1
|
Mariotto LF, Lofeu L, Kohlsdorf T. Developmental Plasticity in Growth and Performance Blur Taxonomic Boundaries in South American True Toads (Rhinella). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:80-93. [PMID: 39718098 DOI: 10.1002/jez.b.23283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Developmental plasticity can affect traits directly related to survival, and some changes may promote or impair population persistence in changing environments. At the same time, it can also originate new complex phenotypes, surpassing species-specific boundaries. Therefore, plastic responses have the potential to participate in processes of micro and macroevolution. In this study, we evaluate plastic responses to different thermal regimes during development in traits related to survival and also used for taxonomic classification of two true-toad species, Rhinella icterica and Rhinella ornata. We raised tadpoles representing distinct operational taxonomic units (OTUs) at different temperatures, and the resulting phenotypic patterns suggest canalization in R. icterica and complex variation revealed by plasticity among R. ornata OTUs. Plastic responses to thermal regimes produced differences among the OTUs in traits associated with specific survival strategies of Rhinella species. Some changes surpassed taxonomic boundaries and rescued lineage-specific phenotypic patterns, establishing unusual phenotypic combinations for these species. Our results illustrate the contribution of developmental plasticity for processes involving phenotypic differentiation among species in traits directly related to survival.
Collapse
Affiliation(s)
- Lucas Ferriolli Mariotto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Leandro Lofeu
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Tiana Kohlsdorf
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Messier J, Becker-Scarpitta A, Li Y, Violle C, Vellend M. Root and biomass allocation traits predict changes in plant species and communities over four decades of global change. Ecology 2024; 105:e4389. [PMID: 39252476 DOI: 10.1002/ecy.4389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/12/2024] [Accepted: 04/28/2024] [Indexed: 09/11/2024]
Abstract
Global change is affecting the distribution and population dynamics of plant species across the planet, leading to trends such as shifts in distribution toward the poles and to higher elevations. Yet, we poorly understand why individual species respond differently to warming and other environmental changes, or how the trait composition of communities responds. Here we ask two questions regarding plant species and community changes over 42 years of global change in a temperate montane forest in Québec, Canada: (1) How did the trait composition, alpha diversity, and beta diversity of understory vascular plant communities change between 1970 and 2010, a period over which the region experienced 1.5°C of warming and changes in nitrogen deposition? (2) Can traits predict shifts in species elevation and abundance over this time period? For 46 understory vascular species, we locally measured six aboveground traits, and for 36 of those (not including shrubs), we also measured five belowground traits. Collectively, they capture leading dimensions of phenotypic variation that are associated with climatic and resource niches. At the community level, the trait composition of high-elevation plots shifted, primarily for two root traits: specific root length decreased and rooting depth increased. The mean trait values of high-elevation plots shifted over time toward values initially associated with low-elevation plots. These changes led to trait homogenization across elevations. The community-level shifts in traits mirrored the taxonomic shifts reported elsewhere for this site. At the species level, two of the three traits predicting changes in species elevation and abundance were belowground traits (low mycorrhizal fraction and shallow rooting). These findings highlight the importance of root traits, which, along with leaf mass fraction, were associated with shifts in distribution and abundance over four decades. Community-level trait changes were largely similar across the elevational and temporal gradients. In contrast, traits typically associated with lower elevations at the community level did not predict differences among species in their shift in abundance or distribution, indicating a decoupling between species- and community-level responses. Overall, changes were consistent with some influence of both climate warming and increased nitrogen availability.
Collapse
Affiliation(s)
- Julie Messier
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Becker-Scarpitta
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Agriculture, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Brno, Czech Republic
| | - Yuanzhi Li
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Cyrille Violle
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
3
|
He P, Ye Q, Yu K, Wang H, Xu H, Yin Q, Yue M, Liang X, Wang W, You Z, Zhong Y, Liu H. Growing-Season Precipitation Is a Key Driver of Plant Leaf Area to Sapwood Area Ratio at the Global Scale. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39327871 DOI: 10.1111/pce.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Leaf area to sapwood area ratio (AL/AS) influences carbon sequestration, community composition, and ecosystem functioning in terrestrial vegetation and is closely related to leaf economics and hydraulics. However, critical predictors of AL/AS are not well understood. We compiled an AL/AS data set with 1612 species-site combinations (1137 species from 285 sites worldwide) from our field experiments and published literature. We found the global mean AL/AS to be 0.63 m2 cm-2, with its variation largely driven by growing-season precipitation (Pgs), which accounted for 18% of the variation in AL/AS. Species in tropical rainforests exhibited the highest AL/AS (0.82 m2 cm-2), whereas desert species showed the lowest AL/AS (0.16 m2 cm-2). Soil factors such as soil nitrogen and soil organic carbon exhibited positive effects on AL/AS, whereas soil pH was negatively correlated with AL/AS. Tree density accounted for 7% of the variation in AL/AS. All biotic and abiotic predictors collectively explained up to 45% of the variation in AL/AS. Additionally, AL/AS was positively correlated to the net primary productivity (NPP) of the ecosystem. Our study provides insights into the driving factors of AL/AS at the global scale and highlights the importance of AL/AS in ecosystem productivity. Given that Pgs is the most critical driver of AL/AS, alterations in global precipitation belts, particularly seasonal precipitation, may induce changes in plant leaf area on the branches.
Collapse
Affiliation(s)
- Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Kailiang Yu
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Huiying Xu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- Department of Geography, University of Exeter, Exeter, UK
| | - Qiulong Yin
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Weiren Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhangtian You
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Zhong
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Berry E, Anfodillo T, Castorena M, Echeverría A, Olson ME. Scaling of leaf area with biomass in trees reconsidered: constant metabolically active sapwood volume per unit leaf area with height growth. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3993-4004. [PMID: 38634646 DOI: 10.1093/jxb/erae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Hypoallometric (slope<1) scaling between metabolic rate and body mass is often regarded as near-universal across organisms. However, there are compelling reasons to question hypoallometric scaling in woody plants, where metabolic rate is directly proportional to leaf area. This leaf area must provide carbon to the volume of the metabolically active sapwood (VMASW). Within populations of a species, variants in which VMASW increases per unit leaf area with height growth (e.g. ⅔ or ¾ scaling) would have proportionally less carbon for growth and reproduction as they grow taller. Therefore, selection should favor individuals in which, as they grow taller, leaf area scales isometrically with shoot VMASW (slope=1). Using tetrazolium staining, we measured total VMASW and total leaf area (LAtot) across 22 individuals of Ricinus communis and confirmed that leaf area scales isometrically with VMASW, and that VMASW is much smaller than total sapwood volume. With the potential of the LAtot-VMASW relationship to shape factors as diverse as the crown area-stem diameter relationship, conduit diameter scaling, reproductive output, and drought-induced mortality, our work indicates that the notion that sapwood increases per unit leaf area with height growth requires revision.
Collapse
Affiliation(s)
- Eapsa Berry
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD) 35020, Italy
| | - Matiss Castorena
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA
| | - Alberto Echeverría
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Rita A, Pericolo O, Tumajer J, Ripullone F, Gentilesca T, Saracino A, Borghetti M. Tip-to-base conduit widening remains consistent across cambial age and climates in Fagus sylvatica L. TREE PHYSIOLOGY 2024; 44:tpae080. [PMID: 38959855 PMCID: PMC12066827 DOI: 10.1093/treephys/tpae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Water transport, mechanical support and storage are the vital functions provided by the xylem. These functions are carried out by different cells, exhibiting significant anatomical variation not only within species but also within individual trees. In this study, we used a comprehensive dataset to investigate the consistency of predicted hydraulic vessel diameter widening values in relation to the distance from the tree apex, represented by the relationship Dh ∝ Lβ (where Dh is the hydraulic vessel diameter, L the distance from the stem apex and β the scaling exponent). Our analysis involved 10 Fagus sylvatica L. trees sampled at two distinct sites in the Italian Apennines. Our results strongly emphasize that vessel diameter follows a predictable pattern with the distance from the stem apex and β ~ 0.20 remains consistent across cambial age and climates. This finding supports the hypothesis that trees do not alter their axial configuration represented by scaling of vessel diameter to compensate for hydraulic limitations imposed by tree height during growth. The study further indicates that within-tree variability significantly contributes to the overall variance of the vessel diameter-stem length exponent. Understanding the factors that contribute to the intraindividual variability in the widening exponent is essential, particularly in relation to interspecific responses and adaptations to drought stress.
Collapse
Affiliation(s)
- Angelo Rita
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Piazza Carlo di Borbone 1, I-80055 Portici (Napoli), Italy
| | - Osvaldo Pericolo
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy
- Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia, via S. Epifanio 14, I-27100 Pavia, Italy
| | - Jan Tumajer
- Department of Physical Geography and Geoecology, Charles University, Faculty of Science, Albertov 6, CZ-12843 Prague, Czech Republic
| | - Francesco Ripullone
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy
| | - Tiziana Gentilesca
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy
| | - Antonio Saracino
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Piazza Carlo di Borbone 1, I-80055 Portici (Napoli), Italy
| | - Marco Borghetti
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy
| |
Collapse
|
6
|
Heit DR, Ortiz-Calo W, Poisson MKP, Butler AR, Moll RJ. Generalized nonlinearity in animal ecology: Research, review, and recommendations. Ecol Evol 2024; 14:e11387. [PMID: 38994210 PMCID: PMC11237342 DOI: 10.1002/ece3.11387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024] Open
Abstract
Generalized linear models (GLMs) are an integral tool in ecology. Like general linear models, GLMs assume linearity, which entails a linear relationship between independent and dependent variables. However, because this assumption acts on the link rather than the natural scale in GLMs, it is more easily overlooked. We reviewed recent ecological literature to quantify the use of linearity. We then used two case studies to confront the linearity assumption via two GLMs fit to empirical data. In the first case study we compared GLMs to generalized additive models (GAMs) fit to mammal relative abundance data. In the second case study we tested for linearity in occupancy models using passerine point-count data. We reviewed 162 studies published in the last 5 years in five leading ecology journals and found less than 15% reported testing for linearity. These studies used transformations and GAMs more often than they reported a linearity test. In the first case study, GAMs strongly out-performed GLMs as measured by AIC in modeling relative abundance, and GAMs helped uncover nonlinear responses of carnivore species to landscape development. In the second case study, 14% of species-specific models failed a formal statistical test for linearity. We also found that differences between linear and nonlinear (i.e., those with a transformed independent variable) model predictions were similar for some species but not for others, with implications for inference and conservation decision-making. Our review suggests that reporting tests for linearity are rare in recent studies employing GLMs. Our case studies show how formally comparing models that allow for nonlinear relationships between the dependent and independent variables has the potential to impact inference, generate new hypotheses, and alter conservation implications. We conclude by suggesting that ecological studies report tests for linearity and use formal methods to address linearity assumption violations in GLMs.
