1
|
Zhu Y, Fu D, Cai H, Qin J, Wu Y, Zhang M, Zou Y, Vasquez HE, Zheng X, Liu C, Wang A, Ke C, Yu F, Gu Z. High-throughput screening of thermal tolerant candidate genes in the ivory shell (Babylonia areolata) based on the yeast strain INVSc1. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101428. [PMID: 39889586 DOI: 10.1016/j.cbd.2025.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Global climate warming and frequent heatwaves present significant threats to the growth and survival of marine organisms. The ivory shell, Babylonia areolata, plays a crucial role in marine aquaculture as a widely distributed mollusk in tropical and subtropical seas. However, limited research has been conducted on its molecular mechanisms in response to heat stress. This study aims to explore thermal-tolerant related genes and regulatory pathways by constructing a cDNA library under heat stress and using a yeast-based high-throughput screening method. Following exposure of three populations to acute heat stress, a heat stress cDNA library was constructed with a capacity of 1.104 × 108, containing 2.208 × 108 clones. Subsequently, the library was transformed into yeast INVSc1 and underwent high-temperature screening at 39 °C. All positive clones were then subjected to next-generation sequencing (NGS) for rapid identification of 1148 candidate genes associated with thermal tolerance. Enrichment analysis revealed that these genes were significantly enriched in seven KEGG pathways, including Protein processing in endoplasmic reticulum, Ribosome and Ubiquitin mediated proteolysis. Additionally, through first-generation sequencing of 96 randomly selected positive clones at 39 °C, we identified 51 unique sequences associated with heat stress which included previously reported genes like EEF2, HSPB1, UBC and HSPA4. Subsequent yeast heat tolerance experiments further validated the essential role played by these 51 genes in response to thermal stress conditions. Finally, RNA-seq data provided evidence for upregulated expression levels of these genes during exposure to elevated temperatures. This study successfully constructed the first cDNA library for B. areolata under heat stress conditions, identified key pathways and candidate genes associated with thermal tolerance, and demonstrated the applicability of yeast high-throughput screening methods in investigating stress resistance traits in invertebrates. These findings contribute to a deeper understanding of the strategies employed by B. areolata to respond to heat stress, and provide technical support for studying the molecular mechanisms underlying abiotic stress responses in aquatic organisms.
Collapse
Affiliation(s)
- Yanyun Zhu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Deng Fu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Haonan Cai
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jie Qin
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yingyin Wu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Meng Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yu Zou
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hebert Ely Vasquez
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; School of Breeding and Multiplication, Hainan University, Sanya 572022, China
| | - Xing Zheng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, Hainan, China
| | - Chunsheng Liu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; School of Breeding and Multiplication, Hainan University, Sanya 572022, China
| | - Aimin Wang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Caihuan Ke
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Feng Yu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, Hainan, China; School of Breeding and Multiplication, Hainan University, Sanya 572022, China.
| | - Zhifeng Gu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, Hainan, China; School of Breeding and Multiplication, Hainan University, Sanya 572022, China.
| |
Collapse
|
2
|
Duan C, Yang L, Chen W, Zhou D, Cao S, Zhang Y, Li G, Chen H, Tian C. Long-term thermal stress reshapes the tolerance of head kidney of Hong Kong catfish (Clarias fuscus) to acute heat shock by regulating energy metabolism and immune response. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101437. [PMID: 39933313 DOI: 10.1016/j.cbd.2025.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Elevated water temperatures caused by climate warming can affect fish survival. However, fish can maintain normal physiological functions through physiological plasticity. When temperature fluctuations exceed their tolerance range, even stress-resistant species like Siluriformes are affected. It is known that fish have adaptive regulation mechanisms to reshape their tolerance to temperature stress, but the ability to respond to acute thermal shock and recover after adaptive remodeling remains unclear. This study investigated the effects of different culture temperatures on the ability of Hong Kong catfish (Clarias fuscus) to respond to acute heat stress and stress recovery. C. fuscus were cultured at normal temperature (NT, 26 °C) or high temperature (HT, 34 °C) for 90 days, and then their head kidney transcriptome was analyzed after acute heat stress (34 °C) and subsequent recovery (26 °C). The results revealed 8165 differentially expressed genes (DEGs) in the NT group and 8537 DEGs in the HT group during the entire temperature treatment process, with each group responding differently to various stages of temperature treatment. Enrichment analysis showed that both NT and HT groups had enriched pathways related to energy metabolism and immune response during acute heat stress. However, acute heat stress disrupted the energy supply and oxidative metabolism in the NT group, while enhancing the HT group's ability to respond to repeated heat stress. This experiment demonstrated that high-temperature culture reshaped the energy metabolism balance in the head kidney tissue, improving anti-stress and stress recovery abilities. These findings lay a foundation for further research on the plasticity of fish in coping with acute temperature changes.
Collapse
Affiliation(s)
- Cunyu Duan
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Lei Yang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Wanying Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Shouxiong Cao
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Yulei Zhang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China.
| |
Collapse
|
3
|
Yu H, Li L, Yu L, Yao Y, Zhang L. Estimation of dietary copper requirements of Coho salmon Oncorhynchus kisutch (Walbaum, 1792), and effects on the growth performance, tissue Cu content, antioxidant capacity and hematological parameters. Sci Rep 2025; 15:16295. [PMID: 40348796 PMCID: PMC12065889 DOI: 10.1038/s41598-025-00630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Copper (Cu) is an essential trace mineral for the growth of most farmed fish species. Since natural water typically contains low Cu levels, exogenous Cu supplementation may be required in intensive aquaculture systems to meet the nutritional requirements of certain fish species. A 10-week feeding experiment was conducted to evaluate the Cu requirement on growth performance, tissue Cu content, hematological parameters and anti-oxidant responses in coho salmon Oncorhynchus kisutch (Walbaum, 1792). In this experiment, six experimental diets supplemented with graded Cu (CuSO4 used as Cu source) contents (0.20, 2.10, 3.70, 5.80, 7.75, and 9.85 mg/kg) to feed the fish (180.22 ± 0.41 g). Total 180 fish were randomly distributed across 18 individuals tank (10 fish/cage, water volume 1,000-L) fed three times a day. The result showed that the mortality and morphological indices were completely unaffected by the increasing Cu supplementation in the diet (P > 0.05). Whereas, the non-supplemented diet (0.20 mg Cu/kg) had a poor growth performance of the fish (P < 0.05), including the lowest final body weight and specific growth rate, the highest feed conversion ratio. No significant differences (P > 0.05) were observed in the proximate composition of muscle across graded dietary copper levels. However, increasing dietary Cu level induced Cu accumulation (P < 0.05), but higher Cu level in the diet (> 5.8 mg/kg) did not further increase of muscle and liver in coho salmon. Compared with the 0.20 Cu mg/kg in diet, the supplemented diet enhanced the antioxidant capacity in liver and serum, and decrease the content of malondialdehyde in liver (P < 0.05). Diet with 0.20-5.80 mg/kg supplemental Cu significantly increased the serum alkaline phosphatase and lysozyme activities, decrease the serum alanine aminotransferase and aspartate aminotransferase activities (P < 0.05), while higher dietary Cu level (> 5.8 mg/kg) showed the opposite trend. The broken-line analysis based on specific growth rate, liver Cu accumulation, copper-zinc superoxide dismutase in liver and serum, the appropriate dietary Cu level for coho salmon were estimated to be 5.29-5.92 mg/kg.
Collapse
Affiliation(s)
- Hairui Yu
- Key Laboratory of Biochemistry and Molecular Biology, Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Universities of Shandong (Weifang University), Weifang, 261061, China.
| | - Lingyao Li
- Key Laboratory of Biochemistry and Molecular Biology, Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Universities of Shandong (Weifang University), Weifang, 261061, China
- Weifang Key Laboratory of Salmon and Trout Health Culture, Conqueren Leading Fresh Science & Technology Inc., Ltd., Weifang, 261205, China
| | - Leyong Yu
- Key Laboratory of Biochemistry and Molecular Biology, Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Universities of Shandong (Weifang University), Weifang, 261061, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujing Yao
- Shandong Collaborative Innovation Center of Coho Salmon Health Culture Engineering Technology, Shandong Conqueren Marine Technology Co., Ltd, Weifang, 261108, China
| | - Ling Zhang
- Key Laboratory of Biochemistry and Molecular Biology, Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Universities of Shandong (Weifang University), Weifang, 261061, China.
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, 518101, China.
| |
Collapse
|
4
|
Abdel-Tawwab M, Omar AA, Khalil RH, Selema TAMA, Elsamanooudy SI, El-Saftawy HAM, Sabry EA, Fawzy RM, Abdel-Razek N. Influences of thermal stress on the growth biometrics, stress indicators, oxidative stress biomarkers, and histopathological alterations in European seabass, Dicentrarchus labrax, juveniles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:70. [PMID: 40111646 PMCID: PMC11926022 DOI: 10.1007/s10695-025-01470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
This study examined how European seabass, Dicentrarchus labrax, juveniles are affected by heat stress in several ways, including growth biometrics, stress indicators, oxidative stress biomarkers, and histopathological changes. Our research aims to gain a better understanding of the impact of thermal stress on these parameters. Hence, European seabass juveniles (30-32 g) were exposed to temperatures of 20 °C, 23 °C, 26 °C, 29 °C, and 31 °C using a 28-day bioassay. It was noted that the fish showed better performance indices at 23 °C and 26 °C. However, fish reared at 20 °C showed intermediate growth, while the fish reared at 31 °C displayed poor performance with low survival rates. As the water temperature increased from 20 to 31 °C, the levels of glucose, cortisol, aspartate aminotransferase, and alanine aminotransferase in the fish blood also increased, suggesting that the fish were under stress. Furthermore, activities of superoxide dismutase (SOD) and catalase (CAT), as well as levels of malondialdehyde, increased significantly (P < 0.05) with the rise in the rearing temperature, particularly at 31 °C. This suggested that European seabass juveniles experienced oxidative stress. Additionally, the mRNA expression of SOD and CAT genes was upregulated at 31 °C compared to those reared at 23-26 °C. This high upregulation of both genes led to an increase in the secretion of SOD and CAT. Juveniles of European seabass raised in 31 °C for 28 days showed significant damage in the histological structure of their kidney, liver, and gills. In addition to fusion and blood congestion of secondary lamellae, the fish in this treatment (31 °C) displayed edema, epithelial lifting, and blood congestion of the gill epithelium. After 28 days, fish cultivated at 31 °C had sinusoid dilatation, hyperemia, and nuclear hypertrophy in their liver tissues. Furthermore, hyperemia, tubular necrosis, and severe glomerular congestion were observed in fish raised in water temperatures as high as 31 °C for 28 days. This study recommends farming European seabass at 23 °C and 26 °C, which were the optimum temperatures. By global warming due to climatic changes, water temperature may reach up to 31 °C or more, which will cause adverse effects on fish performance and increase the oxidative stress.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt.
