1
|
Sun Q, Lei X, Yang X. The crosstalk between non-coding RNAs and oxidative stress in cancer progression. Genes Dis 2025; 12:101286. [PMID: 40028033 PMCID: PMC11870203 DOI: 10.1016/j.gendis.2024.101286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2025] Open
Abstract
As living standards elevate, cancers are appearing in growing numbers among younger individuals globally and these risks escalate with advancing years. One of the reasons is that instability in the cancer genome reduces the effectiveness of conventional drug treatments and chemotherapy, compared with more targeted therapies. Previous research has discovered non-coding RNAs' crucial role in shaping genetic networks involved in cancer cell growth and invasion through their influence on messenger RNA production or protein binding. Additionally, the interaction between non-coding RNAs and oxidative stress, a crucial process in cancer advancement, cannot be overlooked. Essentially, oxidative stress results from the negative effects of radicals within the body and ties directly to cancer gene expression and signaling. Therefore, this review focuses on the mechanism between non-coding RNAs and oxidative stress in cancer progression, which is conducive to finding new cancer treatment strategies.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
2
|
Ma J, Chen Z, Malik K, Li C. Comparative Metabolite Profiling Between Cordyceps sinensis and Other Cordyceps by Untargeted UHPLC-MS/MS. BIOLOGY 2025; 14:118. [PMID: 40001886 PMCID: PMC11851418 DOI: 10.3390/biology14020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Cordyceps sinensis is a second-class, nationally protected, medicinal fungi and serves as a functional nutrient in China. C. sinensis is extremely scarce due to its peculiar growing environment and the extensive gathering practices carried out by humans. A large number of counterfeit products for this fungi have also emerged in the market. At present, there is a lack of research on the differential metabolites of C. sinensis and its counterfeit products. The current study used an LC-MS non-targeted metabolomics method to compare the differences in metabolites between C. sinensis and other Cordyceps. The results indicated that there were significant differences in the metabolites between C. sinensis and the others. The 18 superclasses were found to have differences, involving lipids, organic acids, nucleosides, carbohydrates, amino acids, vitamins, and their derivatives. Compared with the other four groups of Cordyceps, 8 metabolites with significant differences were screened. In addition, the types and abundance of different metabolites of nucleosides of C. sinensis were superior compared to other Cordyceps (e.g., 5-Methyldioxycytidine, didanosine, cytidine, etc.). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the metabolism of arginine and proline, and glycerophosphate metabolism were the two significant differences in the metabolic pathways between C. sinensis and other Cordyceps. The research results provide a reference for identifying the authenticity of C. sinensis using non-targeted metabolic methods.
Collapse
Affiliation(s)
- Jing Ma
- Grassland Research Center of National Forestry and Grassland Administration, Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China;
| | - Zhenjiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (Z.C.); (K.M.)
| | - Kamran Malik
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (Z.C.); (K.M.)
| | - Chunjie Li
- Grassland Research Center of National Forestry and Grassland Administration, Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China;
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (Z.C.); (K.M.)
| |
Collapse
|
3
|
Jiménez AG, Marolf C, Swanson DL. Oxidative stress across multiple tissues in house sparrows (Passer domesticus) acclimated to warm, stable cold, and unpredictable cold thermal treatments. J Comp Physiol B 2024; 194:899-907. [PMID: 38995419 DOI: 10.1007/s00360-024-01572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024]
Abstract
With climate change increasing not just mean temperatures but the frequency of cold snaps and heat waves, animals occupying thermally variable areas may be faced with thermal conditions for which they are not prepared. Studies of physiological adaptations of temperate resident birds to such thermal variability are largely lacking in the literature. To address this gap, we acclimated winter-phenotype house sparrows (Passer domesticus) to stable warm, stable cold, and fluctuating cold temperatures. We then measured several metrics of the oxidative stress (OS) system, including enzymatic and non-enzymatic antioxidants and lipid oxidative damage, in brain (post-mitotic), kidney (mitotic), liver (mitotic) and pectoralis muscle (post-mitotic). We predicted that high metabolic flexibility could be linked to increases in reactive oxygen damage. Alternatively, if variation in ROS production is not associated with metabolic flexibility, then we predict no antioxidant compensation with thermal variation. Our data suggest that ROS production is not associated with metabolic flexibility, as we found no differences across thermal treatment groups. However, we did find differences across tissues. Brain catalase activity demonstrated the lowest values compared with kidney, liver and muscle. In contrast, brain glutathione peroxidase (GPx) activities were higher than those in kidney and liver. Muscle GPx activities were intermediate to brain and kidney/liver. Lipid peroxidation damage was lowest in the kidney and highest in muscle tissue.
Collapse
Affiliation(s)
| | - Chelsi Marolf
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| | - David L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
4
|
Chen L, Diao J, Tian Z, Wang D, Zhang W, Zhang L, Wang Z, Zhou Z, Di S. Gender-Specific Toxic Effects of S-Metolachlor and Its Metabolite on Hibernating Lizards: Implications for Reproductive Health and Ecosystem Vulnerability. TOXICS 2024; 12:834. [PMID: 39591012 PMCID: PMC11598707 DOI: 10.3390/toxics12110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Reptiles rely on hibernation to survive harsh winters, but climate change and pesticide use in agriculture jeopardize their survival, making the ecosystem vulnerable. S-metolachlor (SM), a commonly found herbicide in soil, and its metabolite metolachlor oxanilic acid (MO) induce oxidative stress and disrupt reproductive hormones. In this study, lizards were exposed to SM- and MO-contaminated soil for 45 days during hibernation. Weight loss and deaths occurred at the beginning of hibernation in all groups. Furthermore, the exposure group experienced severe oxidative stress and damage in the liver, kidney, heart, gonad, and brain. The testosterone levels significantly decreased in male lizards in both the SM and MO groups, whereas estradiol levels increased significantly in female lizards in the SM group. Gender-specific expression of steroidogenic-related genes in the brains and gonads of lizards was observed. Histological analysis revealed toxic effects induced by both SM and MO in vital organs during hibernation. Moreover, MO induced more severe reproductive toxicity in male lizards during hibernation. Therefore, this study suggests gender-specific toxic effects were observed in hibernating lizards exposed to SM and MO, underscoring the importance of vigilant monitoring of pesticide application in agriculture and assessing the potential harm of its metabolites.
Collapse
Affiliation(s)
- Li Chen
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; (J.D.); (Z.T.); (D.W.); (W.Z.); (L.Z.); (Z.W.); (Z.Z.)
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; (J.D.); (Z.T.); (D.W.); (W.Z.); (L.Z.); (Z.W.); (Z.Z.)
| | - Zhongnan Tian
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; (J.D.); (Z.T.); (D.W.); (W.Z.); (L.Z.); (Z.W.); (Z.Z.)
- Institute of Environmental Reference Materials, Environmental Development Center, Ministry of Ecology and Environment, Beijing 100029, China
| | - Dezhen Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; (J.D.); (Z.T.); (D.W.); (W.Z.); (L.Z.); (Z.W.); (Z.Z.)
| | - Wenjun Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; (J.D.); (Z.T.); (D.W.); (W.Z.); (L.Z.); (Z.W.); (Z.Z.)
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; (J.D.); (Z.T.); (D.W.); (W.Z.); (L.Z.); (Z.W.); (Z.Z.)
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi’an 710021, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; (J.D.); (Z.T.); (D.W.); (W.Z.); (L.Z.); (Z.W.); (Z.Z.)