Collapse
Affiliation(s)
- David R Heit
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
| | - Waldemar Ortiz-Calo
- Wildlife Biology Program, W.A. Franke College of Forestry University of Montana Missoula Montana USA
| | - Mairi K P Poisson
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
| | - Andrew R Butler
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
| | - Remington J Moll
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
| |
Collapse
|
7
|
Gao W, Dai D, Luo H, Yu D, Liu C, Zhang N, Liu L, You C, Zhou S, Tu L, Liu Y, Huang C, He X, Cui X. Habitat differentiation and environmental adaptability contribute to leaf size variations globally in C 3 and C 4 grasses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173309. [PMID: 38782268 DOI: 10.1016/j.scitotenv.2024.173309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The grass family (Poaceae) dominates ~43 % of Earth's land area and contributes 33 % of terrestrial primary productivity that is critical to naturally regulating atmosphere CO2 concentration and global climate change. Currently grasses comprise ~11,780 species and ~50 % of them (~6000 species) utilize C4 photosynthetic pathway. Generally, grass species have smaller leaves under colder and drier environments, but it is unclear whether the primary drivers of leaf size differ between C3 and C4 grasses on a global scale. Here, we analyzed 34 environmental variables, such as latitude, elevation, mean annual temperature, mean annual precipitation, and solar radiation etc., through a comparatively comprehensive database of ~3.0 million occurrence records from 1380 C3 and 978 C4 grass species (2358 species in total). Results from this study confirm that C4 grasses have occupied habitats with lower latitudes and elevations, characterized by warmer, sunnier, drier and less fertile environmental conditions. Grass leaf size correlates positively with mean annual temperature and precipitation as expected. Our results also demonstrate that the mean temperature of the wettest quarter of the year is the primary control for C3 leaf size, whereas C4 leaf size is negatively correlated with the difference between summer and winter temperatures. For C4 grasses, phylogeny exerts a significant effect on leaf size but is less important than environmental factors. Our findings highlight the importance of evolutionarily contrasting variations in leaf size between C3 and C4 grasses for shaping their geographical distribution and habitat suitability at the global scale.
Collapse
Affiliation(s)
- Wuchao Gao
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Dachuan Dai
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huan Luo
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dongli Yu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Congcong Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ning Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chengming You
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Shixing Zhou
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Lihua Tu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Yang Liu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Congde Huang
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xinhua He
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; Department of Land, Air and Water Resources, University of California at Davis, Davis, CA 95616, USA.
| | - Xinglei Cui
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
8
|
Echavarría-Heras H, Villa-Diharce E, Montesinos-López A, Leal-Ramírez C. An extended multiplicative error model of allometry: Incorporating systematic components, non-normal distributions, and piecewise heteroscedasticity. Biol Methods Protoc 2024; 9:bpae024. [PMID: 38765636 PMCID: PMC11099667 DOI: 10.1093/biomethods/bpae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Allometry refers to the relationship between the size of a trait and that of the whole body of an organism. Pioneering observations by Otto Snell and further elucidation by D'Arcy Thompson set the stage for its integration into Huxley's explanation of constant relative growth that epitomizes through the formula of simple allometry. The traditional method to identify such a model conforms to a regression protocol fitted in the direct scales of data. It involves Huxley's formula-systematic part and a lognormally distributed multiplicative error term. In many instances of allometric examination, the predictive strength of this paradigm is unsuitable. Established approaches to improve fit enhance the complexity of the systematic relationship while keeping the go-along normality-borne error. These extensions followed Huxley's idea that considering a biphasic allometric pattern could be necessary. However, for present data composing 10 410 pairs of measurements of individual eelgrass leaf dry weight and area, a fit relying on a biphasic systematic term and multiplicative lognormal errors barely improved correspondence measure values while maintaining a heavy tails problem. Moreover, the biphasic form and multiplicative-lognormal-mixture errors did not provide complete fit dependability either. However, updating the outline of such an error term to allow heteroscedasticity to occur in a piecewise-like mode finally produced overall fit consistency. Our results demonstrate that when attempting to achieve fit quality improvement in a Huxley's model-based multiplicative error scheme, allowing for a complex allometry form for the systematic part, a non-normal distribution-driven error term and a composite of uneven patterns to describe the heteroscedastic outline could be essential.
Collapse
Affiliation(s)
- Héctor Echavarría-Heras
- Centro de Investigación Científica y de Estudios Superiores de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada, B.C., México
| | - Enrique Villa-Diharce
- Centro de Investigación en Matemáticas, A.C. Jalisco s/n, Mineral Valenciana, Guanajuato Gto., 36240, México
| | - Abelardo Montesinos-López
- Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430, Guadalajara, Jalisco, México
| | - Cecilia Leal-Ramírez
- Centro de Investigación Científica y de Estudios Superiores de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada, B.C., México
| |
Collapse
|
9
|
Balaguera-Reina SA, Mason BM, Brandt LA, Hernandez ND, Daykin BL, McCaffrey KR, Godfrey ST, Mazzotti FJ. Ecological implications of allometric relationships in American alligators (Alligator mississippiensis). Sci Rep 2024; 14:6140. [PMID: 38480785 PMCID: PMC10937943 DOI: 10.1038/s41598-024-56798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Morphometric allometry, the effect of size on morphological variation, has been of great interest for evolutionary biologist and is currently used in fields such as wildlife ecology to inform management and conservation. We assessed American alligator (Alligator mississippiensis) morphological static allometry across the Greater Everglades ecosystem in South Florida, United States using a robust dataset (~ 22 years) and investigated effects of sex, habitat, and sampling area on morphological relationships. Regression models showed very strong evidence of a linear relationship between variables explaining equal to or above 92% of the variation in the data. Most trait-size relationships (8 out of 11 assessed) showed hyperallometry (positive allometry) with slope deviations from isometry between 0.1 and 0.2 units while the other three relationships were isometric. Sampling area, type of habitat, and in a lesser extent sex influenced allometric coefficients (slope and intercept) across several relationships, likely as result of differing landscapes and ecosystem dynamic alterations and sexual dimorphism. We discuss our findings in terms of the biology of the species as well as the usefulness of our results in the context of ecosystem restoration and conservation of the species. Finally, we provide recommendations when using trait-length relationships to infer population nutritional-health condition and demographics.
Collapse
Affiliation(s)
- Sergio A Balaguera-Reina
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, 33328, USA.
| | - Brittany M Mason
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, 33328, USA
| | - Laura A Brandt
- U.S. Fish and Wildlife Service, Fort Lauderdale, 33328, USA
| | - Nicole D Hernandez
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, 33328, USA
| | - Bryna L Daykin
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, 33328, USA
| | - Kelly R McCaffrey
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, 33328, USA
| | - Sidney T Godfrey
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, 33328, USA
| | - Frank J Mazzotti
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, 33328, USA
| |
Collapse
|
10
|
He P, Ye Q, Hua L, Zhu S, Liu H, Ning Q, Hu Q, Li Q, Qin X. Vein hierarchy mediates the 2D relationship between leaf size and drought tolerance across subtropical forest tree species. TREE PHYSIOLOGY 2024; 44:tpad141. [PMID: 38056447 DOI: 10.1093/treephys/tpad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Previous studies have observed a 2D relationship (i.e. decoupled correlation) between leaf size (LS) and leaf economics as well as a tight correlation between leaf economics and drought tolerance. However, the underlying mechanism maintaining the relationship between LS and drought tolerance remains largely unknown. Here, we measured LS, water potential at 50% loss of hydraulic conductance, hydraulic safety margin and different orders of vein traits across 28 tree species in a subtropical forest in Southern China. We found that LS and drought tolerance were in two independent dimensions (R2 = 0.00, P > 0.05). Primary and secondary vein traits (i.e. vein diameter and density) explained the variation of LS, with R2 ranging from 0.37 to 0.70 (all Ps < 0.01), while minor vein traits accounted for the variation of leaf drought tolerance, with R2 ranging from 0.30 to 0.43 (all Ps < 0.01). Our results provide insight into the 2D relationship between LS and drought tolerance and highlight the importance of vein hierarchy in plant leaf functioning.
Collapse
Affiliation(s)
- Pengcheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, Guangdong, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, Guangdong, China
- College of Life Sciences, Gannan Normal University, Shidanan Road 1, Rongjiangxin District, Ganzhou 341000, Jiangxi, China
| | - Lei Hua
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Ruihe Road 18, Huangpu District, Guangzhou 510655, Guangdong, China
| | - Shidan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedong Road 100, Xixiangtang District, Nanning 530004, Guangxi, China
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, Guangdong, China
| | - Qiurui Ning
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, Guangdong, China
| | - Qin Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, Guangdong, China
| | - Qiang Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, Guangdong, China
| | - Xinsheng Qin
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, Guangdong, China
| |
Collapse
|
11
|
Pretzsch H, Del Río M, Arcangeli C, Bielak K, Dudzinska M, Forrester DI, Klädtke J, Kohnle U, Ledermann T, Matthews R, Nagel J, Nagel R, Ningre F, Nord-Larsen T, Biber P. Forest growth in Europe shows diverging large regional trends. Sci Rep 2023; 13:15373. [PMID: 37716997 PMCID: PMC10505178 DOI: 10.1038/s41598-023-41077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023] Open
Abstract
Forests cover about one-third of Europe's surface and their growth is essential for climate protection through carbon sequestration and many other economic, environmental, and sociocultural ecosystem services. However, reports on how climate change affects forest growth are contradictory, even for same regions. We used 415 unique long-term experiments including 642 plots across Europe covering seven tree species and surveys from 1878 to 2016, and showed that on average forest growth strongly accelerated since the earliest surveys. Based on a subset of 189 plots in Scots pine (the most widespread tree species in Europe) and high-resolution climate data, we identified clear large-regional differences; growth is strongly increasing in Northern Europe and decreasing in the Southwest. A less pronounced increase, which is probably not mainly driven by climate, prevails on large areas of Western, Central and Eastern Europe. The identified regional growth trends suggest adaptive management on regional level for achieving climate-smart forests.
