1
|
Okeowo OM, Anadu VE, Ijomone OK, Aschner M, Ijomone OM. Combined Restraint Stress and Metal Exposure Paradigms in Rats: Unravelling Behavioural and Neurochemical Perturbations. Mol Neurobiol 2025; 62:4355-4376. [PMID: 39443350 DOI: 10.1007/s12035-024-04570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Accumulation of heavy metals (Mn and Ni) and prolonged exposure to stress are associated with adverse health outcomes. Various studies have shown the impacts of stress and metal exposures on brain function. However, no study has examined the effects of co-exposure to stress, Mn, and Ni on the brain. This study addresses this gap by evaluating oxidative and glial responses, apoptotic activity, as well as cognitive processes in a rat model. Adult Wistar rats were exposed to vehicle (control), restraint stress, 25 mg/kg of manganese (Mn) or nickel (Ni), or combined restraint stress plus Mn or Ni. Following treatment, rats were subjected to several behavioural paradigms to assess cognitive function. Enzyme activity, as well as ATPase levels, were evaluated. Thereafter, an immunohistochemical procedure was utilised to evaluate neurochemical markers of glial function, myelination, oxidative stress, and apoptosis in the hippocampus, prefrontal cortex (PFC), and striatum. Results showed that stress and metal exposure increased oxidative stress markers and reduced antioxidant levels. Further, combined stress and metal exposure reduced various forms of learning and memory ability in rats. In addition, there were alterations in Iba1 activity and Nrf2 levels, reduced Olig2 and myelin basic protein (MBP) levels, and increased caspase-3 expression. These neurotoxic outcomes were mostly exacerbated by co-exposure to stress and metals. Overall, our findings establish that stress and metal exposures impaired cognitive performance, induced oxidative stress and apoptosis, and led to demyelination effects which were worsened by combined stress and metal exposure.
Collapse
Affiliation(s)
- Oritoke M Okeowo
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
| | - Victor E Anadu
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Olayemi K Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria.
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria.
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Kato A, Tani A, Kamijo F, Otsuka T, Kamiya T, Hara H. Involvement of iron ions in 6-hydroxydopamine-induced disruption of intracellular copper metabolism. Free Radic Res 2025; 59:129-137. [PMID: 39930764 DOI: 10.1080/10715762.2025.2465276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Recently, disorders in metabolism of metals, including copper (Cu) and iron (Fe), have been reported to be linked to the pathogenesis of PD. We previously demonstrated that 6-hydoroxydopamine (6-OHDA), a neurotoxin used for the production of PD model animals, decreases Atox1, a Cu chaperone, and ATP7A, a Cu transporter, and disrupts intracellular Cu metabolism in human neuroblastoma SH-SY5Y cells. However, the exact mechanisms remain unclear. Meanwhile, intracellular Fe modulates 6-OHDA-induced cellular responses. In this study, we investigated whether Fe participates in 6-OHDA-induced abnormality in Cu metabolism. 6-OHDA-induced reactive oxygen species (ROS) production and cellular injury were suppressed by Fe chelators, deferoxamine and 2,2'-bipyridyl (BIP). These chelators also restored 6-OHDA-induced degradation of Atox1 and ATP7A proteins and subsequent Cu accumulation, indicating that intracellular Fe is involved in the disruption of Cu homeostasis associated with 6-OHDA. Atox1 has redox-sensitive cysteine (Cys) residues in its Cu-binding site. The Cys residues of Atox1 were oxidized by 6-OHDA, and BIP suppressed their oxidation. Moreover, the replacement of Cys with histidine in the Cu-binding site conferred resistance to 6-OHDA-induced Atox1 degradation. These results suggest that oxidized modification of Atox1 by 6-OHDA is likely to accelerate its degradation. Thus, we conclude that Fe and Cu metabolisms are closely related to each other in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ami Kato
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ayano Tani
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Fuka Kamijo
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomohiro Otsuka
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
3
|
Chen S, Zhao L, Jin X, Liu Q, Xiao Y, Xu H. Astaxanthin Inhibits Ferroptosis of Hippocampal Neurons in Kainic Acid-Induced Epileptic Mice by Activating the Nrf2/GPX4 Signaling Pathway. CNS Neurosci Ther 2025; 31:e70238. [PMID: 39957487 PMCID: PMC11831069 DOI: 10.1111/cns.70238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Epilepsy, a prevalent neurological disorder, is distinguished by episodic abnormal discharges of neurons within the brain, resulting in transient brain dysfunction. Prior research has identified a novel form of cell death termed ferroptosis, which is intricately linked to the initiation and progression of epilepsy. It has been demonstrated that astaxanthin (AST) can inhibit ferroptosis by enhancing the activity of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby providing cytoprotection. Therefore, this study aims to investigate whether AST can alleviate neuronal ferroptosis in epilepsy by activating the Nrf2/GPX4 pathway, thereby exerting a neuroprotective effect. METHODS By constructing a kainic acid (KA)-induced epilepsy mouse model and a KA-induced HT22 cell model, we employed behavioral testing, Western blot analysis, quantitative real-time reverse transcription qRT-PCR, ferroptosis-related assay kits, immunofluorescence staining, and other methods. These methodologies were utilized to investigate the protective effects and underlying mechanisms of AST on ferroptosis in KA-induced epileptic mice and HT22 neurons. RESULTS Our results demonstrate that AST pretreatment alleviates KA-induced epileptic behaviors and cognitive impairments in mice and mitigates ferroptosis indicators such as lipid peroxidation and mitochondrial morphological alterations. This neuroprotective effect appears to be mediated by the activation of the Nrf2/GPX4 signaling axis. In vitro studies further revealed that AST confers neuroprotection against KA-induced HT22 neuronal cell death, an effect that is abrogated by an Nrf2 inhibitor. Hence, the neuroprotective properties of AST are significantly associated with the modulation of the Nrf2-mediated ferroptosis pathway, as corroborated by bioinformatics analyses. CONCLUSION The AST effectively inhibits neuronal ferroptosis in both in vivo and in vitro epilepsy models via the Nrf2/GPX4 pathway. This finding suggests that AST holds promise as a potential therapeutic agent for the treatment of epilepsy.
Collapse
Affiliation(s)
- Shihao Chen
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Linqian Zhao
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xing Jin
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Qichang Liu
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuqing Xiao
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huiqin Xu
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
4
|
Hadrian K, Szczerbowska-Boruchowska M, Surówka A, Ciepiela O, Litwin T, Przybyłkowski A. Effect of primary copper metabolism disturbance on elemental, protein, and lipid composition of the organs in Jackson toxic milk mouse. Biometals 2025; 38:103-121. [PMID: 39365499 PMCID: PMC11754380 DOI: 10.1007/s10534-024-00640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Toxic milk (txJ) is an autosomal recessive mutation in the Atp7b gene in the C3H/HeJ strain, observed at The Jackson Laboratory in Maine, USA. TxJ mice exhibit symptoms similar to those of human Wilson's disease (WD). The study aimed to verify organ involvement in a mouse model of WD. TxJ mice and control animals were sacrificed at 2, 4, 8, and 14 months of age. Total X-ray Fluorescence Spectroscopy (TXRF) was used to determine the elemental concentration in organs. Tissue chemical composition was measured by Fourier Transform Infrared Spectroscopy (FTIR). Additionally, hybrid mapping of FTIR and microXRF was performed. Elevated concentrations of Cu were observed in the liver, striatum, eye, heart, and duodenum of txJ mice across age groups. In the striatum of the oldest txJ mice, there was lower lipid content and a higher fraction of saturated fats. The secondary structure of striatum proteins was disturbed in txJ mice. In the livers of txJ mice, higher concentrations of saturated fats and disturbances in the secondary structure of proteins were observed. The concentration of neurofilaments was significantly higher in txJ serum. The distribution of Cu deposits in brains was uniform with no prevalence in any anatomic structure in either group, but significant protein structure changes were observed exclusively in the striatum of txJ. In this txJ animal model of WD, pathologic copper accumulation occurs in the duodenum, heart, and eye tissues. Increased copper concentration in the liver and brain results in increased saturated fat content and disturbances in secondary protein structure, leading to hepatic injury and neurodegeneration.
Collapse
Affiliation(s)
- Krzysztof Hadrian
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Artur Surówka
- Department of Medical Physics and Biophysics, AGH University of Science and Technology, Cracow, Poland
| | - Olga Ciepiela
- Department of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Wei J, Zhang Y, Shi W, Lu L, Zhou Q, Pu Y, Yin L. Copper exposure induces neurotoxicity through ferroptosis in C. elegans. Chem Biol Interact 2025; 407:111369. [PMID: 39753188 DOI: 10.1016/j.cbi.2024.111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Copper, as a vital trace element and ubiquitous environmental pollutant, exhibits a positive correlation with the neurodegenerative diseases. Recent studies have highlighted ferroptosis's significance in heavy metal-induced neurodegenerative diseases, yet its role in copper-related neurotoxicity remains unclear. This study aimed to investigate the role of ferroptosis in copper-induced neurotoxicity. Previously, we established that copper induced motor behaviors inhibition and neuronal degeneration through oxidative stress in Caenorhabditis elegans (C. elegans). This study revealed that the behavior inhibition (head thrash, body bends, pumping frequency and defecation interval) and neuronal degeneration (GABAergic neurons and dopaminergic neurons) in copper-treated nematodes were reversed by the ferroptosis inhibitor Fer-1. Additionally, copper treatment increased the Fe2+ level and MDA content, and decreased GSH content, suggesting copper activated the ferroptosis in C. elegans. Furthermore, studies found that copper exposure altered the expression of ferroptosis-related genes gpx-1, ftn-1, and acs-17 in C. elegans. The results showed RNAi of gpx-1 and RNAi of ftn-1 significantly promoted Cu-induced neurotoxicity, while the RNAi of acs-17 appeared to rescue the Cu-induced ferroptosis and neurotoxicity. In conclusion, Cu might induce behavior inhibition and neuronal degeneration through ferroptosis in C. elegans. The findings of this study provided new insights in the mechanisms underlying Cu-induced neurotoxicity.