| | - Amira A Omar
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Talal A M Abo Selema
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Salma I Elsamanooudy
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hend A M El-Saftawy
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agricultural Research Center, Sakha Aquaculture Research Unit, Kafrelsheikh, Egypt
| | - Eman A Sabry
- Department of Fish Production and Aquaculture Systems, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Reham M Fawzy
- Department of Fish Nutrition and Feed Technology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Nashwa Abdel-Razek
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| |
Collapse
|
5
|
Mohamed AF, Mohamed AS, Abdel-Khalek AA, Badran SR. Synergistic impact of temperature rises and ferric oxide nanoparticles on biochemical and oxidative stress biomarkers in Oreochromis niloticus: relevant environmental risk assessment under predicted global warming. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:409. [PMID: 40095155 DOI: 10.1007/s10661-025-13789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Global warming and contamination of freshwater environments with nanoparticles (NPs) pose a global threat to biodiversity. Numerous studies demonstrated the effects of increasing temperatures and NPs separately, but their combined impact on aquatic life remains poorly understood or unstudied, particularly under predicted rising temperatures resulting from global warming (+ 2 and + 4 °C). So, the present study aims to determine how the temperature rises affect the toxicological characteristics of ferric oxide nanoparticles (Fe2O3 NPs) on the prevalent freshwater fish, Nile tilapia (Oreochromis niloticus). Fish samples were randomly put into six glass aquaria groups: 0 mg/L Fe2O3 NPs and 25 mg/L Fe2O3 NPs groups at 30 °C, 32 °C, and 34 °C with duplicated aquaria per group for 4 days. Hydrodynamic size and zeta potential evaluations revealed that Fe2O3 NPs' aggregation in water decreases with high temperature. Additionally, increasing the temperature and exposure to Fe2O3 NPs led to a significant rise in total proteins, albumin, globulin, plasma aspartate aminotransferase (AST), plasma alanine aminotransferase (ALT), plasma alkaline phosphatase (ALP), creatinine, and uric acid. We also noticed alterations in the amounts of malondialdehyde (MDA), glutathione reduced (GSH), and catalase (CAT) in the fish's liver and gills. Finally, our findings indicated that Fe2O3 NPs' toxicity in fish escalated with increasing temperature, peaking at 34 °C due to particle property changes caused by temperature elevation. Therefore, it should not ignore the impact of the projected global increasing temperatures on NPs toxicity in freshwater habitats.
Collapse
Affiliation(s)
- Aya Fadi Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayman S Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Amr A Abdel-Khalek
- Department of Physiology, Faculty of Medicine, Tobruk University, Tobruk, Libya
| | - Shereen R Badran
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
6
|
Becerra S, Arriagada-Solimano M, Escobar-Aguirre S, Palomino J, Aedo J, Estrada JM, Barra-Valdebenito V, Zuloaga R, Valdes JA, Dettleff P. High temperature induces oxidative damage, immune modulation, and atrophy in the gills and skeletal muscle of the teleost fish black cusk-eel (Genypterus maculatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 164:105332. [PMID: 39892682 DOI: 10.1016/j.dci.2025.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
The high temperature associated with heat waves is a relevant abiotic factor that could impact the biology of teleost fish. The innate immune response, muscular growth, and oxidative stress status are relevant functions in fish tissues that could be affected by increased temperature. In this study, black cusk-eel (Genypterus maculatus) juveniles were subjected to increased temperature, to experimentally replicate heat waves registered from the South Pacific Ocean for five days. The results showed that thermal stress modulated the immune response in gills, with up-regulation of antibacterial peptides, pro-inflammatory cytokines, and Toll-like receptors genes, including hepcidin, gzma, tnfa, cxcl8, and tlr5, with no effect on complement system genes. In skeletal muscle, high temperature triggered atrophy-related gene expression, with up-regulation of foxo1, foxo3, fbxo32, murf1, and atg16l. Increased temperature also generated an up-regulation of transcripts encoding heat shock protein (hsp60 and hsp70) in gills and skeletal muscle, generating oxidative stress in both tissues, with increased expression of the antioxidant genes sod1 and gpx1 in gills and skeletal muscle, respectively, with oxidative damage observed at the DNA level (AP sites), protein (carbonyl content), and lipoperoxidation (HNE content) in both tissues. The present study shows that short-term increases in temperature like those observed in heat waves could affect the immune response in gills, induced atrophy in skeletal muscle, and generate oxidative stress in a teleost species important for Chilean aquaculture diversification, information relevant under the context of climate change scenario.
Collapse
Affiliation(s)
- Sofia Becerra
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Marcia Arriagada-Solimano
- Escuela de Medicina Veterinaria, Centro de Estudios e Investigación en Salud y Sociedad, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, Santiago, 8370993, Chile
| | - Sebastian Escobar-Aguirre
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Jaime Palomino
- Escuela de Medicina Veterinaria, Centro de Estudios e Investigación en Salud y Sociedad, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, Santiago, 8370993, Chile
| | - Jorge Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, 3466706, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, 2340000, Chile
| | - Veronica Barra-Valdebenito
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Juan Antonio Valdes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Phillip Dettleff
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| |
Collapse
|
7
|
Yan H, Du J, Li S, Lei C, Zhu T, Han L, Song H. Chronic heat stress is capable of reducing the growth performance, causing damage to the liver structure, and altering the liver glucose metabolism and lipid metabolism in largemouth bass (Micropterus salmoides L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:24. [PMID: 39666229 DOI: 10.1007/s10695-024-01416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024]
Abstract
High temperatures cause abnormal energy metabolism and inhibit the growth of fish in aquaculture. However, the mechanism of energy metabolism under chronic heat stress is still unknown. In this study, largemouth bass (Micropterus salmoides, LMB) was treated with 25℃, 29℃, and 33℃ for 8 weeks. Then, the growth performance, liver tissue damage, serum lipid indicator, hepatic glycogen, and triglyceride levels were analyzed. The growth data showed that the 33℃ group had a lower weight gain rate (WGR), specific growth rate (SGR), feeding rate (FR), and higher feed conversion rate (FCR) in comparison with those in the 25℃ and 29℃ groups. However, there were no significant differences between the 25℃ and 29℃ groups. The most severe damage to liver tissue was observed in the 33℃ group, characterized by cellular vacuolation and marginalization of cell nuclei. The levels of triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in the serum were decreased with the rising temperatures. However, the hepatic triglyceride levels were increased, with a decrease in hepatic glycogen levels. Compared with the 25℃ group, the expressions of gluconeogenesis pathway-related genes (phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6pase)) and glucose transport pathway-related gene (glucose transporter 2 (Gltu2)) were down-regulated in the 33℃ group. In contrast, the expression of the glycolysis pathway-related gene (pyruvate kinase (Pk)) was up-regulated. In addition, the expressions of fatty acid β oxidation pathway-related genes (peroxisome proliferator-activated receptor-Alpha (Pparα) and carnitine palmityl transferase 1 (Cpt1)), adipogenesis pathway-related genes (peroxisome proliferator-activated receptor-Gamma (Pparγ), fatty acid synthase (Fas), acetyl-CoA carboxylase (Acc)), and lipolysis pathway-related genes (adipose triglyceride lipase (Agtl) and hormone-sensitive lipase (Hsl)) were down-regulated under chronic heat stress. In conclusion, our results indicated that enhancement of the glycolysis pathway and inhibition of the gluconeogenesis pathway and lipid metabolism contribute to coping with chronic heat stress for LMB. Our study provides useful information for alleviating the heat stress response of LMB through nutritional regulation in the future.
Collapse
Affiliation(s)
- Hanwei Yan
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinxing Du
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Shengjie Li
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Caixia Lei
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Tao Zhu
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Linqiang Han
- Guangdong Liangshi Aquatic Seed Industry Co., Ltd, Foshan, 528100, China
| | - Hongmei Song
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China.
| |
Collapse
|
8
|
de Fátima Pereira de Faria C, de Andrade BU, Urbinati EC. Physiological responses of pacu (Piaractus mesopotamicus) to intermittent cold exposure: A comprehensive analysis of stress, immunity, antioxidant, and metabolic adaptations. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:9. [PMID: 39808336 DOI: 10.1007/s10695-024-01445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
This study examined the energy-dependent physiological responses, including stress, innate immune, and antioxidant systems, as well as indicators of energy mobilization, in pacu (Piaractus mesopotamicus) exposed to intermittent cold, aiming to assess the correlations between these responses. The fish were acclimated to 28 °C, divided into two groups, a control group maintained at 28 °C, and another exposed to 16 °C for two 24 h periods with a 5-day interval between them. The fish were sampled at six time points: baseline (after acclimatization to 28 °C), 24 h after the 1st exposure to 16 °C, after 5 days of recovery at 28 °C, 24 h after the 2nd exposure to 16 °C, and after 24 and 48 h of recovery at 28 °C. The reduction in temperature activated the stress response, the innate immune system, and the antioxidative system as well as mobilized lipids from the visceral stores and preserved the circulating levels of triglycerides. Intermittent exposure of fish to cold increased plasma cortisol after both exposures, activated leukocyte respiratory activity after the 2nd exposure, and triggered the compensatory lysozyme response after temperature recovery in both cold exposures in addition to increasing the number of circulating monocytes and granulocytes. The activity of the enzymes catalase (CAT) and superoxide dismutase (SOD) increased after the 1st and 2nd cold exposures, respectively. Glutathione peroxidase (GPx) activity increased after the 2nd exposure compared to the control. The subtropical fish pacu was sensitive to intermittent cold exposure and was able to display protective physiological responses.
Collapse
Affiliation(s)
| | - Beatriz Ullian de Andrade
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Elisabeth Criscuolo Urbinati
- São Paulo State University (UNESP), Aquaculture Center of UNESP, Jaboticabal, Sao Paulo, Brazil.
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Yang QT, Wu RX, Liang YS, Niu SF, Miao BB, Liang ZB, Shen YX. Liver transcriptome changes in pearl gentian grouper in response to acute high-temperature stress. AQUACULTURE 2024; 593:741336. [DOI: 10.1016/j.aquaculture.2024.741336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Yang X, Wang L, Lu K, Li X, Song K, Zhang C. High temperature induces oxidative stress in spotted seabass (Lateolabrax maculatus) and leads to inflammation and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109913. [PMID: 39306215 DOI: 10.1016/j.fsi.2024.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Our study aims to examine the changes of long-term high temperature on the mortality and health status of spotted seabass (Lateolabrax maculatus), as well as to screen suitable biomarkers to determine whether the spotted seabass is under heat stress. In this study, 360 juvenile spotted seabass were evenly distributed into three temperature-controlled systems at 27 °C (N, normal temperature), 31 °C (M, moderate temperature), and 35 °C (H, high temperature) for an 8-week aquaculture experiment. The results revealed that 35 °C water temperature significantly increased the mortality and the MDA content in tissues (P < 0.05). Meanwhile, 35 °C water temperature significantly increased the activity of SOD enzyme and T-AOC capacity in tissues, as well as the expression of hsp60, hsp70, and hsp90 (P < 0.05). Additionally, the expression of nrf2, il1β, il8, caspase3, caspase9, and bax in the liver significantly increased (P < 0.05), while the expression of keap1, il10, tgfβ, and bcl2 decreased significantly (P < 0.05). These results indicate that 35 °C water temperature induces oxidative stress in spotted seabass, leading to tissue oxidative damage, promoting inflammation and apoptosis in liver, and increasing mortality. However, the organism compensates by heightening its antioxidant capacity via the Nrf2-Keap1 signaling pathway and inducing high expression of heat shock proteins for self-protection. Furthermore, the alterations in the mRNA level of hsp70 and MDA content in the liver, muscle, and kidney can serve as indicators for evaluating spotted seabass under prolonged heat stress.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
11
|
Mahmoud AS, Sayed AEDH, Mahmoud UT, Mohammed AAA, Darwish MHA. Impact of zinc oxide nanoparticles on the behavior and stress indicators of African catfish (Clarias gariepinus) exposed to heat stress. BMC Vet Res 2024; 20:474. [PMID: 39420344 PMCID: PMC11484423 DOI: 10.1186/s12917-024-04302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.
