1
|
Martínez-Rojas PP, Monroy-Martínez V, Agredano-Moreno LT, Jiménez-García LF, Ruiz-Ordaz BH. Zika Virus-Infected Monocyte Exosomes Mediate Cell-to-Cell Viral Transmission. Cells 2024; 13:144. [PMID: 38247836 PMCID: PMC10814160 DOI: 10.3390/cells13020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/24/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Zika fever is a reemerging arthropod-borne viral disease; however, Zika virus (ZIKV) can be transmitted by other, non-vector means. Severe Zika fever is characterized by neurological disorders, autoimmunity, or congenital Zika syndrome. Monocytes are primary ZIKV targets in humans and, in response to infection, release extracellular vesicles like exosomes. Exosomes mediate intercellular communication and are involved in the virus's ability to circumvent the immune response, promoting pathological processes. This study aimed to evaluate the role of monocyte exosomes in cell-to-cell viral transmission. We isolated exosomes from ZIKV-infected monocytes (Mø exo ZIKV) by differential ultracentrifugation and identified them by nanoparticle tracking analysis; transmission electron microscopy; and CD63, CD81, TSG101, and Alix detection by cytofluorometry. Purified exosome isolates were obtained by uncoupling from paramagnetic beads or by treatment with UV radiation and RNase A. We found that Mø exo ZIKV carry viral RNA and E/NS1 proteins and that their interaction with naïve cells favors viral transmission, infection, and cell differentiation/activation. These data suggest that Mø exo ZIKV are an efficient alternative pathway for ZIKV infection. Knowledge of these mechanisms contributes to understanding the pathogenesis of severe disease and to the development of new vaccines and therapies.
Collapse
Affiliation(s)
- Pedro Pablo Martínez-Rojas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (P.P.M.-R.); (V.M.-M.)
| | - Verónica Monroy-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (P.P.M.-R.); (V.M.-M.)
| | - Lourdes Teresa Agredano-Moreno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Blanca H. Ruiz-Ordaz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (P.P.M.-R.); (V.M.-M.)
| |
Collapse
|
2
|
Martínez-Rojas PP, Quiroz-García E, Monroy-Martínez V, Agredano-Moreno LT, Jiménez-García LF, Ruiz-Ordaz BH. Participation of Extracellular Vesicles from Zika-Virus-Infected Mosquito Cells in the Modification of Naïve Cells' Behavior by Mediating Cell-to-Cell Transmission of Viral Elements. Cells 2020; 9:cells9010123. [PMID: 31947958 PMCID: PMC7016930 DOI: 10.3390/cells9010123] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
To date, no safe vaccine or antivirals for Zika virus (ZIKV) infection have been found. The pathogenesis of severe Zika, where host and viral factors participate, remains unclear. For the control of Zika, it is important to understand how ZIKV interacts with different host cells. Knowledge of the targeted cellular pathways which allow ZIKV to productively replicate and/or establish prolonged viral persistence contributes to novel vaccines and therapies. Monocytes and endothelial vascular cells are the main ZIKV targets. During the infection process, cells are capable of releasing extracellular vesicles (EVs). EVs are mediators of intercellular communication. We found that mosquito EVs released from ZIKV-infected (C6/36) cells carry viral RNA and ZIKV-E protein and are able to infect and activate naïve mosquito and mammalian cells. ZIKV C6/36 EVs promote the differentiation of naïve monocytes and induce a pro-inflammatory state with tumor necrosis factor-alpha (TNF-α) mRNA expression. ZIKV C6/36 EVs participate in endothelial vascular cell damage by inducing coagulation (TF) and inflammation (PAR-1) receptors at the endothelial surface of the cell membranes and promote a pro-inflammatory state with increased endothelial permeability. These data suggest that ZIKV C6/36 EVs may contribute to the pathogenesis of ZIKV infection in human hosts.
Collapse
Affiliation(s)
- Pedro Pablo Martínez-Rojas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Elizabeth Quiroz-García
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Verónica Monroy-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Lourdes Teresa Agredano-Moreno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Blanca H. Ruiz-Ordaz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
- Correspondence: or ; Tel.: +521-55-56228931
| |
Collapse
|
3
|
Abstract
The tick-borne pathogen Powassan virus is a rare cause of encephalitis in North America and the Russian Far East. The number of documented cases described since the discovery of Powassan virus in 1958 may be <150, although detection of cases has increased over the past decade. In the United States, the incidence of Powassan virus infections expanded from the estimated 1 case per year prior to 2005 to 10 cases per year during the subsequent decade. The increased detection rate may be associated with several factors, including enhanced surveillance, the availability of improved laboratory diagnostic methods, the expansion of the vector population, and, perhaps, altered human activities that lead to more exposure. Nonetheless, it remains unclear whether Powassan virus is indeed an emerging threat or if enzootic cycles in nature remain more-or-less stable with periodic fluctuations of host and vector population sizes. Despite the low disease incidence, the approximately 10% to 15% case fatality rate of neuroinvasive Powassan virus infection and the temporary or prolonged sequelae in >50% of survivors make Powassan virus a medical concern requiring the attention of public health authorities and clinicians. The medical importance of Powassan virus justifies more research on developing specific and effective treatments and prevention and control measures.