Collapse
Affiliation(s)
- Hans Pretzsch
- Chair of Forest Growth and Yield Science, School of Life Sciences Weihenstephan, Technical University of Munich, Hans-Carl-Von-Carlowitz-Platz 2, 85354, Freising, Germany
- Sustainable Forest Management Research Institute iuFOR, University Valladolid, Valladolid, Spain
| | - Miren Del Río
- ICIFOR-INIA, CSIC, Ctra a Coruña km 7.5, 28040, Madrid, Spain
| | | | - Kamil Bielak
- Department of Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malgorzata Dudzinska
- Department of Forest Management, Forest Research Institute, Sekocin Stary, Poland
| | - David Ian Forrester
- CSIRO Environment, Canberra, ACT, 2601, Australia
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Joachim Klädtke
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA), Abteilung Waldwachstum, Freiburg, Germany
| | - Ulrich Kohnle
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA), Abteilung Waldwachstum, Freiburg, Germany
| | - Thomas Ledermann
- Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft, Vienna, Austria
| | | | - Jürgen Nagel
- Nordwestdeutsche Forstliche Versuchsanstalt Sachgebiet Ertragskunde, Göttingen, Germany
| | - Ralf Nagel
- Nordwestdeutsche Forstliche Versuchsanstalt Sachgebiet Ertragskunde, Göttingen, Germany
| | - François Ningre
- Université de Lorraine, AgroParisTech, INRAE, SILVA, 54000, Nancy, France
| | - Thomas Nord-Larsen
- Section for Forest and Bioresources, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Peter Biber
- Chair of Forest Growth and Yield Science, School of Life Sciences Weihenstephan, Technical University of Munich, Hans-Carl-Von-Carlowitz-Platz 2, 85354, Freising, Germany.
| |
Collapse
|
12
|
Vea IM, Wilcox AS, Frankino WA, Shingleton AW. Genetic Variation in Sexual Size Dimorphism Is Associated with Variation in Sex-Specific Plasticity in Drosophila. Am Nat 2023; 202:368-381. [PMID: 37606943 DOI: 10.1086/725420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractThe difference in body size between females and males, or sexual size dimorphism (SSD), is ubiquitous, yet we have a poor understanding of the developmental genetic mechanisms that generate it and how these mechanisms may vary within and among species. Such an understanding of the genetic architecture of SSD is important if we are to evaluate alternative models of SSD evolution, but the genetic architecture is difficult to describe because SSD is a characteristic of populations, not individuals. Here, we overcome this challenge by using isogenic lineages of Drosophila to measure SSD for 196 genotypes. We demonstrate extensive genetic variation for SSD, primarily driven by higher levels of genetic variation for body size among females than among males. While we observe a general increase in SSD with sex-averaged body size (pooling for sex) among lineages, most of the variation in SSD is independent of sex-averaged body size and shows a strong genetic correlation with sex-specific plasticity, such that increased female-biased SSD is associated with increased body size plasticity in females. Our data are consistent with the condition dependence hypothesis of sexual dimorphism and suggest that SSD in Drosophila is a consequence of selection on the developmental genetic mechanisms that regulate the plasticity of body size.
Collapse
|
13
|
Spake R, Bowler DE, Callaghan CT, Blowes SA, Doncaster CP, Antão LH, Nakagawa S, McElreath R, Chase JM. Understanding 'it depends' in ecology: a guide to hypothesising, visualising and interpreting statistical interactions. Biol Rev Camb Philos Soc 2023; 98:983-1002. [PMID: 36859791 DOI: 10.1111/brv.12939] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Ecologists routinely use statistical models to detect and explain interactions among ecological drivers, with a goal to evaluate whether an effect of interest changes in sign or magnitude in different contexts. Two fundamental properties of interactions are often overlooked during the process of hypothesising, visualising and interpreting interactions between drivers: the measurement scale - whether a response is analysed on an additive or multiplicative scale, such as a ratio or logarithmic scale; and the symmetry - whether dependencies are considered in both directions. Overlooking these properties can lead to one or more of three inferential errors: misinterpretation of (i) the detection and magnitude (Type-D error), and (ii) the sign of effect modification (Type-S error); and (iii) misidentification of the underlying processes (Type-A error). We illustrate each of these errors with a broad range of ecological questions applied to empirical and simulated data sets. We demonstrate how meta-analysis, a widely used approach that seeks explicitly to characterise context dependence, is especially prone to all three errors. Based on these insights, we propose guidelines to improve hypothesis generation, testing, visualisation and interpretation of interactions in ecology.
Collapse
Affiliation(s)
- Rebecca Spake
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- School of Biological Sciences, University of Reading, RG6 6EX, Reading, UK
| | - Diana E Bowler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- UK Centre for Ecology & Hydrology, OX10 8BB, Oxfordshire, UK
| | - Corey T Callaghan
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle - Wittenberg, 06120, Halle (Saale), Germany
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, 33314-7719, FL, USA
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| | - C Patrick Doncaster
- School of Biological Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - Laura H Antão
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Shinichi Nakagawa
- UNSW Data Science Hub, Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW, Sydney, 2052, NSW, Australia
| | - Richard McElreath
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| |
Collapse
|
14
|
Beltrão P, Gomes ACR, Cardoso GC. Bullying as an advertisement of social dominance in common waxbills. Proc Biol Sci 2023; 290:20230206. [PMID: 37312555 PMCID: PMC10265017 DOI: 10.1098/rspb.2023.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Bullying consists of preferentially attacking individuals lowest in the dominance hierarchy, and its functions are unclear because the most subordinate individuals do not pose social challenges to the aggressor. Instead, conflict is expected mostly between individuals of similar dominance rank or socially distant (i.e. weakly associated), among whom dominance relationships may not be well established. A possible function of bullying is that it may be used as a low-risk strategy of showing-off dominance to relevant third parties. To study this hypothesis, we monitored aggressions during feeding, the composition of audiences, dominance hierarchy and social network of common waxbills (Estrilda astrild) in an open-air mesocosm, and tested (i) whether their aggressions show a pattern of bullying, and (ii) whether audience effects influence aggressiveness. Waxbills showed bullying, most often attacking the lowest ranking individuals rather than socially distant individuals or those of similar dominance rank, and aggressions increased when the audience included socially distant individuals, indicating a signalling function of bullying. Showing-off dominance in the presence of socially distant individuals may be a strategy to manage dominance hierarchies, avoiding direct fights with potentially dangerous opponents in the audience. We suggest that bullying is a safe manner of managing dominance hierarchies, by signalling dominance status to potential opponents.
Collapse
Affiliation(s)
- Patrícia Beltrão
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Portugal
| | - Ana Cristina R. Gomes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Portugal
| | - Gonçalo C. Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Portugal
| |
Collapse
|
15
|
Liu Y, Liu H, Baastrup-Spohr L, Li Z, Li W, Pan J, Cao Y. Allometric relationships between leaf and petiole traits across 31 floating-leaved plants reveal a different adaptation pattern from terrestrial plants. ANNALS OF BOTANY 2023; 131:545-552. [PMID: 36655615 PMCID: PMC10072084 DOI: 10.1093/aob/mcad007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Allometric scaling between stomata and xylem for terrestrial woody plants is a widely observed pattern that may be constrained by water transport. Floating-leaved plants, a particular life form of aquatic plants, have leaves in direct contact with both air and water and a poorly developed xylem that may not be limited by water supply as for terrestrial plants. However, whether such an allometric scaling relationship still exists in floating-leaved plants has not been explored. METHODS We analysed 31 floating-leaved species/varieties with a range in leaf area covering six orders of magnitude. For all 31 floating-leaved plants, we studied the allometric relationships between leaf area and petiole transverse area, and between total stomatal area and petiole vascular area. KEY RESULTS The slopes of both relationships were similar to the slope of the allometric relationship (1.23) between total stomatal area and xylem area of 53 terrestrial plants. However, for ten of them with xylem that can be clearly defined, the strong positive relationship between total stomatal area and petiole xylem area had a significantly smaller slope than that of terrestrial plants (0.64 vs. 1.23). Furthermore, after considering phylogeny, the scaling relationships between total stomatal area and petiole traits in floating-leaved plants remained significant. CONCLUSIONS We speculated that for floating-leaved plants, the hyperallometric relationship (slope >1) between the construction of leaf/stoma and petiole was promoted by the high demand for photosynthesis and thus more leaves/stomata. While the hypoallometric relationship (slope <1) between stomatal and xylem area was related more to hydraulic processes, the selection pressure on stomata was lower than xylem of floating-leaved plants. Allometric relationships among the hydraulic traits on water transport of aquatic plants are the result of natural selection to achieve maximum carbon gain, which is similar to terrestrial plants.
Collapse
Affiliation(s)
- Yang Liu
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Lars Baastrup-Spohr
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Zhizhong Li
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wei Li
- Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
- Aquatic Plants Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Junfeng Pan
- Horticulture and Conservation Centre, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | | |
Collapse
|
16
|
Vandenberg ML, Cohen KE, Rubin RD, Goldbogen JA, Summers AP, Paig-Tran EWM, Kahane-Rapport SR. Formation of a fringe: A look inside baleen morphology using a multimodal visual approach. J Morphol 2023; 284:e21574. [PMID: 36807194 DOI: 10.1002/jmor.21574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 02/23/2023]
Abstract
Filter-feeding has been present for hundreds of millions of years, independently evolving in aquatic vertebrates' numerous times. Mysticete whales are a group of gigantic, marine filter-feeders that are defined by their fringed baleen and are divided into two groups: balaenids and rorquals. Recent studies have shown that balaenids likely feed using a self-cleaning, cross-flow filtration mechanism where food particles are collected and then swept to the esophagus for swallowing. However, it is unclear how filtering is achieved in the rorquals (Balaenopteridae). Lunging rorqual whales engulf enormous masses of both prey and water; the prey is then separated from the water through baleen plates lining the length of their upper jaw and positioned perpendicular to flow. Rorqual baleen is composed of both major (larger) and minor (smaller) keratin plates containing embedded fringe that extends into the whale's mouth, forming a filtering fringe. We used a multimodal approach, including microcomputed tomography (µCT) and scanning electron microscopy (SEM), to visualize and describe the variability in baleen anatomy across five species of rorqual whales, spanning two orders of magnitude in body length. For most morphological measurements, larger whales exhibited hypoallometry relative to body length. µCT and SEM revealed that the major and minor plates break away from the mineralized fringes at variable distances from the gums. We proposed a model for estimating the effective pore size to determine whether flow scales with body length or prey size across species. We found that pore size is likely not a proxy for prey size but instead, may reflect changes in resistance through the filter that affect fluid flow.
