1
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Recent advances in the role of neuroregulation in skin wound healing. BURNS & TRAUMA 2025; 13:tkae072. [PMID: 39872039 PMCID: PMC11770601 DOI: 10.1093/burnst/tkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 01/29/2025]
Abstract
Neuroregulation during skin wound healing involves complex interactions between the nervous system and intricate tissue repair processes. The skin, the largest organ, depends on a complex system of nerves to manage responses to injury. Recent research has emphasized the crucial role of neuroregulation in maximizing wound healing outcomes. Recently, researchers have also explained the interactive contact between the peripheral nervous system and skin cells during the different phases of wound healing. Neurotransmitters and neuropeptides, once observed as simple signalling molecules, have since been recognized as effective regulators of inflammation, angiogenesis, and cell proliferation. The significance of skin innervation and neuromodulators is underscored by the delayed wound healing observed in patients with diabetes and the regenerative capabilities of foetal skin. Foetal skin regeneration is influenced by the neuroregulatory environment, immature immune system, abundant growth factors, and increased pluripotency of cells. Foetal skin cells exhibit greater flexibility and specialized cell types, and the extracellular matrix composition promotes regeneration. The extracellular matrix composition of foetal skin promotes regeneration, making it more capable than adult skin because neuroregulatory signals affect skin regeneration. The understanding of these systems can facilitate the development of therapeutic strategies to alter the nerve supply to the skin to enhance the process of wound healing. Neuroregulation is being explored as a potential therapeutic strategy for enhancing skin wound repair. Bioelectronic strategies and neuromodulation techniques can manipulate neural signalling, optimize the neuroimmune axis, and modulate inflammation. This review describes the function of skin innervation in wound healing, emphasizing the importance of neuropeptides released by sensory and autonomic nerve fibres. This article discusses significant discoveries related to neuroregulation and its impact on skin wound healing.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Rea Hernández PA, Ramírez-Paz-Y-Puente GA, Montes-García F, Vázquez-Cruz C, Sanchez-Alonso P, Cobos-Justo ME, Zenteno E, Negrete-Abascal E. Epinephrine and norepinephrine regulate the expression of virulence factors in Gallibacterium anatis. Microb Pathog 2024; 196:106987. [PMID: 39374885 DOI: 10.1016/j.micpath.2024.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Gallibacterium anatis is a member of the Pasteurellaceae family and is an opportunistic pathogen that causes gallibacteriosis in chickens. Stress plays a relevant role in promoting the development of pathogenicity in G. anatis. Epinephrine (E) and norepinephrine (NE) are relevant to stress; however, their effects on G. anatis have not been elucidated. In this work, we evaluated the effects of E and NE on the growth, biofilm formation, expression of adhesins, and proteases of two G. anatis strains, namely, the hemolytic 12656-12 and the nonhemolytic F149T biovars. E (10 μM/mL) and NE (30 and 50 μM/mL) increased the growth of G. anatis 12656-12 by 20 % and 25 %, respectively. E did not affect the growth of F149T, whereas 40 μM/mL NE decreased bacterial growth by 25 %. E and NE at a dose of 30-50 μM/mL upregulated five fibrinogen adhesins in the 12565-12 strain, whereas no effect was observed in the F149T strain. NE increased proteolytic activity in both strains, whereas E diminished proteolytic activity in the 12656-12 strain. E and NE reduced biofilm formation (30 %) and increased Congo red binding (15 %) in both strains. QseBC is the E and NE two-component detection system most common in bacteria. The qseC gene, which is the E and NE receptor in bacteria, was identified in the genomic DNA of the 12565-12 and F149TG. anatis strains via PCR amplification. Our results suggest that QseC can detect host changes in E and NE concentrations and that catecholamines can modulate the expression of several virulence factors in G. anatis.
Collapse
Affiliation(s)
- Pablo A Rea Hernández
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | - Gerardo A Ramírez-Paz-Y-Puente
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | - Fernando Montes-García
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | | | | | | | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, UNAM, Mexico
| | - Erasmo Negrete-Abascal
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico.
| |
Collapse
|
3
|
Moura MM, Monteiro A, Salgado AJ, Silva NA, Monteiro S. Disrupted autonomic pathways in spinal cord injury: Implications for the immune regulation. Neurobiol Dis 2024; 195:106500. [PMID: 38614275 DOI: 10.1016/j.nbd.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.