Collapse
Affiliation(s)
- Amr Saber Mahmoud
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Alaa El Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt.
| | - Usama T Mahmoud
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A A Mohammed
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Animal Husbandry and Livestock Development, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| | - Madeha H A Darwish
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Duan C, Zhou D, Feng R, Li X, Yang L, Li X, Li G, Chen H, Liao Y, Tian C. Long-term thermal acclimation enhances heat resistance of Hong Kong catfish (Clarias fuscus) by modulating gill tissue structure, antioxidant capacity and immune metabolic pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116930. [PMID: 39205351 DOI: 10.1016/j.ecoenv.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The rapid temperature changes caused by global warming significantly challenge fish survival by affecting various biological processes. Fish generally mitigate stress through physiological plasticity, but when temperature changes exceed their tolerance limits, even adaptable species like Siluriformes can experience internal disruptions. This study investigates the effects of extreme thermal climate on Hong Kong catfish (Clarias fuscus), native to tropical and subtropical regions. C. fuscus were exposed to normal temperature (NT, 26 ℃) or high temperature (HT, 34 ℃) condition for 90 days. Subsequently, histological, biochemical, and transcriptomic changes in gill tissue were observed after exposure to acute high temperatures (34 ℃) and subsequent temperature recovery (26 ℃). Histological analysis revealed that C. fuscus in the HT group exhibited less impact from sudden temperature shifts compared to the NT group, as they adapted by reducing the interlamellar cell mass (ILCM) and lamellae thickness (LT) of gill tissue, thereby mitigating the aftermath of acute heat shock. Biochemical analysis showed that catalase (CAT) activity in the high temperature group continued to increase, while malondialdehyde (MDA) levels decreased, suggesting establishment of a new oxidative balance and enhanced environmental adaptability. Transcriptome analysis identified 520 and 463 differentially expressed genes in the NT and HT groups, respectively, in response to acute temperature changes. Enrichment analysis highlighted that in response to acute temperature changes, the NT group inhibited apoptosis and ferroptosis by regulating the activity of alox12, gclc, and hmox1a, thereby attenuating the adverse effects of heat stress. Conversely, the HT group increased the activity of pfkma and pkma to provide sufficient energy for tissue repair. The higher degree of heat shock protein (Hsp) response in NT group also indicated more severe heat stress injury. These findings demonstrate alterations in gill tissue structure, regulation of oxidative balance, and the response of immune metabolic pathways to acute temperature fluctuations in C. fuscus following thermal exposure, suggesting potential avenues for further exploration into the thermal tolerance plasticity of fish adapting to global warming.
Collapse
Affiliation(s)
- Cunyu Duan
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Ruiqing Feng
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Xiaolong Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Lei Yang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Xinyi Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yu Liao
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China.
| |
Collapse
|
13
|
Borah K, Phukan B, Talukdar A, Deka P, Pokhrel H, Kalita M, Kumar AP, Ali A, Bhuyan PC, Patowary AN, Kumar Sarma D, Ahmed M, Kalita R, Xavier M. Physio-metabolic alterations in Labeo rohita (Hamilton, 1822) and native predator Chitala chitala (Hamilton, 1822) in presence of an invasive species Piractus brachypomus (G. Cuvier, 1818). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50686-50699. [PMID: 39102143 DOI: 10.1007/s11356-024-34576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
A 60 days study was conducted to evaluate the physiological response of indigenous species Labeo rohita (LR) and indigenous predator Chitala chitala (CC) in presence of an invasive species Piaractus brachypomus (PB). Two treatment groups as LR + PB (T1) and LR + PB + CC (T2) with individual control groups as T0LR, T0PB and T0CC were designed in triplicates. Fingerlings of LR, PB and CC were randomly distributed into 15 circular tanks with a stocking ratio of 1:1 and 1:1:0.3 in T1 and T2 group, respectively and 10 nos. each of LR, PB and CC in respective control groups. At first 15 min of the experiment, cortisol level was found significantly (P < 0.05) higher in all three experimental fishes in T1 and T2 groups. With the experimental duration, the level of stress hormone (cortisol), oxidative stress enzymes (superoxide dismutase, catalase, and glutathione peroxidase), tissue metabolic enzymes (lactate dehydrogenase and malate dehydrogenase), serum metabolic enzymes (transaminase enzymes) and blood glucose level were significantly (P < 0.05) increased in T1 and T2 groups for LR and CC whereas, no variation (P > 0.05) were observed for PB in both T1 and T2 groups. The total antioxidant capacity (TAC), liver glycogen, total protein, albumin and globulin were found to be significantly (P < 0.05) decreased in LR in the presence of PB and CC. The present study provides a preliminary insight into the biological interaction between native and invasive species and their physiological responses in the presence of native predator with higher trophic index. Thus, the results of the study suggest the superior traits of invasive P. brachypomus try to dominate the other two native species by negatively influencing the native fauna even with a higher trophic index (C. chitala).
Collapse
Affiliation(s)
- Kankana Borah
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Bipul Phukan
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India.
| | - Avinash Talukdar
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Pankaj Deka
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Assam, India
| | - Hemanta Pokhrel
- Department of Aquatic Animal Health and Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Manoj Kalita
- Department of Biostatistics, Dr. B. Borooah Cancer Institute, Indian Council of Medical Research), Guwahati, Assam, India
| | - Annam Pavan Kumar
- Fish Genetics and Biotechnology Division, Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Ayub Ali
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Pradip Chandra Bhuyan
- Department of Fisheries Extension, Economics and Statistics, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Arnab Narayan Patowary
- Department of Fisheries Extension, Economics and Statistics, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Dipak Kumar Sarma
- Department of Aquaculture, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Mustafa Ahmed
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Rinku Kalita
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Martin Xavier
- Department of Quality Assurance and Management, ICAR-Central Institute of Fisheries Technology, Cochin-682029, Kerala, India
| |
Collapse
|
14
|
Yu X, Hou W, Xiao L. Gamma-Aminobutyric Acid (GABA) Avoids Deterioration of Transport Water Quality, Regulates Plasma Biochemical Indices, Energy Metabolism, and Antioxidant Capacity of Tawny Puffer ( Takifugui flavidus) under Transport Stress. BIOLOGY 2024; 13:474. [PMID: 39056669 PMCID: PMC11273879 DOI: 10.3390/biology13070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Live fish transportation is crucial for managing aquaculture but can pose health risks to fish due to stressors encountered during transportation. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that plays a crucial role in the central nervous system and is considered to exhibit anti-stress effects. This study aims to investigate the effects of GABA on the transport water quality, plasma biochemical indices, energy metabolism, and antioxidant capacity of tawny puffer (Takifugu flavidus) under transport stress. Tawny puffer were pretreated by immersing in aquariums containing GABA (final concentrations at 0, 5, 50, and 150 mg/L) seawater for 3 days; then, simulated transport was conducted using oxygen-filled polyethylene bags containing the same concentration of GABA seawater as the pretreatment period. Water samples, plasma, and liver were collected after 0, 6, and 12 h of transport. The results revealed that with the prolongation of transportation time, the control group's water quality deteriorated, stress-related plasma biochemical indices increased, glycolytic substrate contents decreased, glycolytic enzyme activities and product contents increased, and aerobic metabolic enzyme activities exhibited initial increases followed by declines, ATPase activities decreased, antioxidant enzyme activities decreased, and the lipid peroxidation marker contents increased. It is noteworthy that GABA treatment could avoid water quality deterioration during transportation, inhibit an elevation in stress-related biochemical indicators, regulate energy metabolism, and reduce oxidative damage in tawny puffer, especially at 50 and 150 mg/L concentrations. In summary, GABA treatment can effectively alleviate the transport stress of tawny puffer.
Collapse
Affiliation(s)
- Xiaowen Yu
- Shanghai Fisheries Research Institute, Shanghai 200433, China;
| | - Wenjie Hou
- Shanghai Fisheries Research Institute, Shanghai 200433, China;
| | - Lixia Xiao
- Qidong Fishery Technology Promotion Station, Qidong 226299, China;
| |
Collapse
|
15
|
Gao J, Mang Q, Liu Y, Sun Y, Xu G. Integrated mRNA and miRNA analysis reveals the regulatory network of oxidative stress and inflammation in Coilia nasus brains during air exposure and salinity mitigation. BMC Genomics 2024; 25:446. [PMID: 38714962 PMCID: PMC11075292 DOI: 10.1186/s12864-024-10327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.
Collapse
Affiliation(s)
- Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Qi Mang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Yuqian Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
16
|
Dettleff P, Toloza C, Fuentes M, Aedo J, Zuloaga R, Estrada JM, Molina A, Valdés JA. Gills de novo assembly reveals oxidative stress, unfolded protein, and immune response on red cusk-eel (Genypterus chilensis) under thermal stress. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106440. [PMID: 38479297 DOI: 10.1016/j.marenvres.2024.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
The heat waves on the South Pacific coast could lead to thermal stress in native fish. The red cusk-eel (Genypterus chilensis) is relevant for Chilean artisanal fisheries and aquaculture diversification. This study examined the effect of high-temperature stress in the gills of G. chilensis in control (14 °C) and high-temperature stress (19 °C) conditions. High-temperature stress induces a significant increase in gills cortisol levels. Additionally, oxidative damage was observed in gills (protein carbonylation and lipoperoxidation). RNA-seq data was used to build the first transcriptome assembly of gills in this species (23,656 annotated transcripts). A total of 1138 down-regulated and 1531 up-regulated transcripts were observed in response to high-temperature stress in gills. The enrichment analysis showed immune response and replication enriched processes (on down-regulated transcripts), and processes related to the folding of proteins, endoplasmic reticulum, and transporter activity (on up-regulated transcripts). The present study showed how gills could be affected by high-temperature stress.
Collapse
Affiliation(s)
- Phillip Dettleff
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| | - Carla Toloza
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Jorge Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, 3466706, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, 2340000, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile.
| |
Collapse
|
17
|
Liu Y, Tian C, Yang Z, Huang C, Jiao K, Yang L, Duan C, Zhang Z, Li G. Effects of Chronic Heat Stress on Growth, Apoptosis, Antioxidant Enzymes, Transcriptomic Profiles, and Immune-Related Genes of Hong Kong Catfish ( Clarias fuscus). Animals (Basel) 2024; 14:1006. [PMID: 38612245 PMCID: PMC11010891 DOI: 10.3390/ani14071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic heat stress can have detrimental effects on the survival of fish. This study aimed to investigate the impact of prolonged high temperatures on the growth, antioxidant capacity, apoptosis, and transcriptome analysis of Hong Kong catfish (Clarias fuscus). By analyzing the morphological statistics of C. fuscus subjected to chronic high-temperature stress for 30, 60, and 90 days, it was observed that the growth of C. fuscus was inhibited compared to the control group. The experimental group showed a significant decrease in body weight and body length compared to the control group after 60 and 90 days of high-temperature stress (p < 0.05, p < 0.01). A biochemical analysis revealed significant alterations in the activities of three antioxidant enzymes superoxide dismutase activity (SOD); catalase activity (CAT); glutathione peroxidase activity (GPx), the malondialdehyde content (MDA), and the concentrations of serum alkaline phosphatase (ALP); Aspartate aminotransferase (AST); and alanine transaminase (ALT) in the liver. TUNEL staining indicated stronger apoptotic signals in the high-temperature-stress group compared to the control group, suggesting that chronic high-temperature-induced oxidative stress, leading to liver tissue injury and apoptosis. Transcriptome analysis identified a total of 1330 DEGs, with 835 genes being upregulated and 495 genes being downregulated compared to the control group. These genes may be associated with oxidative stress, apoptosis, and immune response. The findings elucidate the growth changes in C. fuscus under chronic high temperature and provide insights into the underlying response mechanisms to a high-temperature environment.