Collapse
Affiliation(s)
- Gábor Kemenesi
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
4
|
Tavakoli A, Esghaei M, Karbalaie Niya MH, Marjani A, Tabibzadeh A, Karimzadeh M, Monavari SH. A comprehensive review of Zika virus infection. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.5.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
5
|
Abstract
PURPOSE OF REVIEW Zika virus (ZIKV) is an arbovirus previously believed to cause only a mild and self-limiting illness. Recently, it has emerged as a new public health threat that caused a large outbreak in French Polynesia in 2013-2014 and since 2015 an explosive outbreak in Brazil, with an increase in severe congenital malformations (microcephaly) and neurological complications, mainly Guillain-Barré syndrome (GBS). Since then, it has spread through the Americas. On 1 February 2016, the WHO declared the ZIKV epidemic in Brazil a Public Health Emergency of International Concern. We reviewed the epidemiology of ZIKV infection, clinical presentations and diagnosis. We highlighted the clinical features and nonvector borne transmission of the virus. RECENT FINDINGS Association between ZIKV infection and severe foetal outcomes, including microcephaly and other birth defects; increased rate of GBS and other neurological complications due to the ongoing ZIKV outbreak; increased evidence to date of ZIKV being the only arbovirus linked to sexual transmission; the challenge of ZIKV diagnosis; and the need for a specific point-of care test in epidemic scenarios. SUMMARY The findings illustrate the emergence of a viral disease with the identification of new associated disorders, new modes of transmission, including maternal-foetal and sexual transmission.
Collapse
|
6
|
A Novel Pan- Flavivirus Detection and Identification Assay Based on RT-qPCR and Microarray. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28626758 PMCID: PMC5463098 DOI: 10.1155/2017/4248756] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The genus Flavivirus includes arthropod-borne viruses responsible for a large number of infections in humans and economically important animals. While RT-PCR protocols for specific detection of most Flavivirus species are available, there has been also a demand for a broad-range Flavivirus assay covering all members of the genus. It is particularly challenging to balance specificity at genus level with equal sensitivity towards each target species. In the present study, a novel assay combining a SYBR Green-based RT-qPCR with a low-density DNA microarray has been developed. Validation experiments confirmed that the RT-qPCR exhibited roughly equal sensitivity of detection and quantification for all flaviviruses tested. These PCR products are subjected to hybridization on a microarray carrying 84 different oligonucleotide probes that represent all known Flavivirus species. This assay has been used as a screening and confirmation tool for Flavivirus presence in laboratory and field samples, and it performed successfully in international External Quality Assessment of NAT studies. Twenty-six Flavivirus strains were tested with the assay, showing equivalent or superior characteristics compared with the original or even with species-specific RT-PCRs. As an example, test results on West Nile virus detection in a panel of 340 mosquito pool samples from Greece are presented.
Collapse
|
7
|
Aziz H, Zia A, Anwer A, Aziz M, Fatima S, Faheem M. Zika virus: Global health challenge, threat and current situation. J Med Virol 2017; 89:943-951. [PMID: 27862008 DOI: 10.1002/jmv.24731] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/24/2022]
Abstract
ZIKV has emerged as grave global health issue in the past few years. ZIKV was firstly isolated in 1947 from a rhesus sentinel monkey in the Zika forest in Uganda. It is usually transmitted by the bite of infected mosquitoes and infects skin fibroblasts, skin keratinocytes, etc. ZIKV until now was under reported because of its clinical similarity with the dengue and chikungunya. It is usually spread through the course of the sylvatic cycle. In this cycle, the virus or pathogen lifespan is spent between the wild animal and vectors. The intrinsic incubation period is not yet fully known but it is observed that the very first symptoms of ZIKV infection can appear or develop within 3-12 days of time period and usually subside within 7 days of time. There is a strong relationship between prenatal Zika virus infection and microcephaly; other serious brain anomalies to the infant or newborn are Guillain-Barré syndrome. To date no vaccines are available for ZIKV prevention hence only symptomatic treatment is recommended in infected patients. Usually ZIKV is detected by serologic (IgM ELISA), plaque reduction neutralization test (PRNT) along with in-house" molecular techniques (RT-PCR). ZIKV infection being imminent global health issue warrants strong protective measures to prevent it from becoming an epidemic. Early detection and prevention is the key to tackle this grave potential health hazard. J. Med. Virol. 89:943-951, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hafsa Aziz
- Nuclear Medicine Oncology and Radiotherapy Institute Islamabad, Islamabad, Pakistan
| | - Aadarash Zia
- Nuclear Medicine Oncology and Radiotherapy Institute Islamabad, Islamabad, Pakistan
| | - Amania Anwer
- Nuclear Medicine Oncology and Radiotherapy Institute Islamabad, Islamabad, Pakistan
| | - Muneeba Aziz
- Medical Doctor District Headquarter Hospital, Faisalabad, Pakistan
| | - Shazia Fatima
- Nuclear Medicine Oncology and Radiotherapy Institute Islamabad, Islamabad, Pakistan
| | - Muhammad Faheem
- Nuclear Medicine Oncology and Radiotherapy Institute Islamabad, Islamabad, Pakistan
| |
Collapse
|
8
|
Abstract
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) in the genus Flavivirus and the family Flaviviridae. ZIKV was first isolated from a nonhuman primate in 1947 and from mosquitoes in 1948 in Africa, and ZIKV infections in humans were sporadic for half a century before emerging in the Pacific and the Americas. ZIKV is usually transmitted by the bite of infected mosquitoes. The clinical presentation of Zika fever is nonspecific and can be misdiagnosed as other infectious diseases, especially those due to arboviruses such as dengue and chikungunya. ZIKV infection was associated with only mild illness prior to the large French Polynesian outbreak in 2013 and 2014, when severe neurological complications were reported, and the emergence in Brazil of a dramatic increase in severe congenital malformations (microcephaly) suspected to be associated with ZIKV. Laboratory diagnosis of Zika fever relies on virus isolation or detection of ZIKV-specific RNA. Serological diagnosis is complicated by cross-reactivity among members of the Flavivirus genus. The adaptation of ZIKV to an urban cycle involving humans and domestic mosquito vectors in tropical areas where dengue is endemic suggests that the incidence of ZIKV infections may be underestimated. There is a high potential for ZIKV emergence in urban centers in the tropics that are infested with competent mosquito vectors such as Aedes aegypti and Aedes albopictus.