Collapse
Affiliation(s)
- Maria M Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal.
| |
Collapse
|
4
|
Sympathetic System in Wound Healing: Multistage Control in Normal and Diabetic Skin. Int J Mol Sci 2023; 24:ijms24032045. [PMID: 36768369 PMCID: PMC9916402 DOI: 10.3390/ijms24032045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In this review, we discuss sympathetic regulation in normal and diabetic wound healing. Experimental denervation studies have confirmed that sympathetic nerve endings in skin have an important and complex role in wound healing. Vasoconstrictor neurons secrete norepinephrine (NE) and neuropeptide Y (NPY). Both mediators decrease blood flow and interact with inflammatory cells and keratinocytes. NE acts in an ambiguous way depending on receptor type. Beta2-adrenoceptors could be activated near sympathetic endings; they suppress inflammation and re-epithelialization. Alpha1- and alpha2-adrenoceptors induce inflammation and activate keratinocytes. Sudomotor neurons secrete acetylcholine (ACh) and vasoactive intestinal peptide (VIP). Both induce vasodilatation, angiogenesis, inflammation, keratinocytes proliferation and migration. In healthy skin, all effects are important for successful healing. In treatment of diabetic ulcers, mediator balance could be shifted in different ways. Beta2-adrenoceptors blockade and nicotinic ACh receptors activation are the most promising directions in treatment of diabetic ulcers with neuropathy, but they require further research.
Collapse
|
5
|
Regulation of Lysozyme Activity by Human Hormones. IRANIAN BIOMEDICAL JOURNAL 2023; 27:58-65. [PMID: 36624688 PMCID: PMC9971709 DOI: 10.52547/ibj.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Lysozyme is a part of human and animal noncellular immunity. The regulation of its activity by hormones is poorly studied. The aim of this study was to test the in vitro activity of lysozyme in the presence of catecholamines, natriuretic hormones, and estradiol (E2). Methods Hormones were incubated with lysozyme, and the activity of lysozome was further determined using a test culture of Micrococcus luteus in the early exponential growth stage. The activity of lysozyme was assessed based on the rate of change in the OD of the test culture. Molecular docking was performed using SwissDock server http://www.swissdock.ch/docking), and molecular structures were further analyzed and visualized in the UCSF Chimera 1.15rc software. Results According to the results, epinephrine and norepinephrine increased lysozyme activity up to 180% compared to the hormone-free enzyme. Changing the pH of the medium from 6.3 to 5.5, increased the lysozyme activity in the presence of E2 up to 150-200 %. The results also showed that exposure to hormones could modify lysozyme ctivity, and this effect depends on the temperature and pH value. The molecular docking revealed a decrease in the activation energy of the active site of enzyme during the interaction of catecholamines with the amino acid residues, asp52 and glu35 of the active site. Conclusion Our findings demonstrate an additional mechanism for the involvement of lysozyme in humoral regulation of nonspecific immunity with respect to human pathogenic microflora and bacterial skin commensals by direct modulation of its activity using human hormones.
Collapse
|
6
|
Buchheim JI, Hoskyns S, Moser D, Han B, Deindl E, Hörl M, Biere K, Feuerecker M, Schelling G, Choukèr A. Oxidative burst and Dectin-1-triggered phagocytosis affected by norepinephrine and endocannabinoids: implications for fungal clearance under stress. Int Immunol 2019; 30:79-89. [PMID: 29329391 DOI: 10.1093/intimm/dxy001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/06/2018] [Indexed: 12/12/2022] Open
Abstract
A prolonged stress burden is known to hamper the efficiency of both the innate and the adaptive immune systems and to attenuate the stress responses by the catecholaminergic and endocannabinoid (EC) systems. Key mechanisms of innate immunity are the eradication of pathogens through phagocytosis and the respiratory burst. We tested the concentration-dependent, spontaneous and stimulated (via TNFα and N-formylmethionine-leucyl-phenylalanine) release of reactive oxygen species (ROS) by human polymorphonuclear leukocytes (PMNs) in vitro in response to norepinephrine (NE) and AM1241, a pharmacological ligand for the EC receptor CB2. We evaluated phagocytosis of Dectin-1 ligating zymosan particles and tested the cytokine response against Candida antigen in an in vitro cytokine release assay. Increasing concentrations of NE did not affect phagocytosis, yet stimulated ROS release was attenuated gradually reaching maximum suppression at 500 nM. Adrenergic receptor (AR) mechanisms using non-AR-selective (labetalol) as well as specific α-(prazosin) and β-(propranolol) receptor antagonists were tested. Results show that only labetalol and propranolol were able to recuperate cytotoxicity in the presence of NE, evidencing a β-receptor-mediated effect. The CB2 agonist, AM1241, inhibited phagocytosis at 10 µM and spontaneous peroxide release by PMNs. Use of the inverse CB2 receptor agonist SR144528 led to partial recuperation of ROS production, confirming the functional role of CB2. Additionally, AM1241 delayed early activation of monocytes and induced suppression of IL-2 and IL-6 levels in response to Candida via lower activity of mammalian target of rapamycin (mTOR). These findings provide new insights into key mechanisms of innate immunity under stressful conditions where ligands to the sympatho-adrenergic and EC system are released.