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; (J.D.); (Z.T.); (D.W.); (W.Z.); (L.Z.); (Z.W.); (Z.Z.)
| | - Shanshan Di
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China; (J.D.); (Z.T.); (D.W.); (W.Z.); (L.Z.); (Z.W.); (Z.Z.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
5
|
Zhan L, He J, Ding L, Storey KB, Zhang J, Yu D. Comparison of Mitochondrial Genome Expression Differences among Four Skink Species Distributed at Different Latitudes under Low-Temperature Stress. Int J Mol Sci 2024; 25:10637. [PMID: 39408966 PMCID: PMC11605214 DOI: 10.3390/ijms251910637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 12/01/2024] Open
Abstract
Continual climate change strongly influences temperature conditions worldwide, making ectothermic animals as suitable species for studying the potential impact of climate change on global biodiversity. However, the study of how lizards distributed at different latitudes respond to climate change at the transcriptome level is still insufficient. According to the Climatic Variability Hypothesis (CVH), the range of climate fluctuations experienced by terrestrial animals throughout the year increases with latitude, so individuals at higher latitudes should exhibit greater thermal plasticity to cope with fluctuating environments. Mitochondria, as the energy center of vertebrate cells, may indicate species' plasticity through the sensitivity of gene expression. In this study, we focused on the changes in transcript levels of liver mitochondrial protein-coding genes (PCGs) in skinks from the genus Plestiodon (P. capito and P. elegans) and the genus Scincella (S. modesta and S. reevesii) under low-temperature conditions of 8 °C, compared to the control group at 25 °C. Species within the same genus of skinks exhibit different latitudinal distribution patterns. We found that the two Plestiodon species, P. elegans and P. capito, employ a metabolic depression strategy (decreased transcript levels) to cope with low temperatures. In contrast, the two Scincella species show markedly different patterns: S. modesta exhibits significant increases in the transcript levels of six genes (metabolic compensation), while in S. reevesii, only two mitochondrial genes are downregulated (metabolic depression) compared to the control group. We also found that P. capito and S. modesta, which live at mid-to-high latitudes, exhibit stronger adaptive responses and plasticity at the mitochondrial gene level compared to P. elegans and S. reevesii, which live at lower latitudes. We suggest that this enhanced adaptability corresponds to more significant changes in a greater number of genes (plasticity genes).
Collapse
Affiliation(s)
- Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jingyi He
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lingyi Ding
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
6
|
Zhan L, He J, Meng S, Guo Z, Chen Y, Storey KB, Zhang J, Yu D. Mitochondrial Protein-Coding Gene Expression in the Lizard Sphenomorphus incognitus (Squamata:Scincidae) Responding to Different Temperature Stresses. Animals (Basel) 2024; 14:1671. [PMID: 38891717 PMCID: PMC11170996 DOI: 10.3390/ani14111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In the context of global warming, the frequency of severe weather occurrences, such as unexpected cold spells and heat waves, will grow, as well as the intensity of these natural disasters. Lizards, as a large group of reptiles, are ectothermic. Their body temperatures are predominantly regulated by their environment and temperature variations directly impact their behavior and physiological activities. Frequent cold periods and heat waves can affect their biochemistry and physiology, and often their ability to maintain their body temperature. Mitochondria, as the center of energy metabolism, are crucial for maintaining body temperature, regulating metabolic rate, and preventing cellular oxidative damage. Here, we used RT-qPCR technology to investigate the expression patterns and their differences for the 13 mitochondrial PCGs in Sphenomorphus incognitus (Squamata:Scincidae), also known as the brown forest skink, under extreme temperature stress at 4 °C, 8 °C, 34 °C, and 38 °C for 24 h, compared to the control group at 25 °C. In southern China, for lizards, 4 °C is close to lethal, and 8 °C induces hibernation, while 34/38 °C is considered hot and environmentally realistic. Results showed that at a low temperature of 4 °C for 24 h, transcript levels of ATP8, ND1, ND4, COI, and ND4L significantly decreased, to values of 0.52 ± 0.08, 0.65 ± 0.04, 0.68 ± 0.10, 0.28 ± 0.02, and 0.35 ± 0.02, respectively, compared with controls. By contrast, transcript levels of COIII exhibited a significant increase, with a mean value of 1.86 ± 0.21. However, exposure to 8 °C for 24 h did not lead to an increase in transcript levels. Indeed, transcript levels of ATP6, ATP8, ND1, ND3, and ND4 were significantly downregulated, to 0.48 ± 0.11, 0.68 ± 0.07, 0.41 ± 0.08, 0.54 ± 0.10, and 0.52 ± 0.07, respectively, as compared with controls. Exposure to a hot environment of 34 °C for 24 h led to an increase in transcript levels of COI, COII, COIII, ND3, ND5, CYTB, and ATP6, with values that were 3.3 ± 0.24, 2.0 ± 0.2, 2.70 ± 1.06, 1.57 ± 0,08, 1.47 ± 0.13, 1.39 ± 0.56, and 1.86 ± 0.12, respectively, over controls. By contrast, ND4L exhibited a significant decrease (to 0.31 ± 0.01) compared with controls. When exposed to 38 °C, the transcript levels of the 13 PCGs significantly increased, ranging from a 2.04 ± 0.23 increase in ND1 to a 6.30 ± 0.96 rise in ND6. Under two different levels of cold and heat stress, the expression patterns of mitochondrial genes in S. incognitus vary, possibly associated with different strategies employed by this species in response to low and high temperatures, allowing for rapid compensatory adjustments in mitochondrial electron transport chain proteins in response to temperature changes. Furthermore, this underscores once again the significant role of mitochondrial function in determining thermal plasticity in reptiles.
Collapse
Affiliation(s)
- Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Jingyi He
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Siqi Meng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Zhiqiang Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Yuxin Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada;
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
7
|
Wang T, Tang C, He H, Cao Z, Xiao M, He M, Qi J, Li Y, Li X. Evaluation of Cordyceps sinensis Quality in 15 Production Areas Using Metabolomics and the Membership Function Method. J Fungi (Basel) 2024; 10:356. [PMID: 38786711 PMCID: PMC11122220 DOI: 10.3390/jof10050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Cordyceps sinensis is a precious medicinal and edible fungus, which is widely used in body health care and disease prevention. The current research focuses on the comparison of metabolite characteristics between a small number of samples and lacks a comprehensive evaluation of the quality of C. sinensis in a large-scale space. In this study, LC-MS/MS, principal component analysis (PCA), hierarchical cluster analysis (HCA), and the membership function method were used to comprehensively evaluate the characteristics and quality of metabolites in 15 main producing areas of C. sinensis in China. The results showed that a total of 130 categories, 14 supercategories, and 1718 metabolites were identified. Carboxylic acids and derivatives, fatty acyls, organo-oxygen compounds, benzene and substituted derivatives, prenol lipids, and glycerophospholipids were the main components of C. sinensis. The HCA analysis and KEGG pathway enrichment analysis of 559 differentially accumulated metabolites (DAMs) showed that the accumulation models of fatty acids and conjugates and carbohydrates and carbohydrate conjugates in glycerophospholipid metabolism and arginine and proline metabolism may be one of the reasons for the quality differences in C. sinensis in different producing areas. In addition, a total of 18 biomarkers were identified and validated, which had a significant discrimination effect on the samples (p < 0.05). Overall, YS, BR, and ZD, with the highest membership function values, are rich and balanced in nutrients. They are excellent raw materials for the development of functional foods and provide scientific guidance for consumers to nourish health care.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (T.W.); (C.T.); (H.H.); (Z.C.); (M.X.); (M.H.)
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (T.W.); (C.T.); (H.H.); (Z.C.); (M.X.); (M.H.)
| | - Hui He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (T.W.); (C.T.); (H.H.); (Z.C.); (M.X.); (M.H.)
| | - Zhengfei Cao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (T.W.); (C.T.); (H.H.); (Z.C.); (M.X.); (M.H.)
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (T.W.); (C.T.); (H.H.); (Z.C.); (M.X.); (M.H.)