Collapse
Affiliation(s)
- Megan L Vandenberg
- Department of Biology, University of Washington, Seattle, Washington, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA
| | - Karly E Cohen
- Department of Biology, University of Washington, Seattle, Washington, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA
| | | | - Jeremy A Goldbogen
- Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
| | - Adam P Summers
- Department of Biology, University of Washington, Seattle, Washington, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA
| | | | | |
Collapse
|
17
|
Meyer MR, Jung JP, Spear JK, Araiza IF, Galway-Witham J, Williams SA. Knuckle-walking in Sahelanthropus? Locomotor inferences from the ulnae of fossil hominins and other hominoids. J Hum Evol 2023; 179:103355. [PMID: 37003245 DOI: 10.1016/j.jhevol.2023.103355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Because the ulna supports and transmits forces during movement, its morphology can signal aspects of functional adaptation. To test whether, like extant apes, some hominins habitually recruit the forelimb in locomotion, we separate the ulna shaft and ulna proximal complex for independent shape analyses via elliptical Fourier methods to identify functional signals. We examine the relative influence of locomotion, taxonomy, and body mass on ulna contours in Homo sapiens (n = 22), five species of extant apes (n = 33), two Miocene apes (Hispanopithecus and Danuvius), and 17 fossil hominin specimens including Sahelanthropus, Ardipithecus, Australopithecus, Paranthropus, and early Homo. Ulna proximal complex contours correlate with body mass but not locomotor patterns, while ulna shafts significantly correlate with locomotion. African apes' ulna shafts are more robust and curved than Asian apes and are unlike other terrestrial mammals (including other primates), curving ventrally rather than dorsally. Because this distinctive curvature is absent in orangutans and hylobatids, it is likely a function of powerful flexors engaged in wrist and hand stabilization during knuckle-walking, and not an adaptation to climbing or suspensory behavior. The OH 36 (purported Paranthropus boisei) and TM 266 (assigned to Sahelanthropus tchadensis) fossils differ from other hominins by falling within the knuckle-walking morphospace, and thus appear to show forelimb morphology consistent with terrestrial locomotion. Discriminant function analysis classifies both OH 36 and TM 266 with Pan and Gorilla with high posterior probability. Along with its associated femur, the TM 266 ulna shaft contours and its deep, keeled trochlear notch comprise a suite of traits signaling African ape-like quadrupedalism. While implications for the phylogenetic position and hominin status of S. tchadensis remain equivocal, this study supports the growing body of evidence indicating that S. tchadensis was not an obligate biped, but instead represents a late Miocene hominid with knuckle-walking adaptations.
Collapse
Affiliation(s)
- Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, CA 91737, USA.
| | - Jason P Jung
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Jeffrey K Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Isabella Fx Araiza
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Julia Galway-Witham
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| |
Collapse
|
18
|
Miller CV, Pittman M, Wang X, Zheng X, Bright JA. Quantitative investigation of pengornithid enantiornithine diet reveals macrocarnivorous ecology evolved in birds by Early Cretaceous. iScience 2023; 26:106211. [PMID: 36923002 PMCID: PMC10009206 DOI: 10.1016/j.isci.2023.106211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The diet of Mesozoic birds is poorly known, limiting evolutionary understanding of birds' roles in modern ecosystems. Pengornithidae is one of the best understood families of Mesozoic birds, hypothesized to eat insects or only small amounts of meat. We investigate these hypotheses with four lines of evidence: estimated body mass, claw traditional morphometrics, jaw mechanical advantage, and jaw finite element analysis. Owing to limited data, the diets of Eopengornis and Chiappeavis remain obscure. Pengornis, Parapengornis, and Yuanchuavis show adaptations for vertebrate carnivory. Pengornis also has talons similar to living raptorial birds like caracaras that capture and kill large prey, which represents the earliest known adaptation for macrocarnivory in a bird. This supports the appearance of this ecology ∼35 million years earlier than previously thought. These findings greatly increase the niche breadth known for Early Cretaceous birds, and shift the prevailing view that Mesozoic birds mainly occupied low trophic levels.
Collapse
Affiliation(s)
- Case Vincent Miller
- Department of Earth Sciences, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Michael Pittman
- School of Life Sciences, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| | - Jen A. Bright
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
19
|
Foster WJ, Godbold A, Brayard A, Frank AB, Grasby SE, Twitchett RJ, Oji T. Palaeoecology of the Hiraiso Formation (Miyagi Prefecture, Japan) and implications for the recovery following the end-Permian mass extinction. PeerJ 2022; 10:e14357. [PMID: 36569998 PMCID: PMC9774009 DOI: 10.7717/peerj.14357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
The Hiraiso Formation of northeast Japan represents an important and under-explored archive of Early Triassic marine ecosystems. Here, we present a palaeoecological analysis of its benthic faunas in order to explore the temporal and spatial variations of diversity, ecological structure and taxonomic composition. In addition, we utilise redox proxies to make inferences about the redox state of the depositional environments. We then use this data to explore the pace of recovery in the Early Triassic, and the habitable zone hypothesis, where wave aerated marine environments are thought to represent an oxygenated refuge. The age of the Hiraiso Formation is equivocal due to the lack of key biostratigraphical index fossils, but new ammonoid finds in this study support an early Spathian age. The ichnofossils from the Hiraiso Formation show an onshore-offshore trend with high diversity and relatively large faunas in offshore transition settings and a low diversity of small ichnofossils in basinal settings. The body fossils do not, however, record either spatial or temporal changes, because the shell beds represent allochthonous assemblages due to wave reworking. The dominance of small burrow sizes, presence of key taxa including Thalassinoides, Rhizocorallium and Holocrinus, presence of complex trace fossils, and both erect and deep infaunal tiering organisms suggests that the benthic fauna represents an advanced stage of ecological recovery for the Early Triassic, but not full recovery. The ecological state suggests a similar level of ecological complexity to late Griesbachian and Spathian communities elsewhere, with the Spathian marking a globally important stage of recovery following the mass extinction. The onshore-offshore distribution of the benthic faunas supports the habitable zone hypothesis. This gradient is, however, also consistent with onshore-offshore ecological gradients known to be controlled by oxygen gradients in modern tropical and subtropical settings. This suggests that the habitable zone is not an oxygenated refuge that is only restricted to anoxic events. The lack of observed full recovery is likely a consequence of a persistent oxygen-limitation (dysoxic conditions), hot Early Triassic temperatures and the lack of a steep temperature/water-depth gradient within the habitable zone.
Collapse
Affiliation(s)
- William J. Foster
- Institute for Geology, Universität Hamburg, Hamburg, Germany,Nagoya University, Nagoya, Japan
| | - Amanda Godbold
- University of Southern California, Los Angeles, United States,University of Tokyo, Tokyo, Japan
| | | | - Anja B. Frank
- Institute for Geology, Universität Hamburg, Hamburg, Germany
| | | | | | | |
Collapse
|
20
|
Kenzo T, Yoneda R, Alias MA. Estimation of above and belowground biomass for grass, herb, and fern species in Peninsula Malaysia. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
A Revision of the Traditional Analysis Method of Allometry to Allow Extension of the Normality-Borne Complexity of Error Structure: Examining the Adequacy of a Normal-Mixture Distribution-Driven Error Term. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8310213. [PMID: 36172489 PMCID: PMC9512611 DOI: 10.1155/2022/8310213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Huxley’s model of simple allometry provides a parsimonious scheme for examining scaling relationships in scientific research, resource management, and species conservation endeavors. Factors including biological error, analysis method, sample size, and overall data quality can undermine the reliability of a fit of Huxley’s model. Customary amendments enhance the complexity of the power function-conveyed systematic term while keeping the usual normality-borne error structure. The resulting protocols bear multiple-parameter complex allometry forms that could pose interpretative shortcomings and parameter estimation difficulties, and even being empirically pertinent, they could potentially bear overfitting. A subsequent heavy-tailed Q-Q normal spread often remains undetected since the adequacy of a normally distributed error term remains unexplored. Previously, we promoted the advantages of keeping Huxley’s model-driven systematic part while switching to a logistically distributed error term to improve fit quality. Here, we analyzed eelgrass leaf biomass and area data exhibiting a marked size-related heterogeneity, perhaps explaining a lack of systematization at data gathering. Overdispersion precluded adequacy of the logistically adapted protocol, thereby suggesting processing data through a median absolute deviation scheme aimed to remove unduly replicates. Nevertheless, achieving regularity to Huxley’s power function-like trend required the removal of many replicates, thereby questioning the integrity of a data cleaning approach. But, we managed to adapt the complexity of the error term to reliably identify Huxley’s model-like systematic part masked by variability in data. Achieving this relied on an error term conforming to a normal mixture distribution which successfully managed overdispersion in data. Compared to normal-complex allometry and data cleaning composites present arrangement delivered a coherent Q-Q normal mixture spread and a remarkable reproducibility strength of derived proxies. By keeping the analysis within Huxley’s original theory, the present approach enables substantiating nondestructive allometric proxies aimed at eelgrass conservation. The viewpoint endorsed here could also make data cleaning unnecessary.
Collapse
|
22
|
Savage JA, Kiecker T, McMann N, Park D, Rothendler M, Mosher K. Leaf out time correlates with wood anatomy across large geographic scales and within local communities. THE NEW PHYTOLOGIST 2022; 235:953-964. [PMID: 35179794 PMCID: PMC9313884 DOI: 10.1111/nph.18041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
There is a long-standing idea that the timing of leaf production in seasonally cold climates is linked to xylem anatomy, specifically vessel diameter because of the hydraulic requirements of expanding leaves. We tested for a relationship between the timing of leaf out and vessel diameter in 220 plants in three common gardens accounting for species' phylogenetic relationships. We investigated how vessel diameter related to wood porosity, plant height and leaf length. We also used dye perfusion tests to determine whether plants relied on xylem produced during the previous growing season at the time of leaf out. In all three gardens, there was later leaf out in species with wider vessels. Ring-porous species had the widest vessels, exhibited latest leaf out and relied less on xylem made during the previous growing season than diffuse-porous species. Wood anatomy and leaf phenology did not exhibit a phylogenetic signal. The timing of leaf out is correlated with wood anatomy across species regardless of species' geographic origin and phylogenetic relationships. This correlation could be a result of developmental and physiological links between leaves and wood or tied to a larger safety efficiency trade-off.