Collapse
Affiliation(s)
- Judith-Irina Buchheim
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Spencer Hoskyns
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany.,Centre of Human and Aerospace Physiological Sciences, Kings College London, UK
| | - Dominique Moser
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Bing Han
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | | | - Marion Hörl
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Katharina Biere
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Matthias Feuerecker
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Gustav Schelling
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Alexander Choukèr
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany.,Centre of Human and Aerospace Physiological Sciences, Kings College London, UK
| |
Collapse
|
7
|
Butkovich LM, Houser MC, Tansey MG. α-Synuclein and Noradrenergic Modulation of Immune Cells in Parkinson's Disease Pathogenesis. Front Neurosci 2018; 12:626. [PMID: 30258347 PMCID: PMC6143806 DOI: 10.3389/fnins.2018.00626] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
α-synuclein (α-syn) pathology and loss of noradrenergic neurons in the locus coeruleus (LC) are among the most ubiquitous features of Parkinson's disease (PD). While noradrenergic dysfunction is associated with non-motor symptoms of PD, preclinical research suggests that the loss of LC norepinephrine (NE), and subsequently its immune modulatory and neuroprotective actions, may exacerbate or even accelerate disease progression. In this review, we discuss the mechanisms by which α-syn pathology and loss of central NE may directly impact brain health by interrupting neurotrophic factor signaling, exacerbating neuroinflammation, and altering regulation of innate and adaptive immune cells.
Collapse
Affiliation(s)
| | | | - Malú G. Tansey
- Tansey Laboratory, Department of Physiology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response. Front Immunol 2018; 9:164. [PMID: 29479349 PMCID: PMC5812031 DOI: 10.3389/fimmu.2018.00164] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were taking β-blockers have better outcomes. Clinical trials testing whether β-blockers can be repurposed to improve the efficacy of traditional and immunotherapies in patients are on the horizon.
Collapse
Affiliation(s)
- Guanxi Qiao
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Minhui Chen
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark J. Bucsek
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elizabeth A. Repasky
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bonnie L. Hylander
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
9
|
Regan T, Gill AC, Clohisey SM, Barnett MW, Pariante CM, Harrison NA, Hume DA, Bullmore ET, Freeman TC. Effects of anti-inflammatory drugs on the expression of tryptophan-metabolism genes by human macrophages. J Leukoc Biol 2018; 103:681-692. [PMID: 29377288 PMCID: PMC5918594 DOI: 10.1002/jlb.3a0617-261r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/04/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Several lines of evidence link macrophage activation and inflammation with (monoaminergic) nervous systems in the etiology of depression. IFN treatment is associated with depressive symptoms, whereas anti‐TNFα therapies elicit positive mood. This study describes the actions of 2 monoaminergic antidepressants (escitalopram, nortriptyline) and 3 anti‐inflammatory drugs (indomethacin, prednisolone, and anti‐TNFα antibody) on the response of human monocyte‐derived macrophages (MDMs) from 6 individuals to LPS or IFN‐α. Expression profiling revealed robust changes in the MDM transcriptome (3294 genes at P < 0.001) following LPS challenge, whereas a more limited subset of genes (499) responded to IFNα. Contrary to published reports, administered at nontoxic doses, neither monoaminergic antidepressant significantly modulated the transcriptional response to either inflammatory challenge. Each anti‐inflammatory drug had a distinct impact on the expression of inflammatory cytokines and on the profile of inducible gene expression—notably on the regulation of enzymes involved in metabolism of tryptophan. Inter alia, the effect of anti‐TNFα antibody confirmed a predicted autocrine stimulatory loop in human macrophages. The transcriptional changes were predictive of tryptophan availability and kynurenine synthesis, as analyzed by targeted metabolomic studies on cellular supernatants. We suggest that inflammatory processes in the brain or periphery could impact on depression by altering the availability of tryptophan for serotonin synthesis and/or by increasing production of neurotoxic kynurenine.