Collapse
Affiliation(s)
- Jianglan Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
6
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
7
|
Ling W, Wang W, Lu D, Liu Q, Jiang G. Unraveling Copper Imbalance in Autism Spectrum Disorder: Mechanistic Insights from the Valproic Acid Mouse Model. ACS Chem Neurosci 2025; 16:66-76. [PMID: 39690107 DOI: 10.1021/acschemneuro.4c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Abnormal copper (Cu) levels are often closely associated with neurological disorders including neurodevelopmental conditions, such as autism spectrum disorder (ASD). However, the mechanisms underlying the disruption of Cu homeostasis in critical organs, such as the brain, remain unclear. In this study, we elucidated the molecular mechanisms of Cu imbalance in the brain of a valproic acid (VPA) mouse model along with the changes in specific metabolites. Significant alterations occurred in proteins associated with primary Cu-related metabolism in specific regions of the brain (prefrontal cortex, amygdala, cerebellum, and hippocampus), resulting in a direct elevation of Cu ions within the brain tissues (control: 5.05 ± 0.61 μg/g vs model: 6.28 ± 0.81 μg/g, p = 0.015). Furthermore, the brain metabolic profiles revealed significant upregulation of lipids, particularly phospholipid metabolites. Typical neurotransmitters, for example, dopamine (DA) (p < 0.0001) and serotonin (5-HT) (p = 0.02) were upregulated in amygdala. Other small metabolites like glutathione (GSH) (p = 0.0004) also exhibited notable variation in brain. The potential impact of Cu toxicity on the signaling pathways of key metabolites was then evaluated, providing new insights into the role of Cu in metabolism of neurotransmitters in the brain. Our finding sheds molecular aberrations associated with essential element metabolism in the brain, providing new elemental perspectives for understanding the pathogenic mechanisms underlying ASD.
Collapse
Affiliation(s)
- Weibo Ling
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Bjørklund G, Oliinyk P, Khavrona O, Lozynska I, Lysiuk R, Darmohray R, Antonyak H, Dub N, Zayachuk V, Antoniv O, Rybak O, Peana M. The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases. Mol Neurobiol 2025; 62:1225-1246. [PMID: 38970766 DOI: 10.1007/s12035-024-04321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer's and Parkinson's. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| | - Petro Oliinyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Khavrona
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Iryna Lozynska
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Darmohray
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, 79000, Ukraine
| | - Vasyl Zayachuk
- Department of Botany, Ukrainian National Forestry University, Wood Science and Non-Wood Forest Products, Lviv, 79057, Ukraine
| | - Olha Antoniv
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacology, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Rybak
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
9
|
Garbuz M, Ovchinnikova E, Ovchinnikova A, Vinokurova V, Aristarkhova Y, Kuziakova O, Mashurova M, Kumeiko V. Spectrum of Pathogenic Variants of the ATP7B Gene and Genotype-Phenotype Correlation in Eastern Eurasian Patient Cohorts with Wilson's Disease. Biomedicines 2024; 12:2833. [PMID: 39767741 PMCID: PMC11673475 DOI: 10.3390/biomedicines12122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Wilson's disease (WD) (OMIM 277900) or hepatolenticular degeneration is an autosomal recessive disorder caused by impaired copper excretion with subsequent accumulation in the liver, brain, and other tissues of the body. The defects in copper metabolism are based on various pathogenic variants of the ATP7B gene encoding copper-transporting P-type ATPase. The aim of this work is to search for pathogenic variants of the ATP7B gene among Eastern Eurasian patient cohorts and to pick correlations between pathogenic variants, gender, age of onset of the disease, and the course of the disease. Methods: The material for the study was the biomaterial of 100 people. The search for mutations was carried out by Sanger sequencing. Multiple alignment of nucleotide sequences and their analysis was performed using the MEGA-X software. To study the genotype-phenotypic correlation, an analysis of the medical records of each patient was carried out. Results: Most common pathogenic variant (48%) in the sample is p.His1069Gln (c.3207C>A), located in exon 14 of the ATP7B gene. Pathogenic variants of p.Glu1064Lys (c.3190G>A)-20%-and p.Met769HisfsTer26 (c.2304insC)-8%-of exons 14 and 8 were also common. For patients with pathogenic alleles p.His1069Gln (c.3207C>A) and p.Glu1064Lys (c.3190G>A), typical deviations are mental and neurological manifestations of WD. In patients with the pathogenic allele p.Met769HisfsTer26 (c.2304insC), deviations are more characteristic of the liver and a combination of various symptoms that are atypical for WD. Conclusions: In this study, we were able to obtain differences in symptoms in patients with different pathogenic alleles of the ATP7B gene.
Collapse
Affiliation(s)
- Mikhail Garbuz
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (M.G.)
| | - Elena Ovchinnikova
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (M.G.)
| | - Anna Ovchinnikova
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (M.G.)
| | - Valeriya Vinokurova
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (M.G.)
| | - Yulya Aristarkhova
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (M.G.)
| | - Olga Kuziakova
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (M.G.)
| | - Mariya Mashurova
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (M.G.)
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (M.G.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
10
|
Fan SP, Chen YF, Li CH, Kuo YC, Lee NC, Chien YH, Hwu WL, Tseng TC, Su TH, Hsu CT, Chen HL, Lin CH, Ni YH. Topographical metal burden correlates with brain atrophy and clinical severity in Wilson's disease. Neuroimage 2024; 299:120829. [PMID: 39233127 DOI: 10.1016/j.neuroimage.2024.120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a post-processing technique that creates brain susceptibility maps reflecting metal burden through tissue magnetic susceptibility. We assessed topographic differences in magnetic susceptibility between participants with and without Wilson's disease (WD), correlating these findings with clinical severity, brain volume, and biofluid copper and iron indices. METHODS A total of 43 patients with WD and 20 unaffected controls, were recruited. QSM images were derived from a 3T MRI scanner. Clinical severity was defined using the minimal Unified Wilson's Disease Rating Scale (M-UWDRS) and Montreal Cognitive Assessment scoring. Differences in magnetic susceptibilities between groups were evaluated using general linear regression models, adjusting for age and sex. Correlations between the susceptibilities and clinical scores were analyzed using Spearman's method. RESULTS In age- and sex-adjusted analyses, magnetic susceptibility values were increased in WD patients compared with controls, including caudate nucleus, putamen, globus pallidus, and substantia nigra (all p < 0.01). Putaminal susceptibility was greater with an initial neuropsychiatric presentation (n = 25) than with initial hepatic dysfunction (n = 18; p = 0.04). Susceptibility changes correlated negatively with regional brain volume in almost all topographic regions. Serum ferritin, but not serum copper or ceruloplasmin, correlated positively with magnetic susceptibility level in the caudate nucleus (p = 0.04), putamen (p = 0.04) and the hippocampus (p = 0.03). The dominance of magnetic susceptibility in cortical over subcortical regions correlated with M-UWDRS scores (p < 0.01). CONCLUSION The magnetic susceptibility changes could serve as a surrogate marker for patients with WD.
Collapse
Affiliation(s)
- Sung-Pin Fan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hsuan Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Yih-Chih Kuo
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Tai-Chung Tseng
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Hung Su
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Hsu
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan; Department of Pediatrics, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
11
|
Wang M, Hu Q, Wang N, Jiang Y, Dong T, Cao S, Zhou A. Glutathione Attenuates Copper Levels and Alleviates Hepatic Injury in TX Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04384-1. [PMID: 39304592 DOI: 10.1007/s12011-024-04384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Wilson's disease (WD) is an inherited disorder that is characterized by abnormal copper metabolism, and treatment of this condition in the clinic focuses on promoting copper ion excretion. Glutathione (GSH) is a tripeptide compound whose active group is a sulfhydryl group, which is involved in many important biochemical reactions. Thus, the antioxidant and integrative detoxification effects of GSH have attracted attention. Whether GSH promotes copper ion excretion and reduces oxidative stress to alleviate WD-related liver injury is the focus of this study. Here, we used toxic milk (TX) mice as a model to study WD, and we treated these mice with GSH. We observed that GSH was effective at promoting copper excretion by TX mice. In addition, GSH has been shown to be effective in attenuating liver injury, including improving the structure and morphology of stem tissue and reducing hepatocyte necrosis. The effects of GSH on hepatic oxidative stress were determined by measuring catalase, malondialdehyde and total superoxide dismutase. The results showed that GSH could increase hepatic antioxidant enzyme activities, reduce lipid peroxidation levels and attenuate liver injury. In conclusion, GSH may exert its hepatic benefits by promoting copper ion excretion and preventing oxidative stress.
Collapse
Affiliation(s)
- Mengzhen Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, China
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Hefei, 230038, China
| | - Qiang Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, China
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Hefei, 230038, China
| | - Ni Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, China
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Hefei, 230038, China
| | - Yuge Jiang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Hefei, 230038, China
| | - Ting Dong
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Shijian Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
| | - An Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, China.
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Hefei, 230038, China.
| |
Collapse
|
12
|
Cai X, Dai J, Xie Y, Xu S, Liu M. Multi-omics study unravels gut microbiota and metabolites alteration in patients with Wilson's disease. Sci Rep 2024; 14:21025. [PMID: 39251728 PMCID: PMC11384772 DOI: 10.1038/s41598-024-71740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Hepatolenticular degeneration (HLD), also known as Wilson's disease (WD), is a rare autosomal recessive disorder regarding copper metabolism. Whether gut microbiota imbalance is involved in developing HLD remains unknown. A comprehensive 16S rRNA amplicon sequencing, metagenomic sequencing, and metabonomic analysis were undertaken in patients with WD to analyze the composition and function profiles of gut microbiota in patients with WD. The data demonstrated differences in gut microbiota and metabolic pathways between WD patients and normal individuals, significantly decreasing bacterial richness and diversity. The levels of Selenomonaceae and Megamonas in WD patients are significantly higher than those in healthy individuals. The relative abundances of Roseburia inulinivorans in patients with WD are lower than in healthy individuals. Compared with healthy people, the level of metabolites in patients with WD is abnormal. Leucylproline, 5-Phenylvaleric Acid and N-Desmethylclobazam, which have nutritional and protective effects, are significantly reduced fecal metabolites in patients with WD. D-Gluconic acid, which can chelate metal ions, may be a potential treatment for WD. The positive correlation it demonstrates with Alistipes indistinctus and Prevotella stercora indicates potential bacteria able to treat WD. These metabolites are mainly related to the biosynthesis of antibiotics, alpha-linolenic acid metabolism, one carbon pool by folate, nicotinate and nicotinamide metabolism. In conclusion, the data from this study elucidate novel mechanisms describing how abnormal gut miccrobiota contribute to the pathogenesis of WD and outlines new molecules for the treatment of WD.
