1
|
Cavuto ML, Malpartida-Cardenas K, Pennisi I, Pond MJ, Mirza S, Moser N, Comer M, Stokes I, Eke L, Lant S, Szostak-Lipowicz KM, Miglietta L, Stringer OW, Mantikas KT, Sumner RP, Bolt F, Sriskandan S, Holmes A, Georgiou P, Ulaeto DO, Maluquer de Motes C, Rodriguez-Manzano J. Portable molecular diagnostic platform for rapid point-of-care detection of mpox and other diseases. Nat Commun 2025; 16:2875. [PMID: 40128193 PMCID: PMC11933461 DOI: 10.1038/s41467-025-57647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
The World Health Organization's designation of mpox as a public health emergency of international concern in August 2024 underscores the urgent need for effective diagnostic solutions to combat this escalating threat. The rapid global spread of clade II mpox, coupled with the sustained human-to-human transmission of the more virulent clade I mpox in the Democratic Republic of Congo, highlights a critical gap in point-of-care diagnostics for this emergent disease. In response, we developed Dragonfly, a portable molecular diagnostic platform for point-of-care use that integrates power-free nucleic acid extraction (<5 minutes) with lyophilised colourimetric LAMP chemistry. The platform demonstrated an analytical limit-of-detection of 100 genome copies per reaction for monkeypox virus, effectively distinguishing it from other orthopoxviruses, herpes simplex virus, and varicella-zoster virus. Clinical validation on 164 samples, including 51 mpox-positive cases, yielded 96.1% sensitivity and 100% specificity for orthopoxviruses, and 94.1% sensitivity and 100% specificity for monkeypox virus. Here, we present a rapid, accessible, and robust point-of-care diagnostic solution for mpox, suitable for both low- and high-resource settings, addressing the global resurgence of orthopoxviruses in the context of declining smallpox immunity.
Collapse
Affiliation(s)
- Matthew L Cavuto
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Kenny Malpartida-Cardenas
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Ivana Pennisi
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Marcus J Pond
- Department of Infection and Immunity, Imperial College Healthcare NHS Trust, London, UK
| | - Sohail Mirza
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Nicolas Moser
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Mark Comer
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Isobel Stokes
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Lucy Eke
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Sian Lant
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Luca Miglietta
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Oliver W Stringer
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Katerina-Theresa Mantikas
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Rebecca P Sumner
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Frances Bolt
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Alison Holmes
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK
- The Fleming Initiative, Imperial College London and Imperial College Healthcare NHS Trust, London, UK
| | - Pantelis Georgiou
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - David O Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | - Carlos Maluquer de Motes
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Jesus Rodriguez-Manzano
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK.
| |
Collapse
|
2
|
Miranda JP, Osorio J, Silva M, Silva C, Madrid V, Camponovo R, Henríquez-Henríquez M. Reagent efficiency and analytical sensitivity optimization for a reliable SARS-CoV-2 pool-based testing strategy. Heliyon 2025; 11:e41623. [PMID: 39866431 PMCID: PMC11761315 DOI: 10.1016/j.heliyon.2025.e41623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/30/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Background The SARS-CoV-2 pandemic caused millions of infections worldwide. Among the strategies for effective containment, frequent and massive testing was fundamental. Although sample pooling allows multiplying the installed analysis capacity, the definition of the number of samples to include in a pool is commonly guided more by economic parameters than analytical quality. Methods We developed a mathematical model to determine the pooling conditions that maximize reagent efficiency and analytical sensitivity. We evaluated 30 samples individually and in 2-sample to 12-sample pools. Using Passing Bablok regressions, we estimated the shift of Ct values in the RT-qPCR reaction for each pool size. With this Ct shift, we estimated sensitivity in the context of the distribution of 1,030 individually evaluated positive samples. Findings Our results showed that the most significant gain in efficiency occurred in the 4-sample pool, while at pools greater than 8-sample, there was no considerable reagent savings. Sensitivity significantly dropped to 87.18 %-92.52 % for a 4-sample pool and reached as low as 77.09 %-80.87 % in a 12-sample pooling. Conclusions Our results suggest that a 4-sample pooling maximizes reagent efficiency and analytical sensitivity. These considerations are essential to increase testing capacity and efficiently detect and contain contagious.
Collapse
Affiliation(s)
- José P. Miranda
- Bupa Lab, part of Bupa, La Florida, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Marcia Silva
- Bupa Lab, part of Bupa, La Florida, Santiago, Chile
| | - Carola Silva
- Bupa Lab, part of Bupa, La Florida, Santiago, Chile
| | | | | | - Marcela Henríquez-Henríquez
- Bupa Lab, part of Bupa, La Florida, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Millennium Science Initiative Program, ANID, Santiago, Chile
| |
Collapse
|
3
|
Torres JP, Basso L, Saure D, Zuñiga M, Couve A, Farfán M, de la Maza V, Campos N, O’Ryan M. Transdisciplinary research before, during and after COVID-19 vaccination in Chile: a virtuoso collaboration with future perspectives. Front Public Health 2024; 12:1354645. [PMID: 38633235 PMCID: PMC11021585 DOI: 10.3389/fpubh.2024.1354645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
The COVID-19 pandemic presented numerous challenges that required immediate attention to mitigate its devastating consequences on a local and global scale. In March 2020, the Chilean government, along with health and science authorities, implemented a strategy aimed at generating relevant evidence to inform effective public health decisions. One of the key strengths of this strategy was the active involvement of the scientific community, employing transdisciplinary approaches to address critical questions and support political decision-making. The strategy promoted collaborations between the government, public and private institutions, and transdisciplinary academic groups throughout each phase of the pandemic. By focusing on pressing problems and questions, this approach formed the foundation of this report which reflects the collaborative effort throughout the pandemic of individuals from the Instituto de Sistemas Complejos de Ingeniería (ISCI), the Faculty of Medicine of the University of Chile, government authorities and industry. Early in the pandemic, it became crucial to gather evidence on how to minimize the impact of infection and disease while awaiting the availability of vaccines. This included studying the dynamics of SARS-CoV-2 infection in children, assessing the impact of quarantines on people's mobility, implementing strategies for widespread SARS-CoV-2 polymerase chain reaction (PCR) testing, and exploring pool testing for large populations. The urgent need to reduce disease severity and transmission posed a significant challenge, as it was essential to prevent overwhelming healthcare systems. Studies were conducted to predict ICU bed requirements at the local level using mathematical models. Additionally, novel approaches, such as using cellphone mobility-based technology to actively identify infected individuals, and to optimize population sampling, were explored following the first wave of the pandemic. Chile took early action in addressing vaccination through a high-level scientific board, before vaccines became available. Studies conducted during this period included population-based immunologic evaluations of different vaccines, which helped build confidence in the population and supported the need for booster doses and potential vaccination of children. These studies and collaborations, which will be discussed here, have provided valuable insights and will inform future approaches in a post-pandemic world. Importantly, highly conservative estimates indicate that 3,000 lives and more than 300 million USD were saved by this academic-public-private collaborative effort.