Collapse
Affiliation(s)
| | - Thomas Kiecker
- Department of BiologyUniversity of MinnesotaDuluthMN55812USA
| | - Natalie McMann
- Department of BiologyUniversity of MinnesotaDuluthMN55812USA
| | - Daniel Park
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907USA
| | | | - Kennedy Mosher
- Department of BiologyUniversity of MinnesotaDuluthMN55812USA
| |
Collapse
|
23
|
Functional Diversity in Woody Organs of Tropical Dry Forests and Implications for Restoration. SUSTAINABILITY 2022. [DOI: 10.3390/su14148362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tropical dry forests (TDFs) represent one of the most diverse and, at the same time, most threatened ecosystems on earth. Restoration of TDFs is thus crucial but is hindered by a limited understanding of the functional diversity (FD) of original communities. We examine the FD of TDFs based on wood (vessel diameter and wood density) and bark traits (total, inner, and outer bark thicknesses) measured on ~500 species from 24 plant communities and compare this diversity with that of seven other major vegetation types. Along with other seasonally dry sites, TDFs had the highest FD, as indicated by the widest ranges, highest variances, and largest trait hypervolumes. Warm temperatures and seasonal drought seem to drive diverse ecological strategies in these ecosystems, which include a continuum from deciduous species with low-density wood, thick bark, and wide vessels to evergreen species with high-density wood, thin bark, and narrow vessels. The very high FD of TDFs represents a challenge to restoring the likely widest trait ranges of any habitat on earth. Understanding this diversity is essential for monitoring successional changes in minimal intervention restoration and guiding species selection for resilient restoration plantings in the context of climate change.
Collapse
|
24
|
Da R, Hao M, Qiao X, Zhang C, Zhao X. Unravelling Trait-Environment Relationships at Local and Regional Scales in Temperate Forests. FRONTIERS IN PLANT SCIENCE 2022; 13:907839. [PMID: 35707613 PMCID: PMC9189410 DOI: 10.3389/fpls.2022.907839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Understanding the trait-environment relationships has been a core ecological research topic in the face of global climate change. However, the strength of trait-environment relationships at the local and regional scales in temperate forests remains poorly known. In this study, we investigated the local and regional scale forest plots of the natural broad-leaved temperate forest in northeastern China, to assess what extent community-level trait composition depends on environmental drivers across spatial scales. We measured five key functional traits (leaf area, specific leaf area, leaf carbon content, leaf nitrogen content, and wood density) of woody plant, and quantified functional compositions of communities by calculating the "specific" community-weighted mean (CWM) traits. The sum of squares decomposition method was used to quantify the relative contribution of intraspecific trait variation to total trait variation among communities. Multiple linear regression model was then used to explore the community-level trait-environment relationships. We found that (i) intraspecific trait variation contributed considerably to total trait variation and decreased with the spatial scale from local to regional; (ii) functional composition was mainly affected by soil and topography factors at the local scale and climate factor at the regional scale, while explaining that variance of environment factors were decreased with increasing spatial scale; and (iii) the main environment driver of functional composition was varied depending on the traits and spatial scale. This work is one of the few multi-scale analyses to investigate the environmental drivers of community functional compositions. The extent of intraspecific trait variation and the strength of trait-environment relationship showed consistent trends with increasing spatial scale. Our findings demonstrate the influence of environmental filtering on both local- and regional-scale temperate forest communities, and contribute to a comprehensive understanding of trait-environment relationships across spatial scales.
Collapse
Affiliation(s)
| | | | | | | | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
25
|
Miller CV, Pittman M, Wang X, Zheng X, Bright JA. Diet of Mesozoic toothed birds (Longipterygidae) inferred from quantitative analysis of extant avian diet proxies. BMC Biol 2022; 20:101. [PMID: 35550084 PMCID: PMC9097364 DOI: 10.1186/s12915-022-01294-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Birds are key indicator species in extant ecosystems, and thus we would expect extinct birds to provide insights into the nature of ancient ecosystems. However, many aspects of extinct bird ecology, particularly their diet, remain obscure. One group of particular interest is the bizarre toothed and long-snouted longipterygid birds. Longipterygidae is the most well-understood family of enantiornithine birds, the dominant birds of the Cretaceous period. However, as with most Mesozoic birds, their diet remains entirely speculative. RESULTS To improve our understanding of longipterygids, we investigated four proxies in extant birds to determine diagnostic traits for birds with a given diet: body mass, claw morphometrics, jaw mechanical advantage, and jaw strength via finite element analysis. Body mass of birds tended to correspond to the size of their main food source, with both carnivores and herbivores splitting into two subsets by mass: invertivores or vertivores for carnivores, and granivores + nectarivores or folivores + frugivores for herbivores. Using claw morphometrics, we successfully distinguished ground birds, non-raptorial perching birds, and raptorial birds from one another. We were unable to replicate past results isolating subtypes of raptorial behaviour. Mechanical advantage was able to distinguish herbivorous diets with particularly high values of functional indices, and so is useful for identifying these specific diets in fossil taxa, but overall did a poor job of reflecting diet. Finite element analysis effectively separated birds with hard and/or tough diets from those eating foods which are neither, though could not distinguish hard and tough diets from one another. We reconstructed each of these proxies in longipterygids as well, and after synthesising the four lines of evidence, we find all members of the family but Shengjingornis (whose diet remains inconclusive) most likely to be invertivores or generalist feeders, with raptorial behaviour likely in Longipteryx and Rapaxavis. CONCLUSIONS This study provides a 20% increase in quantitatively supported fossil bird diets, triples the number of diets reconstructed in enantiornithine species, and serves as an important first step in quantitatively investigating the origins of the trophic diversity of living birds. These findings are consistent with past hypotheses that Mesozoic birds occupied low trophic levels.
Collapse
Affiliation(s)
- Case Vincent Miller
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Jen A Bright
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
26
|
Glazier DS. Complications with body-size correction in comparative biology: possible solutions and an appeal for new approaches. J Exp Biol 2022; 225:274353. [PMID: 35258614 DOI: 10.1242/jeb.243313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The magnitude of many kinds of biological traits relates strongly to body size. Therefore, a first step in comparative studies frequently involves correcting for effects of body size on the variation of a phenotypic trait, so that the effects of other biological and ecological factors can be clearly distinguished. However, commonly used traditional methods for making these body-size adjustments ignore or do not completely separate the causal interactive effects of body size and other factors on trait variation. Various intrinsic and extrinsic factors may affect not only the variation of a trait, but also its covariation with body size, thus making it difficult to remove completely the effect of body size in comparative studies. These complications are illustrated by several examples of how body size interacts with diverse developmental, physiological, behavioral and ecological factors to affect variation in metabolic rate both within and across species. Such causal interactions are revealed by significant effects of these factors on the body-mass scaling slope of metabolic rate. I discuss five possible major kinds of methods for removing body-size effects that attempt to overcome these complications, at least in part, but I hope that my Review will encourage the development of other, hopefully better methods for doing so.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| |
Collapse
|
27
|
Size–Abundance Relationships of Freshwater Macroinvertebrates in Two Contrasting Floodplain Channels of Rhone River. WATER 2022. [DOI: 10.3390/w14050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Body size is perhaps the most fundamental property of an organism and its relationship with abundance is one of the most studied relationships in ecology. Although numerous studies have examined these relationships in local communities, few have investigated how they vary at different temporal and spatial scales. We investigated the relationship between body size and abundance of local macroinvertebrate communities in two floodplain channels of the French upper Rhone River. The two channels differ in their vegetation coverage (high vs. low vegetation) and hydrological regimes. The shapes of the size–abundance relationship were similar between channels on a yearly basis but differed when compared between months. The variation in local size–abundance relationships between months was related to variation in the functional diversity across time. Our findings suggest that local size–abundance relationships are able to quantitatively describe temporal changes in community structure, showing the importance of relating diversity with ecosystem function in a more realistic context.
Collapse
|
28
|
Engelman RK. Occipital condyle width (OCW) is a highly accurate predictor of body mass in therian mammals. BMC Biol 2022; 20:37. [PMID: 35130893 PMCID: PMC8883515 DOI: 10.1186/s12915-021-01224-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/26/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Body mass estimation is of paramount importance for paleobiological studies, as body size influences numerous other biological parameters. In mammals, body mass has been traditionally estimated using regression equations based on measurements of the dentition or limb bones, but for many species teeth are unreliable estimators of body mass and postcranial elements are unknown. This issue is exemplified in several groups of extinct mammals that have disproportionately large heads relative to their body size and for which postcranial remains are rare. In these taxa, previous authors have noted that the occiput is unusually small relative to the skull, suggesting that occiput dimensions may be a more accurate predictor of body mass. RESULTS The relationship between occipital condyle width (OCW) and body mass was tested using a large dataset (2127 specimens and 404 species) of mammals with associated in vivo body mass. OCW was found to be a strong predictor of body mass across therian mammals, with regression models of Mammalia as a whole producing error values (~ 31.1% error) comparable to within-order regression equations of other skeletal variables in previous studies. Some clades (e.g., monotremes, lagomorphs) exhibited specialized occiput morphology but followed the same allometric relationship as the majority of mammals. Compared to two traditional metrics of body mass estimation, skull length, and head-body length, OCW outperformed both in terms of model accuracy. CONCLUSIONS OCW-based regression models provide an alternative method of estimating body mass to traditional craniodental and postcranial metrics and are highly accurate despite the broad taxonomic scope of the dataset. Because OCW accurately predicts body mass in most therian mammals, it can be used to estimate body mass in taxa with no close living analogues without concerns of insufficient phylogenetic bracketing or extrapolating beyond the bounds of the data. This, in turn, provides a robust method for estimating body mass in groups for which body mass estimation has previously been problematic (e.g., "creodonts" and other extinct Paleogene mammals).