Collapse
Affiliation(s)
- Xiangsheng Cai
- Clinical Laboratory, Guangzhou Eleventh People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Jincheng Dai
- Shenzhen Hospital, University of Chinese Academy of Science, Shenzhen, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shu Xu
- Shenzhen Hospital, University of Chinese Academy of Science, Shenzhen, China
| | - Minqi Liu
- Shenzhen Hospital, University of Chinese Academy of Science, Shenzhen, China.
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hongkong, China.
| |
Collapse
|
13
|
Ratner MH, Rutchik JS. A rare case of early onset lewy body dementia with parkinsonism associated with chronic exposure to copper contaminated drinking water. FRONTIERS IN TOXICOLOGY 2024; 6:1451235. [PMID: 39285928 PMCID: PMC11402898 DOI: 10.3389/ftox.2024.1451235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
There is a well-recognized relationship between a person's body burden of essential trace elements such as copper and their neurological function in which both deficiencies and exposures to excessive concentrations are associated with adverse clinical outcomes. Preclinical studies indicate chronic excess copper exposure is associated with altered motor function, dopaminergic neuronal loss, astrocytosis, and microgliosis. Copper also promotes oligomerization and fibrilization of α-synuclein suggesting it may hasten the course of an α-synucleinopathy. Here we report a rare case of early onset Lewy Body Dementia with Parkinsonism in a 53-year-old Caucasian woman exposed to copper contaminated drinking water for more than 10 years. Her hair and that of her daughter had streaks of blue-green discoloration as did the porcelain sinks in their home. Testing confirmed copper contamination of the drinking water. A neurologist diagnosed her with Lewy Body Dementia with Parkinsonism. Skin biopsy for phosphorylated α was consistent with a diagnosis of an α-synucleinopathy. These findings suggest chronic exposure to excessive copper may act as disease modifying factor in Lewy Body Dementia with Parkinsonism. It has previously been recommended that individuals at risk of Alzheimer's disease (AD) avoid excessive intake of copper. Genetic studies indicate that Lewy Body Dementia shares risk factors and pathways with AD. Based on the observations in this patient we recommend that individuals at risk for an α-synucleinopathy based on a positive family history, genetic testing, and/or positive results on a skin biopsy for phosphorylated α-synuclein avoid exposure to excess copper.
Collapse
Affiliation(s)
- Marcia H Ratner
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Jonathan S Rutchik
- Neurology, Environmental and Occupational Medicine Associates, CA and Division of Medicine, Occupational Medicine, University of California at San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Peng P, DiSpirito AA, Lewis BJ, Nott JD, Semrau JD. Heterologous Biosynthesis of Methanobactin from Methylocystis sp. Strain SB2 in Methylosinus trichosporium OB3b. ACS Synth Biol 2024; 13:2347-2356. [PMID: 39109930 DOI: 10.1021/acssynbio.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Aerobic methanotrophs, or methane-consuming microbes, are strongly dependent on copper for their activity. To satisfy this requirement, some methanotrophs produce a copper-binding compound, or chalkophore, called methanobactin (MB). In addition to playing a critical role in methanotrophy, MB has also been shown to have great promise in treating copper-related human diseases, perhaps most significantly Wilson's disease. In this congenital disorder, copper builds up in the liver, leading to irreversible damage and, in severe cases, complete organ failure. Remarkably, MB has been shown to reverse such damage in animal models, and there is a great deal of interest in upscaling MB production for expanded clinical trials. Such efforts, however, are currently hampered as (1) the natural rate of MB production rate by methanotrophs is low, (2) the use of methane as a substrate for MB production is problematic as it is explosive in air, (3) there is limited understanding of the entire pathway of MB biosynthesis, and (4) the most attractive form of MB is produced by Methylocystis sp. strain SB2, a methanotroph that is genetically intractable. Herein, we report heterologous biosynthesis of MB from Methylocystis sp. strain SB2 in an alternative methanotroph, Methylosinus trichosporium OB3b, not only on methane but also on methanol. As a result, the strategy described herein not only facilitates enhanced MB production but also provides opportunities to construct various mutants to delineate the entire pathway of MB biosynthesis, as well as the creation of modified forms of MB that may have enhanced therapeutic value.
Collapse
Affiliation(s)
- Peng Peng
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, United States
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-3260, United States
| | - Braden J Lewis
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-3260, United States
| | - Joel D Nott
- Office of Biotechnology Protein Facility, Iowa State University, Ames, Iowa 50011-3260, United States
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, United States
| |
Collapse
|
15
|
Chen J, Luo R, Li S, Shao J, Wang T, Xie S, Xu L, You Q, Feng S, Feng G. A novel NIR fluorescent probe for copper(ii) imaging in Parkinson's disease mouse brain. Chem Sci 2024; 15:13082-13089. [PMID: 39148792 PMCID: PMC11323298 DOI: 10.1039/d4sc03445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Abnormal copper ion (Cu2+) levels are considered to be one of the pathological factors of Parkinson's disease (PD), but the internal relationship between Cu2+ and PD progression remains elusive. Visualizing Cu2+ in the brain will be pivotal for comprehending the underlying pathophysiological processes of PD. In this work, a near-infrared (NIR) fluorescent probe, DDAO-Cu, capable of detecting Cu2+ with exceptional sensitivity (about 1.8 nM of detection limit) and selectivity, rapid response (<3 min), and deep tissue penetration, was designed for quantification and visualization of the Cu2+ level. It could detect not only Cu2+ in cells but also the changes in the Cu2+ level in the rotenone-induced cell and zebrafish PD models. Moreover, DDAO-Cu can cross the blood-brain barrier to image Cu2+ in the brain of PD model mice. The imaging result showed a significant increase in Cu2+ levels in brain regions of PD model mice, including the cerebral cortex, hippocampus, and striatum. Meanwhile, Cu2+ levels in the substantia nigra region were significantly reduced in PD model mice. It revealed the nuanced relationship of Cu2+ levels in different brain regions in the disease and indicated the pathological complexity of PD. Overall, DDAO-Cu represents a novel and practical tool for investigating Cu2+-related physiological and pathological processes underlying Parkinson's disease.
Collapse
Affiliation(s)
- Jianmei Chen
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Rongqing Luo
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Shuang Li
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Jinping Shao
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Ting Wang
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Shumei Xie
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Li Xu
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Qiuyun You
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine Wuhan 430065 China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education Wuhan 430065 China
| | - Shumin Feng
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University 152 Luoyu Road Wuhan 430079 PR China
| |
Collapse
|
16
|
Cruces-Sande A, Garrido-Gil P, Sierra-Paredes G, Vázquez-Agra N, Hermida-Ameijeiras Á, Pose-Reino A, Méndez-Álvarez E, Soto-Otero R. Copper Overload Increased Rat Striatal Levels of Both Dopamine and Its Main Metabolite Homovanillic Acid in Extracellular Fluid. Int J Mol Sci 2024; 25:8309. [PMID: 39125878 PMCID: PMC11312188 DOI: 10.3390/ijms25158309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Copper is a trace element whose electronic configuration provides it with essential structural and catalytic functions. However, in excess, both its high protein affinity and redox-catalyzing properties can lead to hazardous consequences. In addition to promoting oxidative stress, copper is gaining interest for its effects on neurotransmission through modulation of GABAergic and glutamatergic receptors and interaction with the dopamine reuptake transporter. The aim of the present study was to investigate the effects of copper overexposure on the levels of dopamine, noradrenaline, and serotonin, or their main metabolites in rat's striatum extracellular fluid. Copper was injected intraperitoneally using our previously developed model, which ensured striatal overconcentration (2 mg CuCl2/kg for 30 days). Subsequently, extracellular fluid was collected by microdialysis on days 0, 15, and 30. Dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and noradrenaline (NA) levels were then determined by HPLC coupled with electrochemical detection. We observed a significant increase in the basal levels of DA and HVA after 15 days of treatment (310% and 351%), which was maintained after 30 days (358% and 402%), with no significant changes in the concentrations of 5-HIAA, DOPAC, and NA. Copper overload led to a marked increase in synaptic DA concentration, which could contribute to the psychoneurological alterations and the increased oxidative toxicity observed in Wilson's disease and other copper dysregulation states.
Collapse
Affiliation(s)
- Antón Cruces-Sande
- Laboratory of Neurochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (G.S.-P.); (E.M.-Á.); (R.S.-O.)
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.G.-G.); (Á.H.-A.); (A.P.-R.)
| | - Pablo Garrido-Gil
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.G.-G.); (Á.H.-A.); (A.P.-R.)