Collapse
Affiliation(s)
- Juan Pablo Torres
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto Sistemas Complejos de Ingeniería (ISCI), Santiago, Chile
- Hospital Luis Calvo Mackenna, Santiago, Chile
| | - Leonardo Basso
- Instituto Sistemas Complejos de Ingeniería (ISCI), Santiago, Chile
- Faculty of Physical Sciences and Mathematics, Universidad de Chile, Santiago, Chile
| | - Denis Saure
- Instituto Sistemas Complejos de Ingeniería (ISCI), Santiago, Chile
- Faculty of Physical Sciences and Mathematics, Universidad de Chile, Santiago, Chile
| | | | - Andrés Couve
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mauricio Farfán
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Hospital Luis Calvo Mackenna, Santiago, Chile
| | - Verónica de la Maza
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Hospital Luis Calvo Mackenna, Santiago, Chile
| | - Nelson Campos
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto Sistemas Complejos de Ingeniería (ISCI), Santiago, Chile
| |
Collapse
|
4
|
Yu B, Xu C, Huang S, Ni J, Zhou J, Zhang Y, Wu M, Zhang J, Fang L. Development of a universal real-time RT-PCR assay for detection of pan-SARS-coronaviruses with an RNA-based internal control. Front Microbiol 2023; 14:1181097. [PMID: 37275136 PMCID: PMC10232947 DOI: 10.3389/fmicb.2023.1181097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for rapid diagnostic assays to prompt intensified virological monitoring both in human and wild animal populations. To date, there are no clinical validated assays for pan-SARS-coronavirus (pan-SARS-CoV) detection. Here, we suggest an innovative primer design strategy for the diagnosis of pan-SARS-CoVs targeting the envelope (E) gene using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Furthermore, we developed a new primer-probe set targeting human β2-microglobulin (B2M) as an RNA-based internal control for process efficacy. The universal RT-qPCR assay demonstrated no false-positive amplifications with other human coronaviruses or 20 common respiratory viruses, and its limit of detection (LOD) was 159.16 copies/ml at 95% detection probability. In clinical validation, the assay delivered 100% sensitive results in the detection of SARS-CoV-2-positive oropharyngeal samples (n = 120), including three variants of concern (Wuhan, Delta, and Omicron). Taken together, this universal RT-qPCR assay provides a highly sensitive, robust, and rapid detection of SARS-CoV-1, SARS-CoV-2, and animal-derived SARS-related CoVs.
Collapse
Affiliation(s)
- Beibei Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Changping Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shiwang Huang
- Shangcheng District Center for Disease Control and Prevention, Hangzhou, China
| | - Jun Ni
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yuting Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Maomao Wu
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Huang Y, Gao Z, Ma C, Sun Y, Huang Y, Jia C, Zhao J, Feng S. An integrated microfluidic chip for nucleic acid extraction and continued cdPCR detection of pathogens. Analyst 2023. [PMID: 37194305 DOI: 10.1039/d3an00271c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This paper introduces an enclosed microfluidic chip that integrates sample preparation and the chamber-based digital polymerase chain reaction (cdPCR). The sample preparation of the chip includes nucleic acid extraction and purification based on magnetic beads, which adsorb nucleic acids by moving around the reaction chambers to complete the reactions including lysis, washing, and elution. The cdPCR area of the chip consists of tens of thousands of regularly arranged microchambers. After the sample preparation processes are completed, the purified nucleic acid can be directly introduced into the microchambers for amplification and detection on the chip. The nucleic acid extraction performance and digital quantification performance of the system were examined using synthetic SARS-CoV-2 plasmid templates at concentrations ranging from 101-105 copies per μL. Further on, a simulated clinical sample was used to test the system, and the integrated chip was able to accurately detect SARS-CoV-2 virus particle samples doped with interference (saliva) with a detection limit of 10 copies per μL. This integrated system could provide a promising tool for point-of-care testing of pathogenic infections.
Collapse
Affiliation(s)
- Yaru Huang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- School of Life Sciences, Shanghai Normal University, China
| | - Zehang Gao
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
| | - Cong Ma
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- School of Information Science and Technology, ShanghaiTech University, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
| | - Yimeng Sun
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
| | - Yuhang Huang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- School of Life Sciences, Shanghai Normal University, China
| | - Chunping Jia
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
| | - Jianlong Zhao
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| | - Shilun Feng
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
| |
Collapse
|
6
|
Ma C, Sun Y, Huang Y, Gao Z, Huang Y, Pandey I, Jia C, Feng S, Zhao J. On-Chip Nucleic Acid Purification Followed by ddPCR for SARS-CoV-2 Detection. BIOSENSORS 2023; 13:bios13050517. [PMID: 37232879 DOI: 10.3390/bios13050517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
We developed a microfluidic chip integrated with nucleic acid purification and droplet-based digital polymerase chain reaction (ddPCR) modules to realize a 'sample-in, result-out' infectious virus diagnosis. The whole process involved pulling magnetic beads through drops in an oil-enclosed environment. The purified nucleic acids were dispensed into microdroplets by a concentric-ring, oil-water-mixing, flow-focusing droplets generator driven under negative pressure conditions. Microdroplets were generated with good uniformity (CV = 5.8%), adjustable diameters (50-200 μm), and controllable flow rates (0-0.3 μL/s). Further verification was provided by quantitative detection of plasmids. We observed a linear correlation of R2 = 0.9998 in the concentration range from 10 to 105 copies/μL. Finally, this chip was applied to quantify the nucleic acid concentrations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The measured nucleic acid recovery rate of 75 ± 8.8% and detection limit of 10 copies/μL proved its on-chip purification and accurate detection abilities. This chip can potentially be a valuable tool in point-of-care testing.