Collapse
Affiliation(s)
- Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Scotland, UK
| | - Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln, Lincolnshire, UK
| | - Sara M Clohisey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Scotland, UK
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Scotland, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Department of Psychological Medicine, Institute of Psychiatry, Kings College London, London, UK
| | - Neil A Harrison
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Scotland, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK.,ImmunoPsychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, UK
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Scotland, UK
| |
Collapse
|
10
|
Gao Z, Cui F, Cao X, Wang D, Li X, Li T. Local infiltration of the surgical wounds with levobupivacaine, dexibuprofen, and norepinephrine to reduce postoperative pain: A randomized, vehicle–controlled, and preclinical study. Biomed Pharmacother 2017; 92:459-467. [DOI: 10.1016/j.biopha.2017.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
|
11
|
Hwang YJ, Chung SP, Park YS, Chung HS, Lee HS, Park JW, Lee JW, Hong JH, You JS, Park I. Newly designed delta neutrophil index-to-serum albumin ratio prognosis of early mortality in severe sepsis. Am J Emerg Med 2015; 33:1577-82. [PMID: 26238097 DOI: 10.1016/j.ajem.2015.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 12/18/2022] Open
Abstract
PURPOSE We evaluated the ratio of delta neutrophil index (DNI) to albumin (A) in patients receiving early goal-directed therapy (EGDT) to determine the prognostic significance of the DNI/A ratio as a marker of early mortality in critically ill patients with suspected sepsis. METHODS We retrospectively analyzed records from a prospective EGDT registry in an emergency department (ED) and screened eligible adult patients who were admitted to the ED with severe sepsis and/or septic shock. The new DNI/A ratio was calculated as the DNI value on each hospital day divided by the initial albumin level on ED admission. The clinical outcome was mortality after 28 days. RESULTS A total of 120 patients receiving EGDT were included in this study. Multivariate Cox proportional-hazard models revealed that higher DNI/A ratios on day 1 (hazard ratio [HR], 1.068; 95% confidence interval [CI], 1.01-1.13; P = .0209) and the peak day (HR, 1.057; 95% CI, 1.001-1.116; P = .0456) were independent risk factors for mortality at 28 days. Our study demonstrated that the increased trend toward 28-day mortality was associated with a DNI/A ratio greater than 8.4 on day 1 (HR, 2.513; 95% CI, 0.950-6.64; P = .0528) and a higher DNI/A ratio (>6.4) on the peak day (average, 4.2 days; HR, 2.953; 95% CI, 1.033-8.441; P < .001) in patients with severe sepsis receiving EGDT. CONCLUSION The ratio of DNI to serum albumin on ED admission is a promising prognostic marker of 28-day mortality in patients with severe sepsis receiving EGDT.
Collapse
Affiliation(s)
- Yoon Jung Hwang
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Phil Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Seok Park
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Soo Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Department of Research Affairs, Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Woo Park
- Department of Emergency Medicine, Changwon Fatima Hospital, Changwon, Republic of Korea
| | - Jong Wook Lee
- Department of Laboratory Medicine, Jincheon Sungmo Hospital, Jincheon, Republic of Korea; Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwa Hong
- Department of Research Affairs, Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Emergency Medicine, Graduate School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
| | - Incheol Park
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Cooper RL, Segal RA, Diegelmann RF, Reynolds AM. Modeling the effects of systemic mediators on the inflammatory phase of wound healing. J Theor Biol 2014; 367:86-99. [PMID: 25446708 DOI: 10.1016/j.jtbi.2014.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 10/08/2014] [Accepted: 11/08/2014] [Indexed: 01/13/2023]
Abstract
The normal wound healing response is characterized by a progression from clot formation, to an inflammatory phase, to a repair phase, and finally, to remodeling. In many chronic wounds there is an extended inflammatory phase that stops this progression. In order to understand the inflammatory phase in more detail, we developed an ordinary differential equation model that accounts for two systemic mediators that are known to modulate this phase, estrogen (a protective hormone during wound healing) and cortisol (a hormone elevated after trauma that slows healing). This model describes the interactions in the wound between wound debris, pathogens, neutrophils and macrophages and the modulation of these interactions by estrogen and cortisol. A collection of parameter sets, which qualitatively match published data on the dynamics of wound healing, was chosen using Latin Hypercube Sampling. This collection of parameter sets represents normal healing in the population as a whole better than one single parameter set. Including the effects of estrogen and cortisol is a necessary step to creating a patient specific model that accounts for gender and trauma. Utilization of math modeling techniques to better understand the wound healing inflammatory phase could lead to new therapeutic strategies for the treatment of chronic wounds. This inflammatory phase model will later become the inflammatory subsystem of our full wound healing model, which includes fibroblast activity, collagen accumulation and remodeling.