- Laboratory of Cell and Molecular Neurobiology of Parkinson’s Disease, Department of Morphological Sciences, Faculty of Medicine, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Germán Sierra-Paredes
- Laboratory of Neurochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (G.S.-P.); (E.M.-Á.); (R.S.-O.)
| | - Néstor Vázquez-Agra
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.G.-G.); (Á.H.-A.); (A.P.-R.)
| | - Álvaro Hermida-Ameijeiras
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.G.-G.); (Á.H.-A.); (A.P.-R.)
| | - Antonio Pose-Reino
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.G.-G.); (Á.H.-A.); (A.P.-R.)
| | - Estefanía Méndez-Álvarez
- Laboratory of Neurochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (G.S.-P.); (E.M.-Á.); (R.S.-O.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Ramón Soto-Otero
- Laboratory of Neurochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (G.S.-P.); (E.M.-Á.); (R.S.-O.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Pandur E, Major B, Rák T, Sipos K, Csutak A, Horváth G. Linalool and Geraniol Defend Neurons from Oxidative Stress, Inflammation, and Iron Accumulation in In Vitro Parkinson's Models. Antioxidants (Basel) 2024; 13:917. [PMID: 39199163 PMCID: PMC11351228 DOI: 10.3390/antiox13080917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Parkinson's disease is one of the most prevalent neurological disorders affecting millions of people worldwide. There is a growing demand for novel and natural substances as complementary therapies. Essential oils and their various compounds are highly investigated natural plant-based products as potential treatment options for common human diseases, such as microbial infections, chronic diseases, and neurodegenerative disorders. The present study focuses on the beneficial effects of linalool and geraniol, the major compounds of lavender (Lavandula angustifolia L.) and geranium (Pelargonium graveolens L'Hér. in Aiton) essential oils, on oxidative stress, inflammation, and iron metabolism of the rotenone and 6-hydroxydopamine-induced in vitro Parkinson's models. The experiments were carried out on all-trans retinoic acid differentiated SH-SY5Y cells. The effects of linalool and geraniol were compared to rasagiline, an MAO-B inhibitor. The results revealed that both essential oil compounds reduce the level of reactive oxygen species and alter the antioxidant capacity of the cells. They lower the secretion of IL-6, IL-8, and IL-1β pro-inflammatory cytokines. Moreover, linalool and geraniol change the expression of iron-related genes, such as the iron importer transferrin receptor 1, heme-oxygenase-1, and ferroportin iron exporter, and influence the intracellular iron contents. In addition, it has been unveiled that iron availability is concatenated with the actions of the essential oil compounds. Based on the results, linalool and geraniol are vigorous candidates as an alternative therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.P.); (B.M.); (K.S.)
| | - Balázs Major
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.P.); (B.M.); (K.S.)
- Department of Ophthalmology, Medical School—Clinical Centre, University of Pécs, 7624 Pécs, Hungary; (T.R.); (A.C.)
| | - Tibor Rák
- Department of Ophthalmology, Medical School—Clinical Centre, University of Pécs, 7624 Pécs, Hungary; (T.R.); (A.C.)
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.P.); (B.M.); (K.S.)
| | - Adrienne Csutak
- Department of Ophthalmology, Medical School—Clinical Centre, University of Pécs, 7624 Pécs, Hungary; (T.R.); (A.C.)
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
18
|
Atoki AV, Aja PM, Shinkafi TS, Ondari EN, Awuchi CG. Naringenin: its chemistry and roles in neuroprotection. Nutr Neurosci 2024; 27:637-666. [PMID: 37585716 DOI: 10.1080/1028415x.2023.2243089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
According to epidemiological research, as the population ages, neurological illnesses are becoming a bigger issue. Despite improvements in the treatment of these diseases, there are still widespread worries about how to find a long-lasting remedy. Several neurological diseases can be successfully treated with natural substances. As a result, current research has been concentrated on finding effective neuroprotective drugs with improved efficacy and fewer side effects. Naringenin is one potential treatment for neurodegenerative diseases. Many citrus fruits, tomatoes, bergamots, and other fruits are rich in naringenin, a flavonoid. This phytochemical is linked to a variety of biological functions. Naringenin has attracted a lot of interest for its ability to exhibit neuroprotection through several mechanisms. In the current article, we present evidence from the literature that naringenin reduces neurotoxicity and oxidative stress in brain tissues. Also, the literatures that are currently accessible shows that naringenin reduces neuroinflammation and other neurological anomalies. Additionally, we found several studies that touted naringenin as a promising anti-amyloidogenic, antidepressant, and neurotrophic treatment option. This review's major goal is to reflect on advancements in knowledge of the molecular processes that underlie naringenin's possible neuroprotective effects. Furthermore, this article also provides highlights of Naringenin with respect to its chemistry and pharmacokinetics.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
19
|
Ilakiyalakshmi M, Napoleon AA. Phenothiazine appended thiophene derivative: a trilateral approach to copper ion detection in living cells and aqueous samples. RSC Adv 2024; 14:8885-8895. [PMID: 38500619 PMCID: PMC10945519 DOI: 10.1039/d3ra07608c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
This research paper unveils a fluorescent probe (PTZ-SCN) engineered for the specific detection of Cu2+, featuring a 10-ethyl-10H-phenothiazine-3-carbaldehyde and 2-(thiophen-2-yl) acetonitrile moiety. The fluorescence sensing behavior of PTZ-SCN towards various metal cations was scrutinized in CH3CN : HEPES (9 : 1) buffer aqueous solution. The UV absorbance of PTZ-SCN displayed a distinct red shift in the presence of Cu2+ cations, whereas other metal cations did not cause any interference. Similarly, the fluorescence emission of the probe was also only quenched by Cu2+ cations. The limit of detection (LOD) was calculated as 1.0461 × 10-8 M. PTZ-SCN showed the ability to identify Cu2+ using the colorimetric method, the fluorometric method and even through visual observation in a trilateral detection. We studied the recognition mechanism of PTZ-SCN for Cu2+ using 1H-NMR, HRMS analysis, and time-dependent density functional theory (TDDFT) calculations. Furthermore, our study encompassed the investigation of PTZ-SCN's practical applicability, bridging the gap from research to real-world implementation. This was achieved by employing test strips and water samples for the detection of Cu2+. Additionally, the PTZ-SCN probe's low cytotoxicity and effective imaging properties for Cu2+ in living cells were confirmed, indicating that PTZ-SCN shows the potential to serve as a promising probe for detecting Cu2+in vivo.
Collapse
Affiliation(s)
- Mohan Ilakiyalakshmi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| | - Ayyakannu Arumugam Napoleon
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| |
Collapse
|
20
|
Ovchinnikova EV, Garbuz MM, Ovchinnikova AA, Kumeiko VV. Epidemiology of Wilson's Disease and Pathogenic Variants of the ATP7B Gene Leading to Diversified Protein Disfunctions. Int J Mol Sci 2024; 25:2402. [PMID: 38397079 PMCID: PMC10889319 DOI: 10.3390/ijms25042402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder characterized by toxic accumulation of copper in the liver, brain, and other organs. The disease is caused by pathogenic variants in the ATP7B gene, which encodes a P-type copper transport ATPase. Diagnosing WD is associated with numerous difficulties due to the wide range of clinical manifestations and its unknown dependence on the physiological characteristics of the patient. This leads to a delay in the start of therapy and the subsequent deterioration of the patient's condition. However, in recent years, molecular genetic testing of patients using next generation sequencing (NGS) has been gaining popularity. This immediately affected the detection speed of WD. If, previously, the frequency of this disease was estimated at 1:35,000-45,000 people, now, when conducting large molecular genetic studies, the frequency is calculated as 1:7026 people. This certainly points to the problem of identifying WD patients. This review provides an update on the performance of epidemiological studies of WD and describes normal physiological functions of the protein and diversified disfunctions depending on pathogenic variants of the ATP7B gene. Future prospects in the development of WD genetic diagnostics are also discussed.
Collapse
Affiliation(s)
- Elena Vasilievna Ovchinnikova
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
| | - Mikhail Maksimovich Garbuz
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
| | - Anna Aleksandrovna Ovchinnikova
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
| | - Vadim Vladimirovich Kumeiko
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Federal University, Vladivostok 690041, Russia
| |
Collapse
|
21
|
Aguila-Rosas J, García-Martínez BA, Ríos C, Diaz-Ruiz A, Obeso JL, Quirino-Barreda CT, Ibarra IA, Guzmán-Vargas A, Lima E. Copper release by MOF-74(Cu): a novel pharmacological alternative to diseases with deficiency of a vital oligoelement. RSC Adv 2024; 14:855-862. [PMID: 38174271 PMCID: PMC10759266 DOI: 10.1039/d3ra07109j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Copper deficiency can trigger various diseases such as Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and even compromise the development of living beings, as manifested in Menkes disease (MS). Thus, the regulated administration (controlled release) of copper represents an alternative to reduce neuronal deterioration and prevent disease progression. Therefore, we present, to the best of our knowledge, the first experimental in vitro investigation for the kinetics of copper release from MOF-74(Cu) and its distribution in vivo after oral administration in male Wistar rats. Taking advantage of the abundance and high periodicity of copper within the crystalline-nanostructured metal-organic framework material (MOF-74(Cu)), it was possible to control the release of copper due to the partial degradation of the material. Thus, we simultaneously corroborated a low accumulation of copper in the liver (the main detoxification organ) and a slight increase of copper in the brain (striatum and midbrain), demonstrating that MOF-74(Cu) is a promising pharmacological alternative (controlled copper source) to these diseases.