Collapse
Affiliation(s)
- Cong Ma
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Huang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yaru Huang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Ikshu Pandey
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Xiangfu Laboratory, Jiaxing 314102, China
| |
Collapse
|
7
|
Luraschi R, Santibáñez Á, Barrera-Avalos C, Vallejos-Vidal E, Mateluna-Flores C, Alarcón J, Cayunao J, Mella-Torres A, Hernández F, Inostroza-Molina A, Valdés D, Imarai M, Acuña-Castillo C, Reyes-López FE, Sandino AM. Evaluation and comparison of the sensitivity of three commercial RT-qPCR kits used for the detection of SARS-CoV-2 in Santiago, Chile. Front Public Health 2022; 10:1010336. [PMID: 36518569 PMCID: PMC9742446 DOI: 10.3389/fpubh.2022.1010336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction The COVID-19 pandemic is still in force, causing global public health challenges and threats. Although vaccination and herd immunity have proven to be the most efficient way to control the pandemic, massive and early testing of patients using the RT-qPCR technique is crucial for constant genomic surveillance. The appearance of variants of SARS-CoV-2 with new mutations can reduce the efficiency of diagnostic detection. In this sense, several commercial RT-qPCR kits have been the target of extensive analysis because low assay performance could lead to false-negative diagnoses. Methods In this study, we evaluated the performance of three commercial RT-qPCR kits; Thermo Fisher (TaqMan 2019-nCoV Assay Kit v1), BGI and Roche (LightCycler® Multiplex RNA Virus Master) used for the diagnosis of COVID-19 throughout the pandemic in Santiago de Chile. Results Under our best assay conditions, we found significant differences in Cq amplification values for control and viral probes, against the same nasopharyngeal swab samples (NPSs). In addition, in some cases, the sensitivity of the RT-qPCR kits decreased against viral variants. Conclusion Our study suggests evaluating the RT-qPCR kits used to detect SARS-CoV-2 because variants such as Omicron, which has several mutations, can compromise their detection and underestimate viral circulation.
Collapse
Affiliation(s)
- Roberto Luraschi
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Álvaro Santibáñez
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carlos Barrera-Avalos
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Santiago, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Carlos Mateluna-Flores
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Javiera Alarcón
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Javiera Cayunao
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrea Mella-Torres
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Hernández
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ailen Inostroza-Molina
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniel Valdés
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Acuña-Castillo
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,*Correspondence: Felipe E. Reyes-López
| | - Felipe E. Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Ana María Sandino
| | - Ana María Sandino
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Claudio Acuña-Castillo
| |
Collapse
|
8
|
Becerril Vargas E, Cojuc-Konigsberg G, Braverman-Poyastro A, Armendáriz Mendoza E, Mujica Sánchez MA, García Colín MDC, Chávez Morales HH, Aguirre Pineda JN, Ibarra Cobas LC. Diagnostic performance of the Qiaprep amp Viral RNA UM kit for the detection of COVID-19 compared to RT-PCR. Front Med (Lausanne) 2022; 9:976090. [PMID: 36275813 PMCID: PMC9582594 DOI: 10.3389/fmed.2022.976090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background RT-PCR is the currently recommended laboratory method for diagnosing acute SARS-CoV-2 infection. Nevertheless, to carry out this assay, numerous manual steps are necessary, but they are long lasting and error-prone. A new sample preparation solution was launched, the Qiaprep & amp Viral RNA UM kit, that combines a short, liquid-based sample preparation with one-step RT-PCR amplification and detection of SARS-CoV-2. Such alternative allows reducing the handling of samples and obtaining a result in a shorter period of time. The objective of the study was to compare the performance of the kit with RT-PCR. Methods A prospective trial was carried out in the clinical microbiology laboratory of a tertiary care hospital. The pharyngeal and nasopharyngeal swabs included in the study were taken from patients who underwent medical consultation because compatible COVID-19 symptoms. Samples were processed simultaneously for the reference RT-PCR and by the QIA P&A kit. Results 190 samples were included in the clinical trial. The reference RT-PCR method indicated that 125 (66%) samples, out of the 190, were positive. The QIA P&A kit showed 112 positive samples for SARS-CoV-2. The QIA P&A kit has a sensitivity of 86% to detect SARS-CoV-2 and a 100% specificity, the positive predictive value was of 96%, the negative predictive value 78%, and the obtained Kappa value was 0,76. QIA P&A kit showed a lower mean cycle threshold compared with the diagnostic standard, with a statistically significant difference (p < 0.05). Conclusion The QIA P&A kit has an acceptable, yet not optimal performance for sample preparation and amplification of SARS-CoV-2 and further studying is required for it to be validated as a cost-effective, rapid diagnostic method for detecting infections.