Collapse
Affiliation(s)
- Yong Liu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Changxu Tian
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Zhihua Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Cailin Huang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (C.H.); (Z.Z.)
| | - Kaizhi Jiao
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Lei Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Cunyu Duan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Zhixin Zhang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (C.H.); (Z.Z.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| |
Collapse
|
18
|
Schleger IC, Pereira DMC, Resende AC, Romão S, Herrerias T, Neundorf AKA, de Souza MRDP, Donatti L. Metabolic responses in the gills of Yellowtail Lambari Astyanax lacustris under low- and high-temperature thermal stress. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:16-31. [PMID: 38217492 DOI: 10.1002/aah.10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE Ectothermic fish are directly affected by temperature changes in the environment. The aim of this study was to evaluate the metabolic responses in the gills of Yellowtail Lambari Astyanax lacustris under thermal stress. METHODS To this end, we used spectrophotometry to evaluate the biomarkers of carbohydrate and protein metabolism, antioxidant defense, and oxidative damage in fish subjected to low (15°C) and high (31°C) temperatures, with control groups held at 23°C, for 2, 6, 12, 24, 48, and 96 h. RESULT The results showed that cold thermal stress did not change the energy demand, and the antioxidant defense was reduced; therefore, the gills were vulnerable to the action of reactive oxygen species (ROS), presenting increased protein carbonylation at 12 h. With heat thermal stress, a higher energy demand was observed, which was verified by an increase in aerobic metabolism by glycolysis and the citric acid cycle. High-temperature stress also increased the antioxidant defenses, as verified by the increased activities of glutathione peroxidase, glutathione reductase, and glutathione S-transferase. However, the antioxidant defense system could not protect tissues from the action of ROS, as protein carbonylation increased at 6 and 24 h, indicating oxidative stress. CONCLUSION The results showed that (1) temperature variations caused metabolic adjustments in the gills of Yellowtail Lambari, (2) the adaptive responses were different for winter and summer temperatures, and (3) Yellowtail Lambari recovered homeostasis when subjected to thermal stress, even with the occurrence of oxidative stress.
Collapse
Affiliation(s)
- Ieda Cristina Schleger
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Anna Carolina Resende
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Silvia Romão
- Federal University of Fronteira Sul, Laranjeiras do Sul, Paraná, Brazil
| | | | - Ananda Karla Alves Neundorf
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Lucélia Donatti
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
19
|
Li X, Wang S, Zhang M, Li M. The SLC38A9-mTOR axis is involved in autophagy in the juvenile yellow catfish (Pelteobagrus fulvidraco) under ammonia stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123211. [PMID: 38142034 DOI: 10.1016/j.envpol.2023.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
The primary objective of this study was to examine the effect of acute ammonia stress on hepatic physiological alterations in yellow catfish by performing a comprehensive analysis of the metabolome and transcriptome. The present study showed that ammonia stress led to liver metabolic disruption, functional incapacitation, and oxidative damage. Transcriptomic and metabolomic analyses revealed transcriptional and metabolic differences in the liver of yellow catfish under control and high ammonia stress conditions. After 96 h of acute exposure to ammonia, the mRNA levels of 596 liver genes were upregulated, whereas those of 603 genes were downregulated. Enrichment analysis of the differentially expressed genes identified multiple signalling pathways associated with autophagy, including the endocytosis, autophagy-animal, and mammalian target of rapamycin signalling pathways. A total of 186 upregulated and 117 downregulated metabolites, primarily associated with amino acid biosynthesis pathways, were identified. Multi-omics integration revealed the solute carrier family 38 member 9 (SLC38A9)-mammalian target of rapamycin axis as a signalling nexus for amino acid-mediated modulation of autophagy flux, and q-PCR was used to assess the expression of autophagy-related genes (LC3a and sqstm1), revealing an initial inhibition followed by the restoration of autophagic flux during ammonia stress. Subsequent utilisation of arginine as a specific SLC38A9 activator during ammonia stress demonstrated that augmented SLC38A9 expression hindered autophagy, exacerbated ammonia toxicity, and caused a physiological decline (total cholesterol, total triglyceride, acid phosphatase, alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase levels were significantly increased), oxidative stress, and apoptosis. Autophagy activation may be an adaptive mechanism to resist ammonia stress.
Collapse
Affiliation(s)
- Xue Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Muzi Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
20
|
Yang X, Weng Q, Li X, Lu K, Wang L, Song K, Zhang C, Rahimnejad S. High water temperature raised the requirements of methionine for spotted seabass (Lateolabrax maculatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:23-40. [PMID: 36322361 DOI: 10.1007/s10695-022-01136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the effects of dietary methionine level and rearing water temperature on growth, antioxidant capacity, methionine metabolism, and hepatocyte autophagy in spotted seabass (Lateolabrax maculatus). A factorial design was used with six methionine levels [0.64, 0.85, 1.11, 1.33, 1.58, and 1.76%] and two temperatures [moderate temperature (MT): 27 ℃, and high temperature (HT): 33 ℃]. The results revealed the significant effects of both dietary methionine level and water temperature on weight gain (WG) and feed efficiency (FE), and their interaction effect was found on WG (P < 0.05). In both water temperatures tested, fish WG increased with increasing methionine level up to 1.11% and decreased thereafter. The groups of fish reared at MT exhibited dramatically higher WG and FE than those kept at HT while an opposite trend was observed for feed intake. Liver antioxidant indices including reduced glutathione and malondialdehyde (MDA) concentrations, and catalase and superoxide dismutase (SOD) activities remarkably increased in the HT group compared to the MT group. Moreover, the lowest MDA concentration and the highest SOD activity were recorded at methionine levels between 1.11% and 0.85%, respectively, regardless of water temperatures. Expression of methionine metabolism-related key enzyme genes (mat2b, cbs, ms, and bhmt) in the liver was increased at moderate methionine levels, and higher expression levels were detected at MT compared to HT with the exception of ms gene relative expression. Relative expression of hepatocyte autophagy-related genes (pink1, atg5, mul1, foxo3) and hsp70 was upregulated by increasing methionine level up to a certain level and decreased thereafter and increasing water temperature led to significantly enhanced expression of hsp70. In summary, HT induced heat stress and reduced fish growth, and an appropriate dietary methionine level improved the antioxidant capacity and stress resistance of fish. A second-order polynomial regression analysis based on the WG suggested that the optimal dietary methionine level for maximum growth of spotted seabass is 1.22% of the diet at 27 ℃ and 1.26% of the diet at 33 ℃, then 1.37 g and 1.68 g dietary methionine intake is required for 100 g weight gain at 27 ℃ or 33 ℃, respectively.
Collapse
Affiliation(s)
- Xin Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Qinjiang Weng
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China.
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
21
|
Li X, Zhao X, Yu M, Zhang M, Feng J. Effects of Heat Stress on Breast Muscle Metabolomics and Lipid Metabolism Related Genes in Growing Broilers. Animals (Basel) 2024; 14:430. [PMID: 38338073 PMCID: PMC10854583 DOI: 10.3390/ani14030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
With global warming and worsening climatic conditions, heat stress (HS) has become a significant challenge affecting the development of poultry production. In this study, we aimed to determine the effects of HS on breast muscle metabolomics and lipid metabolism-related genes in growing broilers. One hundred twenty 29-day-old Arbor Acres broilers were randomly divided into normal temperature (NT; 21 ± 1 °C) and heat stress (HS; 31 ± 1 °C) groups, with six replicates (ten birds in each replicate) in each group, raised for 14 days in two environment chambers at 60 ± 7% relative humidity. Compared with the broilers in the NT group, the average daily food intake, average daily gain and breast muscle yield in the HS group were significantly lower (p < 0.05). The feed conversion ratio was significantly higher in the HS group (p < 0.05). The concentrations of serum corticosterone, free fatty acids and cholesterol and the percentage of abdominal fat of broilers in the HS group were significantly higher (p < 0.05) than the values of the broilers in the NT group. Untargeted breast muscle metabolome analysis revealed 14 upregulated differential metabolites, including glycerophosphocholine, and 27 downregulated differential metabolites, including taurine, in the HS group compared to the NT group; the HS group also displayed significant effects on six metabolic pathways compared to the NT group (p < 0.05). The mRNA expression levels of peroxisome proliferator-activated receptor gamma coactivator-1-alpha, peroxisome proliferator-activated receptor alpha (PPARα) and ATP-binding cassette transporter A1 in the liver and breast muscles were significantly decreased in the HS group compared with the NT group (p < 0.05). The collective findings reveal that HS can cause disorders in breast muscle lipid metabolism in broilers. The PPARα gene might be the key gene in the mechanism of the lipid metabolism that is induced by HS in breast muscle of broilers. These findings provide novel insights into the effects of HS on chicken growth.
Collapse
Affiliation(s)
| | | | | | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (X.Z.); (M.Y.); (J.F.)
| | | |
Collapse
|
22
|
Scheuffele H, Todd EV, Donald JA, Clark TD. Daily thermal variability does not modify long-term gene expression relative to stable thermal environments: A case study of a tropical fish. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111532. [PMID: 37816418 DOI: 10.1016/j.cbpa.2023.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Global warming is leading to an increase in the frequency and intensity of extreme weather events, magnifying the breadth of temperatures faced by ectotherms across days and seasons. Despite the importance and ecological relevance of diurnal thermal variability, the vast majority of knowledge on gene expression patterns and physiology stems from animals acclimated to constant temperatures or in the early stages of exposure to a new temperature regime. If heterothermal environments modulate responses differently from constant thermal environments, our existing capacity to forecast impacts of climate warming may be compromised. To address this knowledge gap, we acclimated barramundi (Lates calcarifer) to 23 °C, 29 °C (optimal), 35 °C and to thermal cycling conditions (23-35 °C daily with a mean of 29 °C) and sampled liver and white muscle tissue before acclimation and after 2 and 17 weeks of acclimation. NanoString nCounter technologies were used to measure expression of 20 genes related to metabolism, growth and maintenance of cellular homeostasis. Acclimation to cool and warm conditions caused predictable changes in whole-animal performance (metabolism and growth) and the underlying gene expression patterns. Acclimation to a cycling temperature regime did not change the molecular regulation of metabolism or growth compared with barramundi acclimated to constant 29 °C, nor did it cause any discernible effects on whole-animal performance. However, the heat shock response was higher in the former group, suggesting that barramundi under a daily temperature cycle have an increased need for cellular chaperoning to minimise detrimental effects of temperature on proteins. We conclude that the genetic regulation of metabolism and growth may be more dependent on the mean daily temperature than on the daily temperature range.