Collapse
Affiliation(s)
- Russell K Engelman
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
29
|
A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China. FORESTS 2022. [DOI: 10.3390/f13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(1) Background: Water transport systems play an important role in maintaining plant growth and development. The plasticity responses of the xylem anatomical traits of different species to the environment are different. Studies have shown that there are annual growth rings in the secondary root xylem of perennial herbaceous species. Studies on xylem anatomical traits, however, have mainly focused on woody species, with little attention given to herbaceous species. (2) Methods: We set 14 sampling sites along a rainfall gradient in arid and semiarid regions, and collected the main roots of native (Potentilla) and non-native (Medicago) perennial forbs. The xylem anatomical traits of the plant roots were obtained by paraffin section, and the relationships between the xylem traits of forbs were analyzed by a Pearson correlation. (3) Results: In the fixed measurement area (850 μm × 850 μm), the vessel number (NV) of Potentilla species was higher than that of Medicago species, while the hydraulic diameter (Dh) and mean vessel area (MVA) of Potentilla species were lower than those of Medicago species. With the increase in precipitation along the rainfall gradient, the Dh (R2 = 0.403, p = 0.03) and MVA (R2 = 0.489, p = 0.01) of Medicago species increased significantly, and NV (R2 = 0.252, p = 0.09) decreased, while the hydraulic traits of Potentilla species showed no significant trend with regard to the rainfall gradient. (4) Conclusions: The hydraulic efficiency of non-native Medicago forbs was higher than that of native Potentilla forbs, and the hydraulic safety of native Potentilla forbs was higher than that of non-native Medicago forbs. With the decrease in precipitation, the hydraulic strategies of non-native Medicago forbs changed from efficiency to safety, while native Potentilla forbs were not sensitive to variations in precipitation.
Collapse
|
30
|
Limb length and poison glands size as predictors of anti-predatory performance in South American true toads. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Somjee U, Powell EC, Hickey AJ, Harrison JF, Painting CJ. Exaggerated sexually selected weapons maintained with disproportionately low metabolic costs in a single species with extreme size variation. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ummat Somjee
- Smithsonian Tropical Research Institute Balboa Panama
| | - Erin C. Powell
- School of Biological Sciences University of Auckland Auckland New Zealand
- Entomology and Nematology Department University of Florida Gainesville FL USA
| | - Anthony J. Hickey
- School of Biological Sciences University of Auckland Auckland New Zealand
| | | | - Christina J. Painting
- School of Biological Sciences University of Auckland Auckland New Zealand
- Te Aka Mātuatua School of Science University of Waikato Auckland New Zealand
| |
Collapse
|
32
|
Painting CJ. Size and shape variation in the male dimorphic head weapons of an anthribid weevil (Hoherius meinertzhageni). Evol Ecol 2021. [DOI: 10.1007/s10682-021-10127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Lehmann GUC, Kuchenreuther S, Lehmann AW, Dickhaus T. Correlated sexual selection on male genitalia, copulatory performance and nuptial gifts in a bushcricket (Orthoptera: Tettigoniidae) indicated by allometric scaling. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
We adopt an allometric framework of scaling relationships for comparison between mating-related traits in the middle European bushcricket Roeseliana roeselii (Hagenbach, 1822). Eight characters, covering ontogenetic fitness (size traits; fixed at final moult), male condition (mass traits) and mating motivation (reproductive behaviours), were analysed in unrestricted matings and in matings involving genital manipulation. Shortening the male titillators had no effect on mating-related traits in males. However, titillators, known to be under sexual selection, scale hyperallometrically, with larger males possessing proportionally longer titillators, performing more titillator movements and exhibiting a reduced duration of copulation. Scaling was also hyperallometric for spermatophore mass, with larger males being heavier and transferring heavier nuptial gifts. Both titillator length and spermatophore mass might be condition-dependent indicators, because their variances were nearly twice as large those of body size or body mass. Mass traits were also dynamic, increasing by 11% for male body mass and 17% for spermatophore mass between the first and second matings. Sexual selection by female choice seems to favour larger trait size in the bushcricket R. roeselii, acting in concert on titillator length, intensity of titillator movements and spermatophore mass.
Collapse
Affiliation(s)
- Gerlind U C Lehmann
- Evolutionary Ecology, Department of Biology, Humboldt University Berlin, Invalidenstrasse 110, Berlin, Germany
| | - Sina Kuchenreuther
- Evolutionary Ecology, Department of Biology, Humboldt University Berlin, Invalidenstrasse 110, Berlin, Germany
| | | | | |
Collapse
|
34
|
Abstract
The magnitude of many biological traits relates strongly and regularly to body size. Consequently, a major goal of comparative biology is to understand and apply these 'size-scaling' relationships, traditionally quantified by using linear regression analyses based on log-transformed data. However, recently some investigators have questioned this traditional method, arguing that linear or non-linear regression based on untransformed arithmetic data may provide better statistical fits than log-linear analyses. Furthermore, they advocate the replacement of the traditional method by alternative specific methods on a case-by-case basis, based simply on best-fit criteria. Here, I argue that the use of logarithms in scaling analyses presents multiple valuable advantages, both statistical and conceptual. Most importantly, log-transformation allows biologically meaningful, properly scaled (scale-independent) comparisons of organisms of different size, whereas non-scaled (scale-dependent) analyses based on untransformed arithmetic data do not. Additionally, log-based analyses can readily reveal biologically and theoretically relevant discontinuities in scale invariance during developmental or evolutionary increases in body size that are not shown by linear or non-linear arithmetic analyses. In this way, log-transformation advances our understanding of biological scaling conceptually, not just statistically. I hope that my Commentary helps students, non-specialists and other interested readers to understand the general benefits of using log-transformed data in size-scaling analyses, and stimulates advocates of arithmetic analyses to show how they may improve our understanding of scaling conceptually, not just statistically.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| |
Collapse
|
35
|
Jenkins Shaw J, Voje KL. Horn scaling relationships in three species of Bledius Leach 1819 (Insecta: Coleoptera: Staphylinidae) show no indication of fitting non-linear allometric models. J NAT HIST 2021. [DOI: 10.1080/00222933.2021.1891315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Josh Jenkins Shaw
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
36
|
Dial RJ, Schulz B, Lewis‐Clark E, Martin K, Andersen H. Using fractal self-similarity to increase precision of shrub biomass estimates. Ecol Evol 2021; 11:4866-4873. [PMID: 33976854 PMCID: PMC8093737 DOI: 10.1002/ece3.7393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 11/12/2022] Open
Abstract
We show that aerial tips are self-similar fractals of whole shrubs and present a field method that applies this fact to improves accuracy and precision of biomass estimates of tall-shrubs, defined here as those with diameter at root collar (DRC) ≥ 2.5 cm. Power function allometry of biomass to stem diameter generates a disproportionate prediction error that increases rapidly with diameter. Thus, biomass should be modeled as a single measure of stem diameter only if stem diameter is less than a threshold Dmax . When stem diameter exceeds Dmax , then the stem internode should be treated as a conic frustrum requiring two additional measures: a second, node-adjacent diameter and a length. If the second diameter is less than Dmax , then the power function allometry can be applied to the aerial tip; otherwise an additional internode is measured. This "two-component" allometry-internodes as frustra and aerial tips as shrubs-can reduce estimated biomass error propagated to the plot-level by as much as 50% or more where very large shrubs are present Dmax is any diameter such that the ratio of single-component to two-component uncertainty exceeds the ratio of two-component to single-component measurement time. Guidelines for estimating Dmax based on pilot field data are provided. Tall shrubs are increasing in abundance and distribution across Arctic, alpine, boreal, and dryland ecosystems. Estimating their biomass is important for both ecological studies and carbon accounting. Reducing field-sample prediction error increases precision in multi-stage modeling because additional measures efficiently improve plot-level biomass precision, reducing uncertainty for shrub biomass estimates.
Collapse
Affiliation(s)
- Roman J. Dial
- Institute of Culture and EnvironmentAlaska Pacific UniversityAnchorageAKUSA
| | - Bethany Schulz
- USDA Forest Service Pacific Northwest Research StationAnchorageAKUSA
| | - Eric Lewis‐Clark
- Institute of Culture and EnvironmentAlaska Pacific UniversityAnchorageAKUSA
| | - Kaili Martin
- Institute of Culture and EnvironmentAlaska Pacific UniversityAnchorageAKUSA
| | - Hans‐Erik Andersen
- USDA Forest Service Pacific Northwest Research StationUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
37
|
Glazier DS. Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem. BIOLOGY 2021; 10:270. [PMID: 33810583 PMCID: PMC8067107 DOI: 10.3390/biology10040270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei ('genome size'). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell 'bottleneck' of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.
Collapse
|
38
|
Burt A, Boni Vicari M, da Costa ACL, Coughlin I, Meir P, Rowland L, Disney M. New insights into large tropical tree mass and structure from direct harvest and terrestrial lidar. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201458. [PMID: 33972856 PMCID: PMC8074798 DOI: 10.1098/rsos.201458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
A large portion of the terrestrial vegetation carbon stock is stored in the above-ground biomass (AGB) of tropical forests, but the exact amount remains uncertain, partly owing to the lack of measurements. To date, accessible peer-reviewed data are available for just 10 large tropical trees in the Amazon that have been harvested and directly measured entirely via weighing. Here, we harvested four large tropical rainforest trees (stem diameter: 0.6-1.2 m, height: 30-46 m, AGB: 3960-18 584 kg) in intact old-growth forest in East Amazonia, and measured above-ground green mass, moisture content and woody tissue density. We first present rare ecological insights provided by these data, including unsystematic intra-tree variations in density, with both height and radius. We also found the majority of AGB was usually found in the crown, but varied from 42 to 62%. We then compare non-destructive approaches for estimating the AGB of these trees, using both classical allometry and new lidar-based methods. Terrestrial lidar point clouds were collected pre-harvest, on which we fitted cylinders to model woody structure, enabling retrieval of volume-derived AGB. Estimates from this approach were more accurate than allometric counterparts (mean tree-scale relative error: 3% versus 15%), and error decreased when up-scaling to the cumulative AGB of the four trees (1% versus 15%). Furthermore, while allometric error increased fourfold with tree size over the diameter range, lidar error remained constant. This suggests error in these lidar-derived estimates is random and additive. Were these results transferable across forest scenes, terrestrial lidar methods would reduce uncertainty in stand-scale AGB estimates, and therefore advance our understanding of the role of tropical forests in the global carbon cycle.