Collapse
|
9
|
Zhang Y, Wang X, Niu C, Wang D, Shen Q, Gao Y, Zhou H, Zhang Y, Zhang Y, Dong L. Evaluation of factors contributing to variability of qualitative and quantitative proficiency testing for SARS-CoV-2 nucleic acid detection. BIOSAFETY AND HEALTH 2022; 4:321-329. [PMID: 36091480 PMCID: PMC9450473 DOI: 10.1016/j.bsheal.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to unprecedented social and economic disruption. Many nucleic acid testing (NAT) laboratories in China have been established to control the epidemic better. This proficiency testing (PT) aims to evaluate the participants' performance in qualitative and quantitative SARS-CoV-2 NAT and to explore the factors that contribute to differences in detection capabilities. Two different concentrations of RNA samples (A, B) were used for quantitative PT. Pseudovirus samples D, E (different concentrations) and negative sample (F) were used for qualitative PT. 50 data sets were reported for qualitative PT, of which 74.00% were entirely correct for all samples. Forty-two laboratories participated in the quantitative PT. 37 submitted all gene results, of which only 56.76% were satisfactory. For qualitative detection, it is suggested that laboratories should strengthen personnel training, select qualified detection kits, and reduce cross-contamination to improve detection accuracy. For quantitative detection, the results of the reverse transcription digital PCR (RT-dPCR) method were more comparable and reliable than those of reverse transcription quantitative PCR (RT-qPCR). The copy number concentration of ORF1ab and N in samples A and B scattered in 85, 223, 50, and 106 folds, respectively. The differences in the quantitative result of RT-qPCR was mainly caused by the non-standard use of reference materials and the lack of personnel operating skills. Comparing the satisfaction of participants participating in both quantitative and qualitative proficiency testing, 95.65% of the laboratories with satisfactory quantitative results also judged the qualitative results correctly, while 85.71% of the laboratories with unsatisfactory quantitative results were also unsatisfied with their qualitative judgments. Therefore, the quantitative ability is the basis of qualitative judgment. Overall, participants from hospitals reported more satisfactory results than those from enterprises and universities. Therefore, surveillance, daily qualitiy control and standardized operating procedures should be strengthened to improve the capability of SARS-CoV-2 NAT.
Collapse
Affiliation(s)
| | - Xia Wang
- National Institute of Metrology, Beijing 100029, China
| | - Chunyan Niu
- National Institute of Metrology, Beijing 100029, China
| | - Di Wang
- National Institute of Metrology, Beijing 100029, China
| | - Qingfei Shen
- National Institute of Metrology, Beijing 100029, China
| | - Yunhua Gao
- National Institute of Metrology, Beijing 100029, China
| | - Haiwei Zhou
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yujing Zhang
- National Institute of Metrology, Beijing 100029, China
| | - Yan Zhang
- National Institute of Metrology, Beijing 100029, China
| | - Lianhua Dong
- National Institute of Metrology, Beijing 100029, China,Corresponding author: Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
10
|
Clinical Evaluation of Nasopharyngeal, Oropharyngeal, Nasal Swabs, and Saliva for the Detection of SARS-CoV-2 by Direct RT-PCR. Diagnostics (Basel) 2022; 12:diagnostics12051091. [PMID: 35626247 PMCID: PMC9140003 DOI: 10.3390/diagnostics12051091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Nasopharyngeal swab (NPS) and oropharyngeal swab (OPS) are the most widely used upper respiratory tract specimens for diagnosis of SARS-CoV-2 using RT-qPCR. In contrast, nasal swab (NS) and saliva (SS), recently recommended by the WHO, are rarely used, and their test accuracy is limited. The method for direct RT-PCR detection of SARS-CoV-2 does not require an RNA extraction and is faster and easier than standard RT-PCR tests with RNA extraction. This study aimed to compare the diagnostic performance of upper respiratory tract samples for SARS-CoV-2 detection using the direct RT-PCR without preliminary heat inactivation. Here we report the application and validation of direct RT-PCR SARS-CoV-2 RNA on 165 clinical specimens of NPS/OP, and 36 samples of NS/NPS and 37 saliva samples (for the latter with prior deproteinization). The overall sensitivity estimates were 95.9%, 94.2%, 88.9%, and 94.6% for NPS/OPS/NS/SS samples, respectively, and the specificity was 100% against standard RT-PCR with RNA extraction. Overall, NS and SS testing by direct RT-PCR had sufficient sensitivity to detect SARS-CoV-2. They can be acceptable alternative to NPS/OPS for rapid detection of SARS-CoV-2 infections in future.
Collapse
|
11
|
Vindeirinho JM, Pinho E, Azevedo NF, Almeida C. SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Front Cell Infect Microbiol 2022; 12:799678. [PMID: 35402302 PMCID: PMC8984495 DOI: 10.3389/fcimb.2022.799678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic ignited the development of countless molecular methods for the diagnosis of SARS-CoV-2 based either on nucleic acid, or protein analysis, with the first establishing as the most used for routine diagnosis. The methods trusted for day to day analysis of nucleic acids rely on amplification, in order to enable specific SARS-CoV-2 RNA detection. This review aims to compile the state-of-the-art in the field of nucleic acid amplification tests (NAATs) used for SARS-CoV-2 detection, either at the clinic level, or at the Point-Of-Care (POC), thus focusing on isothermal and non-isothermal amplification-based diagnostics, while looking carefully at the concerning virology aspects, steps and instruments a test can involve. Following a theme contextualization in introduction, topics about fundamental knowledge on underlying virology aspects, collection and processing of clinical samples pave the way for a detailed assessment of the amplification and detection technologies. In order to address such themes, nucleic acid amplification methods, the different types of molecular reactions used for DNA detection, as well as the instruments requested for executing such routes of analysis are discussed in the subsequent sections. The benchmark of paradigmatic commercial tests further contributes toward discussion, building on technical aspects addressed in the previous sections and other additional information supplied in that part. The last lines are reserved for looking ahead to the future of NAATs and its importance in tackling this pandemic and other identical upcoming challenges.