Collapse
Affiliation(s)
- Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.
| | - Erica V Todd
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - John A Donald
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia. https://twitter.com/JohnDon17043551
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia. https://twitter.com/Timothy_D_Clark
| |
Collapse
|
23
|
Han P, Qiao Y, He J, Wang X. Stress responses to warming in Japanese flounder (Paralichthys olivaceus) from different environmental scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165341. [PMID: 37414161 DOI: 10.1016/j.scitotenv.2023.165341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Japanese flounder (Paralichthys olivaceus) is one of cold-water species widely farmed in Asia. In recent years, the increased frequency of extreme weather events caused by global warming has led to serious impact on Japanese flounder. Therefore, it is crucial to understand the effects of representative coastal economic fish under increasing water temperature. In this study, we investigated the histological and apoptosis responses, oxidative stress and transcriptomic profile in the liver of Japanese flounder exposed to gradual temperature rise (GTR) and abrupt temperature rise (ATR). The histological results showed liver cells in ATR group were the most serious in all three groups including vacuolar degeneration and inflammatory infiltration, and had more apoptosis cells than GTR group detected by TUNEL staining. These further indicated ATR stress caused more severe damage than GTR stress. Compared with control group, the biochemical analysis showed significantly changes in two kinds of heat stress, including GPT, GOT and D-Glc in serum, ATPase, Glycogen, TG, TC, ROS, SOD and CAT in liver. In addition, the RNA-Seq was used to analyze the response mechanism in Japanese flounder liver after heat stress. A total of 313 and 644 differentially expressed genes (DEGs) were identified in GTR and ATR groups, respectively. Further pathway enrichment of these DEGs revealed that heat stress affected cell cycle, protein processing and transportation, DNA replication and other biological processes. Notably, protein processing pathway in the endoplasmic reticulum (ER) was enriched significantly in KEGG and GSEA enrichment analysis, and the expression of ATF4 and JNK was significantly up-regulated in both GTR and ATR groups, while CHOP and TRAF2 were high expressed in GTR and ATR groups, respectively. In conclusion, heat stress could cause tissue damage, inflammation, oxidative stress and ER stress in the liver of Japanese flounder. The present study would provide insight into the reference for the adaptive mechanisms of economic fish in face of increasing water temperature caused by global warming.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
24
|
Alfons MS, Ibrahim ATA, Harabawy ASA, Al-Salahy MB, Badr G. Cytoprotective effect of propolis on heat stress induces alteration to histological, ultrastructural, and oxidative stress in catfish (Clarias gariepinus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114152-114165. [PMID: 37855965 PMCID: PMC10663252 DOI: 10.1007/s11356-023-30386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Our study helps to evaluate the immune response, antioxidative status, and resistance against heat stress (HS) in Clarias gariepinus treated with propolis extraction; the results will contribute to theories of fish physiology and immunity under high-temperature conditions. Forty-five fish were divided into three equal groups: the control, the HS group at 36 °C, and the HS treated with alcoholic extraction of propolis that dissolved in water for 3 weeks. The results of our study suggested that the stress response differs among tissues thymus, spleen, and liver. All the tissues showed alteration in morphological and cytological structure at the light microscope (LM) and transmission electron microscope (TEM); thymus showed edema and thymocyte destruction; the spleen detected collagen deposition, and the liver displayed endoplasmic reticulum amplification (ER). In addition, we examined oxidative stress and antioxidant defenses (lipid peroxidation, catalase, and glutathione) of the spleen and measured blood biochemical parameters (alanine transaminase and aspartic transaminase levels) after heat stress. However, this toxic effect of HS was neutralized by the propolis extraction. To conclude, propolis is recommended to cope with the impacts of heat stress on catfish (Clarias gariepinus) by improving immunity and antioxidative resistance.
Collapse
Affiliation(s)
- Mariana S Alfons
- Zoology Department, Faculty of Science, Fish Biology Lab, New Valley University, New Valley, El Kharga, 72511, Egypt
| | - Ahmed Th A Ibrahim
- Zoology Department, Faculty of Science, Fish Biology Lab, New Valley University, New Valley, El Kharga, 72511, Egypt.
| | - Ahmed S A Harabawy
- Zoology Department, Faculty of Science, Fish Biology Lab, New Valley University, New Valley, El Kharga, 72511, Egypt
| | - Mohamed B Al-Salahy
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
25
|
Liu H, Yang R, Fu Z, Yu G, Li M, Dai S, Ma Z, Zong H. Acute thermal stress increased enzyme activity and muscle energy distribution of yellowfin tuna. PLoS One 2023; 18:e0289606. [PMID: 37796965 PMCID: PMC10553239 DOI: 10.1371/journal.pone.0289606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/22/2023] [Indexed: 10/07/2023] Open
Abstract
Heat is a powerful stressor for fish living in natural and artificial environments. Understanding the effects of heat stress on the physiological processes of fish is essential for better aquaculture and fisheries management. In this experiment, a heating rod was used to increase the temperature at 2°C/h to study the changes of energy allocation (CEA) and energy metabolity-related enzyme activities, including pepsin, trypsin, amylase, lipase, acid phosphatase, lactate dehydrogenase, alanine aminotransferase, glutamic oxalic aminotransferase and energy reserve (Ea), energy expenditure (ETS), in juvenile yellowfin tuna cells under acute temperature stress. The results showed that the Ea of juvenile yellowfin tuna muscles in response to high temperature (34°C) was significantly lower than that of the control (28°C), and it also increased ETS. At 6 h, CEA decreased slightly in the high-temperature group, but, the difference in CEA between 24 h and 0 h decreased. After heat stress for 6 h, the activities of acid phosphatase (ACP), lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and glutamic oxalacetic transaminase (AST) increased, indicating that the metabolic rate was accelerated. After heat stress for 24 h, the activity of ALT decreased, indicating that with time elapsed, the activities of some protein metabolizing enzymes increased, and some decreased. In this study, digestive enzymes, trypsin and lipase increased gradually. After heat stress, Ea and Ec change significantly. Yellowfin tuna muscles use lipids in response to sharp temperature increases at high temperatures, red muscles respond to temperature changes by increasing energy in the early stages, but not nearly as much, and white muscles reduce lipids.
Collapse
Affiliation(s)
- Hongyan Liu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Rui Yang
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Zhengyi Fu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Gang Yu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Minghao Li
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Shiming Dai
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Humin Zong
- National Marine Environmental Center, Dalian, China
| |
Collapse
|
26
|
Wang Y, Bao X, Wang W, Xu X, Liu X, Li Z, Yang J, Yuan T. Exploration of anti-stress mechanisms in high temperature exposed juvenile golden cuttlefish ( Sepia esculenta) based on transcriptome profiling. Front Physiol 2023; 14:1189375. [PMID: 37234426 PMCID: PMC10206265 DOI: 10.3389/fphys.2023.1189375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Sepia esculenta is a cephalopod widely distributed in the Western Pacific Ocean, and there has been growing research interest due to its high economic and nutritional value. The limited anti-stress capacity of larvae renders challenges for their adaptation to high ambient temperatures. Exposure to high temperatures produces intense stress responses, thereby affecting survival, metabolism, immunity, and other life activities. Notably, the molecular mechanisms by which larval cuttlefish cope with high temperatures are not well understood. As such, in the present study, transcriptome sequencing of S. esculenta larvae was performed and 1,927 differentially expressed genes (DEGs) were identified. DEGs were subjected to functional enrichment analyses using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The top 20 terms of biological processes in GO and 20 high-temperature stress-related pathways in KEGG functional enrichment analysis were identified. A protein-protein interaction network was constructed to investigate the interaction between temperature stress-related genes. A total of 30 key genes with a high degree of participation in KEGG signaling pathways or protein-protein interactions were identified and subsequently validated using quantitative RT-PCR. Through a comprehensive analysis of the protein-protein interaction network and KEGG signaling pathway, the functions of three hub genes (HSP90AA1, PSMD6, and PSMA5), which belong to the heat shock protein family and proteasome, were explored. The present results can facilitate further understanding of the mechanism of high temperature resistance in invertebrates and provide a reference for the S. esculenta industry in the context of global warming.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Tingzhu Yuan
- School of Agriculture, Ludong University, Yantai, China
- Marine Economy Promotion Center of Changdao County Marine Ecological Civilization Comprehensive Experimental Zone, Yantai, China
| |
Collapse
|
27
|
Liu Z, Sun J, Quan J, Li L, Zhao G, Lu J. Effect of selenium nanoparticles on alternative splicing in heat-stressed rainbow trout primary hepatocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101042. [PMID: 36455514 DOI: 10.1016/j.cbd.2022.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Alternative splicing (AS) is a ubiquitous post-transcriptional regulatory mechanism in eukaryotes that generates multiple mRNA isoforms from a single gene, increasing diversity of mRNAs and proteins that are essential for eukaryotic developmental processes and responses to environmental stress. Results showed that a total of 37,463 AS events were identified in rainbow trout hepatocytes. In addition, a total of 364 differential alternative splicing (DAS) events were identified in hepatocytes under selenium nanoparticles (SeNPs) and 3632 DAS events were identified under a combination of SeNPs and heat stress (24 °C). Gene Ontology (GO) enrichment showed that some subcategories "immune effector processes", "response to stimuli" and "antioxidant activity" were associated with immunity, abiotic stimuli and antioxidants. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that differentially expressed genes (DEGs) were significantly enriched in spliceosomes by adding SeNPs in heat-stressed hepatocytes. Splicing factor family (SRSF3, SRSF7, SRSF9, U2AF1 and U2AF2) and pre-RNA splicing factors (ACIN1 and PPRF18) were significantly upregulated and promoted AS. Furthermore, addition of SeNPs activated the phosphatidylinositol signaling system and upregulated the related genes PI4KA, DGKH, ITPK1 and Ocrl, and thus attenuated the inflammatory response to heat stress and enhanced resistance to heat stress by activating the adherent plaque kinase-PI3K-Akt signaling pathway and calcium channels. Those findings suggested that AS could be an essential regulatory mechanism in adaptation of rainbow trout to heat-stressed environments.
Collapse
Affiliation(s)
- Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China.
| | - Jun Sun
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Lanlan Li
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Junhao Lu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| |
Collapse
|
28
|
Nwizugbo KC, Ogwu MC, Eriyamremu GE, Ahana CM. Alterations in energy metabolism, total protein, uric and nucleic acids in African sharptooth catfish (Clarias gariepinus Burchell) exposed to crude oil and fractions. CHEMOSPHERE 2023; 316:137778. [PMID: 36640975 DOI: 10.1016/j.chemosphere.2023.137778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Water contamination by crude oil is a growing challenge and little is known about the probabilistic and non-probabilistic ecosystem and species consequences. Therefore, research aimed at understanding species survival strategy in crude oil-contaminated environments with focus on cellular metabolic alterations and dynamics is vital. This study assessed the alterations in lactate dehydrogenase (LDH), glucose (GLU), glucose-6-phosphate dehydrogenase (G-6-PDH), total protein (TP), uric and nucleic acids (UA, RNA, and DNA) in the liver, heart, kidney, blood supernatants, and muscle homogenates of African sharptooth catfish ([ASC] Clarias gariepinus) exposed to varying bonny-light crude oil concentrations to understand the underlying cause of their delayed development as well as potential health and wellbeing. Three concentrations (20, 50, and 100 mg/L) of diluted whole bonny-light crude oil (DWC), water-soluble (WSF), and water-insoluble (WIF) fractions of bonny-light crude oil were used to grow ASC for 9 weeks at room temperature. Biochemical assessments revealed significant (at p < 0.05) elevations in heart LDH (48.57 ± 4.67 to 3011.34 ± 4.67 U/L) and blood G-6-PDH activities (54.86 ± 0.00 to 128 ± 18.29 mU/mL), GLU (0.22 ± 0.01 to 0.77 ± 0.01 mg/dL), TP (5.15 ± 0.14 to 22.33 ± 0.21 g/L), UA (0.29 ± 0.05 to 10.05 ± 0.27 mg/dL), as well as liver DNA (0.38 ± 0.02 to 2.33 ± 0.09 μg/mL) and RNA (12.52 ± 0.05 to 30.44 ± 0.02 μg/mL) levels for laboratory-grown ASC in DWC, WSF, WIF, and oil-impacted Ubeji river collected ASC relative to the control. Due to greater levels of cellular metabolic alterations in oil-impacted Ubeji River collected ASC, it is evident that bonny-light contamination levels in the river is greater than 100 mg/L. In conclusion, bonny-light crude oil is toxic to ASC and induces stress response. The ecological changes caused by bonny-light crude oil contamination may ultimately affect niche functioning and the development of organs in ASC.