Collapse
Affiliation(s)
- Javier Aguila-Rosas
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán 04510 Ciudad de México Mexico
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960 CDMX Mexico
| | - Betzabeth A García-Martínez
- Laboratorio de Neurofarmacología Molecular, Universidad Autónoma Metropolitana-Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960 CDMX Mexico
- Neurociencias Básica, Instituto Nacional de Rehabilitación Calz. México Xochimilco 289, Col. Arenal de Guadalupe, C.P. 14389 CDMX Mexico
| | - Camilo Ríos
- Laboratorio de Neurofarmacología Molecular, Universidad Autónoma Metropolitana-Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960 CDMX Mexico
- Neurociencias Básica, Instituto Nacional de Rehabilitación Calz. México Xochimilco 289, Col. Arenal de Guadalupe, C.P. 14389 CDMX Mexico
| | - Araceli Diaz-Ruiz
- Dirección de Investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Insurgentes Sur 3877, La Fama, Tlalpan CP14269 CDMX Mexico
| | - Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán 04510 Ciudad de México Mexico
- Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Instituto Politécnico Nacional, CICATA U. Legaria Legaria 694 Irrigación, Miguel Hidalgo CDMX Mexico
| | - Carlos T Quirino-Barreda
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960 CDMX Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán 04510 Ciudad de México Mexico
| | - Ariel Guzmán-Vargas
- Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina, Instituto Politécnico Nacional, ESIQIE-SEPI-DIQI UPALM Edif. 7 P.B. Zacatenco, GAM 07738 CDMX Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán 04510 Ciudad de México Mexico
| |
Collapse
|
22
|
Pradhan SH, Liu JY, Sayes CM. Evaluating Manganese, Zinc, and Copper Metal Toxicity on SH-SY5Y Cells in Establishing an Idiopathic Parkinson's Disease Model. Int J Mol Sci 2023; 24:16129. [PMID: 38003318 PMCID: PMC10671677 DOI: 10.3390/ijms242216129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition marked by loss of motor coordination and cognitive impairment. According to global estimates, the worldwide prevalence of PD will likely exceed 12 million cases by 2040. PD is primarily associated with genetic factors, while clinically, cases are attributed to idiopathic factors such as environmental or occupational exposure. The heavy metals linked to PD and other neurodegenerative disorders include copper, manganese, and zinc. Chronic exposure to metals induces elevated oxidative stress and disrupts homeostasis, resulting in neuronal death. These metals are suggested to induce idiopathic PD in the literature. This study measures the effects of lethal concentration at 10% cell death (LC10) and lethal concentration at 50% cell death (LC50) concentrations of copper, manganese, and zinc chlorides on SH-SY5Y cells via markers for dopamine, reactive oxygen species (ROS) generation, DNA damage, and mitochondrial dysfunction after a 24 h exposure. These measurements were compared to a known neurotoxin to induce PD, 100 µM 6-hydroxydopamine (6-ODHA). Between the three metal chlorides, zinc was statistically different in all parameters from all other treatments and induced significant dopaminergic loss, DNA damage, and mitochondrial dysfunction. The LC50 of manganese and copper had the most similar response to 6-ODHA in all parameters, while LC10 of manganese and copper responded most like untreated cells. This study suggests that these metal chlorides respond differently from 6-ODHA and each other, suggesting that idiopathic PD utilizes a different mechanism from the classic PD model.
Collapse
Affiliation(s)
| | | | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; (S.H.P.)
| |
Collapse
|
23
|
Draper M, Bester MJ, Van Rooy MJ, Oberholzer HM. Adverse neurological effects after exposure to copper, manganese, and mercury mixtures in a Spraque-Dawley rat model: an ultrastructural investigation. Ultrastruct Pathol 2023; 47:509-528. [PMID: 37849276 DOI: 10.1080/01913123.2023.2270580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Exposure to environmental metal pollutants is linked to oxidative stress and the subsequent development of neurological disease. In this study, the effects of copper, manganese, and mercury, were evaluated at X100 the World Health Organization safety limits for drinking water. Using a Sprague-Dawley rat model, following exposure for 28 days, the effects of these metals on biochemical blood parameters and tissue and cellular structure of the brain were determined. Biochemical analysis revealed no hepatocellular injury with minor changes associated with the hepatobiliary system. Minimal changes were found for renal function and the Na+/K+ ratio was reduced in the copper and manganese (Cu + Mn) and copper, manganese, and mercury (Cu, Mn + Hg) groups that could affect neurological function. Light microscopy of the brain revealed abnormal histopathology of Purkinje cells in the cerebellum and pyramidal cells in the cerebrum as well as tissue damage and fibrosis of the surface blood vessels. Transmission electron microscopy of the cerebral neurons showed microscopic signs of axonal damage, chromatin condensation, the presence of indistinct nucleoli and mitochondrial damage. Together these cellular features suggest the presence and influence of oxidative stress. Exposure to these metals at X100 the safety limits, as part of mixtures, induces changes to neurological tissue that could adversely influence neurological functioning in the central nervous system.
Collapse
Affiliation(s)
- Maxine Draper
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Mia-Jeanne Van Rooy
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | | |
Collapse
|
24
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
25
|
Mahale RR, Stezin A, Prasad S, Kamble N, Holla VV, Netravathi M, Yadav R, Pal PK. Clinical Spectrum, Radiological Correlation and Outcome of Movement Disorders in Wilson's Disease. Tremor Other Hyperkinet Mov (N Y) 2023; 13:37. [PMID: 37840995 PMCID: PMC10573579 DOI: 10.5334/tohm.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Movement disorders are the commonest clinical presentation in patients with neurological Wilson's disease (NWD). There are very few studies evaluating the spectrum, severity and their correlation with magnetic resonance imaging (MRI) changes of movement disorders in NWD. Objective To study the spectrum, topographic distribution, radiological correlate, temporal course and outcome in our cohort of NWD patients. Methods Retrospective chart review of the NWD patients having movement disorders was performed and analyzed. Results Sixty-nine patients (males- 47) with NWD were analysed and the mean age at the onset of neurological symptoms was 13.6 ± 6.6 years (median 13 years; range 7-37 years). The first neurological symptom was movement disorder in 55 (79.7%) patients. Tremor (43.6%) and dystonia (41.8%) was the commonest movement disorder as the first neurological symptom. Dystonia (76.8%) was the most common overall movement disorder followed by parkinsonism (52.1%) and tremors (47.8%). Chorea (10.1%), myoclonus (1.4%) and ataxia (1.4%) were the least common movement disorder. Putamen was the most common affected site (95.6%) followed by caudate nucleus (73.9%), thalamus (60.8%), midbrain (59.4%), internal capsule (49.2%), pons (46.3%). Putamen was the most common area of abnormality in dystonia (98%), tremors (85%). Caudate (75%) and putamen (75%) was the most common areas of abnormality in parkinsonism. Favourable outcome was observed in 42 patients (60.8%) following treatment. Conclusion Dystonia is the most common movement disorder in NWD in isolation or in combination with parkinsonism and tremors. Putamen is the most common radiological site of lesions and more frequently affected in patients with dystonia and tremors. Favourable outcome does occur with appropriate medical and surgical treatment.
Collapse
Affiliation(s)
- Rohan R. Mahale
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Albert Stezin
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Shweta Prasad
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Vikram V. Holla
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Manjunath Netravathi
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| |
Collapse
|
26
|
Shetty SS, D D, S H, Sonkusare S, Naik PB, Kumari N S, Madhyastha H. Environmental pollutants and their effects on human health. Heliyon 2023; 9:e19496. [PMID: 37662771 PMCID: PMC10472068 DOI: 10.1016/j.heliyon.2023.e19496] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Numerous environmental contaminants significantly contribute to human disease, affecting climate change and public and individual health, resulting in increased mortality and morbidity. Because of the scarcity of information regarding pollution exposure from less developed nations with inadequate waste management, higher levels of poverty, and limited adoption of new technology, the relationship between pollutants and health effects needs to be investigated more. A similar situation is present in many developed countries, where solutions are only discovered after the harm has already been done and the necessity for safeguards has subsided. The connection between environmental toxins and health needs to be better understood due to difficulties in quantifying exposure levels and a lack of systematic monitoring. Different pollutants are to blame for both chronic and acute disorders. Additionally, research becomes challenging when disease problems are seen after prolonged exposure. This review aims to discuss the present understanding of the association between environmental toxins and human health in bridging this knowledge gap. The genesis of cancer and the impact of various environmental pollutants on the human body's cardiovascular, respiratory, reproductive, prenatal, and neural health are discussed in this overview.
Collapse
Affiliation(s)
- Shilpa S. Shetty
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Deepthi D
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Harshitha S
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Shipra Sonkusare
- Department of Obstetrics and Gynecology, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Prashanth B. Naik
- Department of Pediatrics, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Suchetha Kumari N
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
- Department of Biochemistry, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
27
|
Aish M, Alshehri RF, Amin AS. Construction of an optical sensor for copper determination in environmental, food, and biological samples based on the covalently immobilized 2-(2-benzothiazolylazo)-3-hydroxyphenol in agarose. RSC Adv 2023; 13:24777-24788. [PMID: 37601595 PMCID: PMC10437093 DOI: 10.1039/d3ra04249a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
An optical chemical sensor has been developed for the quantitative spectrophotometric analysis of copper. The optode is dependent on covalent immobilization of 2-(2-benzothiazolylazo)-3-hydroxyphenol (BTAHP) in a transparent agarose membrane. The absorbance variation of immobilized BTAHP on agarose as a film upon the addition of 5 × 10-3 M aqueous solutions of Mn2+, Zn2+, Hg2+, Cd2+, Pb2+, Co2+, Ni2+, Fe2+, La3+, Fe3+, Cr3+, Zr4+, Se4+, Th4+, and UO22+ revealed substantially higher changes in the Cu2+ ion content compared to other ions investigated here. The effects of various experimental parameters, such as the solution pH, the reaction time, and the concentration of reagents, on the quality of Cu2+ sensing were examined. Under ideal experimental circumstances, a linear response was achieved for Cu2+ concentrations ranging from 1.0 × 10-9 to 7.5 × 10-6 M with an R2 value of 0.9988. The detection (3σ) and quantification (10σ) limits of the procedure for Cu2+ analyses were 3.0 × 10-10 and 9.8 × 10-10 M, respectively. No observable interference was recorded in the detection of Cu2+ due to other inorganic cations. With no indication of BTAHP leaching, the membrane demonstrated good durability and quick response times. The optode was effectively used to determine the presence of Cu2+ in environmental water, food, and biological samples.