Collapse
Affiliation(s)
- João M. Vindeirinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Eva Pinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno F. Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
12
|
Marando M, Tamburello A, Gianella P, Taylor R, Bernasconi E, Fusi-Schmidhauser T. Diagnostic sensitivity of RT-PCR assays on nasopharyngeal specimens for detection of SARS-CoV-2 infection: A Systematic Review and Meta-Analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:139-147. [PMID: 35872685 PMCID: PMC9272971 DOI: 10.22088/cjim.13.0.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 10/31/2022]
Abstract
Background Reverse transcription polymerase chain reaction (RT-PCR) is the current standard of reference in the diagnosis of SARS-CoV-2 infection. In outpatient clinical practice, nasopharyngeal swab RT-PCR testing is still the most common procedure. The purpose of this systematic review and meta-analysis was to evaluate the sensitivity of RT-PCR nasopharyngeal assays. Methods We searched three databases, including PubMed/MEDLINE, EMBASE, and Cochrane Library, using a comprehensive strategy. Studies investigating the sensitivity of SARS-CoV-2 RT-PCR nasopharyngeal assays in adults were included. Two reviewers extracted data and assessed trial quality independently. Pooled sensitivity and its confidence interval were computed using the meta package in R. Results Thirteen studies were found eligible for the inclusion in the systematic review. Out of these, 25 different sub-studies were identified and included in the meta-analysis, which reported the sensitivities of 25 different nasopharyngeal RT-PCR assays. Finally, the overall pooled sensitivity resulted 89% (95% CI, 85.4 to 91.8%). Conclusion Our study suggests that RT-PCR assays on nasopharyngeal specimens have a substantial sensitivity for diagnosing SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marco Marando
- Internal Medicine Department, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale, Switzerland
| | - Adriana Tamburello
- Internal Medicine Department, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale, Switzerland
| | - Pietro Gianella
- Internal Medicine Department, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale, Switzerland,Division of Pneumology, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale, Switzerland
| | - Rebecca Taylor
- Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Enos Bernasconi
- Internal Medicine Department, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale, Switzerland,Division of Infectious Diseases, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale, Switzerland
| | - Tanja Fusi-Schmidhauser
- Internal Medicine Department, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale, Switzerland
| |
Collapse
|
13
|
Ahmadzadeh M, Vahidi H, Mahboubi A, Hajifathaliha F, Nematollahi L, Mohit E. Different Respiratory Samples for COVID-19 Detection by Standard and Direct Quantitative RT-PCR: A Literature Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:285-299. [PMID: 34903989 PMCID: PMC8653661 DOI: 10.22037/ijpr.2021.115458.15383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The most common diagnostic method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR). Upper respiratory tract samples, including nasopharyngeal swab (NPS), oropharyngeal swab (OPS), saliva and lower respiratory tract samples such as sputum, are the most widely used specimens for diagnosis of SARS-CoV-2 using RT-qPCR. This study aimed to compare the diagnostic performance of different samples for Coronavirus disease 2019 (COVID-19) detection. It was found that NPS, the reference respiratory specimen for COVID-19 detection, is more sensitive than OPS. However, the application of NPS has many drawbacks, including challenging sampling process and increased risk of transmission to healthcare workers (HCWs). Saliva samples can be collected less invasively and quickly by HCWs with less contact or by own patients, and they can be considered as an alternative to NPS for COVID-19 detection by RT-qPCR. Additionally, sputum, which demonstrates higher viral load can be applied in patients with productive coughs and negative results from NPS. Commonly, after viral RNA purification from patient samples, which is time-consuming and costly, RT-qPCR is performed to diagnose SARS-CoV-2. Herein, different approaches including physical (heat inactivation) and chemical (proteinase K treatment) methods, used in RNA extraction free- direct RT-qPCR, were reviewed. The results of direct RT-qPCR assays were comparable to the results of standard RT-qPCR, while cost and time were saved. However, optimal protocol to decrease cost and processing time, proper transport medium and detection kit should be determined.
Collapse
Affiliation(s)
- Maryam Ahmadzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Hajifathaliha
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Villota SD, Nipaz VE, Carrazco-Montalvo A, Hernandez S, Waggoner JJ, Ponce P, Coloma J, Orlando A, Cevallos V. Alternative RNA extraction-free techniques for the real-time RT-PCR detection of SARS-CoV-2 in nasopharyngeal swab and sputum samples. J Virol Methods 2021; 298:114302. [PMID: 34563582 PMCID: PMC8459549 DOI: 10.1016/j.jviromet.2021.114302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
Standard diagnoses of SARS-CoV-2 infections are done by RNA extraction and real-time RT-PCR (rRT-PCR). However, the need for RNA extraction complicates testing due to increased processing time, high cost, and limited availability of commercial kits. Therefore, alternative methods for rRT-PCR detection of SARS-CoV-2 without RNA extraction were investigated. Nasopharyngeal and sputum samples were used to compare the sensitivity of three techniques: Trizol RNA extraction, thermal shock, and the direct use of samples with an RNase inhibitor. Direct, extraction-free use of primary samples plus the RNase inhibitor produced diagnostic values of 100 % sensitivity and specificity compared to standard protocols, and these findings were validated in a second, independent laboratory.
Collapse
Affiliation(s)
| | - Victoria E Nipaz
- Instituto Nacional de Investigación en Salud Pública (INSPI), Ecuador
| | | | - Sarah Hernandez
- Emory University, Department of Medicine, Division if Infectious Diseases, Atlanta, GA, USA
| | - Jesse J Waggoner
- Emory University, Department of Medicine, Division if Infectious Diseases, Atlanta, GA, USA
| | - Patricio Ponce
- Instituto Nacional de Investigación en Salud Pública (INSPI), Ecuador
| | - Josefina Coloma
- University of California Berkeley, Division of Infectious Diseases and Vaccinology, School of Public Health, CA, USA
| | - Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública (INSPI), Ecuador
| | - Varsovia Cevallos
- Instituto Nacional de Investigación en Salud Pública (INSPI), Ecuador.
| |
Collapse
|
15
|
Lista MJ, Matos PM, Maguire TJA, Poulton K, Ortiz-Zapater E, Page R, Sertkaya H, Ortega-Prieto AM, Scourfield E, O’Byrne AM, Bouton C, Dickenson RE, Ficarelli M, Jimenez-Guardeño JM, Howard M, Betancor G, Galao RP, Pickering S, Signell AW, Wilson H, Cliff P, Kia Ik MT, Patel A, MacMahon E, Cunningham E, Doores K, Agromayor M, Martin-Serrano J, Perucha E, Mischo HE, Shankar-Hari M, Batra R, Edgeworth J, Zuckerman M, Malim MH, Neil S, Martinez-Nunez RT. Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation. PLoS One 2021; 16:e0256813. [PMID: 34525109 PMCID: PMC8443028 DOI: 10.1371/journal.pone.0256813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP. RNA extraction methods provided similar results, with Beckman performing better with our primer-probe combinations. Luna proved most sensitive although overall the three reagents did not show significant differences. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrated that heat treatment of nasopharyngeal swabs at 70°C for 10 or 30 min, or 90°C for 10 or 30 min (both original variant and B 1.1.7) inactivated SARS-CoV-2 employing plaque assays, and had minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable in settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/.