Collapse
Affiliation(s)
- Didier Musso
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Tahiti, French Polynesia
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore Partnership for Dengue Control, Lyon, France
| |
Collapse
|
9
|
Moureau G, Cook S, Lemey P, Nougairede A, Forrester NL, Khasnatinov M, Charrel RN, Firth AE, Gould EA, de Lamballerie X. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One 2015; 10:e0117849. [PMID: 25719412 PMCID: PMC4342338 DOI: 10.1371/journal.pone.0117849] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022] Open
Abstract
To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses.
Collapse
Affiliation(s)
- Gregory Moureau
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Shelley Cook
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Antoine Nougairede
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Naomi L. Forrester
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - Maxim Khasnatinov
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh, Gifford, Wallingford, Oxfordshire, OX10, United Kingdom
| | - Remi N. Charrel
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Andrew E. Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Ernest A. Gould
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| |
Collapse
|
10
|
Huhtamo E, Cook S, Moureau G, Uzcátegui NY, Sironen T, Kuivanen S, Putkuri N, Kurkela S, Harbach RE, Firth AE, Vapalahti O, Gould EA, de Lamballerie X. Novel flaviviruses from mosquitoes: mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses. Virology 2014; 464-465:320-329. [PMID: 25108382 PMCID: PMC4170750 DOI: 10.1016/j.virol.2014.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/07/2014] [Accepted: 07/01/2014] [Indexed: 01/17/2023]
Abstract
Novel flaviviruses that are genetically related to pathogenic mosquito-borne flaviviruses (MBFV) have been isolated from mosquitoes in various geographical locations, including Finland. We isolated and characterized another novel virus of this group from Finnish mosquitoes collected in 2007, designated as Ilomantsi virus (ILOV). Unlike the MBFV that infect both vertebrates and mosquitoes, the MBFV-related viruses appear to be specific to mosquitoes similar to the insect-specific flaviviruses (ISFs). In this overview of MBFV-related viruses we conclude that they differ from the ISFs genetically and antigenically. Phylogenetic analyses separated the MBFV-related viruses isolated in Africa, the Middle East and South America from those isolated in Europe and Asia. Serological cross-reactions of MBFV-related viruses with other flaviviruses and their potential for vector-borne transmission require further characterization. The divergent MBFV-related viruses are probably significantly under sampled to date and provide new information on the variety, properties and evolution of vector-borne flaviviruses. Mosquito-borne flavivirus-related viruses were isolated from Finnish mosquitoes. Isolates were reactive with flavivirus antibodies but appeared mosquito-specific. Sequence analysis identified related viruses from different parts of the world. These viruses represent unique properties among the mosquito-borne flavivirus group.
Collapse
Affiliation(s)
- Eili Huhtamo
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Shelley Cook
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Gregory Moureau
- UMR D 190 "Emergence des Pathologies Virales", Aix Marseille University, IRD French Institute of Research for Development, EHESP French School of Public Health, 27 Boulevard Jean Moulin, Marseille 13005, France
| | - Nathalie Y Uzcátegui
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niina Putkuri
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Kurkela
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Virology and Immunology, Helsinki University Central Hospital Laboratory (HUSLAB), P.O. Box 400, Haartmaninkatu 3, 00029 HUS, Helsinki, Finland
| | - Ralph E Harbach
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Olli Vapalahti
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Virology and Immunology, Helsinki University Central Hospital Laboratory (HUSLAB), P.O. Box 400, Haartmaninkatu 3, 00029 HUS, Helsinki, Finland; Division of Microbiology and Epidemiology, Department of Basic Veterinary Sciences, University of Helsinki, Helsinki, Finland
| | - Ernest A Gould
- UMR D 190 "Emergence des Pathologies Virales", Aix Marseille University, IRD French Institute of Research for Development, EHESP French School of Public Health, 27 Boulevard Jean Moulin, Marseille 13005, France
| | - Xavier de Lamballerie
- UMR D 190 "Emergence des Pathologies Virales", Aix Marseille University, IRD French Institute of Research for Development, EHESP French School of Public Health, 27 Boulevard Jean Moulin, Marseille 13005, France
| |
Collapse
|
11
|
Caron M, Grard G, Paupy C, Mombo IM, Bikie Bi Nso B, Kassa Kassa FR, Nkoghe D, Leroy EM. First evidence of simultaneous circulation of three different dengue virus serotypes in Africa. PLoS One 2013; 8:e78030. [PMID: 24205075 PMCID: PMC3804462 DOI: 10.1371/journal.pone.0078030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 09/08/2013] [Indexed: 01/10/2023] Open
Abstract
Gabon, in Central Africa, was affected for the first time in 2007 and then in 2010 by simultaneous outbreaks of chikungunya and Dengue serotype 2 (DENV-2) viruses. Through the national surveillance of dengue-like syndromes between 2007 and 2010, we observed continuous circulation of DENV-2 in a southward movement. This rapid spread of DENV-2 was associated with the emergence of DENV-1 in 2007 and DENV-3 in 2010. Interestingly, we detected six DENV-2 infected patients with hemorrhagic signs during the second outbreak in 2010. Although these cases do not meet all standard WHO criteria for severe Dengue with hemorrhage (formerly DHF), this is the first report of several dengue fever cases associated with hemorrhagic signs during a simultaneous circulation of different DENV serotypes in Africa. Together, these findings suggest that DENV is becoming more widely established on this continent and that DHF will likely become a serious public-health problem in the near future.