Collapse
Affiliation(s)
- Kenneth Chukwuemeka Nwizugbo
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Ugbowo, Benin City, PMB, 1154, Nigeria
| | - Matthew Chidozie Ogwu
- Goodnight Family Department of Sustainable Development, Appalachian State University, 212 Living Learning Center, 305 Bodenheimer Drive, Boone, NC, 28608, USA.
| | - George E Eriyamremu
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Ugbowo, Benin City, PMB, 1154, Nigeria
| | - Chidozie Michael Ahana
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Ugbowo, Benin City, PMB, 1154, Nigeria
| |
Collapse
|
29
|
Nawaz AH, Lin S, Wang F, Zheng J, Sun J, Zhang W, Jiao Z, Zhu Z, An L, Zhang L. Investigating the heat tolerance and production performance in local chicken breed having normal and dwarf size. Animal 2023; 17:100707. [PMID: 36764018 DOI: 10.1016/j.animal.2023.100707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Heat stress significantly impairs the growth performance of broilers, which causes serious losses to the poultry industry every year. Thus, understanding the performance of indigenous chicken breeds under such environment is crucial to address heat stress problem. The purpose of this study was to investigate the effects of heat stress (HS) on production performance, tissue histology, heat shock response (HSP70, HSP90), and muscle growth-related genes (GHR, IGF-1, and IGF-1R) of Normal yellow chicken (NYC) and Dwarf yellow chicken (DYC). Seventy-two female birds from each strain were raised under normal environmental conditions up to 84 days, with birds from each strain being divided into two groups (HS and control). In the HS group, birds were subjected to high temperature at 35 ± 1 °C for 8 h daily and lasted for a week, while in the control group, birds were raised at 28 ± 1 °C. At 91 days old, bird's liver, hypothalamus, and breast muscle tissues were collected to evaluate the gene expression, histological changes, and the production performance. The Feed intake, weight gain ratio, total protein intake and protein efficiency ratio showed a significant reduction in the treatments (P < 0.01) and treatment × strain interaction (P < 0.05) with breast muscle rate significantly reducing among the treatments (P < 0.01) after 7 days of HS. Correspondingly, total abdominal fat showed significant change among treatment and strain (P < 0.01, P < 0.05), respectively. Besides, HS markedly upregulated the mRNA expression of HSP70 and HSP90 in the pectoralis major of both chicken strains, but no significant increase (P < 0.05) was found in mRNA expression of HSP90 in liver and hypothalamus tissues of both chicken strains. Moreover, HS significantly upregulated (P < 0.05) the expression of lipogenic genes (FASN, ACC) in liver tissues of NYC, while mRNA expression of these genes showed no variation in DYC. Similarly, HS downregulated the mRNA expression of muscle growth-related genes (GHR, IGF-1, and IGF-1R). Consequently, the histopathological analysis showed that histological changes were accompanied by inflammatory cell infiltration in liver tissues of both chicken strains; however, histopathological changes were more severe in NYC than dwarf chicken strain. Conclusively, this study depicted that the production performance and growth rate varied significantly between treatment and control group of NYC. However, heat treatment in DYC has not shown significant damaging consequences as compared to the control group that signifies the vital role of the dwarf trait in thermal tolerance.
Collapse
Affiliation(s)
- Ali Hassan Nawaz
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - Fujian Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - Jiahui Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - Junli Sun
- Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, 530214 Nanning, Guangxi, PR China
| | - Weilu Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - Zhenhai Jiao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - Zijing Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - Lilong An
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China
| | - Li Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, PR China.
| |
Collapse
|
30
|
Liver Injury and Metabolic Dysregulation in Largemouth Bass ( Micropterus salmoides) after Ammonia Exposure. Metabolites 2023; 13:metabo13020274. [PMID: 36837893 PMCID: PMC9965865 DOI: 10.3390/metabo13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Elevated environmental ammonia leads to respiratory disorders and metabolic dysfunction in most fish species, and the majority of research has concentrated on fish behavior and gill function. Prior studies have rarely shown the molecular mechanism of the largemouth bass hepatic response to ammonia loading. In this experiment, 120 largemouth bass were exposed to total ammonia nitrogen of 0 mg/L or 13 mg/L for 3 and 7 days, respectively. Histological study indicated that ammonia exposure severely damaged fish liver structure, accompanied by increased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activity. RT-qPCR results showed that ammonia exposure down-regulated the expression of genes involved in glycogen metabolism, tricarboxylic acid cycle, lipid metabolism, and urea cycle pathways, whereas it up-regulated the expression of genes involved in gluconeogenesis and glutamine synthesis pathways. Thus, ammonia was mainly converted to glutamine in the largemouth bass liver during ammonia stress, which was rarely further used for urea synthesis. Additionally, transcriptome results showed that ammonia exposure also led to the up-regulation of the oxidative phosphorylation pathway and down-regulation of the mitogen-activated protein kinase signaling pathway in the liver of largemouth bass. It is possible that the energy supply of oxidative phosphorylation in the largemouth bass liver was increased during ammonia exposure, which was mediated by the MAPK signaling pathway.
Collapse
|
31
|
Pereira DMC, Resende AC, Schleger IC, Neundorf AKA, Romão S, Souza MRDPD, Herrerias T, Donatti L. Integrated biomarker response index as an ally in the observation of metabolic biomarkers in muscle of Astyanax lacustris exposed to thermal variation. Biochimie 2022:S0300-9084(22)00276-0. [DOI: 10.1016/j.biochi.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
|
32
|
Yang X, Yu X, Sun N, Shi X, Niu C, Shi A, Cheng Y. Glyphosate-based herbicide causes spermatogenesis disorder and spermatozoa damage of the Chinese mitten crab (Eriocheir sinensis) by affecting testes characteristic enzymes, antioxidant capacities and inducing apoptosis. Toxicol Appl Pharmacol 2022; 447:116086. [PMID: 35643123 DOI: 10.1016/j.taap.2022.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Glyphosate-based herbicide (GBH) is a popular herbicide, which may contaminate the water environment and affect aquatic animals. In this study, testes morphology, physiology function, apoptosis pathway, and spermatozoa quality of Chinese mitten crab (Eriocheir sinensis) were evaluated after 7 days of GBH exposure (48.945 mg/l,1/2 of the 96 h LC50 value of GBH). Results showed that GBH induced spermatogenesis disorder by H.E. staining. The obvious vacuolar degenerations and fewer spermatids of the testes accompanied by decreased primary spermatocytes-type seminiferous tubules (PSc-STs) were observed. The extensive apoptosis of spermatids by TUNEL staining was visible. Meanwhile, testes'' characteristic enzyme activities associated with spermatogenesis, including lactate dehydrogenase (LDH) and acid phosphatase (ACP) were significantly decreased. Testes suffered oxidative damage as reflected by the significant decrease in superoxide dismutase (SOD) activities, the significant increase in malondialdehyde (MDA) contents, and heat shock proteins (HSP-70) mRNA expression. Further studies demonstrated that GBH induced apoptosis of testes through the mitochondrial apoptotic pathway by upregulating the relative mRNA expression of cysteinyl aspartate specific proteinase 3 (Caspase-3), Bcl-2-associated X protein (Bax), and downregulating B-cell lymphoma 2 (Bcl-2). Oxidative damage may be one of the causes of GBH-induced apoptosis in testes. After GBH exposure, the morphology of spermatophores was changed. The survival and the acrosome reaction (AR) ratio of spermatozoa was significantly decreased. Altogether, these results demonstrated that GBH affects spermatogenesis, spermatophore and spermatozoa quality of E.sinensis, which provides novel knowledge about the toxic effects of GBH on the reproductive system of crustaceans.
Collapse
Affiliation(s)
- Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaowen Yu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Ningbo Sun
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xingliang Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Aoya Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
33
|
Resende AC, Mauro Carneiro Pereira D, Cristina Schleger I, Dmengeon Pedreiro de Souza MR, Alvez Neundorf AK, Romão S, Herrerias T, Donatti L. Effects of heat shock on energy metabolism and antioxidant defence in a tropical fish species Psalidodon bifasciatus. JOURNAL OF FISH BIOLOGY 2022; 100:1245-1263. [PMID: 35266159 DOI: 10.1111/jfb.15036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Predictions about global warming have raised interest in assessing whether ectothermic organisms will be able to adapt to these changes. Understanding the physiological mechanisms and metabolic adjustment capacity of fish subjected to heat stress can provide subsidies that may contribute to decision-making in relation to ecosystems and organisms subjected to global climate change. This study investigated the antioxidant defence system and energy metabolism of carbohydrate and protein responses in the gill, liver and kidney tissues of Psalidodon bifasciatus (Garavello & Sampaio 2010), a Brazilian freshwater fish used in aquaculture and in biological studies, following exposure to heat shock at 31°C for 2, 6, 12, 24 and 48 h. The fish presented signs of stress in all tissues tested, as evidenced by increased lipid peroxidation concentration at 2 h and phosphofructokinase, hexokinase and malate dehydrogenase activity at 48 h in the gills; increased glutathione-S-transferase activity at 12 h, citrate synthase activity at 24 h and concentration of reduced glutathione (GSH) concentration at 12 and 48 h in the liver; and through increased activity of superoxide dismutase at 48 h, glutathione reductase at 24 h, glucose-6-phosphate dehydrogenase at 48 h and concentration of GSH at 24 h in the kidney. In the kidneys, changes in the antioxidant system were more prominent, whereas in the gills, there were greater changes in the carbohydrate metabolism. These results indicated the importance of glycolysis and aerobic metabolism in the gills, aerobic metabolism in the liver and pentose-phosphate pathway in the kidneys during homeostasis. The biomarker response was tissue specific, with the greatest number of biomarkers altered in the gills, followed by those in the kidneys and liver.