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (T.W.); (C.T.); (H.H.); (Z.C.); (M.X.); (M.H.)
| | - Jianzhao Qi
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China;
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Xining 810016, China
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (T.W.); (C.T.); (H.H.); (Z.C.); (M.X.); (M.H.)
| |
Collapse
|
8
|
Valgas AAN, Cubas GK, de Oliveira DR, Araujo JF, Altenhofen S, Bonan CD, Oliveira GT, Verrastro L. Ecophysiological responses of Liolaemus arambarensis juveniles to experimental temperature variations. Comp Biochem Physiol A Mol Integr Physiol 2024; 290:111577. [PMID: 38228266 DOI: 10.1016/j.cbpa.2024.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Climate change increasingly influences the loss of biodiversity, especially in ectothermic organisms, which depend on environmental temperatures to obtain heat and regulate their life cycle. Studies that aim to understand the impact of temperature variation are important to better understand the possible impacts generated on the homeostasis of ectothermic organisms. Our objective was to characterize the responses of juvenile Liolaemus arambarensis lizards to abrupt changes in temperature, quantifying markers of body condition, intermediary and hormonal metabolism and oxidative balance. We collected 45 juvenile individuals of L. arambarensis (winter: 20 and summer: 25) in Barra do Ribeiro, Brazil. We transported the animals to the laboratory, where they were acclimatized for five days at a temperature of 20 °C, then divided and exposed to temperatures of 10 °C, 20 °C, 30 °C and 40 °C for 24 h. After exposure, the animals were euthanized and the brain, caudal muscle, thigh, and liver tissues were extracted for quantification of biomarkers of metabolism (glycogen and total proteins) and oxidative balance (acetylcholinesterase, superoxide dismutase, catalase, glutathione-S-transferase and lipoperoxidation) and plasma for corticosterone quantification. The results show that L. arambarensis is susceptible to sudden temperature variations, where higher temperatures caused greater activity of antioxidant enzymes, increased lipoperoxidation and higher plasma levels of corticosterone in animals eliminated in winter. The present study demonstrated that abrupt changes in temperature could significantly modify the homeostatic mechanisms of animals, which could lead to oxidative stress and a potential trade-off between survival and growth/reproduction. In this context, the organism mobilizes energy resources for survival, with possible damage to growth and reproduction. Demonstrate that a change in temperature can be a potential factor in extinction for a species given the profile of global climate change.
Collapse
Affiliation(s)
- Artur Antunes Navarro Valgas
- Universidade Federal do Rio Grande do Sul, Departamento de Zoologia, Laboratório de Herpetologia, Bento Gonçalves Avenue, 9500 Pd. 43435, Block IV, class 102, Campus do Vale, 91510-000, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Fisiologia da Conservação, Ipiranga Avenue, 6681 Pd. 12, Block C, class 250, 90619-900, Porto Alegre, RS, Brazil.
| | - Gustavo Kasper Cubas
- Universidade Federal do Rio Grande do Sul, Departamento de Zoologia, Laboratório de Herpetologia, Bento Gonçalves Avenue, 9500 Pd. 43435, Block IV, class 102, Campus do Vale, 91510-000, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Fisiologia da Conservação, Ipiranga Avenue, 6681 Pd. 12, Block C, class 250, 90619-900, Porto Alegre, RS, Brazil
| | - Diogo Reis de Oliveira
- Universidade Federal do Rio Grande do Sul, Departamento de Zoologia, Laboratório de Herpetologia, Bento Gonçalves Avenue, 9500 Pd. 43435, Block IV, class 102, Campus do Vale, 91510-000, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Fisiologia da Conservação, Ipiranga Avenue, 6681 Pd. 12, Block C, class 250, 90619-900, Porto Alegre, RS, Brazil
| | - Jéssica Fonseca Araujo
- Universidade Federal do Rio Grande do Sul, Departamento de Zoologia, Laboratório de Herpetologia, Bento Gonçalves Avenue, 9500 Pd. 43435, Block IV, class 102, Campus do Vale, 91510-000, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Fisiologia da Conservação, Ipiranga Avenue, 6681 Pd. 12, Block C, class 250, 90619-900, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Ipiranga Avenue, 6681 Pd. 12, Block D, 90619-900, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Ipiranga Avenue, 6681 Pd. 12, Block D, 90619-900, Porto Alegre, RS, Brazil
| | - Guendalina Turcato Oliveira
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Fisiologia da Conservação, Ipiranga Avenue, 6681 Pd. 12, Block C, class 250, 90619-900, Porto Alegre, RS, Brazil
| | - Laura Verrastro
- Universidade Federal do Rio Grande do Sul, Departamento de Zoologia, Laboratório de Herpetologia, Bento Gonçalves Avenue, 9500 Pd. 43435, Block IV, class 102, Campus do Vale, 91510-000, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Marchetti JR, French SS, Virgin EE, Lewis EL, Ki KC, Sermersheim LO, Brusch GA, Beard KH. Invading nonnative frogs use different microhabitats and change physiology along an elevation gradient. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:73-85. [PMID: 37902261 DOI: 10.1002/jez.2762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
The coqui frog (Eleutherodactylus coqui) was introduced to the island of Hawai'i in the 1980s, and has spread across much of the island. There is concern they will invade higher elevation areas where negative impacts on native species are expected. It is not known if coqui change behavior and baseline physiology in ways that allow them to invade higher elevations. We investigated where coqui are found across the island and whether that includes recent invasion into higher elevations. We also investigated whether elevation is related to coqui's microhabitat use, including substrate use and height off the forest floor, and physiological metrics, including plasma osmolality, oxidative status, glucose, free glycerol, and triglycerides, that might be associated with invading higher elevations. We found coqui have increased the area they occupy along roads from 31% to 50% and have moved into more high-elevation locations (16% vs. 1%) compared to where they were found 14 years ago. We also found frogs at high elevation on different substrates and closer to the forest floor than frogs at lower elevations-perhaps in response to air temperatures which tended to be warmer close to the forest floor. We observed that blood glucose and triglycerides increase in frogs with elevation. An increase in glucose is likely an acclimation response to cold temperatures while triglycerides may also help frogs cope with the energetic demands of suboptimal temperatures. Finally, we found that female coqui have higher plasma osmolality, reactive oxygen metabolites (dROMs), free glycerol, and triglycerides than males. Our study suggests coqui behavior and physiology in Hawai'i may be influenced by elevation in ways that allow them to cope with lower temperatures and invade higher elevations.
Collapse
Affiliation(s)
- Jack R Marchetti
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Susannah S French
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Emily E Virgin
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Erin L Lewis
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Kwanho C Ki
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Layne O Sermersheim
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - George A Brusch
- Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Karen H Beard
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
| |
Collapse
|
10
|
Butler MW, Cullen ZE, Garti CM, Howard DE, Corpus BA, McNish BA, Hines JK. Physiologically Relevant Levels of Biliverdin Do Not Significantly Oppose Oxidative Damage in Plasma In Vitro. Physiol Biochem Zool 2023; 96:294-303. [PMID: 37418605 DOI: 10.1086/725402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
AbstractAntioxidants have important physiological roles in limiting the amount of oxidative damage that an organism experiences. One putative antioxidant is biliverdin, a pigment that is most commonly associated with the blue or green colors of avian eggshells. However, despite claims that biliverdin functions as an antioxidant, neither the typical physiological concentrations of biliverdin in most species nor the ability of biliverdin to oppose oxidative damage at these concentrations has been examined. Therefore, we quantified biliverdin in the plasma of six bird species and found that they circulated levels of biliverdin between 0.02 and 0.5 μM. We then used a pool of plasma from northern bobwhite quail (Colinus virginianus) and spiked it with one of seven different concentrations of biliverdin, creating plasma-based solutions ranging from 0.09 to 231 μM biliverdin. We then compared each solution's ability to oppose oxidative damage in response to hydrogen peroxide relative to a control addition of water. We found that hydrogen peroxide consistently induced moderate amounts of oxidative damage (quantified as reactive oxygen metabolites) but that no concentration of biliverdin ameliorated this damage. However, biliverdin and hydrogen peroxide interacted, as the amount of biliverdin in hydrogen peroxide-treated samples was reduced to approximately zero, unless the initial concentration was over 100 μM biliverdin. These preliminary findings based on in vitro work indicate that while biliverdin may have important links to metabolism and immune function, at physiologically relevant concentrations it does not detectably oppose hydrogen peroxide-induced oxidative damage in plasma.