Collapse
Affiliation(s)
- Melanie Caron
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Institut de recherche pour le développement (IRD), Montpellier, France
- * E-mail:
| | - Gilda Grard
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Christophe Paupy
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Institut de recherche pour le développement (IRD), Montpellier, France
| | - Illich Mamfred Mombo
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Institut de recherche pour le développement (IRD), Montpellier, France
| | - Branly Bikie Bi Nso
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | - Dieudonne Nkoghe
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Ministère de la Santé Publique, Libreville, Gabon
| | - Eric Maurice Leroy
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Institut de recherche pour le développement (IRD), Montpellier, France
| |
Collapse
|
12
|
Maruyama SR, Castro-Jorge LA, Ribeiro JMC, Gardinassi LG, Garcia GR, Brandão LG, Rodrigues AR, Okada MI, Abrão EP, Ferreira BR, Fonseca BALD, Miranda-Santos IKFD. Characterisation of divergent flavivirus NS3 and NS5 protein sequences detected in Rhipicephalus microplus ticks from Brazil. Mem Inst Oswaldo Cruz 2013; 109:38-50. [PMID: 24626302 PMCID: PMC4005522 DOI: 10.1590/0074-0276130166] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/16/2013] [Indexed: 01/19/2023] Open
Abstract
Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5
from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA)
library from the cattle tick Rhipicephalus microplus. Tick extracts
were cultured with cells to enable the isolation of viruses capable of replicating in
cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated
from culture supernatants provided the complete coding sequences for the NS3 and NS5
proteins and their molecular characterisation confirmed similarity with the NS3 and
NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses
revealed that this potentially novel virus may be a highly divergent member of the
genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in
ticks collected from several dairy farms widely distributed throughout three regions
of Brazil. This is the first report of flavivirus-like transcripts in R.
microplus ticks. This novel virus is a potential arbovirus because it
replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA
library from tick SGs and therefore may be present in tick saliva. It is important to
determine whether and by what means this potential virus is transmissible and to
monitor the virus as a potential emerging tick-borne zoonotic pathogen.
Collapse
Affiliation(s)
| | | | | | - Luiz Gustavo Gardinassi
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, RockvilleMD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Evangelista J, Cruz C, Guevara C, Astete H, Carey C, Kochel TJ, Morrison AC, Williams M, Halsey ES, Forshey BM. Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru. J Gen Virol 2013; 94:1266-1272. [DOI: 10.1099/vir.0.050575-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We describe the isolation and characterization of a novel flavivirus, isolated from a pool of Culex (Melanoconion) ocossa Dyar and Knab mosquitoes collected in 2009 in an urban area of the Amazon basin city of Iquitos, Peru. Flavivirus infection was detected by indirect immunofluorescent assay of inoculated C6/36 cells using polyclonal flavivirus antibodies (St. Louis encephalitis virus, yellow fever virus and dengue virus type 1) and confirmed by RT-PCR. Based on partial sequencing of the E and NS5 gene regions, the virus isolate was most closely related to the mosquito-borne flaviviruses but divergent from known species, with less than 45 and 71 % pairwise amino acid identity in the E and NS5 gene products, respectively. Phylogenetic analysis of E and NS5 amino acid sequences demonstrated that this flavivirus grouped with mosquito-borne flaviviruses, forming a clade with Nounané virus (NOUV). Like NOUV, no replication was detected in a variety of mammalian cells (Vero-76, Vero-E6, BHK, LLCMK, MDCK, A549 and RD) or in intracerebrally inoculated newborn mice. We tentatively designate this genetically distinct flavivirus as representing a novel species, Nanay virus, after the river near where it was first detected.
Collapse
Affiliation(s)
- Julio Evangelista
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Cristhopher Cruz
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Carolina Guevara
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Helvio Astete
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Cristiam Carey
- Dirección Regional de Salud de Loreto, Av 28 de Julio, Punchana, Loreto, Peru
| | - Tadeusz J. Kochel
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Amy C. Morrison
- Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, USA
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Maya Williams
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Eric S. Halsey
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Brett M. Forshey
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| |
Collapse
|
14
|
Huhtamo E, Moureau G, Cook S, Julkunen O, Putkuri N, Kurkela S, Uzcátegui NY, Harbach RE, Gould EA, Vapalahti O, de Lamballerie X. Novel insect-specific flavivirus isolated from northern Europe. Virology 2012; 433:471-8. [PMID: 22999256 PMCID: PMC3919202 DOI: 10.1016/j.virol.2012.08.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 06/18/2012] [Accepted: 08/20/2012] [Indexed: 11/29/2022]
Abstract
Mosquitoes collected in Finland were screened for flaviviral RNA leading to the discovery and isolation of a novel flavivirus designated Hanko virus (HANKV). Virus characterization, including phylogenetic analysis of the complete coding sequence, confirmed HANKV as a member of the “insect-specific” flavivirus (ISF) group. HANKV is the first member of this group isolated from northern Europe, and therefore the first northern European ISF for which the complete coding sequence has been determined. HANKV was not transcribed as DNA in mosquito cell culture, which appears atypical for an ISF. HANKV shared highest sequence homology with the partial NS5 sequence available for the recently discovered Spanish Ochlerotatus flavivirus (SOcFV). Retrospective analysis of mitochondrial sequences from the virus-positive mosquito pool suggested an Ochlerotatus mosquito species as the most likely host for HANKV. HANKV and SOcFV may therefore represent a novel group of Ochlerotatus-hosted insect-specific flaviviruses in Europe and further afield.
Collapse
Affiliation(s)
- Eili Huhtamo
- Infection Biology Research Program, Research Programs Unit, Department of Virology, Haartman Institute, University of Helsinki, Helsinki FIN-00014, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Osorio JE, Ciuoderis KA, Lopera JG, Piedrahita LD, Murphy D, Levasseur J, Carrillo L, Ocampo MC, Hofmeister E. Characterization of West Nile viruses isolated from captive American Flamingoes (Phoenicopterus ruber) in Medellin, Colombia. Am J Trop Med Hyg 2012; 87:565-72. [PMID: 22802436 DOI: 10.4269/ajtmh.2012.11-0655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Serum samples from a total of 71 healthy captive birds belonging to 18 species were collected in July of 2008 in Medellin (Colombia) and tested for flaviviruses. Eighteen of 29 samples from American Flamingoes (Phoenicopterus ruber) were positive for West Nile virus (WNV) by reverse transcription-polymerase chain reaction. Selected positive samples were serially passaged and WNV was confirmed by immunofluorescence. Two isolates (524/08, 9835/08) were characterized in vitro and in vivo. Sequence analysis revealed WNV with 16 nucleotide substitutions resulting in six amino acid changes when compared with the NY99 strain. Colombian (COL) viruses were more closely related to Louisiana isolates from 2001. When compared with attenuated strains isolated from Texas, COL isolates differed in their plaque size and temperature sensitivity phenotype. The COL viruses were pathogenic in embryonated chicken eggs and Balb/c mice.