Collapse
Affiliation(s)
- Racheal L Cooper
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA; The VCU Johnson Center, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA
| | - Rebecca A Segal
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA; Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23284-2030, USA; The VCU Johnson Center, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA
| | - Robert F Diegelmann
- The VCU Johnson Center, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA; Department of Biochemistry & Molecular Biology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA
| | - Angela M Reynolds
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA; The VCU Johnson Center, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA.
| |
Collapse
|
13
|
Ohsawa I, Nagamachi S, Suzuki H, Honda D, Sato N, Ohi H, Horikoshi S, Tomino Y. Leukocytosis and high hematocrit levels during abdominal attacks of hereditary angioedema. BMC Gastroenterol 2013; 13:123. [PMID: 23915279 PMCID: PMC3735392 DOI: 10.1186/1471-230x-13-123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 07/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diagnosis of hereditary angioedema (HAE) is often delayed due to the low awareness of this condition. In patients with undiagnosed HAE, abdominal symptoms often create the risk of unnecessary surgical operation and/or drug therapy. To explore the cause of misdiagnosis, we compared the laboratory findings of HAE patients under normal conditions with those during abdominal attacks. METHODS Patient medical histories were analyzed and laboratory data at the first consultation with no symptoms and no medication were compared with those at visits to the emergency department during severe attacks. RESULTS Fourteen HAE patients were enrolled. Initial HAE symptoms occurred at 20.2 ± 9.4 years of age. The correct diagnosis of HAE was made 22.7 ± 14.2 years after the initial symptoms. A common site of angioedema was the extremities. Half of the patients experienced a life-threatening laryngeal attack and/or severe abdominal pain. In the patients with severe abdominal pain, significant leukocytosis with neutrophilia along with increased levels of hematocrit were observed while levels of C-reactive protein (CRP) remained low. All severe attacks were alleviated with an infusion of C1-inhibitor concentrate. CONCLUSIONS Consideration of the likelihood of a HAE attack is important when patients present with acute abdominal pain and leukocytosis without elevation of CRP.
Collapse
Affiliation(s)
- Isao Ohsawa
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Xiu F, Stanojcic M, Jeschke MG. Norepinephrine inhibits macrophage migration by decreasing CCR2 expression. PLoS One 2013; 8:e69167. [PMID: 23844252 PMCID: PMC3699643 DOI: 10.1371/journal.pone.0069167] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Increased incidences of infectious and septic complications during post-burn courses represent the main contributor to burn injury mortality. Sustained increases in catecholamine levels, especially norepinephrine (NE), contribute to immune disturbances in severely burned patients. The precise mechanisms underlying NE-mediated immunoregulation are not fully understood. Here we hypothesize that persistently elevated NE levels are associated with immunodysfunctions. We examined the effects of NE on the phenotype and functions of bone marrow-derived macrophages (BMMs). Whole mouse bone marrow cells were treated in vitro with 40 ng/mL of M-CSF and with 1 x 10-6 M or 1 x 10-8 M of NE or without NE for 7 days; cells were collected and stained with antibodies for CD11b, F4/80, MHC II and the inflammatory CC chemokine receptor 2 (CCR2). We found 1 x 10-6 M of NE inhibited MHC II and CCR2 expression on CD11b+/F4/80+ BMM cells. It also inhibited BMM proliferation by inhibiting CSF-1R expression. On the contrary, 1 x 10-8 M of NE slightly increased both MHC II and CCR2 expression on CD11b+/F4/80+ BMM cells but inhibited CD11b+/F4/80+ BMM proliferation. MCP-1 based migration assay showed that the migration of 1 x 10-6 M of NE-treated BMM toward MCP-1 was significantly decreased compared to BMM without NE treatment. Both 1 x 10-8 M and 1 x 10-6 M of NE enhanced TNF-α production and phagocytosis of FITC-Dextran. Intracellular staining of transcriptional factor MafB showed that 1 x 10-6 M of NE treatment enhanced its expression, whereas 1 x 10-8 M of NE decreased expression. Stimulation with LPS in the last 24-hours of BMM culture further decreased CCR2 and MHC II expression of these BMM, suggesting the synergistic effect of LPS and NE on macrophage. Our results demonstrate that NE regulates macrophage differentiation, proliferation and function, and may play a critical role in the dysfunctional immune response post-burn.