Collapse
Affiliation(s)
- Andrew Burt
- Department of Geography, University College London, London, UK
| | | | | | - Ingrid Coughlin
- Research School of Biology, Australian National University, Canberra, Australia
| | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, Australia
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Mathias Disney
- Department of Geography, University College London, London, UK
- NERC National Centre for Earth Observation (NCEO), Leicester, UK
| |
Collapse
|
39
|
Mandal S, Singh A, Sah P, Singh RK, Kumar R, Lal KK, Mohindra V. Genetic and morphological assessment of a vulnerable large catfish, Silonia silondia (Hamilton, 1822), in natural populations from India. JOURNAL OF FISH BIOLOGY 2021; 98:430-444. [PMID: 33044745 DOI: 10.1111/jfb.14587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Silonia silondia is a commercially important fish distributed in Asian countries, which is under threat due to overexploitation. This study focuses on the morphological analysis and genetic variation of S. silondia individuals, through truss network and sequencing of two mitochondrial regions, respectively, from six wild populations of the Ganga and Mahanadi river systems in India. A total of 38 haplotypes was observed by analysing combined mitochondrial genes (cytochrome b + ATPase 6/8) in 247 individuals of S. silondia collected from six populations. Average haplotype and nucleotide diversities were 0.8508 and 0.00231, respectively. Genetic structure analysis showed the predominant cause of genetic variation to be within populations. The two clades were observed among the haplotypes and time of divergence from their most probable ancestor was estimated to be around 0.3949 mya. Analysis of combined mitochondrial genes in six populations of S. silondia resulted into three management units or genetic stocks. The truss network analysis was carried out by interconnecting 12 landmarks from digital images of specimens to identify phenotypic stocks. Sixty-five truss morphometric variables were analysed for geometric shape variation which revealed morphological divergence in River Son specimens. The present study presents molecular markers and genetic diversity data which can be critical input for conservation and management of differentiated populations and future monitoring of the genetic bottleneck. The morphological shape analysis clearly shows that variation in the insertion of adipose fin is an important parameter influencing the morphological discrimination.
Collapse
Affiliation(s)
- Sangeeta Mandal
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Achal Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Priyanka Sah
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Rajeev K Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Raj Kumar
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Kuldeep K Lal
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| |
Collapse
|
40
|
Ontogenetic scaling of the gastrointestinal tract of a marsupial foregut fermenter, the western grey kangaroo Macropus fuliginosus melanops. J Comp Physiol B 2021; 191:371-383. [PMID: 33491137 DOI: 10.1007/s00360-020-01333-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/07/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
As an animal grows, the relative sizes of their organs may grow proportionately or disproportionately, depending on ontogenetic changes in function. If organ growth is proportional (isometric), then the exponent of the scaling equation is 1.0. Relative decreases or increases in size result in exponents less than 1 (hypoallometric) or greater than 1 (hyperallometric). Thus, the empirical exponent can indicate potential changes in function. The entire gastrointestinal tract (GIT) of the foregut-fermenting western grey kangaroo Macropus fuliginosus melanops exhibited biphasic allometry across five orders of magnitude body mass (Mb; 52.0 g-70.5 kg). Prior to weaning at around 12 kg Mb, the entire empty GIT mass scaled with hyperallometry (Mb1.13), shifting to hypoallometry (Mb0.80) post-weaning. In addition, there were varying patterns of hyper-, hypo-, and isometric scaling for select GIT organs, with several displaying phase shifts associated with major life-history events, specifically around exit from the maternal pouch and around weaning. Mass of the kangaroo forestomach, the main fermentation site, scaled with hyperallometry (Mb1.16) before the stage of increased vegetation intake, and possibly after this stage (Mb1.12; P = 0.07), accompanied by a higher scaling factor (elevation of the curve) probably associated with more muscle for processing fibrous vegetation. The acid hindstomach mass showed hyperallometry (Mb1.15) before weaning, but hypoallometry (Mb 0.58) post-weaning, presumably associated with decreasing intake of milk. Small intestine mass and length each scaled isometrically throughout ontogeny, with no discernible breakpoints at any life-history stage. The caecum and colon mass were steeply hyperallometric early in-pouch life (Mb1.59-1.66), when the young were ectothermic, hairless, and supported solely by milk. After around 295 g Mb, caecum mass remained hyperallometric (Mb1.14), possibly supporting its early development as a nidus for microbial populations to provide for secondary fermentation in this organ after the young transition from milk to vegetation.
Collapse
|
41
|
Qi JH, Fan ZX, Fu PL, Zhang YJ, Sterck F. Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees: carbon gain, hydraulics and nutrient-use efficiencies. TREE PHYSIOLOGY 2021; 41:12-23. [PMID: 33080622 DOI: 10.1093/treephys/tpaa131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/08/2020] [Indexed: 05/26/2023]
Abstract
Growth rate varies across plant species and represents an important ecological strategy for competition, resource-use and fitness. However, empirical studies often show a low predictability of functional traits to tree growth. We measured stem diameter and height growth rates (DGRs and HGRs) of 96 juvenile trees (2-5 m tall) of eight evergreen and eight deciduous broadleaf tree species over three consecutive years in a subtropical forest in south-western China. We examined the relationships between tree growth rates and 20 leaf/stem traits that are associated with carbon gain, stem hydraulics and nutrient-use efficiency, as well as the difference between evergreen and deciduous trees. We found that cross-species variations of stem DGR/HGR can be predicted by leaf photosynthetic capacity, leaf mass per area, xylem-theoretical-specific hydraulic conductivity, wood density (WD) and photosynthetic-nutrient-use efficiencies. Higher leaf carbon assimilation and lower leaf/stem constructing costs facilitate deciduous species to be more resource acquisitive and consequently faster growth within a relatively shorter growing season, whereas evergreen species exhibit more conservative strategies and thus slower growth. Furthermore, stem growth rates of evergreen species showed were more dependence on leaf carbon gains, whereas stem hydraulic efficiency was more important for deciduous tree growth. Our results suggest that physiological traits (photosynthesis, hydraulics and nutrient-use efficiency) can predict tree diameter and height growth of subtropical tree species. The differential resource acquisition and use strategies and their associations with tree growth between evergreen and deciduous trees provide insights into explaining the coexistence of evergreen and deciduous tree species in subtropical forests.
Collapse
Affiliation(s)
- Jin-Hua Qi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, Yunnan 666303, China
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan 676209, China
| | - Ze-Xin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, Yunnan 666303, China
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan 676209, China
| | - Pei-Li Fu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan 676209, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, ME 04469, USA
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, Wageningen 6700AA, The Netherlands
| |
Collapse
|
42
|
Yan YM, Fan ZX, Fu PL, Chen H, Lin LX. Size dependent associations between tree diameter growth rates and functional traits in an Asian tropical seasonal rainforest. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:231-240. [PMID: 33119999 DOI: 10.1071/fp20226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Many studies focus on the relationships between plant functional traits and tree growth performances. However, little is known about the ontogenetic shifts of the relationships between functional traits and tree growth. This study examined associations between stem and leaf functional traits and growth rates and their ontogenetic shifts across 20 tropical tree species in a tropical seasonal rainforest in Xishuangbanna, south-west China. For each species, physiological active branches of individual trees belonged to three size classes (i.e. small, diameter at breast height (DBH) 5-10 cm; middle, DBH 10-20 cm; big, DBH >20 cm) were sampled respectively. We measured 18 morphological and structural traits, which characterised plant hydraulic properties or leaf economic spectrum. Associations between diameter growth rates and functional traits were analysed across three size classes. Our results revealed that diameter growth rates of big-sized trees were mainly related to traits related to plant hydraulic efficiency (i.e. theoretical hydraulic conductivity (Ktheo) and leaf vein density (Dvein)), which suggests that the growth of large trees is limited mainly by their xylem water transport capacity. For middle-sized trees, growth rates were significantly related to traits representing leaf economic spectrum (i.e. specific leaf area (SLA), individual leaf mass (ILM), palisade thickness (PT) and spongy thickness (SP)). Diameter growth rates of small-sized trees were not correlated with hydraulic or leaf economic traits. Thus, the associations between tree growth rates and functional traits are size dependent. Our results suggest ontogenetic shift of functional traits which could potential contribute to different growth response to climate change.
Collapse
Affiliation(s)
- Yu-Mei Yan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China; and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ze-Xin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China; and Centre of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, 666303, China; and Corresponding author.
| | - Pei-Li Fu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China; and Centre of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, 666303, China
| | - Hui Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China; and Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Lu-Xiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China; and Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| |
Collapse
|
43
|
Packard GC. Back to the basics: allometric growth by the horns of bovid mammals. ZOOLOGY 2020; 144:125878. [PMID: 33373943 DOI: 10.1016/j.zool.2020.125878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Abstract
I used the equivalent of nonlinear analysis of covariance (ANCOVA) to re-examine relative growth by the horns on males and females of alpine ibex (Capra ibex) and mouflon sheep (Ovis gmelini). A prior study of allometric growth by the horns on these animals described a pattern of biphasic allometry for both sexes, with two different mathematical equations being required to capture the pattern of variation over the full range in body size. However, the investigation in question used conventional analytical methods based on logarithmic transformations, which alter bivariate distributions and commonly introduce problems with analysis and interpretation. My new analyses of data for both species revealed that untransformed observations for both males and females are monophasic and that they are described quite well by three-parameter power equations with negative intercepts. Equations for males follow a steep upward trajectory whereas those for females follow much shallower paths. The negative intercepts indicate that males and females of both species must attain a minimum body size before horns begin to develop. Conclusions from the earlier investigation were based on inaccurate perceptions of pattern in the data. Future studies should be based on graphical and analytical analysis of observations expressed on the original arithmetic scale.
Collapse
Affiliation(s)
- Gary C Packard
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
44
|
Developing Additive Systems of Biomass Equations for Robinia pseudoacacia L. in the Region of Loess Plateau of Western Shanxi Province, China. FORESTS 2020. [DOI: 10.3390/f11121332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The accurate estimation of forest biomass is important to evaluate the structure and function of forest ecosystems, estimate carbon sinks in forests, and study matter cycle, energy flow, and the effects of climate change on forest ecosystems. Biomass additivity is a desirable characteristic to predict each component and the total biomass since it ensures consistency between the sum of the predicted values of components such as roots, stems, leaves, pods, and branches and the prediction for the total tree. In this study, 45 Robinia pseudoacacia L. trees were harvested to determine each component and the total biomass in the Loess Plateau of western Shanxi Province, China. Three additive systems of biomass equations of R. pseudoacacia L., based on the diameter at breast height (D) only and on the combination of D and tree height (H) with D2H and DbHc, were established. To ensure biomass model additivity, the additive system of biomass equations considers the correlation among different components using simultaneous equations and establishes constraints on the parameters of the equation. Seemingly uncorrelated regression (SUR) was used to estimate the parameters of the additive system of biomass equations, and the jackknifing technique was used to verify the accuracy of prediction of the additive system of biomass equations. The results showed that (1) the stem biomass contributed the most to the total biomass, comprising 51.82% of the total biomass, followed by the root biomass (24.63%) and by the pod and leaf biomass, which accounted for the smallest share, comprising 1.82% and 2.22%, respectively; (2) the three additive systems of biomass equations of R. pseudoacacia L. fit well with the models and were effective at making predictions, particularly for the root, stem, above-ground, and total biomass (R2adj > 0.812; root mean square error (RMSE) < 0.151). The mean absolute error (MAE) was less than 0.124, and the mean prediction error (MPE) was less than 0.037. (3) When the biomass model added the tree height predictor, the goodness of fit R2adj increased, RMSE decreased, and the accuracy of prediction was much improved. In particular, the additive system, which was developed based on DbHc combination prediction factors, was the most accurate. The additive system of biomass equations established in this study can provide a reliable and accurate estimation of the individual biomass of R. pseudoacacia L. in the Loess region of western Shanxi Province, China.