Collapse
Affiliation(s)
- Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ortiz A, Capitan Z, Mendoza Y, Cisneros J, Moreno B, Zaldivar Y, Garcia M, Smith RE, Motta J, Pascale JM. Simple, specific molecular typing of dengue virus isolates using one-step RT-PCR and restriction fragment length polymorphism. J Virol Methods 2012; 185:129-35. [PMID: 22766181 DOI: 10.1016/j.jviromet.2012.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 11/26/2022]
Abstract
A one-step RT-PCR and one-enzyme RFLP was used to detect and distinguish among flaviviruses, including the four serotypes of dengue and the St. Louis Encephalitis, West Nile and Yellow Fever viruses in cultured virus samples or acute-phase human serum. Using a previously described RT-PCR, but novel RFLP procedure, results are obtained in 24 h with basic PCR and electrophoresis equipment. There is 95% agreement between RT-PCR/RFLP results and those achieved by indirect immunofluorescence assays, and 100% agreement between RT-PCR/RFLP results and gene sequencing. This method is more rapid than tests of cytopathic effect based on virus isolation in tissue culture, and simpler than real-time PCR. It does not require specialized equipment, radioisotopes or computer analysis and is a method that can be applied widely in the developing world. It allows for prompt determination of whether a flavivirus is the cause of illness in a febrile patient, rapid identification of dengue serotypes in circulation, and improved patient management in cases where prior dengue exposure make dengue hemorrhagic fever or dengue shock syndrome a risk.
Collapse
Affiliation(s)
- Alma Ortiz
- Gorgas Memorial Institute for Health Studies, Panama City, Panama.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ravanini P, Hasu E, Huhtamo E, Crobu MG, Ilaria V, Brustia D, Salerno AM, Vapalahti O. Rhabdomyolysis and severe muscular weakness in a traveler diagnosed with Alkhurma hemorrhagic fever virus infection. J Clin Virol 2011; 52:254-6. [DOI: 10.1016/j.jcv.2011.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 11/17/2022]
|
18
|
Abstract
The genus Flavivirus includes major pathogens such as dengue, yellow fever, Japanese encephalitis, West Nile and tick-borne encephalitis viruses. Molecular amplification assays for the diagnosis of flaviviruses have been developed in the last decades. These assays were formerly based on reverse transcriptase PCR, while in recent years the real-time reverse transcriptase PCR format has taken a predominant role. In this article, we focus on the more recent developments for the molecular diagnosis of flaviviruses, with special attention to those based on new methodologies such as nucleic acid sequence-based amplification or loop-mediated isothermal amplification techniques. These new approaches may provide a good profile of sensitivity and specificity and offer a real chance to implement flavivirus molecular diagnosis in clinical and point-of-care settings.
Collapse
Affiliation(s)
| | - Pranav Patel
- Robert Koch-Institut, Center for Biological Security 1, Highly Pathogenic Viruses, Nordufer 20, 13353 Berlin, Germany
| | - Sonja Linke
- Robert Koch-Institut, Center for Biological Security 1, Highly Pathogenic Viruses, Nordufer 20, 13353 Berlin, Germany
| | - Katharina Achazi
- Robert Koch-Institut, Center for Biological Security 1, Highly Pathogenic Viruses, Nordufer 20, 13353 Berlin, Germany
| | - Matthias Niedrig
- Robert Koch-Institut, Center for Biological Security 1, Highly Pathogenic Viruses, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
19
|
Barnard RT, Hall RA, Gould EA. Expecting the unexpected: nucleic acid-based diagnosis and discovery of emerging viruses. Expert Rev Mol Diagn 2011; 11:409-23. [PMID: 21545258 PMCID: PMC7103685 DOI: 10.1586/erm.11.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extrapolation from recent disease history suggests that changes in the global environment, including virus, vector and human behavior, will continue to influence the spectrum of viruses to which humans are exposed. In this article, these environmental changes will be enumerated, and their potential impact on target-focused, nucleic acid-based diagnostic tests will be considered, followed by a presentation of some emerging technological responses.
Collapse
Affiliation(s)
- Ross Thomas Barnard
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
20
|
Grant-Klein RJ, Baldwin CD, Turell MJ, Rossi CA, Li F, Lovari R, Crowder CD, Matthews HE, Rounds MA, Eshoo MW, Blyn LB, Ecker DJ, Sampath R, Whitehouse CA. Rapid identification of vector-borne flaviviruses by mass spectrometry. Mol Cell Probes 2010; 24:219-28. [PMID: 20412852 DOI: 10.1016/j.mcp.2010.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 11/30/2022]
Abstract
Flaviviruses are a highly diverse group of RNA viruses classified within the genus Flavivirus, family Flaviviridae. Most flaviviruses are arthropod-borne, requiring a mosquito or tick vector. Several flaviviruses are highly pathogenic to humans; however, their high genetic diversity and immunological relatedness makes them extremely challenging to diagnose. In this study, we developed and evaluated a broad-range Flavivirus assay designed to detect both tick- and mosquito-borne flaviviruses by using RT-PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) on the Ibis T5000 platform. The assay was evaluated with a panel of 13 different flaviviruses. All samples were correctly identified to the species level. To determine the limit of detection for the mosquito-borne primer sets, serial dilutions of RNA from West Nile virus (WNV) were assayed and could be detected down to an equivalent viral titer of 0.2 plaque-forming units/mL. Analysis of flaviviruses in their natural biological background included testing Aedes aegypti mosquitoes that were laboratory-infected with dengue-1 virus. The assay accurately identified the virus within infected mosquitoes, and we determined the average viral genome per mosquito to be 2.0 x 10(6). Using human blood, serum, and urine spiked with WNV and mouse blood and brain tissues from Karshi virus-infected mice, we showed that these clinical matrices did not inhibit the detection of these viruses. Finally, we used the assay to test field-collected Ixodes scapularis ticks collected from sites in New York and Connecticut. We found 16/322 (5% infection rate) ticks positive for deer tick virus, a subtype of Powassan virus. In summary, we developed a single high-throughput Flavivirus assay that could detect multiple tick- and mosquito-borne flaviviruses and thus provides a new analytical tool for their medical diagnosis and epidemiological surveillance.