Collapse
|
11
|
Marchetti JR, Beard KH, Virgin EE, Lewis EL, Hess SC, Ki KC, Sermersheim LO, Furtado AP, French SS. Invasive frogs show persistent physiological differences to elevation and acclimate to colder temperatures. J Therm Biol 2023; 114:103590. [PMID: 37267784 DOI: 10.1016/j.jtherbio.2023.103590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
The coqui frog (Eleutherodactylus coqui) was introduced to the island of Hawai'i in the 1980s and has spread across much of the island. Concern remains that this frog will continue to expand its range and invade higher elevation habitats where much of the island's endemic species are found. We determined whether coqui thermal tolerance and physiology change along Hawai'i's elevational gradients. We measured physiological responses using a short-term experiment to determine baseline tolerance and physiology by elevation, and a long-term experiment to determine the coqui's ability to acclimate to different temperatures. We collected frogs from low, medium, and high elevations. After both the short and long-term experiments, we measured critical thermal minimum (CTmin), blood glucose, oxidative stress, and corticosterone levels. CTmin was lower in high elevation frogs than low elevation frogs after the short acclimation experiment, signifying that they acclimate to local conditions. After the extended acclimation, CTmin was lower in frogs acclimated to cold temperatures compared to warm-acclimated frogs and no longer varied by elevation. Blood glucose levels were positively correlated with elevation even after the extended acclimation, suggesting glucose may also be related to lower temperatures. Oxidative stress was higher in females than males, and corticosterone was not significantly related to any predictor variables. The extended acclimation experiment showed that coquis can adjust their thermal tolerance to different temperatures over a 3-week period, suggesting the expansion of coqui into higher elevation habitats may still be possible, and they may not be as restricted by cold temperatures as previously thought.
Collapse
Affiliation(s)
- Jack R Marchetti
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Karen H Beard
- Department of Wildland Resources, Utah State University, Logan, UT, 84322, USA.
| | - Emily E Virgin
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Erin L Lewis
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Steven C Hess
- USDA APHIS-WS National Wildlife Research Center, Hawaii Field Station, Hilo, HI, 96720, USA
| | - Kwanho C Ki
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Layne O Sermersheim
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Adriana P Furtado
- Departamento de Ciências Animais, Universidade de Brasília, Distrito Federal, 70910900, Brazil
| | - Susannah S French
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
12
|
Jiménez AG, Nash-Braun E. Enzymatic responses reveal different physiological strategies employed by eurytolerant fish during extreme hot and cold cycling acclimation temperatures. J Therm Biol 2023; 114:103578. [PMID: 37344032 DOI: 10.1016/j.jtherbio.2023.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 06/23/2023]
Abstract
Heat waves and cold snaps are projected to rise in magnitude, duration, interval, and harshness in the coming years. The current literature examining thermal impacts on the physiology of organisms rarely uses chronic, variable thermal acclimations despite the fact that climate change predictions project a more variable environment. If we are to determine species' susceptibility to climate change, chronic and variable lab acclimations should be prioritized. Here, we acclimated the eurytolerant sheepshead minnow (Cyprinodon variegatus) to two extreme cycling thermal regimes: one warm [resting 27 °C with a spike to 33 °C for 8 h daily], one cold [resting 6.5 °C with a spike to 12 °C for 8 h daily], and three chronically stable conditions (10, 22, and 30 °C) for comparison. We measured enzymatic antioxidants (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)), total antioxidant capacity, lipid peroxidation (LPO) damage, and citrate synthase (CS) activity in white epaxial muscle. Of particular note, we found significant increases in log CAT activity and SOD concentration in the warm cycling temperatures, and significant increases in GPx activity in the cold cycling temperatures. We found no significant accumulation of LPO damage in any of our thermal acclimation treatments. Thus, sheepshead minnows demonstrate two particularly different mechanisms towards dealing with thermal variation in low and high temperatures. The enzymatic differences between low and high cycling temperatures may define pathways of eurytolerant organisms and how they may survive predicted variability in thermal regimes.
Collapse
Affiliation(s)
- Ana Gabriela Jiménez
- Colgate University, Department of Biology, 13 Oak Dr., Hamilton, NY, 133546, USA.
| | - Evan Nash-Braun
- Colgate University, Department of Biology, 13 Oak Dr., Hamilton, NY, 133546, USA
| |
Collapse
|
13
|
Li D, Shen L, Zhang D, Wang X, Wang Q, Qin W, Gao Y, Li X. Ammonia-induced oxidative stress triggered proinflammatory response and apoptosis in pig lungs. J Environ Sci (China) 2023; 126:683-696. [PMID: 36503793 DOI: 10.1016/j.jes.2022.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/17/2023]
Abstract
Ammonia, a common toxic gas, is not only one of the main causes of haze, but also can enter respiratory tract and directly affect the health of humans and animals. Pig was used as an animal model for exploring the molecular mechanism and dose effect of ammonia toxicity to lung. In this study, the apoptosis of type II alveolar epithelial cells was observed in high ammonia exposure group using transmission electron microscopy. Gene and protein expression analysis using transcriptome sequencing and western blot showed that low ammonia exposure induced T-cell-involved proinflammatory response, but high ammonia exposure repressed the expression of DNA repair-related genes and affected ion transport. Moreover, high ammonia exposure significantly increased 8-hydroxy-2-deoxyguanosine (8-OHdG) level, meaning DNA oxidative damage occurred. In addition, both low and high ammonia exposure caused oxidative stress in pig lungs. Integrated analysis of transcriptome and metabolome revealed that the up-regulation of LDHB and ND2 took part in high ammonia exposure-affected pyruvate metabolism and oxidative phosphorylation progress, respectively. Inclusion, oxidative stress mediated ammonia-induced proinflammatory response and apoptosis of porcine lungs. These findings may provide new insights for understanding the ammonia toxicity to workers in livestock farms and chemical fertilizer plants.