Collapse
Affiliation(s)
- Mai Aish
- Chemistry Department, Faculty of Science, Port Said University Port Said Egypt
| | - Reem F Alshehri
- Chemistry Department, College of Science, Taibah University Madina Kingdom of Saudi Arabia
| | - Alaa S Amin
- Chemistry Department, Faculty of Science, Benha University Benha Egypt
| |
Collapse
|
28
|
Rashid M, Kouser R, Arjmand F, Tabassum S. New graphene oxide-loaded probe as a highly selective fluorescent chemosensor for the detection of iron ions in water samples using optical methods. OPTICAL MATERIALS 2023; 142:114077. [DOI: 10.1016/j.optmat.2023.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
29
|
Ning W, Lyu C, Diao S, Huang Y, Liu A, Yu Q, Peng Z, Hong M, Zhou Z. Optical coherence tomography in patients with Wilson's disease. Brain Behav 2023; 13:e3014. [PMID: 37062885 PMCID: PMC10275519 DOI: 10.1002/brb3.3014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Morphological changes of retina in patients with Wilson's disease (WD) can be found by optical coherence tomography (OCT), and such changes had significant differences between neurological forms (NWD) and hepatic forms (HWD) of WD. The aim of this study was to evaluate the relationship between morphological parameters of retina and brain magnetic resonance imaging (MRI) lesions, course of disease, type of disease, and sexuality in WD. METHODS A total of 46 WD patients and 40 health controls (HC) were recruited in this study. A total of 42 WD patients were divided into different groups according to clinical manifestations, course of disease, sexuality, and brain MRI lesions. We employed the Global Assessment Scale to assess neurological severity of WD patients. All WD patients and HC underwent retinal OCT to assess the thickness of inner limiting membrane (ILM) layer to retinal pigment epithelium layer and inner retina layer (ILM to inner plexiform layer, ILM-IPL). RESULTS Compared to HWD, NWD had thinner superior parafovea zone (108.07 ± 6.89 vs. 114.40 ± 5.54 μm, p < .01), temporal parafovea zone (97.17 ± 6.65 vs. 103.60 ± 4.53 μm, p < .01), inferior parafovea zone (108.114 ± 7.65 vs. 114.93 ± 5.84 μm, p < .01), and nasal parafovea zone (105.53 ± 8.01 vs. 112.10 ± 5.44 μm, p < .01) in inner retina layer. Course of disease influenced the retina thickness. Male patients had thinner inner retina layer compared to female patients. CONCLUSION Our results demonstrated that WD had thinner inner retina layer compared to HC, and NWD had thinner inner retina layer compared to HWD. We speculated the thickness of inner retina layer may be a potential useful biomarker for NWD.
Collapse
Affiliation(s)
| | | | | | | | - Ai‐Qun Liu
- Department of NeurologyGuangzhouGuangdongChina
| | - Qing‐Yun Yu
- Department of NeurologyGuangzhouGuangdongChina
| | | | | | | |
Collapse
|
30
|
Zhang H, Yang DN, Zhu ZJ, Yang FQ. In situ synthesis of silver nanocomposites on paper substrate for the pre-concentration and determination of iron(III) ions. Microchem J 2023; 188:108475. [DOI: 10.1016/j.microc.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Nakagawa Y, Yamada S. The Relationships Among Metal Homeostasis, Mitochondria, and Locus Coeruleus in Psychiatric and Neurodegenerative Disorders: Potential Pathogenetic Mechanism and Therapeutic Implications. Cell Mol Neurobiol 2023; 43:963-989. [PMID: 35635600 PMCID: PMC11414457 DOI: 10.1007/s10571-022-01234-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022]
Abstract
While alterations in the locus coeruleus-noradrenergic system are present during early stages of neuropsychiatric disorders, it is unclear what causes these changes and how they contribute to other pathologies in these conditions. Data suggest that the onset of major depressive disorder and schizophrenia is associated with metal dyshomeostasis that causes glial cell mitochondrial dysfunction and hyperactivation in the locus coeruleus. The effect of the overactive locus coeruleus on the hippocampus, amygdala, thalamus, and prefrontal cortex can be responsible for some of the psychiatric symptoms. Although locus coeruleus overactivation may diminish over time, neuroinflammation-induced alterations are presumably ongoing due to continued metal dyshomeostasis and mitochondrial dysfunction. In early Alzheimer's and Parkinson's diseases, metal dyshomeostasis and mitochondrial dysfunction likely induce locus coeruleus hyperactivation, pathological tau or α-synuclein formation, and neurodegeneration, while reduction of glymphatic and cerebrospinal fluid flow might be responsible for β-amyloid aggregation in the olfactory regions before the onset of dementia. It is possible that the overactive noradrenergic system stimulates the apoptosis signaling pathway and pathogenic protein formation, leading to further pathological changes which can occur in the presence or absence of locus coeruleus hypoactivation. Data are presented in this review indicating that although locus coeruleus hyperactivation is involved in pathological changes at prodromal and early stages of these neuropsychiatric disorders, metal dyshomeostasis and mitochondrial dysfunction are critical factors in maintaining ongoing neuropathology throughout the course of these conditions. The proposed mechanistic model includes multiple pharmacological sites that may be targeted for the treatment of neuropsychiatric disorders commonly.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
32
|
A thieno[2,3-a]carbazole-based multifunctional probe: colorimetric detecting of Fe3+/Cu2+/Hg2+ and fluorescent sensing of Cu2+. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
33
|
Aaseth JO, Nurchi VM. Chelation Combination-A Strategy to Mitigate the Neurotoxicity of Manganese, Iron, and Copper? Biomolecules 2022; 12:1713. [PMID: 36421727 PMCID: PMC9687779 DOI: 10.3390/biom12111713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 01/19/2024] Open
Abstract
The chelating thiol dimercaptosuccinate (DMSA) and the traditional agent D-penicillamine (PSH) are effective in enhancing the urinary excretion of copper (Cu) and lead (Pb) in poisoned individuals. However, DMSA, PSH, EDTA (ethylenediamine tetraacetate), and deferoxamine (DFOA) are water-soluble agents with limited access to the central nervous system (CNS). Strategies for mobilization of metals such as manganese (Mn), iron (Fe), and Cu from brain deposits may require the combined use of two agents: one water-soluble agent to remove circulating metal into urine, in addition to an adjuvant shuttler to facilitate the brain-to-blood mobilization. The present review discusses the chemical basis of metal chelation and the ligand exchange of metal ions. To obtain increased excretion of Mn, Cu, and Fe, early experiences showed promising results for CaEDTA, PSH, and DFOA, respectively. Recent experiments have indicated that p-amino salicylate (PAS) plus CaEDTA may be a useful combination to remove Mn from binding sites in CNS, while the deferasirox-DFOA and the tetrathiomolybdate-DMSA combinations may be preferable to promote mobilization of Fe and Cu, respectively, from the CNS. Further research is requested to explore benefits of chelator combinations.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 104, N-2418 Elverum, Norway
| | - Valeria M. Nurchi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| |
Collapse
|
34
|
Åström ME, Roos PM. Geochemistry of multiple sclerosis in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156672. [PMID: 35705128 DOI: 10.1016/j.scitotenv.2022.156672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Multiple sclerosis (MS) affects some 3 million people around the world and the prevalence is increasing. The MS incidence increases with distance from the equator forming a north-to-south gradient. The cause of this gradient and the cause of MS in general are largely unknown. Sulphide-bearing marine and lake sediments, when exposed to oxygen after drainage, form sulphuric acid resulting in the development of acid sulphate soils. From these soils major neurotoxic metals such as iron, aluminum and manganese and trace metals such as nickel, copper and cadmium are released into the surrounding environment. As these soils are largely used for farming, obvious routes to human metal exposure exist. Here we compare the distribution of acid sulphate soils in Finland to the geographic localisation of MS cases using data from a national acid sulphate soil mapping project and historical MS distribution data. Finland has among the highest MS prevalences in the world and several independent nationwide surveys have shown the highest prevalence in western Finland, stable over time. Acid sulphate soil distribution colocalizes with MS, both on a regional (nationwide) scale and local (proximity to rivers) scale. A toxicokinetic LADME model for MS pathogenesis is presented. We propose that neurotoxic metals leaching from acid sulphate soils contribute to the clustering of MS in Finland.
Collapse
Affiliation(s)
- Mats E Åström
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Clinical Physiology, St.Göran Hospital, 112 81 Stockholm, Sweden.