Collapse
Affiliation(s)
- Rebecca J Grant-Klein
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Danecek P, Lu W, Schein CH. PCP consensus sequences of flaviviruses: correlating variance with vector competence and disease phenotype. J Mol Biol 2009; 396:550-63. [PMID: 19969003 DOI: 10.1016/j.jmb.2009.11.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND Computational methods are needed to design multivalent vaccines against flaviviruses (FVs) such as the West Nile virus or the dengue virus (DENV). OBJECTIVE We aimed to use physicochemical property (PCP) consensus sequences of FV strains to delineate conserved motifs, areas of maximum variability, and specific loci that correlate with arthropod vector, serotype, and disease severity. METHODS PCP consensus sequences for 27 species were prepared from 928 annotated sequences catalogued in Flavitrack. Alignments of these correlated well with the known structures of the NS3 protease domain and envelope (E) proteins. The PCPMer suite was used to identify motifs common to all FVs. Areas of PCP variability that correlated with phenotype were plotted on the structures. RESULTS Despite considerable diversity at the amino acid level, PCPs for both proteins were well conserved throughout the FVs. A series of insertions in E separated tick- from mosquito-borne viruses and all arthropod-borne viruses from isolates with no known vector or directly from insects. Comparison of a PCP consensus sequence of E derived from 600 DENV strains (DENV600) with individual ones for DENV1-DENV4 showed that most major serotype-specific variation occurs near these insertions. The DENV600 differed from one prepared from eight hemorrhagic or fatal strains from four DENV serotypes at only three positions, two of which overlap known escape mutant sites. CONCLUSIONS Comparing consensus sequences showed that substantial changes occur in only a few areas of the E protein. PCP consensus sequences can contribute to the design of multivalent vaccines.
Collapse
Affiliation(s)
- Petr Danecek
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0857, USA
| | | | | |
Collapse
|
22
|
Cook S, Moureau G, Harbach RE, Mukwaya L, Goodger K, Ssenfuka F, Gould E, Holmes EC, de Lamballerie X. Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. J Gen Virol 2009; 90:2669-2678. [PMID: 19656970 PMCID: PMC2885038 DOI: 10.1099/vir.0.014183-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/30/2009] [Indexed: 11/18/2022] Open
Abstract
The genus Flavivirus, which contains approximately 70 single-stranded, positive-sense RNA viruses, represents a unique model for studying the evolution of vector-borne disease, as it includes viruses that are mosquito-borne, tick-borne or have no known vector. Both theoretical work and field studies suggest the existence of a large number of undiscovered flaviviruses. Recently, the first isolation of cell fusing agent virus (CFAV) was reported from a natural mosquito population in Puerto Rico, and sequences related to CFAV have been discovered in mosquitoes from Thailand. CFAV had previously been isolated from a mosquito cell line in 1975 and represented the only known 'insect-only' flavivirus, appearing to replicate in insect cells alone. A second member of the 'insect-only' group, Kamiti River virus (KRV), was isolated from Kenyan mosquitoes in 2003. A third tentative member of the 'insect-only' group, Culex flavivirus (CxFV), was first isolated in 2007 from Japan and further strains have subsequently been reported from the Americas. We report the discovery, isolation and characterization of two novel 'insect-only' flaviviruses from Entebbe, Uganda: a novel lineage tentatively designated Nakiwogo virus (NAKV) and a new strain of CxFV. The individual mosquitoes from which these strains were isolated, identified retrospectively by using a reference molecular phylogeny generated using voucher specimens from the region, were Mansonia africana nigerrima and Culex quinquefasciatus, respectively. This represents the first isolation, to our knowledge, of a novel insect-only flavivirus from a Mansonia species and the first isolation of a strain of CxFV from Africa.
Collapse
Affiliation(s)
- Shelley Cook
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Gregory Moureau
- Unité des Virus Emergents UMR190 ‘Emergence des Pathologies Virales’, Université de la Méditerranée et Institut de Recherche pour le Développement, Marseille, France
| | | | - Louis Mukwaya
- Mosquito Research Programme, Uganda Virus Research Institute, PO Box 49, Entebbe, Uganda
| | - Kim Goodger
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Fred Ssenfuka
- Mosquito Research Programme, Uganda Virus Research Institute, PO Box 49, Entebbe, Uganda
| | - Ernest Gould
- Unité des Virus Emergents UMR190 ‘Emergence des Pathologies Virales’, Université de la Méditerranée et Institut de Recherche pour le Développement, Marseille, France
- Centre for Ecology and Hydrology Oxford, Mansfield Road, Oxford OX1 3SR, UK
| | - Edward C. Holmes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xavier de Lamballerie
- Unité des Virus Emergents UMR190 ‘Emergence des Pathologies Virales’, Université de la Méditerranée et Institut de Recherche pour le Développement, Marseille, France
| |
Collapse
|
23
|
Grard G, Moureau G, Charrel RN, Holmes EC, Gould EA, de Lamballerie X. Genomics and evolution of Aedes-borne flaviviruses. J Gen Virol 2009; 91:87-94. [PMID: 19741066 DOI: 10.1099/vir.0.014506-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analysed the complete coding sequences of all recognized species of Aedes-borne flavivirus, including previously uncharacterized viruses within the yellow fever virus (YFV), Spondweni virus (SPOV) and dengue virus (DENV) groups. Two major phylogenetic lineages were revealed: one included the YFV and Entebbe bat virus groups, and the other included the DENV, SPOV and Culex-borne flavivirus groups. This analysis supported previous evidence that Culex-borne flaviviruses have evolved from ancestral Aedes-borne viruses. However, the topology at the junction between these lineages remains complex and may be refined by the discovery of viruses related to the Kedougou virus. Additionally, viral evolution was found to be associated with the appearance of new biological characteristics; mutations that may modify the envelope protein structure were identified for seven viruses within the YFV group, and an expansion of host-vector range was identified in the two major evolutionary lineages, which in turn may facilitate the emergence of mosquito-borne flaviviruses.