Collapse
Affiliation(s)
- Maria Jose Lista
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Pedro M. Matos
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Thomas J. A. Maguire
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Inflammation Biology, School of Immunology and Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, London, United Kingdom
| | - Kate Poulton
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Randall Centre for Cell & Molecular Biophysics, King’s College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
| | - Robert Page
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- King’s Health Partners Integrated Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, United Kingdom
| | - Helin Sertkaya
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Ana M. Ortega-Prieto
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Edward Scourfield
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Aoife M. O’Byrne
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Centre for Rheumatic Diseases (CRD–EULAR Centre of Excellence), King’s College London, London, United Kingdom
| | - Clement Bouton
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Ruth E. Dickenson
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Mattia Ficarelli
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Jose M. Jimenez-Guardeño
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Mark Howard
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
| | - Gilberto Betancor
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Rui Pedro Galao
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Suzanne Pickering
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Adrian W. Signell
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Harry Wilson
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Penelope Cliff
- Viapath pathology laboratories at St Thomas’ Hospital, London, United Kingdom
| | - Mark Tan Kia Ik
- Centre for Infectious Diseases Research, St Thomas’ Hospital, London, United Kingdom
| | - Amita Patel
- Centre for Infectious Diseases Research, St Thomas’ Hospital, London, United Kingdom
| | - Eithne MacMahon
- Centre for Infectious Diseases Research, St Thomas’ Hospital, London, United Kingdom
| | - Emma Cunningham
- Centre for Infectious Diseases Research, St Thomas’ Hospital, London, United Kingdom
| | - Katie Doores
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Monica Agromayor
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Juan Martin-Serrano
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Esperanza Perucha
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Centre for Rheumatic Diseases (CRD–EULAR Centre of Excellence), King’s College London, London, United Kingdom
| | - Hannah E. Mischo
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Manu Shankar-Hari
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Rahul Batra
- Centre for Infectious Diseases Research, St Thomas’ Hospital, London, United Kingdom
| | - Jonathan Edgeworth
- Centre for Infectious Diseases Research, St Thomas’ Hospital, London, United Kingdom
| | - Mark Zuckerman
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- South London Specialist Virology Centre, King’s College Hospital, London, United Kingdom
| | - Michael H. Malim
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Stuart Neil
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Rocio Teresa Martinez-Nunez
- King’s College London Diagnostics Team at Guy’s Campus, London, United Kingdom
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
16
|
Hertel AT, Heeter MM, Wirfel OM, Bestram MJ, Mauro SA. Athletes Drive Distinctive Trends of COVID-19 Infection in a College Campus Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7689. [PMID: 34300139 PMCID: PMC8307320 DOI: 10.3390/ijerph18147689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic forced most institutions of higher education to offer instruction and activities offsite, impacting millions of people. As universities consider resuming normal operations on campus, evidence-based guidance is needed to enhance safety protocols to reduce the spread of infectious disease in their campus environments. During the 2020/2021 academic year, Gannon University in Erie, PA, USA, was able to maintain most of its operations on campus. Part of Gannon's disease mitigation strategy involved the development of a novel in-house, real-time RT-PCR-based surveillance program, which tested 23,227 samples to monitor the presence of COVID-19 on campus. Temporal trends of COVID-19 infection at Gannon were distinct from statewide data. A significant portion of this variance involved student athletes and associated staff, which identified as a higher incidence risk group compared with non-athletes. Rapid identification of athlete driven outbreaks allowed for swift action to limit the spread of COVID-19 among teammates and to the rest of the campus community. This allowed for successful completion of instruction and a modified season for all sports at Gannon. Our findings provide insights that could prove useful to the thousands of institutions seeking to resume a more traditional presence on campus.
Collapse
Affiliation(s)
| | | | | | | | - Steven A. Mauro
- Department of Biology, Morosky College of Health Professions and Sciences, Gannon University, Erie, PA 16541, USA; (A.T.H.); (M.M.H.); (O.M.W.); (M.J.B.)
| |
Collapse
|
17
|
Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, Oyewunmi OD, Camargo C, Nikpour B, Armanfard N, Sagan SM, Jahanshahi-Anbuhi S. Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin Microbiol Rev 2021; 34:e00228-20. [PMID: 33980687 PMCID: PMC8142517 DOI: 10.1128/cmr.00228-20] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory disease coronavirus 2 (SARS-CoV-2), has led to millions of confirmed cases and deaths worldwide. Efficient diagnostic tools are in high demand, as rapid and large-scale testing plays a pivotal role in patient management and decelerating disease spread. This paper reviews current technologies used to detect SARS-CoV-2 in clinical laboratories as well as advances made for molecular, antigen-based, and immunological point-of-care testing, including recent developments in sensor and biosensor devices. The importance of the timing and type of specimen collection is discussed, along with factors such as disease prevalence, setting, and methods. Details of the mechanisms of action of the various methodologies are presented, along with their application span and known performance characteristics. Diagnostic imaging techniques and biomarkers are also covered, with an emphasis on their use for assessing COVID-19 or monitoring disease severity or complications. While the SARS-CoV-2 literature is rapidly evolving, this review highlights topics of interest that have occurred during the pandemic and the lessons learned throughout. Exploring a broad armamentarium of techniques for detecting SARS-CoV-2 will ensure continued diagnostic support for clinicians, public health, and infection prevention and control for this pandemic and provide advice for future pandemic preparedness.