Collapse
Affiliation(s)
- Anna Carolina Resende
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | | | - Ieda Cristina Schleger
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Silvia Romão
- Laranjeiras do Sul, Universidade Federal da Fronteira Sul, Curitiba, Brazil
| | - Tatiana Herrerias
- Department of Health Promotion, Uniguairacá University Center, Curitiba, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
34
|
Sun L, Cui Z, Huang S, Xue Q, Rehman SU, Luo X, Shi D, Li X. Effect of environmental temperature on semen quality and seminal plasma metabolites of Mediterranean buffalo bulls. Anim Biotechnol 2022; 33:970-980. [PMID: 35352620 DOI: 10.1080/10495398.2022.2056045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
High-quality semen with high viability is critical to improving the in-vitro fertilization efficiency. This study aimed to understand the effect of ambient temperature and humidity on semen quality and seminal plasma biochemical parameters of Mediterranean buffalo in March and July. The metabolites of seminal plasma in two seasons were detected using the UPLC-MS/MS method. The results showed that temperature and humidity index (THI) in March were 66.86 ± 2.98, and 82.94 ± 3.52 in July. Compared with in March, breath frequency, rectal temperature, and heat shock protein 70 expressions of seminal plasma were significantly increased in July (p < 0.05), motility of sperm was dramatically reduced, and sperm deformity rate was significantly increased (p < 0.05). Fructose, acid phosphatase and α-glucosidase in seminal plasma were significantly increased (p < 0.05) in July, while testosterone level was significantly reduced (p < 0.05). Six different metabolites were found in the two groups, which involved in three metabolic pathways, the tricarboxylic acid cycle, glycerophospholipid, glyoxylic acid and dicarboxylic acid. The above results indicate that the increased ambient temperature has obvious side effects on the semen quality of Mediterranean buffalo, and the compromised quality is associated with the change of metabolites related to male hormone secretion, energy metabolism and fatty acid oxidation.
Collapse
Affiliation(s)
- Le Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Zhichao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, P. R. China
| | - Qingsong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Xi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P. R. China
| |
Collapse
|
35
|
Manzon LA, Zak MA, Agee M, Boreham DR, Wilson JY, Somers CM, Manzon RG. Thermal acclimation alters both basal heat shock protein gene expression and the heat shock response in juvenile lake whitefish (Coregonus clupeaformis). J Therm Biol 2022; 104:103185. [DOI: 10.1016/j.jtherbio.2021.103185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022]
|
36
|
Xu D, Wu J, Sun L, Qin X, Fan X, Zheng X. Energy metabolism response of Litopenaeus vannamei to combined stress of acute cold exposure and waterless duration: Implications for physiological regulation and waterless live transport. J Therm Biol 2022; 104:103149. [DOI: 10.1016/j.jtherbio.2021.103149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
|
37
|
Xu D, Zheng X, Li C, Wu J, Sun L, Qin X, Fan X. Insights into the response mechanism of Litopenaeus vannamei exposed to cold stress during live transport combining untargeted metabolomics and biochemical assays. J Therm Biol 2022; 104:103200. [DOI: 10.1016/j.jtherbio.2022.103200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/22/2023]
|
38
|
Mugwanya M, Dawood MA, Kimera F, Sewilam H. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Effects of transport stress on immune response, physiological state, and WSSV concentration in the red swamp crayfish Procambarus clarkii. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Muniz MS, Halbach K, Alves Araruna IC, Martins RX, Seiwert B, Lechtenfeld O, Reemtsma T, Farias D. Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117096. [PMID: 33866217 DOI: 10.1016/j.envpol.2021.117096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Moxidectin is an antiparasitic drug belonging to the class of the macrocyclic lactones, subgroup mylbemicins. It is used worldwide in veterinary practice, but little is known about its potential environmental risks. Thus, we used the zebrafish embryo as a model system to study the potential effects of moxidectin on aquatic non-target organisms. The analyses were performed in two experimental sets: (1) acute toxicity and apical endpoints were characterized, with biomarker assays providing information on the activity levels of catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE); and (2) internal concentration and spatial distribution of moxidectin were determined using ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QToF-MS) and matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSi). The acute toxicity to zebrafish embryos (96 hpf) appeared mainly as a decrease in hatching rates (EC50 = 20.75 μg/L). It also altered the enzymatic activity of biomarker enzymes related to xenobiotic processing, anaerobic metabolism, and oxidative stress (GST, LDH, and CAT, respectively) and strongly accumulated in the embryos, as internal concentrations were 4 orders of magnitude higher than those detected in exposure solutions. MALDI-MSi revealed accumulations of the drug mainly in the head and eyes of the embryos (72 and 96 hpf). Thus, our results show that exposure to moxidectin decreases hatching success by 96 h and alters biochemical parameters in the early life stages of zebrafish while accumulating in the head and eye regions of the animals, demonstrating the need to prioritize this compound for environmental studies.
Collapse
Affiliation(s)
- Marta Silva Muniz
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Igor Cauê Alves Araruna
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Rafael Xavier Martins
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Oliver Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
41
|
Jie YK, Cheng CH, Wang LC, Ma HL, Deng YQ, Liu GX, Feng J, Guo ZX, Ye LT. Hypoxia-induced oxidative stress and transcriptome changes in the mud crab (Scylla paramamosain). Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109039. [PMID: 33785424 DOI: 10.1016/j.cbpc.2021.109039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023]
Abstract
Mud crab (Scylla paramamosain) is an economically important cultured species in China. Hypoxia is a major environmental stressor during mud crab culture. In the present study, we investigated the oxidative stress and transcriptome changes in the gills of mud crab after intermediate hypoxia stress with dissolved oxygen (DO) 3.0 ± 0.2 mg/L (named as "DO3") and acute hypoxia stress with DO 1.0 ± 0.2 mg/L (named as "DO1") for 0, 3, 6, 12 and 24 h. The superoxide dismutase (SOD) activity of DO1 increased significantly at 3, 6 and 24 h after hypoxia stress, while SOD activity of DO3 increased significantly at 6 and 24 h. The total antioxidant capacity (T-AOC) increased significantly at 6, 12 and 24 h after hypoxia stress. The malondialdehyde (MDA) concentration of DO1 increased significantly at 6, 12 and 24 h after hypoxia stress, while MDA concentration of DO3 only increased significantly at 6 h. The lactate dehydrogenase (LDH) activity of DO1 increased significantly at 3, 6, 12 and 24 h after hypoxia stress, while LDH activity of DO3 increased significantly at 12 and 24 h. Transcriptomic analysis was conducted at 24 h of gill tissues after hypoxia stress. A total of 1052 differentially expressed genes (DEGs) were obtained, including 394 DEGs between DO1 and DO3, 481 DEGs between DO1 and control group, 177 DEGs between DO3 and control group. DEGs were enriched in the pathways related to metabolism, immune functions, ion transport, and signal transduction. Transcriptional analysis showed that glycolysis and tricarboxylic acid cycle genes were the key factors in regulating the adaptation of mud crab to hypoxia stress.
Collapse
Affiliation(s)
- Yu-Kun Jie
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| | - Li-Cang Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| | - Ling-Tong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| |
Collapse
|
42
|
Martínez D, Moncada-Kopp C, Paschke K, Navarro JM, Vargas-Chacoff L. Warming and freshening activate the transcription of genes involved in the cellular stress response in Harpagifer antarcticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:533-546. [PMID: 33523350 DOI: 10.1007/s10695-021-00931-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Thermal and saline variations of the Southern Ocean are important signs of climate change which can alter the physiological responses of stenotic species residing at high latitudes. Our study aimed to evaluate the cellular stress response (CSR) of Harpagifer antarcticus subjected to increased ambient temperature and decreased salinity. The fish were distributed in different thermal (2, 5, 8, 11, and 14 °C) and saline (23, 28, and 33 psu) combinations for 10 days. We used qPCR analysis to evaluate the transcription of genes involved in the thermal shock response (HSP70, HSC70, HSP90, and GRP78), ubiquitination (E2, E3, ubiquitin, and CHIP), 26S proteasome complex (PSMA2, PSMB7, and PSMC1), and apoptosis (SMAC/Diablo and BAX) in the liver and gill. The expression profiles were tissue-specific and mainly dependent on temperature rather than salinity in the gill; meanwhile, in the liver, both conditions modulated the expression of these genes. Transcription of markers involved in the heat shock response was much higher in the liver than in the gill and was higher when salinity decreased and the temperature increased. Similarly, the genes involved in the ubiquitination pathway, 26S complex of the proteasome, and the apoptotic pathway showed the same pattern, being mainly induced in the liver rather than in the gill. This is the first study to show that this Antarctic fish can induce the cellular stress response in their tissues when subjected to these thermal/saline combinations.
Collapse
Affiliation(s)
- Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - Catalina Moncada-Kopp
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
43
|
Nonnis S, Angiulli E, Maffioli E, Frabetti F, Negri A, Cioni C, Alleva E, Romeo V, Tedeschi G, Toni M. Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish. Sci Rep 2021; 11:2521. [PMID: 33510219 PMCID: PMC7843641 DOI: 10.1038/s41598-021-81804-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of 4-d acute thermal treatments at 18 °C, 26 °C (control) and 34 °C on the nervous system of adult zebrafish (Danio rerio) using a multidisciplinary approach based on behavioural tests and brain proteomic analysis. The behavioural variations induced by thermal treatment were investigated using five different tests, the novel tank diving, light and dark preference, social preference, mirror biting, and Y-Maze tests, which are standard paradigms specifically tailored for zebrafish to assess their anxiety-like behaviour, boldness, social preference, aggressiveness, and explorative behaviour, respectively. Proteomic data revealed that several proteins involved in energy metabolism, messenger RNA translation, protein synthesis, folding and degradation, cytoskeleton organisation and synaptic vesiculation are regulated differently at extreme temperatures. The results showed that anxiety-like behaviours increase in zebrafish at 18 °C compared to those at 26 °C or 34 °C, whereas anxiety-related protein signalling pathways are downregulated. Moreover, treatments at both 18 °C and 34 °C affect the exploratory behaviour that appears not to be modulated by past experiences, suggesting the impairment of fish cognitive abilities. This study is the continuation of our previous work on the effect of 21-d chronic treatment at the same constant temperature level and will enable the comparison of acute and chronic treatment effects on the nervous system function in adult zebrafish.
Collapse
Affiliation(s)
- S Nonnis
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,CRC "Innovation for Well-Beeing and Environment" (I-WE), Università degli Studi di Milano, Milano, Italy
| | - E Angiulli
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - E Maffioli
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy. .,CIMAINA, Università degli Studi di Milano, Milano, Italy.
| | - F Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - A Negri
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - C Cioni
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - E Alleva
- Center for Behavioural Sciences and Mental Health, IstitutoSuperiore di Sanità, Rome, Italy
| | - V Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - G Tedeschi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,CRC "Innovation for Well-Beeing and Environment" (I-WE), Università degli Studi di Milano, Milano, Italy.,CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - M Toni
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Alfonso Borelli 50, 00161, Rome, Italy.
| |
Collapse
|
44
|
Quan J, Kang Y, Li L, Zhao G, Sun J, Liu Z. Proteome analysis of rainbow trout (Oncorhynchus mykiss) liver responses to chronic heat stress using DIA/SWATH. J Proteomics 2020; 233:104079. [PMID: 33346158 DOI: 10.1016/j.jprot.2020.104079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Aquaculture of rainbow trout (Oncorhynchus mykiss) is severely hampered by high temperatures in summer, and understanding the regulatory mechanisms controlling responses to chronic heat stress may assist the development of measures to relieve heat stress. In the present study, biochemical parameters revealed a strong stress response in rainbow trout at 24 °C, including activation of stress defence and immune systems. Liver proteome analysis under heat stress (24 °C) and control (18 °C) conditions using DIA/SWATH identified precursors (90,827), peptides (67,028), proteins (6770) and protein groups (5124), among which 460 differentially abundant proteins (DAPs; q-value < 0.05, fold change >1.5), 201 and 259 were up- and down-regulated, respectively. Many were related to heat shock proteins (HSPs), metabolism and immunity. Gene Ontology (GO) analysis showed that some DAPs induced at high temperature were involved in regulating cell homeostasis, metabolism, adaptive stress and stimulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified metabolic pathways, protein processing in endoplasmic reticulum, PPAR signalling, and complement and coagulation cascades. Protein-protein interaction (PPI) network analysis indicated that HSP90b1 and C3 may cooperative to affect cell membrane integrity under heat stress. Our findings assist the development of strategies to relieve heat stress in rainbow trout.