Collapse
Affiliation(s)
- Gilda Grard
- Unité des Virus Emergents, UMR 190 Pathologies Virales Emergentes, Institut de Recherche pour le Développement-Université de la Méditerranée, Faculté de Médecine de Marseille, 27 boulevard Jean Moulin, 13005 Marseille, France.
| | | | | | | | | | | |
Collapse
|
24
|
Huhtamo E, Putkuri N, Kurkela S, Manni T, Vaheri A, Vapalahti O, Uzcátegui NY. Characterization of a novel flavivirus from mosquitoes in northern europe that is related to mosquito-borne flaviviruses of the tropics. J Virol 2009; 83:9532-40. [PMID: 19570865 PMCID: PMC2738272 DOI: 10.1128/jvi.00529-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 06/22/2009] [Indexed: 11/20/2022] Open
Abstract
A novel flavivirus was isolated from mosquitoes in Finland, representing the first mosquito-borne flavivirus from Northern Europe. The isolate, designated Lammi virus (LAMV), was antigenically cross-reactive with other flaviviruses and exhibited typical flavivirus morphology as determined by electron microscopy. The genomic sequence of LAMV was highly divergent from the recognized flaviviruses, and yet the polyprotein properties resembled those of mosquito-borne flaviviruses. Phylogenetic analysis of the complete coding sequence showed that LAMV represented a distinct lineage related to the Aedes sp.-transmitted human pathogenic flaviviruses, similarly to the newly described Nounané virus (NOUV), a flavivirus from Africa (S. Junglen et al., J. Virol. 83:4462-4468, 2009). Despite the low sequence homology, LAMV and NOUV were phylogenetically grouped closely, likely representing separate species of a novel group of flaviviruses. Despite the biological properties preferring replication in mosquito cells, the genetic relatedness of LAMV to viruses associated with vertebrate hosts warrants a search for disease associations.
Collapse
Affiliation(s)
- Eili Huhtamo
- Department of Virology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Moureau G, Temmam S, Gonzalez JP, Charrel RN, Grard G, de Lamballerie X. A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis 2008; 7:467-77. [PMID: 18020965 DOI: 10.1089/vbz.2007.0206] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Here we describe an optimized molecular protocol for the universal detection and identification of flaviviruses. It combines the convenient real-time polymerase chain reaction (PCR) format with a broad spectrum of flavivirus detection. This assay, based on the amplification of a 269-272 nt (depending on the flavivirus tested) region at the N terminal end of the NS5 gene, enabled the amplification of 51 flavivirus species and 3 tentative species. Sequencing of the amplicons produced by reverse transcriptase (RT)-PCR permitted the reliable taxonomic identification of flavivirus species by comparison with reference sequences available in databases, using either the BLASTN algorithm or a simple phylogenetic reconstruction. The limit of detection of the assay (2-20,500 copies/reaction depending on the virus tested) allowed the detection of different flaviviruses from a series of human sera or veterinary samples. Altogether, the characteristics of this technique make it a good candidate for the identification of previously identified flaviviruses in cell culture and the investigation of field samples, and also a promising tool for the discovery and identification of new species, including viruses distantly related to "classical" arthropod-borne flaviviruses.
Collapse
Affiliation(s)
- G Moureau
- Unité des Virus Emergents, Faculté de Médecine, Marseille, France
| | | | | | | | | | | |
Collapse
|
26
|
Coimbra TLM, Santos RN, Petrella S, Nagasse-Sugahara TK, Castrignano SB, Santos CLS. Molecular characterization of two Rocio flavivirus strains isolated during the encephalitis epidemic in São Paulo State, Brazil and the development of a one-step RT-PCR assay for diagnosis. Rev Inst Med Trop Sao Paulo 2008; 50:89-94. [PMID: 18488087 DOI: 10.1590/s0036-46652008000200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 02/18/2008] [Indexed: 11/21/2022] Open
Abstract
Rocio virus (ROCV) was responsible for an explosive encephalitis epidemic in the 1970s affecting about 1,000 residents of 20 coastland counties in São Paulo State, Brazil. ROCV was first isolated in 1975 from the cerebellum of a fatal human case of encephalitis. Clinical manifestations of the illness are similar to those described for St. Louis encephalitis. ROCV shows intense antigenic cross-reactivity with Japanese encephalitis complex (JEC) viruses, particularly with Ilheus (ILHV), St. Louis encephalitis, Murray Valley and West Nile viruses. In this study, we report a specific RT-PCR assay for ROCV diagnosis and the molecular characterization of the SPAn37630 and SPH37623 strains. Partial nucleotide sequences of NS5 and E genes determined from both strains were used in phylogenetic analysis. The results indicated that these strains are closely related to JEC viruses, but forming a distinct subclade together with ILHV, in accordance with results recently reported by Medeiros et al. (2007).