| |
Collapse
|
35
|
Butnaru I, Constantin CP, Damaceanu MD. Optimization of triphenylamine-based polyimide structure towards molecular sensors for selective detection of heavy/transition metal ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Xiao L, Cheng H, Cai H, Wei Y, Zan G, Feng X, Liu C, Li L, Huang L, Wang F, Chen X, Zou Y, Yang X. Associations of Heavy Metals with Activities of Daily Living Disability: An Epigenome-Wide View of DNA Methylation and Mediation Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87009. [PMID: 36036794 PMCID: PMC9423034 DOI: 10.1289/ehp10602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure to heavy metals has been reported to be associated with multiple diseases. However, direct associations and potential mechanisms of heavy metals with physical disability remain unclear. OBJECTIVES We aimed to quantify associations of heavy metals with physical disability and further explore the potential mechanisms of DNA methylation on the genome scale. METHODS A cross-sectional study of 4,391 older adults was conducted and activities of daily living (ADL) disability were identified using a 14-item scale questionnaire including basic and instrumental activities to assess the presence of disability (yes or no) rated on a scale of dependence. Odds ratios (ORs) and 95% confidence intervals (CI) were estimated to quantify associations between heavy metals and ADL disability prevalence using multivariate logistic regression and Bayesian kernel machine regression (BKMR) models. Whole blood-derived DNA methylation was measured using the HumanMethylationEPIC BeadChip array. An ADL disability-related epigenome-wide DNA methylation association study (EWAS) was performed among 212 sex-matched ADL disability cases and controls, and mediation analysis was further applied to explore potential mediators of DNA methylation. RESULTS Each 1-standard deviation (SD) higher difference in log10-transformed manganese, copper, arsenic, and cadmium level was significantly associated with a 14% (95% CI: 1.05, 1.24), 16% (95% CI:1.07, 1.26), 22% (95% CI:1.13, 1.33), and 15% (95% CI:1.06, 1.26) higher odds of ADL disability, which remained significant in the multiple-metal and BKMR models. A total of 85 differential DNA methylation sites were identified to be associated with ADL disability prevalence, among which methylation level at cg220000984 and cg23012519 (annotated to IRGM and PKP3) mediated 31.0% and 31.2% of manganese-associated ADL disability prevalence, cg06723863 (annotated to ESRP2) mediated 32.4% of copper-associated ADL disability prevalence, cg24433124 (nearest to IER3) mediated 15.8% of arsenic-associated ADL disability prevalence, and cg07905190 and cg17485717 (annotated to FREM1 and TCP11L1) mediated 21.5% and 30.5% of cadmium-associated ADL disability prevalence (all p<0.05). DISCUSSION Our findings suggested that heavy metals contributed to higher prevalence of ADL disability and that locus-specific DNA methylation are partial mediators, providing potential biomarkers for further cellular mechanism studies. https://doi.org/10.1289/EHP10602.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
37
|
The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules 2022; 12:biom12070998. [PMID: 35883554 PMCID: PMC9313172 DOI: 10.3390/biom12070998] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Emerging evidence suggests that neuroinflammation is involved in both depression and neurodegenerative diseases. The kynurenine pathway, generating metabolites which may play a role in pathogenesis, is one of several competing pathways of tryptophan metabolism. The present article is a narrative review of tryptophan metabolism, neuroinflammation, depression, and neurodegeneration. A disturbed tryptophan metabolism with increased activity of the kynurenine pathway and production of quinolinic acid may result in deficiencies in tryptophan and derived neurotransmitters. Quinolinic acid is an N-methyl-D-aspartate receptor agonist, and raised levels in CSF, together with increased levels of inflammatory cytokines, have been reported in mood disorders. Increased quinolinic acid has also been observed in neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and HIV-related cognitive decline. Oxidative stress in connection with increased indole-dioxygenase (IDO) activity and kynurenine formation may contribute to inflammatory responses and the production of cytokines. Increased formation of quinolinic acid may occur at the expense of kynurenic acid and neuroprotective picolinic acid. While awaiting ongoing research on potential pharmacological interventions on tryptophan metabolism, adequate protein intake with appropriate amounts of tryptophan and antioxidants may offer protection against oxidative stress and provide a balanced set of physiological receptor ligands.
Collapse
|
38
|
Jing XZ, Yuan XZ, Li GY, Chen JL, Wu R, Yang LL, Zhang SY, Wang XP, Li JQ. Increased Magnetic Susceptibility in the Deep Gray Matter Nuclei of Wilson's Disease: Have We Been Ignoring Atrophy? Front Neurosci 2022; 16:794375. [PMID: 35720701 PMCID: PMC9198485 DOI: 10.3389/fnins.2022.794375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Histopathological studies in Wilson's disease (WD) have revealed increased copper and iron concentrations in the deep gray matter nuclei. However, the commonly used mean bulk susceptibility only reflects the regional metal concentration rather than the total metal content, and regional atrophy may affect the assessment of mean bulk susceptibility. Our study aimed to quantitatively assess the changes of metal concentration and total metal content in deep gray matter nuclei by quantitative susceptibility mapping to distinguish patients with neurological and hepatic WD from healthy controls. Methods Quantitative susceptibility maps were obtained from 20 patients with neurological WD, 10 patients with hepatic WD, and 25 healthy controls on a 3T magnetic resonance imaging system. Mean bulk susceptibility, volumes, and total susceptibility of deep gray matter nuclei in different groups were compared using a linear regression model. The area under the curve (AUC) was calculated by receiver characteristic curve to analyze the diagnostic capability of mean bulk susceptibility and total susceptibility. Results Mean bulk susceptibility and total susceptibility of multiple deep gray matter nuclei in patients with WD were higher than those in healthy controls. Compared with patients with hepatic WD, patients with neurological WD had higher mean bulk susceptibility but similar total susceptibility in the head of the caudate nuclei, globus pallidus, and putamen. Mean bulk susceptibility of putamen demonstrated the best diagnostic capability for patients with neurological WD, the AUC was 1, and the sensitivity and specificity were all equal to 1. Total susceptibility of pontine tegmentum was most significant for the diagnosis of patients with hepatic WD, the AUC was 0.848, and the sensitivity and specificity were 0.7 and 0.96, respectively. Conclusion Brain atrophy may affect the assessment of mean bulk susceptibility in the deep gray matter nuclei of patients with WD, and total susceptibility should be an additional metric for total metal content assessment. Mean bulk susceptibility and total susceptibility of deep gray matter nuclei may be helpful for the early diagnosis of WD.
Collapse
Affiliation(s)
- Xiao-Zhong Jing
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Zhen Yuan
- Department of Neurology, Weifang People's Hospital, Weifang, China
| | - Gai-Ying Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jia-Lin Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Rong Wu
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-Li Yang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Yun Zhang
- Department of Neurology, Weifang People's Hospital, Weifang, China
| | - Xiao-Ping Wang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| |
Collapse
|
39
|
Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022; 158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
One of the most significant threats in Parkinson's disease (PD) is neurodegeneration. Neurodegeneration at both nigral as well as non-nigral regions of the brain is considered responsible for disease progression in PD. The key factors that initiate neurodegeneration are oxidative stress, neuroinflammation, mitochondrial complex-1 inhibition, and abnormal α-synuclein (SNCA) protein aggregations. Nigral neurodegeneration results in motor symptoms (tremor, bradykinesia, rigidity, shuffling gait, and postural instability) whereas; non-nigral neurodegeneration is responsible for non-motor symptoms (depression, cognitive dysfunctions, sleep disorders, hallucination, and psychosis). The available therapies for PD aim at increasing dopamine levels. The medications such as Monoamine oxidase B (MAO-B) inhibitors, catechol o-methyltransferase (COMT) inhibitors, Dopamine precursor (Levodopa), dopamine agonists, and dopamine reuptake inhibitors drastically improve the motor symptoms and quality of life only in the early stages of the disease. However, dopa resistant motor symptoms (abnormality in posture, speech impediment, gait, and balance problems), dopa resistant non-motor signs (sleep problems, autonomic dysfunction, mood, and cognitive impairment, pain), and drug-related side effects (motor fluctuations, psychosis, and dyskinesias) are considered responsible for the failure of these therapies. Further, none of the treatments, alone or in combination, are capable of halting the disease progression in the long run. Therefore, there is a need to develop safe and efficient neuroprotective agents, which can slow or stop the disease progression for the better management of PD. In this review, an effort has been made to discuss the various mechanisms responsible for progressive neurodegeneration (disease progression) in PD and also multiple strategies available for halting disease progression.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | | | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
40
|
Hašková P, Applová L, Jansová H, Homola P, Franz KJ, Vávrová K, Roh J, Šimůnek T. Examination of diverse iron-chelating agents for the protection of differentiated PC12 cells against oxidative injury induced by 6-hydroxydopamine and dopamine. Sci Rep 2022; 12:9765. [PMID: 35697900 PMCID: PMC9192712 DOI: 10.1038/s41598-022-13554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Labile redox-active iron ions have been implicated in various neurodegenerative disorders, including the Parkinson's disease (PD). Iron chelation has been successfully used in clinical practice to manage iron overload in diseases such as thalassemia major; however, the use of conventional iron chelators in pathological states without systemic iron overload remains at the preclinical investigative level and is complicated by the risk of adverse outcomes due to systemic iron depletion. In this study, we examined three clinically-used chelators, namely, desferrioxamine, deferiprone and deferasirox and compared them with experimental agent salicylaldehyde isonicotinoyl hydrazone (SIH) and its boronate-masked prochelator BSIH for protection of differentiated PC12 cells against the toxicity of catecholamines 6-hydroxydopamine and dopamine and their oxidation products. All the assayed chelating agents were able to significantly reduce the catecholamine toxicity in a dose-dependent manner. Whereas hydrophilic chelator desferrioxamine exerted protection only at high and clinically unachievable concentrations, deferiprone and deferasirox significantly reduced the catecholamine neurotoxicity at concentrations that are within their plasma levels following standard dosage. SIH was the most effective iron chelator to protect the cells with the lowest own toxicity of all the assayed conventional chelators. This favorable feature was even more pronounced in prochelator BSIH that does not chelate iron unless its protective group is cleaved in disease-specific oxidative stress conditions. Hence, this study demonstrated that while iron chelation may have general neuroprotective potential against catecholamine auto-oxidation and toxicity, SIH and BSIH represent promising lead molecules and warrant further studies in more complex animal models.
Collapse
Affiliation(s)
- Pavlína Hašková
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lenka Applová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Hana Jansová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Pavel Homola
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | | | - Kateřina Vávrová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
41
|
Dual-response fluorescence sensor for detecting Cu2+ and Pd2+ based on bis-tetraphenylimidazole Schiff-base. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Yang Z, Yuan Y, Xu X, Guo H, Yang F. An effective long-wavelength fluorescent sensor for Cu 2+ based on dibenzylidenehydrazine-bridged biphenylacrylonitrile. Anal Bioanal Chem 2022; 414:4707-4716. [PMID: 35562571 DOI: 10.1007/s00216-022-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
Although numerous fluorescence sensors for Cu2+ have been presented, a long-wavelength sensor in aqueous media has rarely been reported as expected due to practical application requirements. In this work, a novel AIE molecule (DHBB) containing two biphenylacrylonitrile units bridged by dibenzylidenehydrazine was prepared. It possessed the merits of long-wavelength emission, good emission in aqueous media, and multiple functional groups for binding Cu2+. It exhibited good sensing selectivity for Cu2+ among all kinds of tested metal ions. The detection limit was as low as 1.08 × 10-7 M. The sensing mechanism was clarified as 1:1 stoichiometric ratio based on the binding cooperation of O and N functional groups of DHBB. The selective sensing ability for Cu2+ remained stable at pH = 5-9 and was influenced little by other metal ions. The Cu2+ sensing ability of DHBB was applied in real samples with 96% recovery rate. The bio-imaging experiment of living cells suggested that DHBB possessed not only good bio-imaging performance but also sensing ability for Cu2+ in living environments. This work suggested the good application prospect of DHBB to sense Cu2+ in real samples and living environment.