Collapse
Affiliation(s)
- Fangming Xiu
- Ross Tilley Burn Centre, Sunnybrook Health Science Centre, Sunnybrook Research Institute, Division of Plastic Surgery, Department of Surgery, Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mile Stanojcic
- Ross Tilley Burn Centre, Sunnybrook Health Science Centre, Sunnybrook Research Institute, Division of Plastic Surgery, Department of Surgery, Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Science Centre, Sunnybrook Research Institute, Division of Plastic Surgery, Department of Surgery, Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
WITARD OLIVERC, TURNER JAMESE, JACKMAN SARAHR, Tipton KEVIND, JEUKENDRUP ASKERE, KIES ARIEK, Bosch JOSA. High-Intensity Training Reduces CD8+ T-cell Redistribution in Response to Exercise. Med Sci Sports Exerc 2012; 44:1689-97. [DOI: 10.1249/mss.0b013e318257d2db] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Savalle M, Gillaizeau F, Maruani G, Puymirat E, Bellenfant F, Houillier P, Fagon JY, Faisy C. Assessment of body cell mass at bedside in critically ill patients. Am J Physiol Endocrinol Metab 2012; 303:E389-96. [PMID: 22649067 DOI: 10.1152/ajpendo.00502.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Critical illness affects body composition profoundly, especially body cell mass (BCM). BCM loss reflects lean tissue wasting and could be a nutritional marker in critically ill patients. However, BCM assessment with usual isotopic or tracer methods is impractical in intensive care units (ICUs). We aimed to modelize the BCM of critically ill patients using variables available at bedside. Fat-free mass (FFM), bone mineral (Mo), and extracellular water (ECW) of 49 critically ill patients were measured prospectively by dual-energy X-ray absorptiometry and multifrequency bioimpedance. BCM was estimated according to the four-compartment cellular level: BCM = FFM - (ECW/0.98) - (0.73 × Mo). Variables that might influence the BCM were assessed, and multivariable analysis using fractional polynomials was conducted to determine the relations between BCM and these data. Bootstrap resampling was then used to estimate the most stable model predicting BCM. BCM was 22.7 ± 5.4 kg. The most frequent model included height (cm), leg circumference (cm), weight shift (Δ) between ICU admission and body composition assessment (kg), and trunk length (cm) as a linear function: BCM (kg) = 0.266 × height + 0.287 × leg circumference + 0.305 × Δweight - 0.406 × trunk length - 13.52. The fraction of variance explained by this model (adjusted r(2)) was 46%. Including bioelectrical impedance analysis variables in the model did not improve BCM prediction. In summary, our results suggest that BCM can be estimated at bedside, with an error lower than ±20% in 90% subjects, on the basis of static (height, trunk length), less stable (leg circumference), and dynamic biometric variables (Δweight) for critically ill patients.
Collapse
|
17
|
Abstract
Sepsis, a systemic inflammatory response to infection, continues to carry a high mortality despite advances in critical care medicine. Elevated sympathetic nerve activity in sepsis has been shown to contribute to early hepatocellular dysfunction and subsequently multiple organ failure, resulting in a poor prognosis, especially in the elderly. Thus, suppression of sympathetic nerve activity represents a novel therapeutic option for sepsis. Ghrelin is a 28-amino acid peptide shown to inhibit sympathetic nerve activity and inflammation in animal models of tissue injury. Age-related ghrelin hyporesponsiveness has also been shown to exacerbate sepsis. However, the mechanistic relationship between ghrelin-mediated sympathoinhibition and suppression of inflammation remains poorly understood. This review assesses the therapeutic potential of ghrelin in sepsis in the context of the neuroanatomical and molecular basis of ghrelin-mediated suppression of inflammation through inhibition of central sympathetic outflow.