Collapse
Affiliation(s)
- Daojie Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Shen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaotong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Qin
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Gao
- College of Engineering, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Zhang H, Zhang X, Xu T, Li X, Storey KB, Chen Q, Niu Y. Effects of acute heat exposure on oxidative stress and antioxidant defenses in overwintering frogs, Nanorana parkeri. J Therm Biol 2022; 110:103355. [DOI: 10.1016/j.jtherbio.2022.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
|
15
|
Reinke BA, Cayuela H, Janzen FJ, Lemaître JF, Gaillard JM, Lawing AM, Iverson JB, Christiansen DG, Martínez-Solano I, Sánchez-Montes G, Gutiérrez-Rodríguez J, Rose FL, Nelson N, Keall S, Crivelli AJ, Nazirides T, Grimm-Seyfarth A, Henle K, Mori E, Guiller G, Homan R, Olivier A, Muths E, Hossack BR, Bonnet X, Pilliod DS, Lettink M, Whitaker T, Schmidt BR, Gardner MG, Cheylan M, Poitevin F, Golubović A, Tomović L, Arsovski D, Griffiths RA, Arntzen JW, Baron JP, Le Galliard JF, Tully T, Luiselli L, Capula M, Rugiero L, McCaffery R, Eby LA, Briggs-Gonzalez V, Mazzotti F, Pearson D, Lambert BA, Green DM, Jreidini N, Angelini C, Pyke G, Thirion JM, Joly P, Léna JP, Tucker AD, Limpus C, Priol P, Besnard A, Bernard P, Stanford K, King R, Garwood J, Bosch J, Souza FL, Bertoluci J, Famelli S, Grossenbacher K, Lenzi O, Matthews K, Boitaud S, Olson DH, Jessop TS, Gillespie GR, Clobert J, Richard M, Valenzuela-Sánchez A, Fellers GM, Kleeman PM, Halstead BJ, Grant EHC, Byrne PG, Frétey T, Le Garff B, Levionnois P, Maerz JC, Pichenot J, Olgun K, Üzüm N, Avcı A, Miaud C, Elmberg J, Brown GP, Shine R, Bendik NF, O'Donnell L, Davis CL, Lannoo MJ, Stiles RM, et alReinke BA, Cayuela H, Janzen FJ, Lemaître JF, Gaillard JM, Lawing AM, Iverson JB, Christiansen DG, Martínez-Solano I, Sánchez-Montes G, Gutiérrez-Rodríguez J, Rose FL, Nelson N, Keall S, Crivelli AJ, Nazirides T, Grimm-Seyfarth A, Henle K, Mori E, Guiller G, Homan R, Olivier A, Muths E, Hossack BR, Bonnet X, Pilliod DS, Lettink M, Whitaker T, Schmidt BR, Gardner MG, Cheylan M, Poitevin F, Golubović A, Tomović L, Arsovski D, Griffiths RA, Arntzen JW, Baron JP, Le Galliard JF, Tully T, Luiselli L, Capula M, Rugiero L, McCaffery R, Eby LA, Briggs-Gonzalez V, Mazzotti F, Pearson D, Lambert BA, Green DM, Jreidini N, Angelini C, Pyke G, Thirion JM, Joly P, Léna JP, Tucker AD, Limpus C, Priol P, Besnard A, Bernard P, Stanford K, King R, Garwood J, Bosch J, Souza FL, Bertoluci J, Famelli S, Grossenbacher K, Lenzi O, Matthews K, Boitaud S, Olson DH, Jessop TS, Gillespie GR, Clobert J, Richard M, Valenzuela-Sánchez A, Fellers GM, Kleeman PM, Halstead BJ, Grant EHC, Byrne PG, Frétey T, Le Garff B, Levionnois P, Maerz JC, Pichenot J, Olgun K, Üzüm N, Avcı A, Miaud C, Elmberg J, Brown GP, Shine R, Bendik NF, O'Donnell L, Davis CL, Lannoo MJ, Stiles RM, Cox RM, Reedy AM, Warner DA, Bonnaire E, Grayson K, Ramos-Targarona R, Baskale E, Muñoz D, Measey J, de Villiers FA, Selman W, Ronget V, Bronikowski AM, Miller DAW. Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity. Science 2022; 376:1459-1466. [PMID: 35737773 DOI: 10.1126/science.abm0151] [Show More Authors] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.
Collapse
Affiliation(s)
- Beth A Reinke
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
- Department of Ecosystem Science and Management, Pennsylvania State University, State College, PA, USA
| | - Hugo Cayuela
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Fredric J Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | | | - Jean-Michel Gaillard
- Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - A Michelle Lawing
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, IN, USA
| | - Ditte G Christiansen
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Iñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gregorio Sánchez-Montes
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Jorge Gutiérrez-Rodríguez
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Francis L Rose
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Nicola Nelson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Susan Keall
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Alain J Crivelli
- Research Institute for the Conservation of Mediterranean Wetlands, Tour du Valat, Arles, France
| | | | - Annegret Grimm-Seyfarth
- Department Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Klaus Henle
- Department Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Emiliano Mori
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Sesto Fiorentino, Italy
| | | | - Rebecca Homan
- Biology Department, Denison University, Granville, OH, USA
| | - Anthony Olivier
- Research Institute for the Conservation of Mediterranean Wetlands, Tour du Valat, Arles, France
| | - Erin Muths
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - Blake R Hossack
- US Geological Survey, Northern Rocky Mountain Science Center, Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Xavier Bonnet
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372 - Université de La Rochelle, Villiers-en-Bois, France
| | - David S Pilliod
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| | | | | | - Benedikt R Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Info Fauna Karch, Neuchâtel, Switzerland
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, Australia
| | - Marc Cheylan
- PSL Research University, Université de Montpellier, Université Paul-Valéry, Montpellier, France
| | - Françoise Poitevin
- PSL Research University, Université de Montpellier, Université Paul-Valéry, Montpellier, France
| | - Ana Golubović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Tomović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Richard A Griffiths
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | | | - Jean-Pierre Baron
- Ecole normale supérieure, PSL University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France
| | - Jean-François Le Galliard
- Ecole normale supérieure, PSL University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France
- Sorbonne Université, CNRS, INRA, UPEC, IRD, Institute of Ecology and Environmental Sciences, iEES-Paris, Paris, France
| | - Thomas Tully
- Sorbonne Université, CNRS, INRA, UPEC, IRD, Institute of Ecology and Environmental Sciences, iEES-Paris, Paris, France
| | - Luca Luiselli
- Institute for Development, Ecology, Conservation and Cooperation, Rome, Italy
- Department of Animal and Applied Biology, Rivers State University of Science and Technology, Port Harcourt, Nigeria
- Department of Zoology, University of Lomé, Lomé, Togo
| | | | - Lorenzo Rugiero
- Institute for Development, Ecology, Conservation and Cooperation, Rome, Italy
| | - Rebecca McCaffery
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Port Angeles, WA, USA
| | - Lisa A Eby
- Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Venetia Briggs-Gonzalez
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, USA
| | - Frank Mazzotti
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, USA
| | - David Pearson
- Department of Biodiversity, Conservation and Attractions, Wanneroo, WA, Australia
| | - Brad A Lambert
- Colorado Natural Heritage Program, Colorado State University, Fort Collins, CO, USA
| | - David M Green
- Redpath Museum, McGill University, Montreal, QC, Canada
| | | | | | - Graham Pyke
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, CN, Kunming, PR China
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Pierre Joly
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Jean-Paul Léna
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Anton D Tucker
- Department of Biodiversity, Conservation and Attractions, Parks and Wildlife Service-Marine Science Program, Kensington, WA, Australia
| | - Col Limpus
- Threatened Species Operations, Queensland Department of Environment and Science, Ecosciences Precinct, Dutton Park, QLD, Australia
| | | | - Aurélien Besnard
- CNRS, EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, PSL Research University, Montpelier, France
| | - Pauline Bernard
- Conservatoire d'espaces naturels d'Occitanie, Montpellier, France
| | - Kristin Stanford
- Ohio Sea Grant and Stone Laboratory, The Ohio State University, Put-In-Bay, OH, USA
| | - Richard King
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Justin Garwood
- California Department of Fish and Wildlife, Arcata, CA, USA
| | - Jaime Bosch
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- IMIB-Biodiversity Research Unit, University of Oviedo-Principality of Asturias, Mieres, Spain
- Centro de Investigación, Seguimiento y Evaluación, Sierra de Guadarrama National Park, Rascafría, Spain
| | - Franco L Souza
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Jaime Bertoluci
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, São Paulo, Brazil
| | - Shirley Famelli
- School of Science, RMIT University, Melbourne, VIC, Australia
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Thurso, Scotland, UK
| | | | - Omar Lenzi
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Kathleen Matthews
- USDA Forest Service (Retired), Pacific Southwest Research Station, Albany, CA, USA
| | - Sylvain Boitaud
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Deanna H Olson
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, USA
| | - Tim S Jessop
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Geelong, VIC, Australia
| | - Graeme R Gillespie
- Department of Environment and Natural Resources, Palmerston, NT, Australia
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS-UMR532, Saint Girons, France
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS-UMR532, Saint Girons, France
| | - Andrés Valenzuela-Sánchez
- Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile
- ONG Ranita de Darwin, Valdivia, Chile
| | - Gary M Fellers
- US Geological Survey, Western Ecological Research Center, Point Reyes National Seashore, Point Reyes, CA, USA
| | - Patrick M Kleeman
- US Geological Survey, Western Ecological Research Center, Point Reyes National Seashore, Point Reyes, CA, USA
| | - Brian J Halstead