Collapse
Affiliation(s)
- Zengwei Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Yufei Yuan
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China
| | - Xiangfei Xu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China. .,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China. .,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China.
| |
Collapse
|
43
|
Kouser R, Rehman A, Abidi S, Arjmand F, Tabassum S. A chromone-based colorimetric fluorescence sensor for selective detection of Cu2+ions, and its application for in-situ imaging. J Mol Struct 2022; 1256:132533. [DOI: 10.1016/j.molstruc.2022.132533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
A Review of Diagnostic Imaging Approaches to Assessing Parkinson's Disease. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Dietary fat intake and risk of Parkinson disease: results from the Swedish National March Cohort. Eur J Epidemiol 2022; 37:603-613. [PMID: 35416636 PMCID: PMC9288363 DOI: 10.1007/s10654-022-00863-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
Background Following progressive aging of the population worldwide, the prevalence of Parkinson disease is expected to increase in the next decades. Primary prevention of the disease is hampered by limited knowledge of preventable causes. Recent evidence regarding diet and Parkinson disease is inconsistent and suggests that dietary habits such as fat intake may have a role in the etiology. Objective To investigate the association between intake of total and specific types of fat with the incidence of Parkinson disease. Methods Participants from the Swedish National March Cohort were prospectively followed-up from 1997 to 2016. Dietary intake was assessed at baseline using a validated food frequency questionnaire. Food items intake was used to estimate fat intake, i.e. the exposure variable, using the Swedish Food Composition Database. Total, saturated, monounsaturated and polyunsaturated fat intake were categorized into quartiles. Parkinson disease incidence was ascertained through linkages to Swedish population-based registers. Cox proportional hazards regression models were used to estimate hazard ratios (HR) with 95% confidence intervals (CI) of the association between fat intake from total or specific types of fats and the incidence of Parkinson disease. The lowest intake category was used as reference. Isocaloric substitution models were also fitted to investigate substitution effects by replacing energy from fat intake with other macronutrients or specific types of fat. Results 41,597 participants were followed up for an average of 17.6 years. Among them, 465 developed Parkinson disease. After adjusting for potential confounders, the highest quartile of saturated fat intake was associated with a 41% increased risk of Parkinson disease compared to the lowest quartile (HR Q4 vs. Q1: 1.41; 95% CI: 1.04–1.90; p for trend: 0.03). Total, monounsaturated or polyunsaturated fat intake were not significantly associated with Parkinson disease. The isocaloric substitution models did not show any effect. Conclusions We found that a higher consumption of large amounts of saturated fat might be associated with an increased risk of Parkinson disease. A diet low in saturated fat might be beneficial for disease prevention. Supplementary Information The online version contains supplementary material available at 10.1007/s10654-022-00863-8.
Collapse
|
46
|
Kurhaluk N, Tkachenko H. Habitat-, age-, and sex-related alterations in oxidative stress biomarkers in the blood of mute swans (Cygnus olor) inhabiting pomeranian coastal areas (Northern Poland). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27070-27083. [PMID: 34971416 PMCID: PMC8989853 DOI: 10.1007/s11356-021-18393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
The mute swan (Cygnus olor) can be considered a representative species of birds associated with the aquatic environment and responding very clearly to changes in the environment. Assuming that the condition of the mute swan population well reflects the state of the environment, this species was used in our research as a bioindicative species. Thus, the aim of our study was to elucidate the association between metal contents in soil samples collected from a habitat of mute swans and element contents in their feathers as well as the levels of biomarkers of lipid peroxidation, oxidatively modified proteins, and total antioxidant capacity in the blood of mute swans living in three agglomerations in coastal areas in the southern part of the Baltic Sea (Pomeranian region, northern Poland). We compared the effects of inhabitation, age, and sex on the ecophysiological accumulation of metals in three wintering populations of the mute swan from coastal areas of northern Poland, i.e., Słupsk, Gdynia, and Sopot. In Słupsk, the anthropogenic pressure was related predominantly to the level of Al and, to a lesser extent, to the content of Rh and Ru. We found maximum levels of lipid peroxidation biomarkers in the blood of the mute swans from Gdynia (38.20 ± 6.35 nmol MDA·mL-1). At the same time, maximum levels of aldehydic and ketonic derivatives of oxidatively modified proteins were noted in the blood of swans from Sopot compared to the values obtained in mute swans from Słupsk and Gdynia. This trend suggesting high levels of oxidative stress biomarkers was also confirmed by a decrease in the total antioxidant capacity in these groups.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str. 22b, 76-200, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str. 22b, 76-200, Słupsk, Poland
| |
Collapse
|
47
|
Sule K, Prenner EJ. Lipid headgroup and side chain architecture determine manganese-induced dose dependent membrane rigidification and liposome size increase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:205-223. [PMID: 35166865 DOI: 10.1007/s00249-022-01589-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/25/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Metal ion-membrane interactions have gained appreciable attention over the years resulting in increasing investigations into the mode of action of toxic and essential metals. More work has focused on essential ions like Ca or Mg and toxic metals like Cd and Pb, whereas this study investigates the effects of the abundant essential trace metal manganese with model lipid systems by screening zwitterionic and anionic glycerophospholipids. Despite its essentiality, deleterious impact towards cell survival is known under Mn stress. The fluorescent dyes Laurdan and diphenylhexatriene were used to assess changes in membrane fluidity both in the head group and hydrophobic core region of the membrane, respectively. Mn-rigidified membranes composed of the anionic phospholipids, phosphatidic acid, phosphatidylglycerol, cardiolipin, and phosphatidylserine. Strong binding resulted in large shifts of the phase transition temperature. The increase was in the order phosphatidylserine > phosphatidylglycerol > cardiolipin, and in all cases, saturated analogues > mono-unsaturated forms. Dynamic light scattering measurements revealed that Mn caused extensive aggregation of liposomes composed of saturated analogues of phosphatidic acid and phosphatidylserine, whilst the mono-unsaturated analogue had significant membrane swelling. Increased membrane rigidity may interfere with permeability of ions and small molecules, possibly disrupting cellular homeostasis. Moreover, liposome size changes could indicate fusion, which could also be detrimental to cellular transport. Overall, this study provided further understanding into the effects of Mn with biomembranes, whereby the altered membrane properties are consequential to the proper structural and signalling functions of membrane lipids.
Collapse
Affiliation(s)
- Kevin Sule
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
48
|
Zha B, Fang S, Chen H, Guo H, Yang F. An effective dual sensor for Cu 2+ and Zn 2+ with long-wavelength fluorescence in aqueous media based on biphenylacrylonitrile Schiff-base. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120765. [PMID: 34959034 DOI: 10.1016/j.saa.2021.120765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Although some sensors for Cu2+ and Zn2+ had been reported, the sensor with long-wavelength emission in aqueous media for in-situ detecting Cu2+ and Zn2+ was always expected. Herein, a biphenylacrylonitrile Schiff-base (OPBS) with large aromatic conjugated system was designed and synthesized in yield of 82%. OPBS possessed excellent long-wavelength fluorescence at 550-750 nm in aqueous media, which selectively response to sense Cu2+ with quenched fluorescence and Zn2+ with chromotropic fluorescence from red to yellow. The detection of Cu2+ and Zn2+ were realized without mutual interference in their coexistence system by means of the assistance of ATP. The detection limits were 2.3 × 10-7 M for Cu2+ and 1.8 × 10-6 M for Zn2+, respectively. The sensing mechanism was elucidated by binding MS spectra, fluorescence Job's plot and 1H NMR spectra. Moreover, OPBS exhibited good bioimaging performance and the in-situ sensing abilities for Cu2+ and Zn2+ in living cells, suggesting the application potential for detecting Cu2+ and Zn2+ in both vitro assay and vivo environment.
Collapse
Affiliation(s)
- Bowen Zha
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Shuting Fang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Huiling Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China.
| |
Collapse
|
49
|
Cognitive and Physical Intervention in Metals’ Dysfunction and Neurodegeneration. Brain Sci 2022; 12:brainsci12030345. [PMID: 35326301 PMCID: PMC8946530 DOI: 10.3390/brainsci12030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Metals—especially iron, copper and manganese—are important elements of brain functions and development. Metal-dysregulation homeostasis is associated with brain-structure damage to the motor, cognitive and emotional systems, and leads to neurodegenerative processes. There is more and more evidence that specialized cognitive and motor exercises can enhance brain function and attenuate neurodegeneration in mechanisms, such as improving neuroplasticity by altering the synaptic structure and function in many brain regions. Psychological and physical methods of rehabilitation are now becoming increasingly important, as pharmacological treatments for movement, cognitive and emotional symptoms are limited. The present study describes physical and cognitive rehabilitation methods of patients associated with metal-induced neurotoxicity such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease and Wilson’s disease. In our review, we describe physical (e.g., virtual-reality environments, robotic-assists training) and psychological (cognitive training, cognitive stimulation, neuropsychological rehabilitation and cognitive-behavioral and mindfulness-based therapies) methods, significantly improving the quality of life and independence of patients associated with storage diseases. Storage diseases are a diverse group of hereditary metabolic defects characterized by the abnormal cumulation of storage material in cells. This topic is being addressed due to the fact that rehabilitation plays a vital role in the treatment of neurodegenerative diseases. Unfortunately so far there are no specific guidelines concerning physiotherapy in neurodegenerative disorders, especially in regards to duration of exercise, type of exercise and intensity, as well as frequency of exercise. This is in part due to the variety of symptoms of these diseases and the various levels of disease progression. This further proves the need for more research to be carried out on the role of exercise in neurodegenerative disorder treatment.
Collapse
|
50
|
Simple, rapid, portable and quantitative sensing of Fe3+ ions via analyte-triggered redox reactions mediating Tyndall effect enhancement of Au nanoparticles. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|