Collapse
Affiliation(s)
- Cletus Cheyuo
- Elmezzi Graduate School of Molecular Medicine, Hofstra North Shore-LIJ Medical School, Manhasset, New York, USA
| | | | | |
Collapse
|
18
|
Spoon TR, Romano TA. Neuroimmunological response of beluga whales (Delphinapterus leucas) to translocation and a novel social environment. Brain Behav Immun 2012; 26:122-31. [PMID: 21888964 DOI: 10.1016/j.bbi.2011.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 12/22/2022] Open
Abstract
This study assessed changes in phagocyte function and activation of the sympatho-adrenal medullary and hypothalamo-pituitary adrenal axes of beluga whales (Delphinapterus leucas) in response to translocation and introduction to a novel social environment. Transported belugas exhibited increases in epinephrine (E), norepinephrine (NE), and cortisol levels in response to the translocation process. In response to the introduction of the transported belugas, resident belugas exhibited an increase in E and NE but not cortisol. Moreover, the increase in E and NE shown by the transported belugas was significantly greater than the increase exhibited by the resident belugas. Resident belugas exhibited a concomitant decrease in neutrophil and monocyte phagocytosis associated with the introduction of the transported belugas. In contrast, transported belugas exhibited an attendant increase in phagocytosis and respiratory burst activity immediately following transport. Differences in phagocyte response may derive from differences in hormonal milieu, stressor modality and/or intensity, or phagocyte priming. Investigating the complex interactions between types of stressors, neuroendocrine response, and immunocompetence will lead to a better understanding of the impacts of environmental challenges, including anthropogenic perturbations, on the health of cetacean populations.
Collapse
Affiliation(s)
- Tracey R Spoon
- Mystic Aquarium, A Division of Sea Research Foundation Inc., 55 Coogan Blvd., Mystic, CT 06355, USA
| | | |
Collapse
|
19
|
Brubaker AL, Schneider DF, Palmer JL, Faunce DE, Kovacs EJ. An improved cell isolation method for flow cytometric and functional analyses of cutaneous wound leukocytes. J Immunol Methods 2011; 373:161-6. [PMID: 21889511 PMCID: PMC3195830 DOI: 10.1016/j.jim.2011.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 11/27/2022]
Abstract
Isolation of leukocytes from full-thickness excisional wounds has proven to be a difficult process that results in poor cell yield and holds significant limitations for functional assays. Given the increased interest in the isolation, characterization and functional measurements of wound-derived cell populations, herein we describe a method for preparing wound cell suspensions with an improved yield that enables both phenotypic and functional assessments.
Collapse
Affiliation(s)
- Aleah L. Brubaker
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Program of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - David F. Schneider
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Jessica L. Palmer
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Douglas E. Faunce
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Elizabeth J. Kovacs
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Program of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
20
|
Kalambokis GN, Tsianos EV. Raised sympathetic activity and blood ammonia could increase sensitivity to infections in patients with cirrhosis and refractory ascites who are using beta-blockers. Hepatology 2011; 54:1486-7. [PMID: 21608005 DOI: 10.1002/hep.24439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/07/2022]
|
21
|
Abstract
OBJECTIVE To examine the effects of an acute laboratory psychological stress task on neutrophil function, specifically phagocytosis of Escherichia coli and stimulated superoxide production in human neutrophils. There is mounting evidence that acute stress is associated with short-term increases in a number of immune indices. METHODS Participants were 40 (n = 20 females) university students (mean age, 25.9 ± 4.56 years). Blood samples to determine neutrophil function by flow cytometry were taken at the end of resting baseline, during an acute stress task, and during recovery. The stress task was a 10-minute time-pressured mental arithmetic challenge with social evaluation. RESULTS There was an acute increase in phagocytic ability, p = .047, η(2)p = 0.076, and a reduction of superoxide production, p = .026, η(2)p = 0.101, associated with the stress task relative to baseline. CONCLUSION These findings suggest that neutrophil bactericidal function may be sensitive to mental challenge tasks that provoke acute psychological stress. Further research is needed to replicate the observed psychological stress-induced changes in neutrophil function.