Collapse
Affiliation(s)
- Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
- Department of Mechanical, Industrial, and Aerospace Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Jason J LeBlanc
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Infectious Diseases), Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Oyejide Damilola Oyewunmi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Carolina Camargo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Bahareh Nikpour
- Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
| | - Narges Armanfard
- Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
- Mila-Quebec AI Institute, Montréal, Québec, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
18
|
Fassy J, Lacoux C, Leroy S, Noussair L, Hubac S, Degoutte A, Vassaux G, Leclercq V, Rouquié D, Marquette CH, Rottman M, Touron P, Lemoine A, Herrmann JL, Barbry P, Nahon JL, Zaragosi LE, Mari B. Versatile and flexible microfluidic qPCR test for high-throughput SARS-CoV-2 and cellular response detection in nasopharyngeal swab samples. PLoS One 2021; 16:e0243333. [PMID: 33852580 PMCID: PMC8046349 DOI: 10.1371/journal.pone.0243333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence and quick spread of SARS-CoV-2 has pointed at a low capacity response for testing large populations in many countries, in line of material, technical and staff limitations. The traditional RT-qPCR diagnostic test remains the reference method and is by far the most widely used test. These assays are limited to a few probe sets, require large sample PCR reaction volumes, along with an expensive and time-consuming RNA extraction step. Here we describe a quantitative nanofluidic assay that overcomes some of these shortcomings, based on the BiomarkTM instrument from Fluidigm. This system offers the possibility of performing 4608 qPCR end-points in a single run, equivalent to 192 clinical samples combined with 12 pairs of primers/probe sets in duplicate, thus allowing the monitoring of SARS-CoV-2 including the detection of specific SARS-CoV-2 variants, as well as the detection other pathogens and/or host cellular responses (virus receptors, response markers, microRNAs). The 10 nL-range volume of BiomarkTM reactions is compatible with sensitive and reproducible reactions that can be easily and cost-effectively adapted to various RT-qPCR configurations and sets of primers/probe. Finally, we also evaluated the use of inactivating lysis buffers composed of various detergents in the presence or absence of proteinase K to assess the compatibility of these buffers with a direct reverse transcription enzymatic step and we propose several protocols, bypassing the need for RNA purification. We advocate that the combined utilization of an optimized processing buffer and a high-throughput real-time PCR device would contribute to improve the turn-around-time to deliver the test results to patients and increase the SARS-CoV-2 testing capacities.
Collapse
Affiliation(s)
- Julien Fassy
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Valbonne, France
| | - Caroline Lacoux
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Valbonne, France
| | - Sylvie Leroy
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Valbonne, France
- Département de Pneumologie, CHU-Nice, FHU-OncoAge, Université Côte d’Azur, Nice, France
| | - Latifa Noussair
- Assistance Publique-Hôpitaux de Paris, GHU Paris–Saclay, Garches, France
| | - Sylvain Hubac
- Institut de Recherche Criminelle de la Gendarmerie Nationale (IRCGN), Cergy, France
| | - Aurélien Degoutte
- Département de Pneumologie, CHU-Nice, FHU-OncoAge, Université Côte d’Azur, Nice, France
| | - Georges Vassaux
- Université Côte d’Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | | | | | - Martin Rottman
- Assistance Publique-Hôpitaux de Paris, GHU Paris–Saclay, Garches, France
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Patrick Touron
- Institut de Recherche Criminelle de la Gendarmerie Nationale (IRCGN), Cergy, France
| | - Antoinette Lemoine
- Assistance Publique-Hôpitaux de Paris, GHU Paris–Saclay, Garches, France
| | - Jean-Louis Herrmann
- Assistance Publique-Hôpitaux de Paris, GHU Paris–Saclay, Garches, France
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Pascal Barbry
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Valbonne, France
| | - Jean-Louis Nahon
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Valbonne, France
| | - Laure-Emmanuelle Zaragosi
- Université Côte d’Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bernard Mari
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Valbonne, France
| |
Collapse
|
19
|
Egerer R, Edel B, Löffler B, Henke A, Rödel J. Performance of the RT-LAMP-based eazyplex® SARS-CoV-2 as a novel rapid diagnostic test. J Clin Virol 2021; 138:104817. [PMID: 33836452 PMCID: PMC8015392 DOI: 10.1016/j.jcv.2021.104817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022]
Abstract
Background Diagnostic assays for severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) that are easy to perform and produce fast results are essential for timely decision making regarding the isolation of contagious individuals. Objective We evaluated the CE-approved eazyplex® SARS-CoV-2, a ready-to-use real time RT-LAMP assay for identification of the SARS-CoV-2 N and ORF8 genes from swabs in less than 30 min without RNA extraction. Study design Oropharyngeal and nasal swabs from 100 positive and 50 negative patients were inoculated into 0.9 % saline and tested by NeuMoDx™ RT-PCR. An aliquot was diluted fivefold in Copan sputum liquefying (SL) solution and directly analyzed by eazyplex® SARS-CoV-2. In addition, 130 patient swabs were prospectively tested with both methods in parallel. Analytical sensitivity of the assay was determined using virus stock dilutions. Results Positive percent agreement (PPA) between the eazyplex® SARS-CoV-2 and RT-PCR was 74 % for samples with Ct values < 35. When using a Ct cut-off ≤ 28 the PPA increased to 97.4 %. In the prospective part of the study overall PPA of the eazyplex® kit was 66.7 % but increased to 100 % when only Ct values ≤ 28 were considered. There were no false positive results. The median time to positivity was 12.5 min for the N gene and 16.75 min for ORF8. Analytical sensitivity was 3.75 TCID50/mL. 105 virus copies/mL were reproducibly detected. Conclusion The eazyplex® SARS-CoV-2 is a rapid assay that accurately identifies samples with high viral loads. It may be useful for near-patient testing outside of a molecular diagnostic laboratory.