- US Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Evan H Campbell Grant
- US Geological Survey Eastern Ecological Research Center (formerly Patuxent Wildlife Research Center), S.O. Conte Anadromous Fish Research Center, Turners Falls, MA, USA
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | | - John C Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Julian Pichenot
- Université de Reims Champagne-Ardenne, Centre de Recherche et de Formation en Eco-éthologie, URCA-CERFE, Boult-aux-Bois, France
| | - Kurtuluş Olgun
- Department of Biology, Faculty of Science and Arts, Aydın Adnan Menderes University, Aydın, Turkey
| | - Nazan Üzüm
- Department of Biology, Faculty of Science and Arts, Aydın Adnan Menderes University, Aydın, Turkey
| | - Aziz Avcı
- Department of Biology, Faculty of Science and Arts, Aydın Adnan Menderes University, Aydın, Turkey
| | - Claude Miaud
- PSL Research University, Université de Montpellier, Université Paul-Valéry, Montpellier, France
| | - Johan Elmberg
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nathan F Bendik
- Watershed Protection Department, City of Austin, Austin, TX, USA
| | - Lisa O'Donnell
- Balcones Canyonlands Preserve, City of Austin, Austin, TX, USA
| | | | | | | | - Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Aaron M Reedy
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Eric Bonnaire
- Office National des Forêts, Agence de Meurthe-et-Moselle, Nancy, France
| | - Kristine Grayson
- Department of Biology, University of Richmond, Richmond, VA, USA
| | | | - Eyup Baskale
- Department of Biology, Faculty of Science and Arts, Pamukkale University, Denizli, Turkey
| | - David Muñoz
- Department of Ecosystem Science and Management, Pennsylvania State University, State College, PA, USA
| | - John Measey
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - F Andre de Villiers
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Will Selman
- Department of Biology, Millsaps College, Jackson, MS, USA
| | - Victor Ronget
- Unité Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Diderot, Paris, France
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - David A W Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
16
|
Junker RR, Albrecht J, Becker M, Keuth R, Farwig N, Schleuning M. Towards an animal economics spectrum for ecosystem research. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert R. Junker
- Evolutionary Ecology of Plants Department of Biology University of Marburg 35043 Marburg Germany
- Department of Environment and Biodiversity University of Salzburg 5020 Salzburg Austria
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Marcel Becker
- Conservation Ecology Department of Biology University of Marburg 35043 Marburg Germany
| | - Raya Keuth
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Nina Farwig
- Conservation Ecology Department of Biology University of Marburg 35043 Marburg Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberganlage 25 60325 Frankfurt am Main Germany
| |
Collapse
|
17
|
Seebacher F, Little AG. Plasticity of Performance Curves in Ectotherms: Individual Variation Modulates Population Responses to Environmental Change. Front Physiol 2021; 12:733305. [PMID: 34658917 PMCID: PMC8513571 DOI: 10.3389/fphys.2021.733305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Many ectothermic animals can respond to changes in their environment by altering the sensitivities of physiological rates, given sufficient time to do so. In other words, thermal acclimation and developmental plasticity can shift thermal performance curves so that performance may be completely or partially buffered against the effects of environmental temperature changes. Plastic responses can thereby increase the resilience to temperature change. However, there may be pronounced differences between individuals in their capacity for plasticity, and these differences are not necessarily reflected in population means. In a bet-hedging strategy, only a subsection of the population may persist under environmental conditions that favour either plasticity or fixed phenotypes. Thus, experimental approaches that measure means across individuals can not necessarily predict population responses to temperature change. Here, we collated published data of 608 mosquitofish (Gambusia holbrooki) each acclimated twice, to a cool and a warm temperature in random order, to model how diversity in individual capacity for plasticity can affect populations under different temperature regimes. The persistence of both plastic and fixed phenotypes indicates that on average, neither phenotype is selectively more advantageous. Fish with low acclimation capacity had greater maximal swimming performance in warm conditions, but their performance decreased to a greater extent with decreasing temperature in variable environments. In contrast, the performance of fish with high acclimation capacity decreased to a lesser extent with a decrease in temperature. Hence, even though fish with low acclimation capacity had greater maximal performance, high acclimation capacity may be advantageous when ecologically relevant behaviour requires submaximal locomotor performance. Trade-offs, developmental effects and the advantages of plastic phenotypes together are likely to explain the observed population variation.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Alexander G Little
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON, Canada
| |
Collapse
|
18
|
Ritchie DJ, Friesen CR. Invited review: Thermal effects on oxidative stress in vertebrate ectotherms. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111082. [PMID: 34571153 DOI: 10.1016/j.cbpa.2021.111082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Human-induced climate change is occurring rapidly. Ectothermic organisms are particularly vulnerable to these temperature changes due to their reliance on environmental temperature. The extent of ectothermic thermal adaptation and plasticity in the literature is well documented; however, the role of oxidative stress in these processes needs more attention. Oxidative stress occurs when reactive oxygen species, generated mainly through aerobic respiration, overwhelm antioxidant defences and damage crucial biomolecules. The effects of oxidative damage include the alteration of life-history traits and reductions in whole-organism fitness. Here we review the literature addressing experimental temperature effects on oxidative stress in vertebrate ectotherms. Acute and acclimation temperature treatments produce distinctly different results and highlight the role of phylogeny and thermal adaptation in shaping oxidative stress responses. Acute treatments on organisms adapted to stable environments generally produced significant oxidative stress responses, whilst organisms adapted to variable conditions exhibited capacity to cope with temperature changes and mitigate oxidative stress. In acclimation treatments, the temperature treatments higher than optimal temperatures tended to produce significantly less oxidative stress than lower temperatures in reptiles, whilst in some eurythermal fish species, no oxidative stress response was observed. These results highlight the importance of phylogeny and adaptation to past environmental conditions for temperature-dependent oxidative stress responses. We conclude with recommendations on experimental procedures to investigate these phenomena with reference to thermal plasticity, adaptation and biogeographic variation that provide the most significant benefits to adaptable populations. These results have potential conservation ramifications as they may shed light on the physiological effects of temperature alterations in some vertebrate ectotherms.
Collapse
Affiliation(s)
- Daniel J Ritchie
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia
| | - Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia; School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Bldg A08, Science Road, Sydney, NSW 2006, Australia.
| |
Collapse
|
19
|
The effect of long-term cold acclimation on redox state and antioxidant defense in the high-altitude frog, Nanorana pleskei. J Therm Biol 2021; 99:103008. [PMID: 34420638 DOI: 10.1016/j.jtherbio.2021.103008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/27/2023]
Abstract
Cold hardiness is a key determinant of the distribution and abundance of ectothermic animals, and thermal acclimation can strongly influence stress tolerance phenotypes. However, the effect of cold acclimation on oxidative stress and antioxidant defenses is still not well understood. Here, we investigated the effects of long-term cold exposure (30 days at 4 °C in darkness versus 30 days at 20 °C in natural light) on the redox state and antioxidant defenses of the high-altitude frog, Nanorana pleskei, indigenous to the Tibetan plateau. We found that cold acclimation, under conditions mimicking winter, led to a significant increase in the ratio of oxidized glutathione (GSSG) to its reduced form (GSH) in liver and skeletal muscle tissues, suggesting that cold exposure induced oxidative stress in this species. Furthermore, malondialdehyde (MDA) contents were significantly augmented in heart, liver and muscle, indicating cold-related oxidative damage in these tissues. In the brain, GST activity, total antioxidant capacity (T-AOC), and vitamin C content showed a significant reduction after cold acclimation. In liver, an apparent decrease was also observed in the activities of SOD and GST, as well as T-AOC, whereas CAT and GPX activities showed a prominent increase in cold-acclimated groups. In kidney, there was a significant decrease in most antioxidant enzyme activities except for SOD and GST activity. In skeletal muscle, the activity of SOD, CAT, GR as well as T-AOC significantly decreased but GPX activity showed a significant increase in cold-acclimated frogs. These findings indicate that, in general, cold acclimation induces a suppression of the antioxidant defense system. Overall, our present study systematically describes the responses of antioxidant defenses to long-term cold acclimation and these findings contribute to extending the current understanding of the mechanisms of cold tolerance in high-altitude frogs.