Collapse
Affiliation(s)
- Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yujun Kang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
45
|
Dettleff P, Zuloaga R, Fuentes M, Gonzalez P, Aedo J, Estrada JM, Molina A, Valdés JA. Physiological and molecular responses to thermal stress in red cusk-eel (Genypterus chilensis) juveniles reveals atrophy and oxidative damage in skeletal muscle. J Therm Biol 2020; 94:102750. [PMID: 33292991 DOI: 10.1016/j.jtherbio.2020.102750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/30/2022]
Abstract
The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Environmental stressors, such as temperature, may generate important effects in fish physiology with negative impact. However, no information exists on the effects of thermal stress in Genypterus species or how this stressor affects the skeletal muscle. The present study evaluated for the first time the effect of high temperature stress in red cusk-eel juveniles to determine changes in plasmatic markers of stress (cortisol, glucose and lactate dehydrogenase (LDH)), the transcriptional effect in skeletal muscle genes related to (i) heat shock protein response (hsp60 and hsp70), (ii) muscle atrophy and growth (foxo1, foxo3, fbxo32, murf-1, myod1 and ddit4), and (iii) oxidative stress (cat, sod1 and gpx1), and evaluate the DNA damage (AP sites) and peroxidative damage (lipid peroxidation (HNE proteins)) in this tissue. Thermal stress generates a significant increase in plasmatic levels of cortisol, glucose and LDH activity and induced heat shock protein transcripts in muscle. We also observed an upregulation of atrophy-related genes (foxo1, foxo3 and fbxo32) and a significant modulation of growth-related genes (myod1 and ddit4). Thermal stress induced oxidative stress in skeletal muscle, as represented by the upregulation of antioxidant genes (cat and sod1) and a significant increase in DNA damage and lipid peroxidation. The present study provides the first physiological and molecular information of the effects of thermal stress on skeletal muscle in a Genypterus species, which should be considered in a climate change scenario.
Collapse
Affiliation(s)
- Phillip Dettleff
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Pamela Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Jorge Aedo
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
46
|
Yang X, Gao Y, Zhao M, Wang X, Zhou H, Zhang A. Cloning and identification of grass carp transcription factor HSF1 and its characterization involving the production of fish HSP70. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1933-1945. [PMID: 32627093 DOI: 10.1007/s10695-020-00842-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In mammals, heat shock transcription factor 1 (HSF1) is well documented as the critical transcript factor to regulate heat shock protein 70 (HSP70) expression under different stresses, such as heat shock or bacterial infection. In fish, Hsf1 responses to physiological and environmental stresses and regulates Hsp70 expression under thermal exposure. However, the functional role of Hsf1 in Hsp70 production is still elusive under bacterial infection. In the present study, a coding sequence of grass carp hsf1 (gchsf1) gene was cloned and identified. Using Ctenopharyngodon idellus kidney (CIK) cells as the model, we found that lipopolysaccharide (LPS) exerted stimulatory effects on the expression of grass carp hsp70 (gchsp70) and hsf1, implying possible relationship of Hsp70 and Hsf1 under immune stimulation in fish. To validate the hypothesis, overexpression of gcHsf1 was performed in CIK cells, and the effects of overexpressing gcHsf1 on the expression of gcHsp70 in the absence or presence of LPS were examined. Results showed that LPS significantly upregulated the transcription and protein synthesis of gcHsp70, and these stimulatory effects were further amplified when overexpression of gcHsf1 was performed. Furthermore, luciferase reporter assays in CIK cells revealed that both overexpression of Hsf1 and LPS upregulated gchsp70 transcription, and their combined treatment further enhanced the gchsp70 promoter activity. Moreover, the regions responsive to these treatments were mapped to the promoter of gchsp70. Besides transcriptional level and cellular protein contents, gcHsp70 secretion was measured by competitive ELISA, uncovering that gcHsf1 enhanced the release of gcHsp70 induced by LPS in the same cells. These data not only demonstrated the enhancement of Hsf1 in Hsp70 production but also initially revealed the involvement of Hsf1-Hsp70 axis in mediating inflammatory response in fish.
Collapse
Affiliation(s)
- Xinrui Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- Department of Biology, Lawrence University, Appleton, WI, USA
| | - Yajun Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Minghui Zhao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
47
|
Cheng CH, Ma HL, Deng YQ, Feng J, Jie YK, Guo ZX. Immune and physiological responses of mud crab (Scylla paramamosain) under air exposure. Comp Biochem Physiol C Toxicol Pharmacol 2020; 233:108767. [PMID: 32304871 DOI: 10.1016/j.cbpc.2020.108767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/01/2020] [Accepted: 04/11/2020] [Indexed: 01/17/2023]
Abstract
The immune and physiological responses of mud crab (Scylla paramamosain) under air exposure were studied. The results showed that air exposure increased plasma activities of AST, ALT, ALP. There was a significant increase in glucose (GLU) and malondialdehyde (MDA) levels after air exposure. The transcript levels of SOD, CAT, HSP90, HSP70, p53, and hypoxia-inducible factor-1 (HIF-1) were induced by air exposure. Furthermore, caspase-3 transcript significantly increased at 48 and 72 h, while it significantly decreased at 96 h and 120 h under air exposure. These results suggested that oxidative stress occurred in the prolonged period of air exposure. HIF-1 and p53 signaling pathways played an important role under air exposure.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Yu-Kun Jie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China.
| |
Collapse
|
48
|
Chang CH, Zhou XW, Wang YC, Lee TH. Differential effects of hypothermal stress on lactate metabolism in fresh water- and seawater-acclimated milkfish, Chanos chanos. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110744. [PMID: 32569829 DOI: 10.1016/j.cbpa.2020.110744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
The milkfish Chanos chanos, an economically important cultured marine species in Southeast Asia, exhibits stenothermal and euryhaline characteristics and huge mortality usually occurs during extreme cold weather in winter. Under conditions beyond optimal temperatures, ectothermic species experience an increase in anaerobic glycolysis. To better understand the hypothermal acclimation response of this tropical species, the lactate metabolic profiles of freshwater (FW)- and seawater (SW)-acclimated milkfish were compared under control (optimal temperature; 28 °C) and hypothermal treatment (18 °C) conditions. In this study, the lactate dehydrogenase (LDH) isoform genes, ldha and ldhb, were identified in milkfish livers and muscles, respectively. The LDH is a bidirectional enzyme that triggered the conversion of pyruvate to lactate via anaerobic glycolysis as LDH exhibits the reductase activity (LDH-R), while via the reverse direction as LDH exhibits the oxidase activity (LDH-O). The hypothermal stress significantly upregulated the LDH-R activity in the muscles and the monocarboxylate transporter activity in both muscles and livers, of SW- and FW-acclimated milkfish. The levels of blood lactate, however, decreased in SW-acclimated milkfish. Under hypothermal stress, anaerobic metabolism increased in the muscles of both FW and SW individuals, whereas the liver of SW-acclimated milkfish showed better acute phase capacity to utilize blood lactate than FW-acclimated milkfish. Taken together, in the present study, the major functions of the bidirectional enzyme LDH were identified according to its LDH-O and LDH-R activities. Furthermore, environmental salinities were found to affect the acute anaerobic metabolic strategies of euryhaline teleosts under hypothermal stress and were correlated with their hypothermal tolerance ability.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Xiu-Wei Zhou
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chun Wang
- Planning and Information Division, Fisheries Research Institute, Keelung 202, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
49
|
Martínez D, Vargas-Lagos C, Saravia J, Oyarzún R, Loncoman C, Pontigo JP, Vargas-Chacoff L. Cellular stress responses of Eleginops maclovinus fish injected with Piscirickettsia salmonis and submitted to thermal stress. Cell Stress Chaperones 2020; 25:93-104. [PMID: 31834618 PMCID: PMC6985426 DOI: 10.1007/s12192-019-01051-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Fluctuations in ambient temperature along with the presence of pathogenic microorganisms can induce important cellular changes that alter the homeostasis of ectothermic fish. The aim of this study was to evaluate how sudden or gradual changes in environmental temperature together with the administration of Piscirickettsia salmonis modulate the transcription of genes involved in cellular stress response in the liver of Eleginops maclovinus. Fish were subjected to the following experimental conditions in duplicate: C- 12 °C: Injection only with culture medium, C+ 12 °C: Injection with P. salmonis, AM 18 °C: Injection only with culture medium under acclimation at 18 °C, AB 18 °C: Injection with P. salmonis under acclimation at 18 °C, SM 18 °C: Injection only with culture medium and thermal shock at 18 °C and SB 18 °C: Injection with P. salmonis and thermal shock at 18 °C and sampling at 4-, 8-, 12-, 16- and 20-day post injection (dpi). The genes implied in the heat shock response (HSP70, HSC70, HSP90, and GRP78), apoptosis pathway (BAX and SMAC/Diablo), ubiquitination (E2, E3, ubiquitin, and CHIP), and 26 proteasome complex (PSMB7, PSMC1, and PSMA2) showed expression profiles dependent on time and type of injection applied. All the genes greatly increased their expression levels at day 16 and showed moderate increases at day 20, except for PSMA2 which showed a higher increase between 4- and 12-day post challenges. Our results suggest that the changes observed at the final days of the experiment are due to temperature more than P. salmonis.
Collapse
Affiliation(s)
- D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile.
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile.
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile.
| | - C Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile
- Escuela de Graduados, Programa de Magister en Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - J Saravia
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile
| | - C Loncoman
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
| | - J P Pontigo
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile.
| |
Collapse
|
50
|
Mottola G, Nikinmaa M, Anttila K. Hsp70s transcription-translation relationship depends on the heat shock temperature in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110629. [PMID: 31790806 DOI: 10.1016/j.cbpa.2019.110629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022]
Abstract
Virtually all organisms respond to heat shock by transcription of genes encoding for heat shock proteins (HSPs), but the mechanisms behind post-transcriptional regulation are not known in detail. When we exposed zebrafish to 5 and 7 °C above normal rearing temperature for 30 min, hsp70 mRNA expression was 28 and 150 -fold higher than in control, respectively. Protein expression, on the other hand, showed no significant change at the +5 °C and a 2-fold increase at the +7 °C exposure. This suggests that the transcription of hsp70 gene does not immediately correspond to translation to related proteins under certain stress temperatures, but, when the temperature is higher, and potentially detrimental, transcription and translation are intimately coupled. Those results confirm that temperature is an important abiotic factor involved in heat shock post-transcriptional regulation mechanisms in fish. However, further studies are needed to determine the relationship between this environmental factor and post-transcriptional regulation mechanisms. Earlier, the coupling/uncoupling of hsp transcription and translation has only been studied using cold-water fish, or zebrafish embryos. With current findings, we suggest this mechanism might be present even in adult warm water fish like the zebrafish.
Collapse
Affiliation(s)
- Giovanna Mottola
- Department of Biology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland..
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| | - Katja Anttila
- Department of Biology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| |
Collapse
|