diet. J Exerc Rehabil 2020; 16:124-131. [PMID: 32509696 PMCID: PMC7248433 DOI: 10.12965/jer.2040050.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
We wanted to find the intensity of exercise that could increase brain- derived neurotrophic factor (BDNF) expression and improve spatial learning and memory without dietary control. C57BL/6 mice were fed a 60% high-fat diet (HFD) for 6 weeks to induce obesity. Obesity-induced mice were exercised on a treadmill for 8 weeks at various exercise in-tensities: HFD-control (n=7), HFD-low-intensity exercise (HFD-LIE, n= 7, 12 m/min for 75 min), HFD-middle intensity exercise (HFD-MIE, n=7, 15 m/min for 60 min) and HFD-high-intensity exercise (HFD-HIE, n=7, 18 m/min for 50 min). One week before sacrificing mice, the Morris wa-ter maze test was performed, and the hippocampus was immediately removed after sacrifice. The expression levels of BDNF (encoded by the gene Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippo-campus were analyzed by quantitative real-time reverse transcription- polymerase chain reaction and western blot. In the last probe test of the Morris water maze test, occupancy in the target quadrant was sig-nificantly higher in the HFD-HIE group (P<0.05) than in the other groups. In addition, mRNA expression from the Bdnf promoter region was found to be significantly higher in the HFD-HIE group than in the other groups (P<0.001). Although there were some differences in the levels of signifi-cance, the expression levels of both BDNF and TrkB were significantly higher in the HFD-HIE group than in the other groups. Therefore, rela-tively high-intensity aerobic exercise can resist the adverse effects of a high-fat diet on the brain without dietary control.
Collapse
Affiliation(s)
- Tae-Won Kim
- Division of Sport Science, Pusan National University, Busan, Korea
| | - Kyung-Wan Baek
- Division of Sport Science, Pusan National University, Busan, Korea
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jung-Jun Park
- Division of Sport Science, Pusan National University, Busan, Korea
| |
Collapse
|
18
|
Baek KW, Lee DI, Kang SA, Yu HS. Differences in macrophage polarization in the adipose tissue of obese mice under various levels of exercise intensity. J Physiol Biochem 2020; 76:159-168. [PMID: 32062818 DOI: 10.1007/s13105-020-00731-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Animal studies have demonstrated that the ratio of M1 (M1Φ) to M2 (M2Φ) macrophage-specific gene expression in adipose tissue (AT) may be altered by chronic exercise; however, whether macrophage polarization is induced under these conditions has not yet been reported. Therefore, this study aimed to investigate the effect of chronic exercise on M1Φ/M2Φ polarization in the AT of high-fat diet (HFD)-induced obese mice. Exercise-induced differences in M1Φ/M2Φ polarization were verified via an exercise intensity study (EIS) in which different levels of exercise intensity were evaluated. Obesity was induced in male C57BL/6 J mice by feeding them with an HFD for 6 weeks. The study consisted of four groups: control group (CON), HFD-fed group (HFD), HFD-fed with exercise group (HFD + EXE), dietary conversion from HFD to normal diet (ND) group (DC), and dietary conversion from HFD to ND group (DC + EXE). For EIS, the HFD + EXE group was divided into three subgroups: low- (LI), mid- (MI), and high- (HI) intensity exercise. The total intervention period was 8 weeks. M1Φ/M2Φ polarization was confirmed by flow cytometry. M2Φ polarization in the AT of obese mice was significantly higher in HFD + EXE mice than in HFD mice, despite the HFD intake. In the EIS, M2Φ polarization was most pronounced in HFD + EXE-HI mice than in HFD mice. It can be proposed that the enhanced insulin resistance and inflammation by obesity can be improved by the increase of M2Φ polarization which is achieved by relatively high-intensity exercise.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Division of Sport Science, Pusan National University, Busan, South Korea
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Da-In Lee
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Shin Ae Kang
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea.
| |
Collapse
|
19
|
Baek KW, Jo JO, Kang YJ, Song KS, Yu HS, Park JJ, Choi YH, Cha HJ, Ock MS. Exercise training reduces the risk of opportunistic infections after acute exercise and improves cytokine antigen recognition. Pflugers Arch 2019; 472:235-244. [PMID: 31111223 DOI: 10.1007/s00424-019-02281-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023]
Abstract
In general, acute exercise is thought to inhibit immune function and increase the risk of opportunistic infections, but there is some opposition to this due to a lack of quantitative evaluation. Therefore, we quantified the effect of exercise on immune function and observed the interaction between antigens and cytokines using an intramuscular infection with Trichinella spiralis (T. spiralis), a common parasitic infection model. C57BL/6 mice were used for a non-infection experiment and an infection (Inf) experiment. Each experiment was divided further into three groups: one control (CON) group, and an exercise pre-infection (PIE)-only group and exercise-sustained (ES) group, each of which was subjected to exercise for 7 weeks. All animals in the infection experiment were infected with T. spiralis 30 min after acute exercise. After infection, the ES and Inf-ES groups continued exercise for 7 additional weeks. The number of T. spiralis nurse cells remaining in skeletal muscles was fewer in the infected exercise groups compared with the infected control. Expression of interleukin-6 (IL-6) and interleukin-10 (IL-10) was higher in the Inf-CON group and transforming growth factor beta (TGF-β) expression was lower in the Inf-CON group than in the CON group, as measured by RT-PCR. In the infection experiment, only IL-10 had significant differences between the groups. Immunofluorescence revealed that most cytokines were specifically expressed around the antigenic nurse cells following exercise. In conclusion, exercise training does not increase the risk of opportunistic infections even after acute exercise, but rather reduces it. These results may be due to antigen-specific immune responses.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Division of Sport Science, Pusan National University, Busan, South Korea.,Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jin-Ok Jo
- Department of Physiology, Kosin University College of Medicine, Busan, South Korea
| | - Yun-Jeong Kang
- Department of Physiology, Kosin University College of Medicine, Busan, South Korea
| | - Kyoung Seob Song
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, South Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jung-Jun Park
- Division of Sport Science, Pusan National University, Busan, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, South Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea.
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea.
| |
Collapse
|