Collapse
|
45
|
Glazier DS, Gring JP, Holsopple JR, Gjoni V. Temperature effects on metabolic scaling of a keystone freshwater crustacean depend on fish-predation regime. J Exp Biol 2020; 223:jeb232322. [PMID: 33037112 DOI: 10.1242/jeb.232322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023]
Abstract
According to the metabolic theory of ecology, metabolic rate, an important indicator of the pace of life, varies with body mass and temperature as a result of internal physical constraints. However, various ecological factors may also affect metabolic rate and its scaling with body mass. Although reports of such effects on metabolic scaling usually focus on single factors, the possibility of significant interactive effects between multiple factors requires further study. In this study, we show that the effect of temperature on the ontogenetic scaling of resting metabolic rate of the freshwater amphipod Gammarus minus depends critically on habitat differences in predation regime. Increasing temperature tends to cause decreases in the metabolic scaling exponent (slope) in population samples from springs with fish predators, but increases in population samples from springs without fish. Accordingly, the temperature sensitivity of metabolic rate is not only size-specific, but also its relationship to body size shifts dramatically in response to fish predators. We hypothesize that the dampened effect of temperature on the metabolic rate of large adults in springs with fish, and of small juveniles in springs without fish are adaptive evolutionary responses to differences in the relative mortality risk of adults and juveniles in springs with versus without fish predators. Our results demonstrate a complex interaction among metabolic rate, body mass, temperature and predation regime. The intraspecific scaling of metabolic rate with body mass and temperature is not merely the result of physical constraints related to internal body design and biochemical kinetics, but rather is ecologically sensitive and evolutionarily malleable.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Jeffrey P Gring
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
- Coastal Resources, Inc., Annapolis, MD 21401, USA
| | - Jacob R Holsopple
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Vojsava Gjoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
46
|
Kahane-Rapport SR, Savoca MS, Cade DE, Segre PS, Bierlich KC, Calambokidis J, Dale J, Fahlbusch JA, Friedlaender AS, Johnston DW, Werth AJ, Goldbogen JA. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J Exp Biol 2020; 223:jeb224196. [PMID: 32820028 DOI: 10.1242/jeb.224196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
Fundamental scaling relationships influence the physiology of vital rates, which in turn shape the ecology and evolution of organisms. For diving mammals, benefits conferred by large body size include reduced transport costs and enhanced breath-holding capacity, thereby increasing overall foraging efficiency. Rorqual whales feed by engulfing a large mass of prey-laden water at high speed and filtering it through baleen plates. However, as engulfment capacity increases with body length (engulfment volume∝body length3.57), the surface area of the baleen filter does not increase proportionally (baleen area∝body length1.82), and thus the filtration time of larger rorquals predictably increases as the baleen surface area must filter a disproportionally large amount of water. We predicted that filtration time should scale with body length to the power of 1.75 (filter time∝body length1.75). We tested this hypothesis on four rorqual species using multi-sensor tags with corresponding unoccupied aircraft systems-based body length estimates. We found that filter time scales with body length to the power of 1.79 (95% CI: 1.61-1.97). This result highlights a scale-dependent trade-off between engulfment capacity and baleen area that creates a biomechanical constraint to foraging through increased filtration time. Consequently, larger whales must target high-density prey patches commensurate to the gulp size to meet their increased energetic demands. If these optimal patches are absent, larger rorquals may experience reduced foraging efficiency compared with smaller whales if they do not match their engulfment capacity to the size of targeted prey aggregations.
Collapse
Affiliation(s)
- S R Kahane-Rapport
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - M S Savoca
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - D E Cade
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - P S Segre
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - K C Bierlich
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 27710, USA
| | - J Calambokidis
- Cascadia Research Collective, 218 W. 4th Ave., Olympia, WA 98501, USA
| | - J Dale
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 27710, USA
| | - J A Fahlbusch
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - A S Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - D W Johnston
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 27710, USA
| | - A J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA
| | - J A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
47
|
Griffiths D. Foraging habitat determines predator-prey size relationships in marine fishes. JOURNAL OF FISH BIOLOGY 2020; 97:964-973. [PMID: 32613622 DOI: 10.1111/jfb.14451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Predator-prey size (PPS) relationships are determined by predator behaviour, with the likelihood of prey being eaten dependent on their size relative to that of the consumer. Published PPS relationships for 30 pelagic or benthic marine fish species were analysed using quantile regression to determine how median, lower and upper prey sizes varied with predator size and habitat. Habitat effects on predator foraging activity/mode, morphology, growth and natural mortality are quantified and the effects on PPS relationships explored. Pelagic species are more active, more likely to move by caudal fin propulsion and grow more rapidly but have higher mortality rates than benthic species, where the need for greater manoeuvrability when foraging in more physically complex habitats favours ambush predators using pectoral fin propulsion. Prey size increased with predator size in most species, but pelagic species ate relatively smaller prey than benthic predators. As pelagic predators grew, lower prey size limits changed little, and prey size range increased but median relative prey size declined, whereas the lower limit increased and median relative prey size was constant or increased in benthic species.
Collapse
Affiliation(s)
- David Griffiths
- School of Geography and Environmental Sciences, University of Ulster, Coleraine, UK
| |
Collapse
|
48
|
Rebrina F, Anichini M, Reinhold K, Lehmann GUC. Allometric scaling in two bushcricket species (Orthoptera: Tettigoniidae) suggests sexual selection on song-generating structures. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractIn acoustically communicating bushcrickets (Orthoptera: Tettigoniidae), most signal properties are influenced by the dimensions of the stridulatory apparatus, which in turn reflects body size and condition of the signaller. Females can assess male quality based on acoustic signals, suggesting that male stridulatory structures may be under sexual selection. We investigated scaling relationships between stridulatory structures, body size and body mass in males of the bushcricket Poecilimon veluchianus veluchianus, in comparison to the congeneric Poecilimon ampliatus. Stridulatory structures in P. v. veluchianus exhibited strong left–right correlation and coupling with body size and mass, indicating stabilizing selection for functional integration. In addition, sound-generating (the width of stridulatory teeth) and sound-radiating (mirror area on the right tegmen) structures scaled hyperallometrically to tegmen area, suggesting that both are under sexual selection. Finally, interspecies comparison revealed a steeper slope in tegmen area and stridulatory file length in relation to body size in P. ampliatus than in P. v. veluchianus, implying stronger sexual selection in the former, smaller species. Our study emphasizes the significance of a comparative allometric approach in elucidating evolutionary patterns of sound-generating and -radiating structures.
Collapse
Affiliation(s)
- Fran Rebrina
- University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia
| | - Marianna Anichini
- Humboldt University Berlin, Department of Biology, Evolutionary Ecology, Berlin, Germany
| | - Klaus Reinhold
- Bielefeld University, Faculty of Biology, Evolutionary Biology, Bielefeld, Germany
| | - Gerlind U C Lehmann
- Humboldt University Berlin, Department of Biology, Evolutionary Ecology, Berlin, Germany
| |
Collapse
|
49
|
Gjoni V, Basset A, Glazier DS. Temperature and predator cues interactively affect ontogenetic metabolic scaling of aquatic amphipods. Biol Lett 2020; 16:20200267. [PMID: 32673549 PMCID: PMC7423044 DOI: 10.1098/rsbl.2020.0267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
A common belief is that body mass scaling of metabolic rate results chiefly from intrinsic body-design constraints. However, several studies have shown that multiple ecological factors affect metabolic scaling. The mechanistic basis of these effects is largely unknown. Here, we explore whether abiotic and biotic environmental factors have interactive effects on metabolic scaling. To address this question, we studied the simultaneous effects of temperature and predator cues on the ontogenetic metabolic scaling of amphipod crustaceans inhabiting two different aquatic ecosystems, a freshwater spring and a saltwater lagoon. We assessed effects of phenotypic plasticity on metabolic scaling by exposing amphipods in the laboratory to water with and without fish cues at multiple temperatures. Temperature interacts significantly with predator cues to affect metabolic scaling. Our results suggest that metabolic scaling is highly malleable in response to short-term acclimation. The interactive effects of temperature and predators show the importance of studying effects of global warming in realistic ecological contexts.
Collapse
Affiliation(s)
- V. Gjoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, Ecotekne 73100, LE, Italy
| | - A. Basset
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, Ecotekne 73100, LE, Italy
| | - D. S. Glazier
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| |
Collapse
|
50
|
Chen WY, Su T. Asian monsoon shaped the pattern of woody dicotyledon richness in humid regions of China. PLANT DIVERSITY 2020; 42:148-154. [PMID: 32695947 PMCID: PMC7361432 DOI: 10.1016/j.pld.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
Understanding how geographical patterns of plant richness are established is a key scientific question in ecology and biogeography. Climate factors, such as environmental energy, water availability, and rainfall seasonality, have been widely proposed to account for geographical patterns of plant richness at large scales. Using a compiled distribution data set of 3166 native woody dicotyledons across 732 calibration grids at the county level in humid regions of China, we explored the geographical pattern of woody dicotyledon richness and its relationship to climatic variations, especially the Asian monsoonal climate. We found that species richness decreases with increasing latitude. Our study indicates that water availability (particularly mean annual precipitation, MAP) is the major abiotic factor in determining large-scale distribution patterns of species richness. Moreover, the seasonality of rainfall variables under the Asian monsoon climate largely contributes to species richness, because species richness correlates more significantly with precipitation during the three driest consecutive months (P3DRY) than precipitation during the three wettest consecutive months (P3WET). Therefore, we conclude that woody dicotyledon richness in humid regions of China is mainly affected by the Asian winter monsoon.
Collapse
Affiliation(s)
- Wen-Yun Chen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Tao Su
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| |
Collapse
|