Collapse
|
22
|
Riepl B, Grässel S, Wiest R, Fleck M, Straub RH. Tumor necrosis factor and norepinephrine lower the levels of human neutrophil peptides 1-3 secretion by mixed synovial tissue cultures in osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 2010; 12:R110. [PMID: 20525314 PMCID: PMC2911901 DOI: 10.1186/ar3044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/24/2010] [Accepted: 06/04/2010] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Neutrophils and monocytes play an important role in overt inflammation in chronic inflammatory joint diseases such as rheumatoid arthritis (RA). The sympathetic nervous system (SNS) inhibits many neutrophil/monocyte functions and macrophage tumor necrosis factor (TNF), but because of the loss of sympathetic nerve fibers in inflamed tissue, sympathetic control is attenuated. In this study, we focused on noradrenergic and TNF regulation of human neutrophil peptides 1-3 (HNP1-3), which are proinflammatory bactericidal alpha-defensins. METHODS Synovial tissue and cells were obtained from patients with RA and osteoarthritis (OA). By using immunohistochemistry and immunofluorescence, HNP1-3 were tracked in the tissue. With synovial cell-culture experiments and ELISA, effects of norepinephrine, TNF, and cortisol on HNP1-3 were detected. RESULTS HNP1-3 were abundantly expressed in the synovial lining and adjacent sublining area but not in deeper layers of synovial tissue. The human beta-defensin-2, used as control, was hardly detectable in the tissue and in supernatants. HNP1-3 double-stained with neutrophils but not with macrophages, fibroblasts, T/B lymphocytes, and mast cells. Norepinephrine dose-dependently decreased HNP1-3 levels from RA and OA cells. TNF also inhibited HNP1-3 levels from OA but not from RA cells. Cortisol inhibited HNP1-3 levels only in OA patients. A combination of norepinephrine and cortisol did not show additive or synergistic effects. CONCLUSIONS This study demonstrated an inhibitory effect of norepinephrine on HNP1-3 of mixed synovial cells. In light of these findings, the loss of sympathetic nerve fibers with low resting norepinephrine levels might also augment the inflammatory process through HNP1-3.
Collapse
Affiliation(s)
- Birgit Riepl
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital, F,J, Strauss Allee 11, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Li W, Lyte M, Freestone PP, Ajmal A, Colmer-Hamood J, Hamood AN. Norepinephrine represses the expression of toxA and the siderophore genes in Pseudomonas aeruginosa. FEMS Microbiol Lett 2009; 299:100-9. [PMID: 19686346 PMCID: PMC2889019 DOI: 10.1111/j.1574-6968.2009.01739.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Among the different extracellular virulence factors produced by Pseudomonas aeruginosa are exotoxin A (ETA) and the pyoverdine and pyochelin siderophores. Production of ETA and the siderophores requires the function of the iron-starvation sigma factor PvdS, the transcriptional activator RegA, and the AraC-activator PchR. Iron represses the production of ETA and the siderophores by repressing the expression of pvdS, regA, and pchR. PvdS regulates the expression of the ETA gene, toxA, regA, and the pyoverdine synthesis genes. The catecholamine norepinephrine enhances the growth of pathogenic bacteria by transferring iron from host-binding proteins. In this study, we elucidated the mechanism by which norepinephrine and other catecholamines induce P. aeruginosa growth. We also investigated whether norepinephrine regulates the expression of toxA and the siderophore genes, and the mechanism of this regulation. Norepinephrine enhanced the growth of P. aeruginosa by supplying iron from transferrin. This provision of iron repressed the expression of toxA, the pyoverdine genes pvdD and pvdE, and their regulators, pvdS, regA, and pchR, suggesting that norepinephrine accomplishes this repression through PvdS and PchR. Additionally, norepinephrine bypassed PvdS and supported the growth of a pvdS deletion mutant, indicating that norepinephrine transfers iron to P. aeruginosa independent of pyoverdine. Thus, norepinephrine apparently influences the pathogenesis of P. aeruginosa by affecting its pattern of growth and the production of virulence factors.
Collapse
Affiliation(s)
- Wang Li
- Dept. of Pharmacy Practice, Texas Tech University Health Sciences Center, Lubbock, Texas 74930 USA
| | - Mark Lyte
- Dept. of Pharmacy Practice, Texas Tech University Health Sciences Center, Lubbock, Texas 74930 USA
| | - Primrose P. Freestone
- Dept. of Infection, Immunity & Inflammation, University of Leicester, Leicester LU1 9HN, UK
| | - Aziba Ajmal
- Dept. of Microbiology & Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Jane Colmer-Hamood
- Dept. of Microbiology & Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Abdul N. Hamood
- Dept. of Microbiology & Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| |
Collapse
|