Collapse
|
20
|
Bury S. Energy expenses on prey processing are comparable, but paid at a higher metabolic scope and for a longer time in ambush vs active predators: a multispecies study on snakes. Oecologia 2021; 197:61-70. [PMID: 34392416 PMCID: PMC8445871 DOI: 10.1007/s00442-021-05014-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/05/2021] [Indexed: 12/04/2022]
Abstract
Snakes are characterized by distinct foraging strategies, from ambush to active hunting, which can be predicted to substantially affect the energy budget as a result of differential activity rates and feeding frequencies. Intense foraging activity and continuously upregulated viscera as a result of frequent feeding leads to a higher standard metabolic rate (SMR) in active than in ambush predators. Conversely, the costs of digestion (Specific Dynamic Action—SDA) are expected to be higher in ambush predators following the substantial remodelling of the gut upon ingestion of a meal after a long fasting period. This prediction was tested on an interspecific scale using a large multispecies dataset (> 40 species) obtained from published sources. I found that the metabolic scope and duration of SDA tended to reach higher values in ambush than in active predators, which probably reflects the greater magnitude of postprandial physiological upregulation in the former. In contrast, the SDA energy expenditure appeared to be unrelated to the foraging mode. The costs of visceral activation conceivably are not negligible, but represent a minor part of the total costs of digestion, possibly not large enough to elicit a foraging-mode driven variation in SDA energy expenditure. Non-mutually exclusive is that the higher costs of structural upregulation in ambush predators are balanced by the improved, thus potentially less expensive, functional performance of the more efficient intestines. I finally suggest that ambush predators may be less susceptible than active predators to the metabolic ‘meltdown effect’ driven by climate change.
Collapse
Affiliation(s)
- Stanisław Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
21
|
Liu X, Liu X, Wang Y, Sun H, Guo Z, Tang X, Li J, Xiao X, Zheng S, Yu M, He C, Xu J, Sun W. Proteome Characterization of Glaucoma Aqueous Humor. Mol Cell Proteomics 2021; 20:100117. [PMID: 34214668 PMCID: PMC8367844 DOI: 10.1016/j.mcpro.2021.100117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 12/02/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. The proteome characterization of glaucoma is not clearly understood. A total of 175 subjects, including 57 primary acute angle-closure glaucoma (PAACG), 50 primary chronic angle-closure glaucoma (PCACG), 35 neovascular glaucoma (NVG), and 33 cataract patients, were enrolled and comparison proteomic analysis was provided. The samples were randomly divided into discovery group or validation group, whose aqueous humor proteome was analyzed by data-independent acquisition or by parallel reaction monitoring. The common proteome features of three types of glaucoma were immune response, lipid metabolism, and cell death. Three proteins, VTN, SERPIND1, and CD14, showed significant upregulation in glaucoma and could discriminate glaucoma from cataract. Mutual differential proteomic analysis of PAACG, PCACG, and NVG showed different proteome characterization of the three types of glaucoma. NVG was characterized with activated angiogenesis. PAACG was characterized with activation of inflammation response. SERPIND1 was discovered to play vital role in glaucoma occurrences, which is associated with eye transparency decrease and glucose metabolism. This study would provide insights in understanding proteome characterization of glaucoma and benefit the clinical application of AH proteome. Aqueous humor proteome of different glaucoma (PACG, NVG) was profiled. Potential protein biomarkers for glaucoma were proposed. Potential mechanism of glaucoma was described. SERPIND1 was discovered to have potential value for glaucoma diagnosis.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Proteomics Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Proteomics Center, Chinese Academy of Medical Sciences, Beijing, China; Application Support Center, Shanghai AB Sciex Analytical Instrument Trading Co, Ltd, Shanghai, China
| | - Ying Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Haidan Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Proteomics Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengguang Guo
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Proteomics Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyue Tang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaolian Xiao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shuxin Zheng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Mengxi Yu
- Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chengyan He
- Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiyu Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Proteomics Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Lee HS, Song MW, Kim KT, Hong WS, Paik HD. Antioxidant Effect and Sensory Evaluation of Yogurt Supplemented with Hydroponic Ginseng Root Extract. Foods 2021; 10:639. [PMID: 33802997 PMCID: PMC8002633 DOI: 10.3390/foods10030639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Hydroponic ginseng (HG) is cultivated using only nutrients and water under constant environmental conditions and is more beneficial than soil-cultured ginseng (SG). This study aimed to determine the physicochemical properties, antioxidant activity, and sensory properties of HG-supplemented yogurt to develop high-value yogurt. HG (0.1%, 0.5%, and 1.0%) was added to yogurt formulations and fermented with a 0.1% starter. Antioxidant activities were determined using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, reducing power, and ferric reducing antioxidant power assays. Semi-trained panelists performed a quantitative descriptive analysis for sensory evaluation. The number of starter cells increased more rapidly in ginseng extract-fortified yogurt than in the control group, shortening fermentation time. Regarding antioxidant assays, all HG extract-fortified yogurts showed higher antioxidant activity than the control group. In particular, the HG (0.5%) group showed better results than the SG group in the DPPH and reducing power assays, although the difference was not significant. The sensory scores of color, flavor, texture, taste, and overall acceptance of 0.5% HG-supplemented yogurt did not differ significantly from those of non-supplemented yogurt (control). This suggests that HG can be used in high-value dairy products as a supplement with bioactive properties for health in the food industry.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Foodservice Management and Nutrition, Sangmyung University, Seoul 51767, Korea
| | - Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Wan-Soo Hong
- Department of Foodservice Management and Nutrition, Sangmyung University, Seoul 51767, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
23
|
Ensminger DC, Salvador-Pascual A, Arango BG, Allen KN, Vázquez-Medina JP. Fasting ameliorates oxidative stress: A review of physiological strategies across life history events in wild vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110929. [PMID: 33647461 DOI: 10.1016/j.cbpa.2021.110929] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Fasting is a component of many species' life history due to environmental factors or behavioral patterns that limit access to food. Despite metabolic and physiological challenges associated with these life history stages, fasting-adapted wild vertebrates exhibit few if any signs of oxidative stress, suggesting that fasting promotes redox homeostasis. Here we review mammalian, avian, reptilian, amphibian, and piscine examples of animals undergoing fasting during prolonged metabolic suppression (e.g. hibernation and estivation) or energetically demanding processes (e.g. migration and breeding) to better understand the mechanisms underlying fasting tolerance in wild vertebrates. These studies largely show beneficial effects of fasting on redox balance via limited oxidative damage. Though some species exhibit signs of oxidative stress due to energetically or metabolically extreme processes, fasting wild vertebrates largely buffer themselves from the negative consequences of oxidative damage through specific strategies such as elevating antioxidants, selectively maintaining redox balance in critical tissues, or modifying behavioral patterns. We conclude with suggestions for future research to better elucidate the protective effects of fasting on oxidative stress as well as disentangle the impacts from other life history stages. Further research in these areas will facilitate our understanding of the mechanisms wild vertebrates use to mitigate the negative impacts associated with metabolically-extreme life history stages as well as potential translation into therapeutic interventions in non-fasting-adapted species including humans.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - B Gabriela Arango
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, USA
| | | |
Collapse
|
24
|
Bury S. Sex-specific growth is mirrored in feeding rate but not moulting frequency in a sexually dimorphic snake. Naturwissenschaften 2021; 108:6. [PMID: 33415456 DOI: 10.1007/s00114-020-01712-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
Sexual size dimorphism (SSD), commonly observed in snakes, may arise from a different growth rate between the sexes. This indicates a sex-specific resource intake that is in fact observable in free-living snakes. It is not so well known whether the sexes can express differential feeding rates under conditions unconstrained by spatial accessibility, competition, etc. Here, I studied sex-specific variation in growth, its correlate-moulting frequency, and feeding rate in a captive group of sexually dimorphic banded water snakes (Nerodia fasciata) with access to food unconstrained by predation, competition or space. I showed that the sexes did indeed differ in relative mass growth in that females grew faster than males (p = 0.02), but such differences were not apparent in the moulting rate (p = 0.19). Such differential growth was mirrored in the sex-specific feeding rate, with females ingesting a larger number of meals than males (p = 0.004). Such variation in feeding rate may be governed by an individual's energy expenditure and can be interpreted as a behavioural tendency that contributes to SSD development, independently of other behavioural characteristics. Sex-specific resource demands may drive the differential effects of increasing resource scarcity on both sexes.