Collapse
|
27
|
Maher-Sturgess SL, Forrester NL, Wayper PJ, Gould EA, Hall RA, Barnard RT, Gibbs MJ. Universal primers that amplify RNA from all three flavivirus subgroups. Virol J 2008; 5:16. [PMID: 18218114 PMCID: PMC2263041 DOI: 10.1186/1743-422x-5-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/24/2008] [Indexed: 11/10/2022] Open
Abstract
Background Species within the Flavivirus genus pose public health problems around the world. Increasing cases of Dengue and Japanese encephalitis virus in Asia, frequent outbreaks of Yellow fever virus in Africa and South America, and the ongoing spread of West Nile virus throughout the Americas, show the geographical burden of flavivirus diseases. Flavivirus infections are often indistinct from and confused with other febrile illnesses. Here we review the specificity of published primers, and describe a new universal primer pair that can detect a wide range of flaviviruses, including viruses from each of the recognised subgroups. Results Bioinformatic analysis of 257 published full-length Flavivirus genomes revealed conserved regions not previously targeted by primers. Two degenerate primers, Flav100F and Flav200R were designed from these regions and used to generate an 800 base pair cDNA product. The region amplified encoded part of the methyltransferase and most of the RNA-dependent-RNA-polymerase (NS5) coding sequence. One-step RT-PCR testing was successful using standard conditions with RNA from over 60 different flavivirus strains representing about 50 species. The cDNA from each virus isolate was sequenced then used in phylogenetic analyses and database searches to confirm the identity of the template RNA. Conclusion Comprehensive testing has revealed the broad specificity of these primers. We briefly discuss the advantages and uses of these universal primers.
Collapse
|
28
|
Grard G, Moureau G, Charrel RN, Lemasson JJ, Gonzalez JP, Gallian P, Gritsun TS, Holmes EC, Gould EA, de Lamballerie X. Genetic characterization of tick-borne flaviviruses: New insights into evolution, pathogenetic determinants and taxonomy. Virology 2007; 361:80-92. [PMID: 17169393 DOI: 10.1016/j.virol.2006.09.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 08/10/2006] [Accepted: 09/10/2006] [Indexed: 10/23/2022]
Abstract
Here, we analyze the complete coding sequences of all recognized tick-borne flavivirus species, including Gadgets Gully, Royal Farm and Karshi virus, seabird-associated flaviviruses, Kadam virus and previously uncharacterized isolates of Kyasanur Forest disease virus and Omsk hemorrhagic fever virus. Significant taxonomic improvements are proposed, e.g. the identification of three major groups (mammalian, seabird and Kadam tick-borne flavivirus groups), the creation of a new species (Karshi virus) and the assignment of Tick-borne encephalitis and Louping ill viruses to a unique species (Tick-borne encephalitis virus) including four viral types (i.e. Western Tick-borne encephalitis virus, Eastern Tick-borne encephalitis virus, Turkish sheep Tick-borne encephalitis virus and Louping ill Tick-borne encephalitis virus). The analyses also suggest a complex relationship between viruses infecting birds and those infecting mammals. Ticks that feed on both categories of vertebrates may constitute the evolutionary bridge between the three distinct identified lineages.
Collapse
Affiliation(s)
- Gilda Grard
- Unité des Virus Emergents (EA3292, IFR48, IRD UR0178), Faculté de Médecine La Timone, 27 boulevard Jean Moulin, 13005 Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Buckley A, Dawson A, Gould EA. Detection of seroconversion to West Nile virus, Usutu virus and Sindbis virus in UK sentinel chickens. Virol J 2006; 3:71. [PMID: 16952307 PMCID: PMC1569371 DOI: 10.1186/1743-422x-3-71] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 09/04/2006] [Indexed: 12/05/2022] Open
Abstract
We previously reported evidence of West Nile virus (WNV) circulation in UK birds, probably introduced by migratory birds from overseas. We now demonstrate WNV-specific seroconversion in sentinel chickens raised on an English farm. Maternal neutralizing antibodies to WNV in hatchlings declined within three weeks. During the following months, healthy chickens developed WNV neutralizing antibodies that were confirmed by immunoblotting and indirect immunofluorescence tests using WNV antigens. The proportion of seropositive chickens was higher for WNV than for Usutu virus or Sindbis virus. Attempts to isolate infectious virus or to detect viral RNA in the sera, failed.
Collapse
Affiliation(s)
| | - Alistair Dawson
- CEH Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS, UK
| | | |
Collapse
|
30
|
Marriott L, Willoughby K, Chianini F, Dagleish MP, Scholes S, Robinson AC, Gould EA, Nettleton PF. Detection of Louping ill virus in clinical specimens from mammals and birds using TaqMan RT-PCR. J Virol Methods 2006; 137:21-8. [PMID: 16814876 DOI: 10.1016/j.jviromet.2006.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 05/18/2006] [Accepted: 05/25/2006] [Indexed: 11/19/2022]
Abstract
The identification of Louping ill virus (LIV) in clinical specimens has been routinely achieved by virus isolation using susceptible pig kidney cells and subsequent serological analysis. While this method is sensitive and detects infectious virus, it is relatively labour intensive and time-consuming. In view of the veterinary and potential medical importance of LIV, a rapid and precise detection method for routine use that employs the TaqMan reverse transcription polymerase chain reaction (RT-PCR) has been developed to detect LIV RNA extracted from field samples. The TaqMan assay was evaluated against virus isolation using 22 cell culture grown LIV isolates, which had previously been partially characterised by sequencing, and material from 63 suspect field cases. Histopathological and/or serological reports were available for 39 of the suspect cases, providing additional diagnostic information to evaluate the results obtained from the TaqMan RT-PCR assay. The TaqMan assay was as sensitive as the cell culture infectious virus assay currently used and had the advantage that it was able to detect LIV in clinical specimens from which infectious virus could not be isolated possibly due to the presence of high levels of LIV antibody.
Collapse
Affiliation(s)
- L Marriott
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|