Collapse
Affiliation(s)
- Renate Egerer
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Birgit Edel
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Jürgen Rödel
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
20
|
Lista MJ, Matos PM, Maguire TJA, Poulton K, Ortiz-Zapater E, Page R, Sertkaya H, Ortega-Prieto AM, O’Byrne AM, Bouton C, Dickenson RE, Ficarelli M, Jimenez-Guardeño JM, Howard M, Betancor G, Galao RP, Pickering S, Signell AW, Wilson H, Cliff P, Ik MTK, Patel A, MacMahon E, Cunningham E, Doores K, Agromayor M, Martin-Serrano J, Perucha E, Mischo HE, Shankar-Hari M, Batra R, Edgeworth J, Zuckerman M, Malim MH, Neil S, Martinez-Nunez RT. Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2020.04.22.20074351. [PMID: 33851184 PMCID: PMC8043481 DOI: 10.1101/2020.04.22.20074351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna ® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP (PHE guidelines). All RNA extraction methods provided similar results. FastVirus and Luna proved most sensitive. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrate that treatment of nasopharyngeal swabs with 70 degrees for 10 or 30 min, or 90 degrees for 10 or 30 min (both original variant and B 1.1.7) inactivates SARS-CoV-2 employing plaque assays, and that it has minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable to settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/ .
Collapse
Affiliation(s)
- Maria Jose Lista
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
- All these authors contributed equally to the completion of this work
| | - Pedro M. Matos
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
- All these authors contributed equally to the completion of this work
| | - Thomas J. A. Maguire
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Inflammation Biology, School of Immunology and Microbial Sciences. Asthma UK Centre in Allergic Mechanisms of Asthma. Guy’s Campus, King’s College London SE1 9RT, UK
- All these authors contributed equally to the completion of this work
| | - Kate Poulton
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
- All these authors contributed equally to the completion of this work
| | - Elena Ortiz-Zapater
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Randall Centre for Cell & Molecular Biophysics. Guy’s Campus, King’s College London, SE1 1UL, UK
- Peter Gorer Department of Immunobiology. Guy’s Campus, King’s College London, SE1 9RT, UK
| | - Robert Page
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Inflammation Biology, School of Immunology and Microbial Sciences. Asthma UK Centre in Allergic Mechanisms of Asthma. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Helin Sertkaya
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Ana M. Ortega-Prieto
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Aoife M. O’Byrne
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Centre for Inflammation Biology and Cancer Immunology (CIBCI). Centre for Rheumatic Diseases (CRD – EULAR Centre of Excellence). Guy’s Campus, King’s College London SE1 1UL, UK
| | - Clement Bouton
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Ruth E Dickenson
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Mattia Ficarelli
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Jose M. Jimenez-Guardeño
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Mark Howard
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Peter Gorer Department of Immunobiology. Guy’s Campus, King’s College London, SE1 9RT, UK
| | - Gilberto Betancor
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Rui Pedro Galao
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Suzanne Pickering
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Adrian W Signell
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Harry Wilson
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | | | - Mark Tan Kia Ik
- Centre for Infectious Diseases Research, St Thomas’ Hospital (London, UK)
| | - Amita Patel
- Centre for Infectious Diseases Research, St Thomas’ Hospital (London, UK)
| | - Eithne MacMahon
- Centre for Infectious Diseases Research, St Thomas’ Hospital (London, UK)
| | - Emma Cunningham
- Centre for Infectious Diseases Research, St Thomas’ Hospital (London, UK)
| | - Katie Doores
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Monica Agromayor
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Juan Martin-Serrano
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Esperanza Perucha
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Centre for Inflammation Biology and Cancer Immunology (CIBCI). Centre for Rheumatic Diseases (CRD – EULAR Centre of Excellence). Guy’s Campus, King’s College London SE1 1UL, UK
| | - Hannah E. Mischo
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Manu Shankar-Hari
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Rahul Batra
- Centre for Infectious Diseases Research, St Thomas’ Hospital (London, UK)
| | - Jonathan Edgeworth
- Centre for Infectious Diseases Research, St Thomas’ Hospital (London, UK)
| | - Mark Zuckerman
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Virology. King’s College Hospital (London, UK)
| | - Michael H. Malim
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Stuart Neil
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| | - Rocio Teresa Martinez-Nunez
- King’s College London Diagnostics Team at Guy’s Campus (London, UK)
- Dept. Infectious Diseases, School of Immunology and Microbial Sciences. Guy’s Campus, King’s College London SE1 9RT, UK
| |
Collapse
|
21
|
Blairon L, Piteüs S, Beukinga I, Tré-Hardy M. Development and implementation of a RT-qPCR extraction-free protocol for the detection of SARS-CoV-2 and impact on the turn-around-time. J Med Virol 2021; 93:2538-2542. [PMID: 33415765 DOI: 10.1002/jmv.26782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
The occurrence of the COVID-19 second-wave outbreak in Europe has pushed laboratories performing molecular SARS-CoV-2 tests to increase their throughput and decrease the result rendering time. In this evaluation, we tested for the first time a new, extraction-free, protocol with the Allplex SARS-CoV-2 Assay RT-qPCR kit on a Nimbus platform. Ninety-one samples, of which 71 previously tested positive with RT-qPCR with extraction were immediately analyzed without extraction, using only a dilution and thermal shock protocol. The positive and negative percentage agreements were respectively 97.2% (95% confidence interval [CI]: 0.90-0.99) and 95.0% (95% CI: 0.76-0.99). The two false negatives observed were very weakly positive with the comparison method. Moderate variations in Ct of the targeted genes were observed (median ± 95% CI): E gene, +2.49 ± 0.44; N gene, +0.98 ± 0.54; RdRP/S genes, +2.64 ± 0.48. On the other hand, the number of tests performed within 24 h raised from 86.4% to 97.8%, the turn-around time decreased from 19:18 to 09:03 (p < .0001), and the number of tests that can be performed per day doubled since this technique was introduced routinely in our laboratory.
Collapse
Affiliation(s)
- Laurent Blairon
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Sébastien Piteüs
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Ingrid Beukinga
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Marie Tré-Hardy
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium.,Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium.,Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|