Collapse
Affiliation(s)
- Stanisław Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland. .,Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland. .,NATRIX Herpetological Association, Legnicka 65, 54-206, Wrocław, Poland.
| |
Collapse
|
25
|
Schwanz LE, Crawford-Ash J, Gale T. Context dependence of transgenerational plasticity: the influence of parental temperature depends on offspring environment and sex. Oecologia 2020; 194:391-401. [DOI: 10.1007/s00442-020-04783-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/09/2020] [Indexed: 01/13/2023]
|
26
|
Bury S, Cierniak A, Jakóbik J, Sadowska ET, Cichoń M, Bauchinger U. Cellular Turnover: A Potential Metabolic Rate-Driven Mechanism to Mitigate Accumulation of DNA Damage. Physiol Biochem Zool 2020; 93:90-96. [PMID: 32011970 DOI: 10.1086/707506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxidative stress, the imbalance of reactive oxygen species and antioxidant capacity, may cause damage to biomolecules pivotal for cellular processes (e.g., DNA). This may impair physiological performance and, therefore, drive life-history variation and aging rate. Because aerobic metabolism is supposed to be the main source of such oxidative risk, the rate of oxygen consumption should be positively associated with the level of damage and/or antioxidants. Empirical support for such relationships remains unclear, and recent considerations suggest even a negative relationship between metabolic rate and oxidative stress. We investigated the relationship between standard metabolic rate (SMR), antioxidants, and damage in blood plasma and erythrocytes for 35 grass snakes (Natrix natrix). Reactive oxygen metabolites (dROMs) and nonenzymatic antioxidants were assessed in plasma, while two measures of DNA damage and the capacity to neutralize H2O2 were measured in erythrocytes. Plasma antioxidants showed no correlation to SMR, and the level of dROMs was positively related to SMR. A negative relationship between antioxidant capacity and SMR was found in erythrocytes, but no association of SMR with either measure of DNA damage was detected. No increase in DNA damage, despite lower antioxidant capacity at high SMR, indicates an upregulation in other defense mechanisms (e.g., damage repair and/or removal). Indeed, we observed a higher frequency of immature red blood cells in individuals with higher SMR, which indicates that highly metabolic individuals had increased erythrocyte turnover, a mechanism of damage removal. Such DNA protection through upregulated cellular turnover might explain the negligible senescence observed in some ectotherm taxa.
Collapse
|
27
|
Ebner JN, Ritz D, von Fumetti S. Comparative proteomics of stenotopic caddisfly Crunoecia irrorata identifies acclimation strategies to warming. Mol Ecol 2019; 28:4453-4469. [PMID: 31478292 PMCID: PMC6856850 DOI: 10.1111/mec.15225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Species' ecological preferences are often deduced from habitat characteristics thought to represent more or less optimal conditions for physiological functioning. Evolution has led to stenotopic and eurytopic species, the former having decreased niche breadths and lower tolerances to environmental variability. Species inhabiting freshwater springs are often described as being stenotopic specialists, adapted to the stable thermal conditions found in these habitats. Whether due to past local adaptation these species have evolved or have lost intra-generational adaptive mechanisms to cope with increasing thermal variability has, to our knowledge, never been investigated. By studying how the proteome of a stenotopic species changes as a result of increasing temperatures, we investigate if the absence or attenuation of molecular mechanisms is indicative of local adaptation to freshwater springs. An understanding of compensatory mechanisms is especially relevant as spring specialists will experience thermal conditions beyond their physiological limits due to climate change. In this study, the stenotopic species Crunoecia irrorata (Trichoptera: Lepidostomatidae, Curtis 1834) was acclimated to 10, 15 and 20°C for 168 hr. We constructed a homology-based database and via liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based shotgun proteomics identified 1,358 proteins. Differentially abundant proteins and protein norms of reaction revealed candidate proteins and molecular mechanisms facilitating compensatory responses such as trehalose metabolism, tracheal system alteration and heat-shock protein regulation. A species-specific understanding of compensatory physiologies challenges the characterization of species as having narrow tolerances to environmental variability if that characterization is based on occurrences and habitat characteristics alone.
Collapse
Affiliation(s)
- Joshua N. Ebner
- Geoecology Research GroupDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Danilo Ritz
- Proteomics Core FacilityBiozentrumUniversity of BaselBaselSwitzerland
| | - Stefanie von Fumetti
- Geoecology Research GroupDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
28
|
Bury S, Bury A, Sadowska ET, Cichoń M, Bauchinger U. More than just the numbers-contrasting response of snake erythrocytes to thermal acclimation. Naturwissenschaften 2019; 106:24. [PMID: 31069520 DOI: 10.1007/s00114-019-1617-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/29/2019] [Accepted: 04/11/2019] [Indexed: 11/29/2022]
Abstract
Acclimation to lower temperatures decreases energy expenditure in ectotherms but increases oxygen consumption in most endotherms, when dropped below thermoneutrality. Such differences should be met by adjustments in oxygen transport through blood. Changes in hematological variables in correspondence to that in metabolic rates are, however, not fully understood, particularly in non-avian reptiles. We investigated the effect of thermal acclimation on a snake model, the grass snakes (Natrix natrix). After 6 months of acclimation to either 18 °C or 32 °C hematocrit, hemoglobin concentration, erythrocyte number, and size were assessed. All variables revealed significantly lower values under warm compared to cold ambient temperature. Our data suggest that non-avian reptiles, similarly as birds, reduce erythrocyte fraction under energy-demanding temperatures. Due to low deformability of nucleated erythrocytes in sauropsids, such reduced fraction may be important in decreasing blood viscosity to optimize blood flow. Novel findings on flexible erythrocyte size provide an important contribution to this optimization process.
Collapse
Affiliation(s)
- Stanisław Bury
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.
| | - Agata Bury
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Mariusz Cichoń
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| |
Collapse
|
29
|
Kim KT, Hwang JE, Eum SJ, Paik HD. Physiochemical Analysis, Antioxidant Effects, and Sensory Characteristics of Quark Cheese Supplemented with Ginseng Extract. Food Sci Anim Resour 2019; 39:324-331. [PMID: 31149673 PMCID: PMC6533402 DOI: 10.5851/kosfa.2019.e26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/14/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to evaluate physicochemical and sensory
properties, the texture profile, and antioxidant activity of ginseng
extract-supplemented quark cheese as a new cheese product intended to improve
public health. After addition of less than 1.0% ginseng extract, the
moisture content of quark significantly decreased, while fat and protein levels
increased, although microbial counts and lactose and ash contents were not
affected significantly (p<0.05). In terms of color, L* values decreased
significantly with increasing concentration of ginseng extract, while a* values
increased significantly (p<0.05). The results of texture profiling showed
that cohesiveness and springiness were unaffected, whereas hardness, gumminess,
and chewiness increased significantly. The
2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS)
radical-scavenging activities of the cheese fortified with 0%,
0.5%, or 1.0% of the ginseng extract were
4.22%±0.12%, 20.14%±1.34%, and
56.32%±1.54%, respectively. The results of sensory analysis
indicated that bitterness, ginseng odor, and aftertaste significantly improved
with increasing concentration of ginseng extract (p<0.05). However, there
was no significant difference in the overall quality attributes of quark cheese
between the no-supplement control and samples with less than 0.5% of the
ginseng extract (p>0.05), suggesting that these products could help to
promote public health as functional foods.
Collapse
Affiliation(s)
- Kee-Tae Kim
- Research Laboratory, WithBio Inc., Seoul 05029, Korea
| | - Ji Eun Hwang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Su Jin Eum
- Division of Strategic Food Research, Korea Food Research Institute, Wanju 55365, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|